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Abstract
In this paper we study the exact controllability of the following semilinear stochas-

tic evolution equation in a Hilbert space X

dx(t) = {Ax(t)+Bu(t)+ f (t,ω,x(t),u(t))}dt +{Σ(t)+σ(t,ω,x(t),u(t))}dw(t),

where the control u is a stochastic process in the Hilbert space U , A : D(A)⊂ X → X ,
is the infinitesimal generator of a strongly continuous semigroup {S(t)}t≥0 on X and
B ∈ L(U,X). To this end, we give necessary and sufficient conditions for the exact
controllability of the linear part of this system

dx(t) = Ax(t)dt +Bu(t)dt +Σ(t)dw(t).

Then, under a Lipschitzian condition on the non linear terms f and σ we prove that
the exact controllability of this linear system is preserved by the semilinear stochastic
system. Moreover, we obtain explicit formulas for a control steering the system from
the initial state ξ0 to a final state ξ1 on time T > 0, for both system, the linear and the
nonlinear one. Finally, we apply this result to a semilinear damped stochastic wave
equation .
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1 Introduction

The theory of controllability for finite dimensional systems is well known and there is a
broad literature ont this subject, worth mentioning are R.E. Kaman [10] and Lee-Markus
[11]. However, for infinite dimensional systems the theory is not completed, there still
exist several problems to formulate and solve. Excellent references are: R.F.Curtain and
H.J.Zwart [5], Fattorini [9] and Russell [18]. The theory of controllability for linear stochas-
tic evolution equations is relatively new and the formulation still questionable; in fact,
Agamirsa E. bashirov and Nazin I.Mahmudov [1] give three concepts of controllability and
necessary and sufficient conditions for exact, approximate and s-controllability, which are
subsequently extended to infinite dimensional systems by Nazin I. Mahmudov [16]. Others
references in this direction are A.Lindquist [15], R.F.Curtain and A.Ichikawa [6].

For semilinear evolution equations, integral equations, stochastic evolution equations
and stochastic integral equations, the controllability was studied respectively by S.K. Ntouyas
and D. O’Regan [17], K.Balachandran and J.P.Dauer [2], K.Balachandran and R.Sakthivel
[3], P. Balasubramaniam and J.P. Dauer [4], J.P.Dauer and K.Balachandran [7], R. Subalak-
shmi, K. Balachandran and J.Y. Park [19]. In most of these studies a crucial hypothesis is
that the controllability operator G given by (3.3) is invertible; this hypothesis is used to find
an implicit formula for the control steering the system from an initial state to a final state
in time T, which reduces the problem of controllability to the problem of finding the fixed
points of an operator in a suitable functional space. But, we observe that in finite dimen-
sional control systems the controllability operator G is never invertible since it is defined on
the space of controls, which is a space of functions, and takes values in a finite dimensional
space; so it only could be surjective.
Unlike these authors, in our study the nonlinear terms depend not only on the state variable
x, but also on time t and control u; and we only assume that the linear system is exactly
controllable, and as a consequence we prove that the operator G is surjective; which im-
plies that G has a right inverse Γ (G ◦Γ = I, see corollary 3.4), that is enough to find an
explicit formula for a control steering the system from the initial state ξ0 to a final state ξ1
on time T > 0, for both systems, the linear and the nonlinear one, which is very important
from engineering point of view. Finally, we would like to mention that the results here
are obtained by standard and basic functional analysis such as Cauchy-Schwarz inequality,
Hahn-Banach theorem, the open mapping theorem, Banach fixed point theorem, etc.
This paper has been motivated by work done by Nazin I. Mahmudov [16] and the work
done by H. Leiva [12]. Particularly, in H. Leiva [12] the author characterizes the exact
controllability of the following semilinear evolution equation

z′ = Az+Bu(t)+ f (t,z,u(t)), t ≥ 0, z ∈ Z, u ∈U.

Basically, the author proves the following statement: If the linear system z′ = Az + Bu(t)
is exactly controllable, then, under some conditions on the nonlinear term f , the nonlinear
system is also exactly controllable. Specifically, the author finds explicit formulas for a
control steering the system from the initial state ξ0 to a final state ξ1 on time T > 0, for both
systems, the linear and the nonlinear one.
In this direction, our goal is to study the exact controllability of the following semilinear
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stochastic evolution equation

dx(t) = {Ax(t)+Bu(t)+ f (t,ω,x(t),u(t))}dt +{Σ(t)+σ(t,ω,x(t),u(t))}dw(t),
x(0) = ξ0

(1.1)

where A : D(A)⊂ X → X is the infinitesimal generator of a strongly continuous semigroup
{S(t)}t≥0 on a separable Hilbert space X , B ∈ L(U,X), with U a separable Hilbert space.

