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Abstract

Let S be an excellent extension of a (von Neumann) regular ring R. In this note, we
study comparability of S related to comparability of R. We show that if R has the n-
unperforation property, then R satisfies s-comparability, almost comparability or weak
comparability if and only if so does S.
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1 Introduction

Recall that S is a ring extension of R if there is a (unital) ring homomorphism f : R → S.
Let S be a ring and let R be a subring of S (with the same 1). S is called a finite normalizing
extension of R if there exist elements a1, . . . ,an ∈ S such that a1 = 1, S = Ra1 + · · ·+Ran,
aiR = Rai for all i = 1, . . . ,n. Finite normalizing extensions have been studied in many
papers such as [10, 11, 12, 13], S is called a free normalizing extension of R if a1 = 1, S =
Ra1 + · · ·+Ran is finite normalizing extension and S is free with basis {a1, . . . ,an} as both
a right R-module and a left R-module. S is said to be an excellent extension of R in case
S is a free normalizing extension of R and S is right R-projective (that is, if MS is a right
S-module and NS is a submodule of MS , then NR |MR implies NS |MS , where N|M means
N is a direct summand of M). Let S be an excellent extension of R. The following results
are well-known:

(1) R is semisimple Artinian if and only if S is semisimple Artinian.
(2) R is regular if and only if S is regular.
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(3) R is right hereditary if and only if S is right hereditary.
More generally, gldimR = gldimS and wgldimR = wgldimS, where gldimR stands for the
global dimension of R, and wgldimR for the weak global dimension of R [7, Theorem 3].

Comparability concepts have proven to be particularly fruitful in the development of
the theory of (von Neumann) regular rings. Goodearl and Handelman showed that directly
finite regular rings satisfying 1-comparability have stable range one [3, Theorem 8.12].
Pardo showed that exchange ring satisfying s-comparability is separative, so has stable
range 1, 2, or ∞.

The notion of almost comparability for regular rings was first introduced by Ara and
Goodearl, for giving an alternative proof of the outstanding O’Meara’s Theorem: directly
finite simple regular rings with weak comparability are unit-regular. It was proved that for
a regular ring R, R satisfies almost comparability if and only if every finitely generated pro-
jective R-module satisfies almost comparability [6, Theorem 1.9], and the almost compara-
bility is Morita invariant [6, Theorem 1.11]. For the simple regular rings, s-comparability
for some s > 0 is equivalent to the ring satisfying almost comparability [1, Theorem 1.4].

O’Meara first introduced the notion of weak comparability, and proved that simple di-
rectly finite regular rings with weak comparability must be unit-regular [3, Open Problem
3]. Many authors studied regular rings with weak comparability [2, 4, 5]. For the regular
ring R with weak comparability, it was proved [5, Theorem 1.6] that A⊕C ≺ B⊕C implies
A ≺ B for any finitely generated projective R-modules A, B and C with B 6= 0, and was
proved [5, Theorem 1.8] that nA ≺ nB implies A ≺ B for any positive integer n and any
finitely generated projective R-modules A and B. It was also proved that for a regular ring
R, R satisfies weak comparability if and only if every finitely generated projective R-module
satisfies weak comparability [5, Theorem 1.9],

For two R-modules M and N, we use M .⊕ N (respectively M . N) to denote that M
is isomorphic to a direct summand of N (respectively M is isomorphic to a submodule of
N), and M ≺⊕ N (respectively M ≺ N) to denote that M is isomorphic to a proper direct
summand of N (respectively M is isomorphic to a proper submodule of N). Let M and N
be finitely generated projective R-modules. We write M .a N to mean that for any nonzero
principal right ideal C of R, M .⊕ N⊕C, and M≺a N to mean that for any nonzero principal
right ideal C of R, M ≺⊕ N⊕C. Other basic notations can be found in [3]. Throughout this
note, R is an associative ring with identity and R-modules are unitary right R-modules.

2 Main results

Lemma 2.1. Let S be an excellent extension of R. Given any S-module M, MR is projective
if and only if MS is projective.

Proof. ⇐: See [8, Lemma 7.2.2].
⇒: If MR is projective, then there is a R-module N such that M⊕N ∼= nR for some

cardinal number n. So (M⊕N)⊗R S∼= (nR)⊗R S, that is, M⊗R S⊕N⊗R S∼= nS. So M⊗R S
is projective as S-module. We can consider M⊗1 as an S-module as following definition:
(m⊗ 1)s = ms⊗ 1. Thus M⊗ 1 ∼= M as S-modules. As R-module, M⊗ 1 has natural R-
module construction as (m⊗1)r = mr⊗1 = m⊗ r. Clearly, (M⊗R S)R = (

Ln
i=1 M⊗ai)R.

