EXCELLENT EXTENSION AND COMPARABILITY OF REGULAR RINGS

CHAOLING HUANG*

Department of Mathematics, Jiangxi Agricultural University, Nanchang 330045, P. R. China.

XIAOGUANG YAN[†] Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China.

Abstract

Let *S* be an excellent extension of a (von Neumann) regular ring *R*. In this note, we study comparability of *S* related to comparability of *R*. We show that if *R* has the *n*-unperforation property, then *R* satisfies *s*-comparability, almost comparability or weak comparability if and only if so does *S*.

AMS Subject Classification: 16D10; 16E50.

Keywords: excellent extension, *s*-comparability, weak comparability, almost comparability.

1 Introduction

Recall that *S* is a ring extension of *R* if there is a (unital) ring homomorphism $f: R \to S$. Let *S* be a ring and let R be a subring of *S* (with the same 1). *S* is called a finite normalizing extension of *R* if there exist elements $a_1, \ldots, a_n \in S$ such that $a_1 = 1$, $S = Ra_1 + \cdots + Ra_n$, $a_iR = Ra_i$ for all $i = 1, \ldots, n$. Finite normalizing extensions have been studied in many papers such as [10, 11, 12, 13], *S* is called a free normalizing extension of R if $a_1 = 1$, $S = Ra_1 + \cdots + Ra_n$ is finite normalizing extension and *S* is free with basis $\{a_1, \ldots, a_n\}$ as both a right R-module and a left R-module. *S* is said to be an excellent extension of *R* in case *S* is a free normalizing extension of *R* and *S* is right R-projective (that is, if M_S is a right *S*-module and N_S is a submodule of M_S , then $N_R \mid M_R$ implies $N_S \mid M_S$, where $N \mid M$ means *N* is a direct summand of *M*). Let *S* be an excellent extension of *R*. The following results are well-known:

(1) *R* is semisimple Artinian if and only if *S* is semisimple Artinian.

(2) R is regular if and only if S is regular.

^{*}E-mail address: huangchaoling43@yahoo.com.cn

[†]E-mail address: yanxg1109@gmail.com

(3) *R* is right hereditary if and only if *S* is right hereditary. More generally, gldimR = gldimS and wgldimR = wgldimS, where gldimR stands for the global dimension of *R*, and wgldimR for the weak global dimension of *R* [7, Theorem 3].

Comparability concepts have proven to be particularly fruitful in the development of the theory of (von Neumann) regular rings. Goodearl and Handelman showed that directly finite regular rings satisfying 1-comparability have stable range one [3, Theorem 8.12]. Pardo showed that exchange ring satisfying *s*-comparability is separative, so has stable range 1, 2, or ∞ .

The notion of almost comparability for regular rings was first introduced by Ara and Goodearl, for giving an alternative proof of the outstanding O'Meara's Theorem: directly finite simple regular rings with weak comparability are unit-regular. It was proved that for a regular ring R, R satisfies almost comparability if and only if every finitely generated projective R-module satisfies almost comparability [6, Theorem 1.9], and the almost comparability is Morita invariant [6, Theorem 1.11]. For the simple regular rings, s-comparability for some s > 0 is equivalent to the ring satisfying almost comparability [1, Theorem 1.4].

O'Meara first introduced the notion of weak comparability, and proved that simple directly finite regular rings with weak comparability must be unit-regular [3, Open Problem 3]. Many authors studied regular rings with weak comparability [2, 4, 5]. For the regular ring *R* with weak comparability, it was proved [5, Theorem 1.6] that $A \oplus C \prec B \oplus C$ implies $A \prec B$ for any finitely generated projective *R*-modules *A*, *B* and *C* with $B \neq 0$, and was proved [5, Theorem 1.8] that $nA \prec nB$ implies $A \prec B$ for any positive integer *n* and any finitely generated projective *R*-modules *A* and *B*. It was also proved that for a regular ring *R*, *R* satisfies weak comparability if and only if every finitely generated projective *R*-module satisfies weak comparability [5, Theorem 1.9],

