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Abstract

Let S be an excellent extension of a (von Neumann) regular ring R. In this note, we
study comparability of S related to comparability of R. We show that if R has the n-
unperforation property, then R satisfies s-comparability, almost comparability or weak
comparability if and only if so does S.
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1 Introduction

Recall that S is a ring extension of R if there is a (unital) ring homomorphism f : R — S.
Let S be aring and let R be a subring of S (with the same 1). S is called a finite normalizing
extension of R if there exist elements ay,...,a, € S such thata; =1, S=Ra; + - -- + Ra,,
aiR = Ra; for all i = 1,...,n. Finite normalizing extensions have been studied in many
papers such as [10, 11, 12, 13], S is called a free normalizing extension of Rifa; =1, § =
Raj + -+ + Ra, is finite normalizing extension and S is free with basis {ay,...,a,} as both
a right R-module and a left R-module. § is said to be an excellent extension of R in case
S is a free normalizing extension of R and S is right R-projective (that is, if Mg is a right
S-module and Ny is a submodule of Mg , then Ng | Mg implies Ng | Mg , where N|M means
N is a direct summand of M). Let S be an excellent extension of R. The following results
are well-known:

(1) R is semisimple Artinian if and only if § is semisimple Artinian.

(2) R is regular if and only if S is regular.
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(3) R is right hereditary if and only if S is right hereditary.

More generally, gldimR = gldimS and wgldimR = wgldimS, where gldimR stands for the
global dimension of R, and wgldimR for the weak global dimension of R [7, Theorem 3].

Comparability concepts have proven to be particularly fruitful in the development of
the theory of (von Neumann) regular rings. Goodearl and Handelman showed that directly
finite regular rings satisfying 1-comparability have stable range one [3, Theorem 8.12].
Pardo showed that exchange ring satisfying s-comparability is separative, so has stable
range 1, 2, or oo,

The notion of almost comparability for regular rings was first introduced by Ara and
Goodearl, for giving an alternative proof of the outstanding O’Meara’s Theorem: directly
finite simple regular rings with weak comparability are unit-regular. It was proved that for
aregular ring R, R satisfies almost comparability if and only if every finitely generated pro-
jective R-module satisfies almost comparability [6, Theorem 1.9], and the almost compara-
bility is Morita invariant [6, Theorem 1.11]. For the simple regular rings, s-comparability
for some s > 0 is equivalent to the ring satisfying almost comparability [1, Theorem 1.4].

O’Meara first introduced the notion of weak comparability, and proved that simple di-
rectly finite regular rings with weak comparability must be unit-regular [3, Open Problem
3]. Many authors studied regular rings with weak comparability [2, 4, 5]. For the regular
ring R with weak comparability, it was proved [5, Theorem 1.6] that A& C < B@® C implies
A < B for any finitely generated projective R-modules A, B and C with B # 0, and was
proved [5, Theorem 1.8] that nA < nB implies A < B for any positive integer n and any
finitely generated projective R-modules A and B. It was also proved that for a regular ring
R, R satisfies weak comparability if and only if every finitely generated projective R-module
satisfies weak comparability [5, Theorem 1.9],

For two R-modules M and N, we use M <g N (respectively M < N) to denote that M
is isomorphic to a direct summand of N (respectively M is isomorphic to a submodule of
N), and M <g N (respectively M < N) to denote that M is isomorphic to a proper direct
summand of N (respectively M is isomorphic to a proper submodule of N). Let M and N
be finitely generated projective R-modules. We write M <, N to mean that for any nonzero
principal right ideal C of R, M <q N®C, and M <, N to mean that for any nonzero principal
right ideal C of R, M <4 N @ C. Other basic notations can be found in [3]. Throughout this
note, R is an associative ring with identity and R-modules are unitary right R-modules.

2 Main results

Lemma 2.1. Let S be an excellent extension of R. Given any S-module M, My, is projective
if and only if My is projective.

Proof. <: See [8, Lemma 7.2.2].

=: If Mg is projective, then there is a R-module N such that M & N = nR for some
cardinal number n. So (M ®N) RS = (nR) Qg S, thatis, M Qg SON QrS = nS. So M Qg S
is projective as S-module. We can consider M ® 1 as an S-module as following definition:
(me1l)s=ms®1. Thus M® 1 = M as S-modules. As R-module, M ® 1 has natural R-
module construction as (m® 1)r =mr® 1 =m®r. Clearly, (M Qg S)g = (Bi—; M Q@ a;)r.