Let (Ω,F ,P) be a complete probability space and {Ft ↑⊂ F , t ≥ 0} an increasing se-
quence of subsigma algebras of F , then the control function u = {u(t,ω) : t ∈ [0,T ],ω∈Ω}
is a random process with values in U , ξ0 is an X− valued random variable, F0−measurable
and {w(t), t ≥ 0} denotes a Wiener process with values in a separable Hilbert space E.

Our result can be described as follows: Suppose the linear system

dx(t) = Ax(t)dt +Bu(t)dt +Σ(t)dw(t) (1.2)

is exactly controllable. Then, the control u steering an initial state ξ0 to a final state x(T ) =
ξ1, on time T ≥ 0, is given by the following formula

u(t) = B∗S∗(T − t)E
[

Π
−1

(
ξ1−S(T )ξ0−

Z T

0
S(T − s)Σ(s)dw(s)

)∣∣∣∣Ft

]
, (1.3)

where Π is given by

Π{·}=
Z T

0
S(T − s)BB∗S∗(T − s)E{· | Ft}ds.

Moreover, the system (1.2) is exactly controllable if, and only if, Π is invertible.
Next, under some suitable conditions on f y σ, the exact controllability of the linear

system (1.2) is preserved by the semilinear system (1.1), and the control steering an initial
state ξ0 to a final state ξ1 = x(T ), on time T ≥ 0, is given by

u(t) = B∗S∗(T − t)E
[

Π
−1(ξ1−S(T )ξ0−

Z T

0
S(T − s)Σ(s)dw(s))

∣∣∣∣Ft

]
(I +K)−1,

where K is a nonlinear operator given by

K(ξ)(T ) =
Z T

0
S(T − r) f (r,xξ(r),(Γξ)(r))dr

+
Z T

0
S(T − r)σ(r,xξ(r),(Γξ)(r))dω(r),

(1.4)

with xξ the solution of the equation (1.2), corresponding to the control defined by (1.3).
We have taken the following convenient notation:

f (t) = f (t,ω,x(t),u(t)) = f (t,x(t),u(t)) and σ(t) = σ(t,ω,x(t),u(t)) = σ(t,x(t),u(t)).

Finally, as an application we study the stochastic damped wave equation{
d[ ∂

∂t z(t,x)+ cz] = [θzxx +u(t,x)+ f (t,z,zt ,u(t,x))]dt +σ(t,z,zt ,u(t,x))dw(t),
z(t,0) = z(t,1) = 0, 0 < x < 1, t ∈ R.
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where c ≥ 0 and θ > 0, distributed control u ∈ LF
2 ([0,T ],U), the terms f and σ satisfy the

Lipschitz condition.

| f (t,x2,v2,u2)− f (t,x1,v1,u1)|2 + |σ(t,x2,v2,u2)−σ(t,x1,v1,u1)|2

≤ k{|x2− x1|2 + |v2− v1|2 + |u2−u1|2}.

2 Preliminaries

Let (Ω,F ,P) be a probability space, together with this space we consider an increasing
sequence of subsigma algebras {Ft ↑⊂ F , t ≥ 0}. Let E{·} denote the expectation of a
random variable or the Lebesgue integral with respect to the probability measure P.

Let E be a separable Hilbert space and {w(t), t ≥ 0} a Wiener process with values
in E and covariance operator Q, with Q a positive nuclear operator on E. We will as-
sume that there is a complete orthonormal basis {ek} in E, {λk} a bounded sequence of
nonnegative real numbers such that Qek = λkek, k = 1,2, · · · , and βk (k = 1,2, . . .) be the
sequence of real-valued one-dimensional standard Brownian motions mutually independent
over (Ω,F ,P) such that

w(t) =
∞

∑
k=1

√
λkβk(t)ek, t ≥ 0.

We assume that Ft is generated by {w(s) : 0 ≤ s ≤ t}.
Let L0

2 := L2(Q1/2E,X) be the space of all Hilbert-Schmidt operators:

Ψ : Q1/2E → X .