For two *R*-modules *M* and *N*, we use $M \leq_{\oplus} N$ (respectively $M \leq N$) to denote that *M* is isomorphic to a direct summand of *N* (respectively *M* is isomorphic to a submodule of *N*), and $M \prec_{\oplus} N$ (respectively $M \prec N$) to denote that *M* is isomorphic to a proper direct summand of *N* (respectively *M* is isomorphic to a proper submodule of *N*). Let *M* and *N* be finitely generated projective *R*-modules. We write $M \leq_a N$ to mean that for any nonzero principal right ideal *C* of *R*, $M \leq_{\oplus} N \oplus C$, and $M \prec_a N$ to mean that for any nonzero principal right ideal *C* of *R*, $M \leq_{\oplus} N \oplus C$. Other basic notations can be found in [3]. Throughout this note, *R* is an associative ring with identity and *R*-modules are unitary right *R*-modules.

2 Main results

Lemma 2.1. Let S be an excellent extension of R. Given any S-module M, M_R is projective if and only if M_S is projective.

Proof. \Leftarrow : See [8, Lemma 7.2.2].

⇒: If M_R is projective, then there is a *R*-module *N* such that $M \oplus N \cong nR$ for some cardinal number *n*. So $(M \oplus N) \otimes_R S \cong (nR) \otimes_R S$, that is, $M \otimes_R S \oplus N \otimes_R S \cong nS$. So $M \otimes_R S$ is projective as *S*-module. We can consider $M \otimes 1$ as an *S*-module as following definition: $(m \otimes 1)s = ms \otimes 1$. Thus $M \otimes 1 \cong M$ as *S*-modules. As *R*-module, $M \otimes 1$ has natural *R*-module construction as $(m \otimes 1)r = mr \otimes 1 = m \otimes r$. Clearly, $(M \otimes_R S)_R = (\bigoplus_{i=1}^n M \otimes a_i)_R$.

So $(M \otimes 1)_R | (M \otimes S)_R$. By the *R*-projectivity of *S*, $(M \otimes 1)_S | (M \otimes S)_S$. So M_S is projective.

Lemma 2.2. Let *S* be an excellent extension of *R*, and let $A_R \cong B_R$. Given A_S , we can define *S*-module *B* such that $A_S \cong B_S$.

Proof. Let $\alpha : A_R \to B_R$ and $\beta : B_R \to A_R$ be the isomorphisms. Define $bs = \alpha(\beta(b)s)$. It is easy to check that *B* is an *S*-module such that $A_S \cong B_S$.

For a positive integer *s*, recall that in [3, Page 275] a regular ring *R* is said to satisfy *s*-comparability if, for each pair of elements *x*, *y* of *R*, either $xR \leq s(yR)$, or $yR \leq s(xR)$. A finitely generated projective *R*-module *M* satisfies *s*-comparability if, for each pair of direct summands *A* and *B* of *M*, $A \leq sB$ or $B \leq sA$. Recall that for a positive integer *n* a ring *R* has the *n*-unperforation property if $nA \leq nB$ implies that $A \leq B$ for any finitely generated projective *R*-modules *A* and *B*. A ring *R* has the unperforation property if it has *n*-unperforation property for any positive integer *n*.

Theorem 2.3. Let *S* be an excellent extension of a regular ring *R*. If *R* has the n-unperforation property, then *R* satisfies *s*-comparability if and only if so does *S*.

Proof. ⇒: Let *x*, *y* ∈ *S*. *xS* and *yS* are finitely generated projective *S*-modules. By Lemma 2.1, $(xS)_R$ and $(yS)_R$ are finitely generated projective. Since *R* satisfies *s*-comparability, by [1, Proposition 2.1], finitely generated projective *R*-modules satisfy *s*-comparability. Thus $(xS)_R \leq s(yS)_R$ or $(yS)_R \leq s(xS)_R$. If $(xS)_R \leq s(yS)_R$. Let *T* be the direct summand of $s(yS)_R$ such that $(xS)_R \cong T_R$. Since *xS* is an *S*-module, We can consider *T* as an *S*module such that $(xS)_S \cong T_S$ as *xS* is *S*-modules by Lemma 2.2. Since $T_R | s(yS)_R$, by the *R*-projectivity of *S*, $T_S | s(yS)_S$. Thus $(xS)_S \leq s(yS)_S$. Similarly, we have $(yS)_S \leq s(xS)_S$, if $(yS)_R \leq s(xS)_R$.