2



So (M⊗1)R|(M⊗S)R. By the R-projectivity of S, (M⊗1)S|(M⊗S)S. So MS is projective.
�

Lemma 2.2. Let S be an excellent extension of R, and let AR ∼= BR. Given AS, we can define
S-module B such that AS ∼= BS.

Proof. Let α : AR → BR and β : BR → AR be the isomorphisms. Define bs = α(β(b)s).
It is easy to check that B is an S-module such that AS ∼= BS.

�

For a positive integer s, recall that in [3, Page 275] a regular ring R is said to satisfy
s-comparability if, for each pair of elements x, y of R, either xR . s(yR), or yR . s(xR).
A finitely generated projective R-module M satisfies s-comparability if, for each pair of
direct summands A and B of M, A . sB or B . sA. Recall that for a positive integer n
a ring R has the n-unperforation property if nA . nB implies that A . B for any finitely
generated projective R-modules A and B. A ring R has the unperforation property if it has
n-unperforation property for any positive integer n.

Theorem 2.3. Let S be an excellent extension of a regular ring R. If R has the n-unperforation
property, then R satisfies s-comparability if and only if so does S.

Proof. ⇒: Let x, y ∈ S. xS and yS are finitely generated projective S-modules. By
Lemma 2.1, (xS)R and (yS)R are finitely generated projective. Since R satisfies s-comparability,
by [1, Proposition 2.1], finitely generated projective R-modules satisfy s-comparability.
Thus (xS)R . s(yS)R or (yS)R . s(xS)R. If (xS)R . s(yS)R. Let T be the direct summand
of s(yS)R such that (xS)R ∼= TR. Since xS is an S-module, We can consider T as an S-
module such that (xS)S ∼= TS as xS is S-modules by Lemma 2.2. Since TR | s(yS)R, by the
R-projectivity of S, TS | s(yS)S. Thus (xS)S . s(yS)S. Similarly, we have (yS)S . s(xS)S, if
(yS)R . s(xS)R.

⇐: For any x, y ∈ R, (xR)R . RR . nRR ∼= SR. So (xR)⊗R S and (yR)⊗R S are finitely
generated projective S-modules. Since S satisfies s-comparability, ((xR)⊗R S)S . s((yR)⊗R

S)S or ((yR)⊗R S)S . s((xR)⊗R S)S. ((xR)⊗R S)R . s((yR)⊗R S)R or ((yR)⊗R S)R .
s((xR)⊗R S)R. Since S ia a free R-module with basis {a1, . . . , an}, we have ((xR)⊗R S)R ∼=
∑

n
i=1(xR)⊗R ai)R ∼= n(xR)R. Similarly, ((yR)⊗R S)R ∼= n(yR)R. Thus, n(xR)R . s(n(yR))R

or n(yR)R . s(n(xR))R. By the hypothesis, we have (xR)R . s(yR)R or (yR)R . s(xR)R. �

A regular ring R is said to satisfy almost comparability, if for x, y ∈ R either xR .a yR
or yR .a xR. A finitely generated projective R-module M satisfies almost comparability, if
for each pair of direct summands A and B of M, A .a B or B .a A [6].

Theorem 2.4. Let S be an excellent extension of a regular ring R. If R has the n-unperforation
property, then R satisfies almost comparability if and only if so does S.

Proof. ⇒: For any x, y ∈ S, since (xS)S and (yS)S are finitely generated projective
S-modules, by Lemma 2.1, (xS)R and (yS)R are finitely generated projective R-modules.
R satisfies almost comparability, by [6, Theorem 1.9], nRR satisfies almost comparability
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for all positive integer n. Thus (xS)R .a (yS)R or (yS)R .a (xS)R. Given any principal
right ideal tS of S, which is cyclic projective S-module, it is finitely generated projective
R-module. By [3, Proposition 2.6], there is a principal right ideal X of R such that X .
(tS)R. If (xS)R .a (yS)R, then (xS)R . (yS)R⊕X . (yS)R⊕ (tS)R. Since finitely generated
submodule of projective module P is a direct summand of P, we have (xS)R .⊕ (yS)R⊕
(tS)R. By the R-projectivity of S and Lemma 2.2, we have (xS)S .⊕ (yS)S ⊕ (tS)S, i.e.,
(xS)S .a (yS)S. Similarly, if (yS)R .a (xS)R, we have (yS)S .a (xS)S.