The space L0
2 endowed with the norm ‖Ψ ‖2

L0
2
= tr[ΨQΨ∗] = ∑

∞
k=1 ‖

√
λkΨek‖2 is a separable

Hilbert space.
All random processes considered in the paper will be assumed to be strongly Ft- pro-

gressively measurable processes unless otherwise stated.
L2(Ω,F ,P,X) = L2(F ,X) denotes the Hilbert space of strongly F -measurable, X-

valued random variables satisfying

E ‖ x ‖2
X< ∞.

Since for each t ≥ 0 the sub-σ-algebra Ft is complete, L2(Ft ,X) is a closed subspace of
L2(F ,X), and hence L2(Ft ,X) is a Hilbert space.

LF
2 ([0,T ],X) will denote the Hilbert space of all random processes Ft-progressively

measurable defined on [0,T ], taking values from X satisfying

E
Z T

0
‖ x(t) ‖2

X dt < ∞.

The norm in L2(Ft ,X) is given by

‖x‖L2(Ft ,X) = (E‖x‖2
X)1/2,

and the norm for space LF
2 ([0,T ],U) is given by

‖u‖LF
2 ([0,T ],U) = ( sup

t∈[0,T ]
E‖u‖2

U)1/2.

As for the nonlinear terms f and σ, we assume the followings conditions:
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(A) f : [0,T ]×Ω×X ×U → X , (t,ω,x,u)→ f (t,ω,x,u) is continuous,

(B) σ : [0,T ]×Ω×X ×U → L0
2,(t,ω,x,u)→ σ(t,ω,x,u) is continuous,

(C) There exist a constant k > 0 such that

‖ f (t,x,u1)− f (t,y,u2)‖2
X +‖σ(t,x,u1)−σ(t,y,u2)‖2

L0
2

≤ k{‖x(t)− y(t)‖2
X +‖u1(t)−u2(t)‖2

U} for all t ∈ [0,T ], x,y ∈ X , u ∈U,

(D)
‖ f (t,x,u) ‖2

X + ‖ σ(t,x,u) ‖2
L0

2
≤ k for all t ∈ [0,T ], x,y ∈ X , u ∈U.

Under these conditions, the system (1.1) admits a mild solution x ∈ H2 for any ξ0 ∈ X , and
y u(·) ∈ LF

2 ([0,T ],U).
The following theorem from nonlinear analysis theory will be used further in this work.

Theorem 2.1. Let Z be a Banach space and K : Z → Z a Lipschitz function with a Lipschitz
constant k < 1 and consider G(z) = z+Kz. Then, G is a homeomorphism whose inverse is
a Lipschitz function with Lipschitz constant (1− k)−1.

3 Controllability of a Linear Stochastic System

Let us start with some results about the exact controllability of the linear stochastic system

dx(t) = Ax(t)dt +Bu(t)dt +Σ(t)dw(t)

that will be used in the next section. To this end, we shall use the fact that

dx(t) = Ax(t)dt +Bu(t)dt +Σ(t)dw(t),
x(0) = ξ0,

(3.1)

admits only one mild solution given by

x(t) = S(t)ξ0 +
Z t

0
S(t− s)Bu(s)ds+

Z t

0
S(t− s)Σ(s)dw(s), (3.2)

for all Σ ∈ L2([0,T ],L0
2), u ∈ LF

2 ([0,T ],U) and ξ0 a random variable F0-measurable.

Definition 3.1. (Exact controllability) The system (3.1) is exactly controllable on [0,T ] if
for all ξ0, ξ1 ∈ L2(Ft ,X) there is a control u ∈ LF

2 ([0,T ],U) such that the solution (3.2),
corresponding to u, verifies x(T ) = ξ1.

Consider the following operators:

a) The controllability operator G : LF
2 ([0,T ],U)→ L2(FT ,X)

Gu =
Z T

0
S(T − s)Bu(s)ds. (3.3)
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b) The controllability operator of (3.2), Π : L2(FT ,X)→ L2(FT ,X)

Π{·}=
Z T

0
S(T − s)BB∗S∗(T − s)E[· | Ft ]ds. (3.4)

The Operators G, Π are linear and bounded, and the adjoint G∗ of G,
G∗ : L2(FT ,X)→ LF

2 ([0,T ],U) is given by

G∗x = B∗S∗(T − t)E[x|Ft ].

We can see that the operator (3.4) is equal to:

Π = GG∗.

The following theorem is found in [16].

Theorem 3.2. The control system (3.1) is exactly controllable on [0,T ] if, and only if, any
one of the following condition holds.