 $\Leftarrow: \text{ For any } x, y \in R, (xR)_R \leq R_R \leq nR_R \cong S_R. \text{ So } (xR) \otimes_R S \text{ and } (yR) \otimes_R S \text{ are finitely} \\ \text{generated projective } S\text{-modules. Since } S \text{ satisfies } s\text{-comparability, } ((xR) \otimes_R S)_S \leq s((yR) \otimes_R S)_S \\ \text{S})_S \text{ or } ((yR) \otimes_R S)_S \leq s((xR) \otimes_R S)_S. \quad ((xR) \otimes_R S)_R \leq s((yR) \otimes_R S)_R \text{ or } ((yR) \otimes_R S)_R \leq s((xR) \otimes_R S)_R. \text{ Since } S \text{ ia a free } R\text{-module with basis } \{a_1, \ldots, a_n\}, \text{ we have } ((xR) \otimes_R S)_R \cong \sum_{i=1}^n (xR) \otimes_R a_i)_R \cong n(xR)_R. \text{ Similarly, } ((yR) \otimes_R S)_R \cong n(yR)_R. \text{ Thus, } n(xR)_R \leq s(n(yR))_R \\ \text{ or } n(yR)_R \leq s(n(xR))_R. \text{ By the hypothesis, we have } (xR)_R \leq s(yR)_R \text{ or } (yR)_R \leq s(xR)_R. \ \Box$

A regular ring *R* is said to satisfy almost comparability, if for *x*, $y \in R$ either $xR \leq_a yR$ or $yR \leq_a xR$. A finitely generated projective *R*-module *M* satisfies almost comparability, if for each pair of direct summands *A* and *B* of *M*, $A \leq_a B$ or $B \leq_a A$ [6].

Theorem 2.4. Let *S* be an excellent extension of a regular ring *R*. If *R* has the *n*-unperforation property, then *R* satisfies almost comparability if and only if so does *S*.

Proof. \Rightarrow : For any $x, y \in S$, since $(xS)_S$ and $(yS)_S$ are finitely generated projective *S*-modules, by Lemma 2.1, $(xS)_R$ and $(yS)_R$ are finitely generated projective *R*-modules. *R* satisfies almost comparability, by [6, Theorem 1.9], nR_R satisfies almost comparability

for all positive integer *n*. Thus $(xS)_R \leq_a (yS)_R$ or $(yS)_R \leq_a (xS)_R$. Given any principal right ideal *tS* of *S*, which is cyclic projective *S*-module, it is finitely generated projective *R*-module. By [3, Proposition 2.6], there is a principal right ideal *X* of *R* such that $X \leq$ $(tS)_R$. If $(xS)_R \leq_a (yS)_R$, then $(xS)_R \leq (yS)_R \oplus X \leq (yS)_R \oplus (tS)_R$. Since finitely generated submodule of projective module *P* is a direct summand of *P*, we have $(xS)_R \leq_\oplus (yS)_R \oplus$ $(tS)_R$. By the *R*-projectivity of *S* and Lemma 2.2, we have $(xS)_S \leq_\oplus (yS)_S \oplus (tS)_S$, i.e., $(xS)_S \leq_a (yS)_S$. Similarly, if $(yS)_R \leq_a (xS)_R$, we have $(yS)_S \leq_a (xS)_S$.