So (M ®1)g|(M ® S)g. By the R-projectivity of S, (M ® 1)s|(M ®S)s. So My is projective.
(]

Lemma 2.2. Let S be an excellent extension of R, and let Ag =2 Bg. Given As, we can define
S-module B such that As = Bg.

Proof. Let o.: Ag — Bg and B : Bg — Ag be the isomorphisms. Define bs = o(B(D)s).
It is easy to check that B is an S-module such that Ag = Bs.
O

For a positive integer s, recall that in [3, Page 275] a regular ring R is said to satisfy
s-comparability if, for each pair of elements x, y of R, either xR < s(yR), or yR < s(xR).
A finitely generated projective R-module M satisfies s-comparability if, for each pair of
direct summands A and B of M, A < sB or B < sA. Recall that for a positive integer n
a ring R has the n-unperforation property if nA < nB implies that A < B for any finitely
generated projective R-modules A and B. A ring R has the unperforation property if it has
n-unperforation property for any positive integer n.

Theorem 2.3. Let S be an excellent extension of a regular ring R. If R has the n-unperforation
property, then R satisfies s-comparability if and only if so does S.

Proof. =: Letx, y € S. xS and yS§ are finitely generated projective S-modules. By
Lemma 2.1, (xS)g and (yS)g are finitely generated projective. Since R satisfies s-comparability,
by [1, Proposition 2.1], finitely generated projective R-modules satisfy s-comparability.
Thus (xS)g < s(yS)g or (yS)r S s(xS)r. If (xS)r < s(yS)g. Let T be the direct summand
of s(yS)g such that (xS)g = Tg. Since xS is an S-module, We can consider 7' as an S-
module such that (xS)s = Ty as xS is S-modules by Lemma 2.2. Since Tz | s(yS)g, by the
R-projectivity of S, Ts | s(yS)s. Thus (xS)s < s(yS)s. Similarly, we have (yS)s < s(xS)s, if
Sk < s(xS)k.

<: Forany x, y € R, (xR)r < Rg S nRg = Sg. So (xR) @ S and (yR) ®g S are finitely
generated projective S-modules. Since S satisfies s-comparability, ((xR) ®rS)s < s((YR) ®r
S)s or ((YR) @ S)s S s((xR) @& S)s. ((xR) @r S)r < s((YR) @& S)k or ((YR) @& S)r S
s((xR) ®g S)g. Since S ia a free R-module with basis {ay, ..., a,}, we have ((xR) Qg S)g =

" (xR) ®gr a;)r = n(xR)g. Similarly, ((yR) ®g S)g = n(yR)g. Thus, n(xR)g < s(n(yR))r
or n(yR)g < s(n(xR))g. By the hypothesis, we have (xR)g < s(yR)g or (YR)g < s(xR)g. O

A regular ring R is said to satisfy almost comparability, if for x, y € R either xR <, yR
or yR <, xR. A finitely generated projective R-module M satisfies almost comparability, if
for each pair of direct summands A and Bof M, A <, Bor B <, A [6].

Theorem 2.4. Let S be an excellent extension of a regular ring R. If R has the n-unperforation
property, then R satisfies almost comparability if and only if so does S.

Proof. =-: For any x, y € S, since (xS)s and (yS)s are finitely generated projective
S-modules, by Lemma 2.1, (xS)g and (yS)g are finitely generated projective R-modules.
R satisfies almost comparability, by [6, Theorem 1.9], nRy satisfies almost comparability



for all positive integer n. Thus (xS)g <, (¥S)g or (¥S)g <, (xS)g. Given any principal
right ideal ¢S of S, which is cyclic projective S-module, it is finitely generated projective
R-module. By [3, Proposition 2.6], there is a principal right ideal X of R such that X <
(tS)r- If (xS)r Sa (¥S)r, then (xS)r S (¥S)r B X S (¥S)r @ (£5)g. Since ﬁnitely generated
submodule of projective module P is a direct summand of P, we have (xS)g Sa (yS)r®
(tS)g. By the R-projectivity of S and Lemma 2.2, we have (xS)s Sg (yS)s @ (£5)s, i.e.,
(xS)s Sa (¥S)s. Similarly, if (yS)r o (xS)r, we have (yS)s Sq (x5)s.