1. E〈Πx.x〉 ≥ γE‖x‖2,

2. R(λ,Π) converges as λ → o+ in uniform topology,

3. λR(λ,Π) converges to the zero operator as λ → o+ in uniform topology

where R(λ,Π) = (λI +Π)−1.

Now, we are ready to formulate and prove a new result on exact controllability of the
system (3.1).

Theorem 3.3. The system (3.1) is exactly controllable on [0,T ] if, and only if, the operator
Π is invertible. Moreover, the control u ∈ LF

2 ([0,T ],U) steering an initial state ξ0 to a final
state ξ1 = x(T ), on time T > 0, is given by the following formula

u(t) = B∗S∗(T − t)E
[

Π
−1

(
ξ1−S(T )ξ0−

Z T

0
S(T − s)Σ(s)dw(s)

)∣∣∣∣Ft

]
(3.5)

Proof Suppose the system (3.1) is exactly controllable. Then, from Theorem 3.2, we have
that

E〈Πx,x〉X ≥ γE‖x‖2
X , for some γ > 0 and all x ∈ L2(FT ,X). (3.6)

This implies that operator Π is one to one. Now, we shall prove that Π is surjective,that is
to say

Range(Π) = L2(FT ,X).

For the purpose of contradiction, let us assume that Range(Π) is strictly contained in
L2(FT ,X). Using the Cauchy-Schwarz inequality and the equation (3.6), we obtain that

γE‖x‖2
X ≤ E〈Πx,x〉X ≤ (E‖Πx‖2

X E‖x‖2
X)1/2.

So, it follows that E‖Πx‖2
X ≥ γ2E‖x‖2

X , i.e.,

‖Πx‖L2(FT ,X) ≥ γ‖x‖L2(FT ,X), x ∈ L2(FT ,X),
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which implies that Range(Π) is closed. Then from the Hahn Banach’s Theorem, there exits
x0 ∈ L2(FT ,X) with x0 , 0 such that

〈Πx,x0〉L2(FT ,X) = 0, for all x ∈ L2(FT ,X).

In particular, putting x = x0 we get from the equation (3.6)

0 = 〈Πx0,x0〉L2(FT ,X) ≥ γ‖x0‖2
L2(FT ,X).

Therefore, x0 = 0, which is a contradiction. So, Π is surjective and hence Π is a bijection,
and by the open mapping theorem Π−1 is a bounded linear operator.

Now, suppose that Π is invertible. Then, given x ∈ L2(FT ,X) we shall prove the exis-
tence of a control u ∈ LF

2 ([0,T ],X) such that Gu = x. Moreover, this control u can be taken
as follows

u(t) = B∗S∗(T − t)E[Π−1x|Ft ].

In fact

Gu =
Z T

0
S(T − s)Bu(s)ds =

Z T

0
S(T − s)BB∗S∗(T − s)E[Π−1x|Ft ]ds = Π(Π−1(x)) = x.

Finally, if we put x = ξ1 − S(T )ξ0 −
R T

0 S(T − s)Σ(s)dw(s) in the above formula for the
control u, we obtain the formula (3.5) for the control steering the initial state ξ0 to final
state ξ1 on time T .

Corollary 3.4. If the system (3.1) is exactly controllable, then the operator

Γ : L2(FT ,X)→ LF
2 ([0,T ],U)

defined by
Γξ = G∗

Π
−1

ξ or (Γξ)(t) = B∗S∗(T − t)E(Π−1
ξ | Ft) (3.7)

is a right inverse of G, i.e. , G◦Γ = I.

4 Controllability of nonlinear Stochastic Systems

Under the conditions imposed on the nonlinear terms f and σ, the equation (1.1) with the
initial condition x(0) = ξ0 and control u∈ LF

2 ([0,T ],U) admits only one mild solution given
by

x(t) = S(t)ξ0 +
Z t

0
S(t− s)[Bu(s)+ f (s,x(s),u(s))]ds

+
Z t

0
S(t− s){Σ(s)+σ(s,x(s),u(s))}dw(s).

(4.1)

Definition 4.1. The system (1.1) is said to be exactly controllable on [0,T ] if for all ξ0 and
ξ1 ∈ L2(FT ,X), there is control u∈ LF

2 ([0,T ],U) such that the corresponding solution (4.1)
satisfies x(T ) = ξ1.
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Define the following operator G f σ : LF
2 ([0,T ],U)→ L2(FT ,X) by

G f σu = Gu+
Z T

0
S(T − r) f (r,x(r),u(r))dr +

Z T

0
S(T − r)σ(r,x(r),u(r))dw(r), (4.2)

where x(r) = x(r,u) is the solution (4.1) corresponding to the control u. The following
proposition is a characterization for the controllability of the system (1.1)

Proposition 4.2. The system (1.1) is exact controllable on [0,T ] if, and only if,

Range(G f σ) = L2(FT ,X).