⇐: For any $x, y \in R$, $(xR \otimes_R S)_S$, $(yR \otimes_R S)_S$ are finitely generated projective *S*-modules. *S* satisfies almost comparability, by [6, Theorem 1.9], nS_S satisfies almost comparability for all positive integer *n*. Thus $(xR \otimes_R S)_S \leq_a (yR \otimes_R S)_S$, or $(yR \otimes_R S)_S \leq_a (xR \otimes_R S)_S$. For any $z \in R$, if $(xR \otimes_R S)_S \leq_a (yR \otimes_R S)_S$, $(xR \otimes_R S)_S \leq (yR \otimes_R S)_S \oplus (zR \otimes_R S)_S$. So $(xR \otimes_R S)_R \leq (yR \otimes_R S)_R \oplus (zR \otimes_R S)_R$. It is easy to check that $(xR \otimes_R S)_R \cong n(xR)_R$, $(yR \otimes_R S)_R \cong$ $n(yR)_R$ and $(zR \otimes_R S)_R \cong n(zR)_R$. Hence $n(xR)_R \leq n(yR)_R \oplus n(zR)_R$. By the hypothesis of *n*-unperforation property, $(xR)_R \leq (yR)_R \oplus (zR)_R$, i.e., $(xR)_R \leq_a (yR)_R$. Similarly, if $(yR \otimes_R S)_S \leq_a (xR \otimes_R S)_S$, we have $(yR)_R \leq_a (xR)_R$. \Box

A regular ring *R* satisfies weak comparability, if for each nonzero $x \in R$, ther is a positive integer n = n(xR) such that $n(yR) \leq R$ implies that $yR \leq xR$. A finitely generated projective *R*-module *M* satisfies weak comparability, if for nonzero direct summand *A* of *M*, there is a positive integer n = n(A) such that $nB \leq M$ implies that $B \leq A$ [5].

Theorem 2.5. Let *S* be an excellent extension of a regular ring *R*. If *R* has the *n*-unperforation property, then *R* satisfies weak comparability if and only if so does *S*.

Proof. ⇒: We need to prove that for any nonzero $x \in S$, there is a positive integer $m = m((xS)_S)$ such that $m((yS)_S) \leq S$ implies that $(yS)_S \leq (xS)_S$. *R* satisfies weak comparability, by [5, Theorem 1.9], *uR* satisfies weak comparability for all positive integers *u*. Since $(xS)_S$ and $(yS)_S$ are finitely generated projective *S*-modules, by Lemma 1, $(xS)_R$ and $(yS)_R$ are finitely generated projective *R*-modules. Furthermore, for any $x \in R$, since $S = \bigoplus_{i=1}^{n} a_i R$, $(xS)_R = \sum_{i=1}^{n} (xa_i)R$, that is, $(xS)_R$ has at most *n* generated elements. Thus $(xS)_R$, $(yS)_R \leq nR_R$. By the weak comparability of nR_R , there is a positive integer $m_1 = m_1((xS)_R)$ such that $m_1((yS)_R) \leq nR$ implies that $(yS)_R \leq (xS)_R$. Let $m = m_1$. If $m((yS)_S) \leq S_S$, $m((yS)_R) \leq S_R \cong nR_R \leq nR_R$. Therefore, $(yS)_R \leq (xS)_R$. By the *R*-projectivity of *S* and Lemma 2.2, $(yS)_S \leq (xS)_S$.

⇐: We need to prove that for any nonzero $x \in R$, there is a positive integer $m = m((xR)_R)$ such that $m((yR)_R) \leq R$ implies that $(yR)_R \leq (xR)_R$. $(xR \otimes_R S)_S$ and $(yR \otimes_R S)_S$ are finitely generated projective S-modules. Furthermore, $(xR \otimes_R S)_S$, $(yR \otimes_R S)_S \leq S_S$ for all $y \in R$. Since S satisfies weak comparability, there is a positive integer $m_1 = m_1((xR \otimes_R S)_S)$ such that $m_1((yR \otimes_R S)_S) \leq S$ implies that $(yR \otimes_R S)_S \leq (xR \otimes_R S)_S$. Let $m = m_1$. If $m((yR)_R) \leq$ R_R , then $m(yR \otimes_R S)_S \leq S_S$. By the above discussion, $(yR \otimes_R S)_S \leq (xR \otimes_R S)_S$. So $(yR \otimes_R S)_R \leq (xR \otimes_R S)_R$, i.e., $n(yR)_R \leq n(xR)_R$. By the hypothesis, $(yR)_R \leq (xR)_R$.