<: Forany x, y €R, (xR®gS)s, (YR®gS)s are finitely generated projective S-modules.
S satisfies almost comparability, by [6, Theorem 1.9], nSs satisfies almost comparability for
all positive integer n. Thus (XR ®@g S)s Sq¢ (VR®r S)s, or (YRRr S)s Sa (xR ®g S)s. For
any z € R, if (XR QR S)S a (yR QR S)S, ()CR QR S)S = (yR XRr S)S ) (ZR QR S)S. So (XR QR
S)R 5 (yR Kr S)R D (ZR Kr S)R It is easy to check that (XR QR S)R = n(xR)R, (yR Kr S)R =
n(yR)g and (zR ®g S)g = n(zR)g. Hence n(xR)g < n(yR)g ® n(zR) . By the hypothesis
of n-unperforation property, (xR)g < (yR)R @ (zR)g, i.e., (xR)g <4 (YR)g. Similarly, if
(YRR S)s Sa (xR®g S)s, we have (yR)gr <, (xR)g. O

A regular ring R satisfies weak comparability, if for each nonzero x € R, ther is a positive
integer n = n(xR) such that n(yR) < R impies that yR < xR. A finitely generated projective
R-module M satisfies weak comparability, if for nonzero direct summand A of M, there is a
positive integer n = n(A) such that nB < M impies that B < A [5].

Theorem 2.5. Let S be an excellent extension of a regular ring R. If R has the n-unperforation
property, then R satisfies weak comparability if and only if so does S.

Proof. =: We need to prove that for any nonzero x € S, there is a positive integer m =
m((xS)s) such that m((yS)s) < S implies that (yS)s < (xS)s. R satisfies weak comparability,
by [5, Theorem 1.9], uR satisfies weak comparability for all positive integers u. Since (xS)g
and (yS)s are finitely generated projective S-modules, by Lemma 1, (xS)g and (yS)g are
finitely generated projective R-modules. Furthermore, for any x € R, since S = @' a;R,
(xS)r = X1 (xa;)R, that is, (xS)g has at most n generated elements. Thus (xS)g, (yS)r S
nRg. By the weak comparability of nRg, there is a positive integer m; = m;((xS)g) such
that m; ((yS)z) < nR implies that (yS)g < (xS)g. Let m =my. If m((yS)s) < Ss, m((yS)r) S
Sk 2 nRg < nRg. Therefore, (yS)gr < (xS)g. By the R-projectivity of S and Lemma 2.2,
(S)s < (x8)s.

<«: We need to prove that for any nonzero x € R, there is a positive integer m = m((xR)g)
such that m((yR)g) < R implies that (yR)g < (xR)g. (xR ®g S)s and (YR ®g S)s are finitely
generated projective S-modules. Furthermore, (xR ®g S)s, (YR®g S)s < Ss for all y € R.
Since S satisfies weak comparability, there is a positive integer m; = m; ((xR @z S)s) such
that m; (YR ®g S)s) < S implies that (YR Qg S)s < (XR®@g S)s. Let m = my. If m((yR)g) <
Rg, then m(yR ®g S)s < Ss. By the above discussion, (YR ®g S)s < (xR ®rS)s. So (YR ®g
S)r S (XRRg S)g, 1., n(yR) < n(xR)g. By the hypothesis, (yR)g < (xR)g. O

Recall that a regular ring R is called Abelian provided all idempotents in R are central
(a € Ris central if ax = xa for all x € R). A ring is said to be strongly regular if for eacha € R
there exists b € R such that a>h = a. A ring is strongly regular if and only if it is Abelian
regular [3, Theorem 3.5]. The index of a nilpotent element x € R is the least positive integer
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n such that x” = 0. Then index of R is supremum of the indices of all nilpotent elements
of R. If it is finite, then R is said to have bounded index. It is well-known that an Abelian
regular ring R has bounded index [3, Theorem 3.2], and a regular ring of bounded index is
a regular ring whose primitive factor rings of R are Artinian [3, Theorem 7.2 and Theorem
6.2]. Since regular rings whose primitive factor are Artinian have the unperforation property
[3, Proposition 6.11], we have

Corollary 2.6. Let S be an excellent extension of a regular ring R. If R is a regular ring
whose primitive factor rings of R are Artinian (particularly a regular ring of bounded index,
or an Abelian regular ring), then

(1) R satisfies s-comparability if and only if so does S.

(2) R satisfies almost comparability if and only if so does S.

(3) R satisfies weak comparability if and only if so does S.

Since X-continuous regular rings (see the definition in [3, Page 173]) have the unper-
foration property [3, Theorem 14.30], we have

Corollary 2.7. Let S be an excellent extension of an Xy-continuous regular ring R. Then
(1) R satisfies s-comparability if and only if so does S.
(2) R satisfies almost comparability if and only if so does S.
(3) R satisfies weak comparability if and only if so does S.
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