Lemma 4.3. Let u1, u2 ∈ LF
2 ([0,T ],U), ξ0 is a F0- measurable random variable and x1, x2

the corresponding solutions of (4.1). Then, the following estimate holds:

E‖x1(t)− x2(t)‖2
X ≤ Φ‖u1−u2‖2, (4.3)

where
Φ = {4M2‖B‖2T +16M2kT +16M2k}Te{16M2kT+16M2k}T ,

t ∈ [0,T ] and M = sup0≤r≤t≤T ‖S(t− r)‖.

Proof Let x1, x2 be solutions of (1.1) corresponding to u1 u2 respectively. Then, using
proposition 4.5 pg 91, from [8], the Cauchy-Schwarz’s inequality and the condition (C), we
obtain that

E‖x1(t)− x2(t)‖2
X = E

∥∥∥∥Z t

0
S(t− r)B[u1(r)−u2(r)]dr

+
Z t

0
S(t− r)[ f (r,x1(r),u1(r))− f (r,x2(r),u2(r))]dr

+
Z t

0
S(t− r)[σ(r,x1(r),u1(r))−σ(r,x2(r),u2(r))]dw

∥∥∥∥2

X

≤ E
{∥∥∥∥Z t

0
S(t− r)B[u1(r)−u2(r)]dr

∥∥∥∥
X

+E
∥∥∥∥Z t

0
S(t− r)[ f (r,x1(r),u1(r))− f (r,x2(r),u2(r))]dr

∥∥∥∥
X

+E
∥∥∥∥Z t

0
S(t− r)[σ(r,x1(r),u1(r))−σ(r,x2(r),u2(r))]dw

∥∥∥∥
X

}2

≤ 4M2‖B‖2E
[Z t

0
‖u1(r)−u2(r)‖U dr

]2

+16M2E
[Z t

0
‖ f (r,x1(r),u1(r))− f (r,x2(r),u2(r))‖X dr

]2

+16M2E
Z t

0
‖σ(r,x1(r),u1(r))−σ(r,x2(r),u2(r))‖2

L0
2
dr



132 D. BARRAEZ, H. LEIVA, N. MERENTES AND M. NARVAEZ

≤ 4M2‖B‖2T E
Z T

0
‖u1(r)−u2(r)‖2

U dr

+16M2kT E
Z T

0
{‖x1(r)− x2(r)‖2

X +‖u1(r)−u2(r)‖2
U}dr

+16M2kE
Z T

0
{‖x1(r)− x2(r)‖2

X +‖u1(r)−u2(r)‖2
U}dr.

Finally, we have that

E‖x1(t)− x2(t)‖2
X ≤ {4M2‖B‖2T +16M2kT +16M2k}

Z T

0
E‖u1(r)−u2(r)‖2

U dr

+{16M2kT +16M2k}
Z T

0
E‖x1(r)− x2(r)‖2

X dr,

that is,

E‖x1(t)− x2(t)‖2
X ≤ {4M2‖B‖2T +16M2kT +16M2k}T‖u1−u2‖2

+{16M2kT +16M2k}
Z T

0
E‖x1(r)− x2(r)‖2

X dr.

Now, using Gronwall’s inequality we get that

E‖x1(t)− x2(t)‖2
X ≤ {4M2‖B‖2T +16M2kT +16M2k}Te{16M2kT+16M2k}T‖u1−u2‖2.

Theorem 4.4. If the following estimate holds

L =
[
4M2kT

{
ΦT‖Γ‖2 +T‖Γ‖2 +Φ+‖Γ‖2

}]1/2
< 1, (4.4)

where Φ = {4M2‖B‖2T +16M2kT +16M2k}Te{16M2kT+16M2k}T , then the nonlinear system
(1.1) is exactly controllable on [0,T ].

Proof To this end, it is enough to prove that the operator G f σ given by (4.2) is onto. That is
to say,

G f σ(LF
2 ([0,T ],U)) = Range(G f σ) = L2(FT ,X).