Recall that a regular ring *R* is called Abelian provided all idempotents in *R* are central $(a \in R \text{ is central if } ax = xa \text{ for all } x \in R)$. A ring is said to be strongly regular if for each $a \in R$ there exists $b \in R$ such that $a^2b = a$. A ring is strongly regular if and only if it is Abelian regular [3, Theorem 3.5]. The index of a nilpotent element $x \in R$ is the least positive integer

n such that $x^n = 0$. Then index of *R* is supremum of the indices of all nilpotent elements of *R*. If it is finite, then *R* is said to have bounded index. It is well-known that an Abelian regular ring *R* has bounded index [3, Theorem 3.2], and a regular ring of bounded index is a regular ring whose primitive factor rings of *R* are Artinian [3, Theorem 7.2 and Theorem 6.2]. Since regular rings whose primitive factor are Artinian have the unperforation property [3, Proposition 6.11], we have

Corollary 2.6. Let *S* be an excellent extension of a regular ring *R*. If *R* is a regular ring whose primitive factor rings of *R* are Artinian (particularly a regular ring of bounded index, or an Abelian regular ring), then

(1) R satisfies s-comparability if and only if so does S.

(2) R satisfies almost comparability if and only if so does S.

(3) R satisfies weak comparability if and only if so does S.

Since \aleph_0 -continuous regular rings (see the definition in [3, Page 173]) have the unperforation property [3, Theorem 14.30], we have

Corollary 2.7. Let S be an excellent extension of an \aleph_0 -continuous regular ring R. Then (1) R satisfies s-comparability if and only if so does S.

(2) R satisfies almost comparability if and only if so does S.

(3) *R* satisfies weak comparability if and only if so does *S*.

Acknowledgments

The authors wish to express their gratitude to the referee for his/her careful reading and comments which improve the presentation of this article. Also the authors thank Professor Xiaosheng Zhu for his helpful suggestions.

References

- P. Ara, K. C. O'Meara, D. V. Tyukavkin, Cancellation of projective modules over regular rings with comparability, *J. Pure Appl. Alg.* 107 (1996), 19-38.
- [2] P. Ara and E. Pardo, Refinement monoids with weak comparabiliy and applications to regular rings and C*-algebras, Pro. Amer. Math. Soc. 124(3) (1996),715-720.
- [3] K. R. Goodearl, von Neumann regular rings, Pitman, London, 1979; 2nd ed..
- [4] M. Kutami, On von Neumann regular rings with weak comarability, J. Algebra 265 (2003), 285-298.
- [5] M. Kutami, On von Neumann regular rings with weak comarability II, *Comm. Algebra* 33 (2005), 3137-3147.
- [6] M. Kutami, On regular rings satisfying almost comparability, *Comm. Algebra* **35** (2007), 2171-2182.
- [7] Z. K. Liu, Excellent extensions and homological dimensions, *Comm. Algebra* 22(5) (1994), 1741-1745.

- [8] J. C. McConnell and J.C. Robson, noncommutative Noetherian rings, Interscinece, Chichester, 1987.
- [9] E. Pardo, Comparability, separativity, and exchange rings, *Comm. Algebra* **24(9)** (1996), 2915-2929.
- [10] M. M. Parmenter and P. N. Stewart, Excellent extensions, Comm. Algebra. 16 (1988), 703-713.
- [11] A. Shamsuddin, Finite normalizing extensions, J. Algebra 151 (1992), 218-220.
- [12] L. Soueif, Normalizing extensions and injective modules, essentially bounded normalizing extensions, *Comm. Algebra* **15** (1987), 1607-1619.
- [13] X. S. Zhu, Torsion theory extensions and finite normalizing extensions, *J. Pure Appl. Alg.* **176** (2002), 259-273.