Since the linear stochastic system (1.2) is exactly controllable, by corollary 3.4, it follows
that the operator Γ defined by (3.7) is a right inverse of G. It is enough to prove that the
operator G̃ f σ = G f σ ◦Γ is surjective.

To this end, the operator G f σ can be written as follows

G f σu = Gu+F(u),

where F : LF
2 ([0,T ],U)→ L2(F ,X) is given by

F(u) =
Z T

0
S(T − r) f (r,xξ(r),(Γξ)(r))dr +

Z T

0
S(T − r)σ(r,xξ(r),(Γξ)(r))dw(r). (4.5)

Then,
G̃ f σ = G f σ ◦Γ = I +F ◦Γ = I +K, (4.6)



Exact Controllability of Semilinear Stochastic Evolution Equations 133

where K : L2(FT ,X)→ L2(FT ,X) is given by

K(ξ) =
Z T

0
S(T − r) f (r,xξ(r),(Γξ)(r))dr +

Z T

0
S(T − r)σ(r,xξ(r),(Γξ)(r))dw(r). (4.7)

Hence, from Theorem 2.1 it is enough to prove that K is a Lipschitz function with a Lips-
chitz constant k < 1. In fact, let xξ1 and xξ2 be solutions of (1.1) corresponding to the control
Γξ1, Γξ2 respectively. Consider the following estimate

Kξ2−Kξ1 =
Z T

0
S(T − r) f (r,xξ2(r),Γξ2(r))dr +

Z T

0
S(T − r)σ(r,xξ2(r),Γξ2(r))dw(r)

−
(Z T

0
S(T − r) f (r,xξ1(r),Γξ1(r))dr +

Z T

0
S(T − r)σ(r,xξ1(r),Γξ1(r))dw

)
.

(4.8)

In the same way as before we obtain that

E
∥∥∥Kξ2−Kξ1

∥∥∥2

X
= E

∥∥∥∥Z T

0
S(T − r)

[
f (r,xξ2(r),Γξ2)− f (r,xξ1(r),Γξ1)

]
dr

∥∥∥∥2

X

+
Z T

0
S(T − r)

[
σ(r,xξ2(r),Γξ2)−σ(r,xξ1(r),Γξ1)

]
dw

∥∥∥∥2

X
.

Therefore, applying the formula (a+b)2 ≤ 4(a2 +b2) with a > 0 and b > 0 we obtain

E
∥∥∥Kξ2−Kξ1

∥∥∥2

X
≤ 4E

∥∥∥Z T

0
S(T − r)

[
f (r,xξ2(r),Γξ2)− f (r,xξ1(r),Γξ1)

]
dr

∥∥∥2

X

+4E
∥∥∥Z T

0
S(T − r)

[
σ(r,xξ2(r),Γξ2)−σ(r,xξ1(r),Γξ1)

]
dw

∥∥∥2

X
.

Let us now consider the following quantities

I1 = E
∥∥∥Z T

0
S(T − r)

[
f (r,xξ2(r),Γξ2)− f (r,xξ1(r),Γξ1)

]
dr

∥∥∥2

X
,

I2 = E
∥∥∥Z T

0
S(T − r)

[
σ(r,xξ2(r),Γξ2)−σ(r,xξ1(r),Γξ1)

]
dw(r)

∥∥∥2

X
.
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Applying Cauchy-Schwarz’s inequality, the condition (C) and the equation (4.3) we get that

I1 ≤ E
(Z T

0

∥∥∥S(T − r)
∥∥∥

X

∥∥∥[
f (r,xξ2(r),Γξ2)− f (r,xξ1(r),Γξ1)

]∥∥∥
X

dr
)2

≤ M2E
(Z T

0

∥∥∥ f (r,xξ2(r),Γξ2)− f (r,xξ1(r),Γξ1)
∥∥∥

X

)2

≤ M2E
([Z T

0
dr

]1/2[Z T

0

∥∥∥ f (r,xξ2(r),Γξ2)− f (r,xξ1(r),Γξ1)
∥∥∥2

X
dr

]1/2
)2

≤ M2T E
(Z T

0

∥∥∥ f (r,xξ2(r),Γξ2)− f (r,xξ1(r),Γξ1)
∥∥∥2

X
dr

)
≤ M2T E

(Z T

0
k
∥∥∥xξ2(r)− xξ1(r)

∥∥∥2

X
+ k

∥∥∥Γξ2(r)−Γξ1(r)
∥∥∥2

U
dr

)
≤ M2kT

Z T

0
E

∥∥∥xξ2(r)− xξ1(r)
∥∥∥2

X
dr +M2kT

Z T

0
E

∥∥∥Γξ2(r)−Γξ1(r)
∥∥∥2

U
dr

≤ M2kΦT 2‖Γξ2−Γξ1‖2 +M2kT 2
∥∥∥Γξ2−Γξ1

∥∥∥2

= {M2kΦT 2 +M2kT 2}‖Γ‖2‖ξ2−ξ1‖2,

and

I2 = E
∥∥∥Z T

0
S(T − r)

[
σ(r,xξ2(r),Γξ2)−σ(r,xξ1(r),Γξ1)

]
dw(r)

∥∥∥2

X

= E
∥∥∥Z T

0
S(T − r)

[
σ(r,xξ2(r),Γξ2)−σ(r,xξ1(r),Γξ1)

]
dw(r)

∥∥∥2

X

≤ M2E
∥∥∥Z T

0

[
σ(r,xξ2(r),Γξ2)−σ(r,xξ1(r),Γξ1)

]
dw(r)

∥∥∥2

X

≤ M2E
Z T

0

∥∥∥σ(r,xξ2(r),Γξ2)−σ(r,xξ1(r),Γξ1)
∥∥∥2

L0
2

dr

= M2E
Z T

0

∥∥∥σ(r,xξ2(r),Γξ2)−σ(r,xξ1(r),Γξ1)
∥∥∥2

L0
2

dr

≤ M2E
{Z T

0
k ‖ xξ2(r)− xξ1(r) ‖

2
X +k ‖ Γξ2(r)−Γξ1(r) ‖2

U dr
}

= M2k
Z T

0
E‖xξ2(r)− xξ1(r)‖

2
X dr +M2k

Z T

0
E ‖ Γξ2(r)−Γξ1(r) ‖2

U dr

≤ M2kT Φ‖Γξ2−Γξ1‖2 +M2kT‖Γξ2−Γξ1‖2

=
{

M2kT Φ+M2kT
}
‖Γ‖2‖ξ2−ξ1‖2.

So, we obtain that

E ‖ Kξ2−Kξ1 ‖2
X≤ 4M2kT

{
ΦT +T +Φ+1

}
‖Γ‖2‖ξ2−ξ1‖2,

i.e.

‖Kξ2−Kξ1‖ ≤
[
4M2kT

{
ΦT +T +Φ+1

}]1/2
‖Γ‖2‖ξ2−ξ1‖.
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Therefore, K is a Lipschitz’s function with a Lipschitz’s constant given by

k =
[
4M2kT

{
ΦT +T +Φ+1

}]1/2
‖Γ‖2 < 1.

Then, from Theorem 2.1 we obtain that G̃ f σ = I +K is a homeomorphism and therefore
the operator G f σ is surjective. i.e.,

G f σ(LF
2 ([0,T ],U)) = Range(G f σ) = L2(FT ,X).

Corollary 4.5. Under the assumptions of Theorem 4.4 the control steering an initial state
ξ0 to a final state ξ1 is given by

u(t) = B∗T ∗(T − t)E
[

Π
−1(ξ1−S(T )ξ0−

Z T

0
S(T − s)Σ(s)dw(s))

∣∣∣∣Ft

]
(I +K)−1. (4.9)

5 Application to the damped Stochastic wave equation

Consider the damped wave equation{
d[zt + cz] = [θzyy +u(t,y)+ f (t,z,zt ,u(t,y))]dt +dw(t),
z(t,0) = z(t,1) = 0, 0 < x < 1 t ∈ R (5.1)

where θ > 0, c ≥ 0, the control u ∈ LF
2 ([0, t1],L2(0,1)), the nonlinear term f (t,z,zt ,u(t,y))

is a Lipschitz function, i.e., there is a constant k > 0 such that, for all (t,z1,v1,u1) and
(t,z2,v2,u2) ∈ [0, t1]×R3 we have

| f (t,z2,v2,u2)− f (t,z1,v1,u1)|2 ≤ k{|z2− z1|2 + |v2− v1|2 + |u2−u1|2}. (5.2)

Now we choose the space in which this system will be set as an abstract second order
ordinary differential equation.

Let Z = U = L2[0,1] and consider the unbounded operator A : D(A) ⊂ Z → Z defined
by Az =−zyy, where

D(A) = {z ∈ Z : z,zy are absolutely continuous zyy ∈ Z;z(0) = z(1) = 0} (5.3)

Operator Properties:

i) The spectrum of A consists of only eigenvalues 0 < λ1 < λ2 < λ3 < · · · < λn → ∞,
each one with multiplicity one.

ii) There is a complete orthonormal set {φn} of eigenvectors of A.

iii) For all z ∈ D(A)

Az =
∞

∑
n=1

λn〈z,φn〉φn =
∞

∑
n=1

λnEnz. (5.4)

Here 〈·, ·〉 is the inner product on Z, λn = n2π2 and φn(z) =
√

2sin(nπz).

Thus, {En} is a family of orthogonal projections complete in Z and z = ∑
∞
n=1 Enz,

z ∈ Z.
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iv) −A generates an analytic semigroup {e−At} given by

e−Atz =
∞

∑
n=1

e−λtEnz. (5.5)

v) The fractional powered spaces Zr are given by

Zr = D(Ar) =

{
z ∈ Z :

∞

∑
n=1

(λn)2r‖Enz‖2 < ∞

}
, r ≥ 0, (5.6)

with the norm

‖z‖r = ‖Arz‖=

{
∞

∑
n=1

λ
2r
n ‖Enz‖2

}1/2

, z ∈ Z,

and

Arz =
∞

∑
n=1

λ
r
nEnz. (5.7)

Also, for r ≥ 0 we define Xr = Zr ×Z, which is a Hilbert space with the norm given by∥∥∥∥[
z
v

]∥∥∥∥2

Zr

= ‖z‖2
r +‖v‖2.

Using the change of variable z′ = v, the second-order equation (5.1) can be written as a first
order system of ordinary differential equation in the Hilbert space X1/2 = D(A1/2)×Z =
Z1/2×Z as

dη = [Aη+Bu+F(t,η,u(t))]dt +Σ(t,η,u(t))dw, η ∈ X1/2, t ≥ 0, (5.8)

where

η =
[

z
v

]
, B =

[
0
IZ

]
, A =

[
0 IZ

−lA −cIZ

]
(5.9)

A is an unbounded linear operator with domain D(A) = D(A)×Z and

F =
[

0
f (t,w,v,u)

]
, Σ =

[
0
I

]
. (5.10)

The function F is defined as F : [0, t1]×X1/2 ×U → X1/2, and the function Σ is defined as
follows Σ : [0, t1]×X1/2×U → L0

2, where L0
2 := L2(Q1/2X1/2,X1/2)

Since Z1/2 is continuously included in Z we have for x1, x2 ∈ X1/2 and u1, u2 ∈U = Z

‖F(t,x2,u2)−F(t,x1,u1)‖2
X1/2

≤ K‖x2− x1‖2
X1/2

+‖u1−u2‖LF
2 ([0,t1],U). (5.11)

The following proposition is in [13] and [14]
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Proposition 5.1. The operator A given by (5.9), is the infinitesimal generator of strongly
continuous semigroup {S(t)}t∈R in X1/2 given by

S(t)x =
∞

∑
n=1

eAntPnx, x ∈ X1/2,

where {Pn}n≥0 is a family of orthogonal projections on the Hilbert space X1/2 and is given
by

Pn = diag(En,En), n ≥ 1,

and

An = BnPn, Bn =
(

0 1
−θλn −c

)
,n ≥ 1

This semigroup decays exponentially to zero. In fact, we have the following estimate

‖S(t)‖ ≤ M(c,θ)e−
c
2 t , t ≥ 0.

where
M(c,θ)

2
√

2
= sup

n

{
2|c±

√
4θλn− c2√

c2−4θλn
|,(2+θ)|

√
λn√

4θλn− c2
|

}
.

Proof See [13] and [14].

Theorem 5.2. The stochastic linear system{
dη(t) = [Aη(t)+Bu]dt +Σdw(t), η ∈ X1/2, t > 0,
η(0) = η0.

(5.12)

is exactly controllable on [0,T ].

Proof From Leiva [13], the linear deterministic system associated to (5.12) is exactly con-
trollable, and from Theorem 3.2, in Mahmudov [16], we get the controllability of (5.12).

Theorem 5.3. If the following estimate holds

(4(M(c,θ))2kT (T +1))1/2 exp
1
2
{4(M(c,θ))2k(T +1)}< 1,

then the system (5.8) is exactly controllable on [0,T ].

Proof It follows from Theorem 4.4 one we note that in this case ‖B‖ ≤ 1.
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