⇐: For any x, y∈R, (xR⊗R S)S, (yR⊗R S)S are finitely generated projective S-modules.
S satisfies almost comparability, by [6, Theorem 1.9], nSS satisfies almost comparability for
all positive integer n. Thus (xR⊗R S)S .a (yR⊗R S)S, or (yR⊗R S)S .a (xR⊗R S)S. For
any z ∈ R, if (xR⊗R S)S .a (yR⊗R S)S, (xR⊗R S)S . (yR⊗R S)S⊕ (zR⊗R S)S. So (xR⊗R

S)R . (yR⊗R S)R⊕ (zR⊗R S)R. It is easy to check that (xR⊗R S)R ∼= n(xR)R, (yR⊗R S)R ∼=
n(yR)R and (zR⊗R S)R ∼= n(zR)R. Hence n(xR)R . n(yR)R ⊕ n(zR)R. By the hypothesis
of n-unperforation property, (xR)R . (yR)R ⊕ (zR)R, i.e., (xR)R .a (yR)R. Similarly, if
(yR⊗R S)S .a (xR⊗R S)S, we have (yR)R .a (xR)R. �

A regular ring R satisfies weak comparability, if for each nonzero x∈R, ther is a positive
integer n = n(xR) such that n(yR) . R impies that yR . xR. A finitely generated projective
R-module M satisfies weak comparability, if for nonzero direct summand A of M, there is a
positive integer n = n(A) such that nB . M impies that B . A [5].

Theorem 2.5. Let S be an excellent extension of a regular ring R. If R has the n-unperforation
property, then R satisfies weak comparability if and only if so does S.

Proof. ⇒: We need to prove that for any nonzero x ∈ S, there is a positive integer m =
m((xS)S) such that m((yS)S) . S implies that (yS)S . (xS)S. R satisfies weak comparability,
by [5, Theorem 1.9], uR satisfies weak comparability for all positive integers u. Since (xS)S

and (yS)S are finitely generated projective S-modules, by Lemma 1, (xS)R and (yS)R are
finitely generated projective R-modules. Furthermore, for any x ∈ R, since S = ⊕n

i=1aiR,
(xS)R = ∑

n
i=1(xai)R, that is, (xS)R has at most n generated elements. Thus (xS)R, (yS)R .

nRR. By the weak comparability of nRR, there is a positive integer m1 = m1((xS)R) such
that m1((yS)R) . nR implies that (yS)R . (xS)R. Let m = m1. If m((yS)S) . SS, m((yS)R) .
SR ∼= nRR . nRR. Therefore, (yS)R . (xS)R. By the R-projectivity of S and Lemma 2.2,
(yS)S . (xS)S.

⇐: We need to prove that for any nonzero x∈R, there is a positive integer m = m((xR)R)
such that m((yR)R) . R implies that (yR)R . (xR)R. (xR⊗R S)S and (yR⊗R S)S are finitely
generated projective S-modules. Furthermore, (xR⊗R S)S, (yR⊗R S)S . SS for all y ∈ R.
Since S satisfies weak comparability, there is a positive integer m1 = m1((xR⊗R S)S) such
that m1((yR⊗R S)S) . S implies that (yR⊗R S)S . (xR⊗R S)S. Let m = m1. If m((yR)R) .
RR, then m(yR⊗R S)S . SS. By the above discussion, (yR⊗R S)S . (xR⊗R S)S. So (yR⊗R

S)R . (xR⊗R S)R, i.e., n(yR)R . n(xR)R. By the hypothesis, (yR)R . (xR)R. �

Recall that a regular ring R is called Abelian provided all idempotents in R are central
(a∈R is central if ax = xa for all x∈R). A ring is said to be strongly regular if for each a∈R
there exists b ∈ R such that a2b = a. A ring is strongly regular if and only if it is Abelian
regular [3, Theorem 3.5]. The index of a nilpotent element x ∈ R is the least positive integer
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n such that xn = 0. Then index of R is supremum of the indices of all nilpotent elements
of R. If it is finite, then R is said to have bounded index. It is well-known that an Abelian
regular ring R has bounded index [3, Theorem 3.2], and a regular ring of bounded index is
a regular ring whose primitive factor rings of R are Artinian [3, Theorem 7.2 and Theorem
6.2]. Since regular rings whose primitive factor are Artinian have the unperforation property
[3, Proposition 6.11], we have

Corollary 2.6. Let S be an excellent extension of a regular ring R. If R is a regular ring
whose primitive factor rings of R are Artinian (particularly a regular ring of bounded index,
or an Abelian regular ring), then

(1) R satisfies s-comparability if and only if so does S.
(2) R satisfies almost comparability if and only if so does S.
(3) R satisfies weak comparability if and only if so does S.

Since ℵ0-continuous regular rings (see the definition in [3, Page 173]) have the unper-
foration property [3, Theorem 14.30], we have

Corollary 2.7. Let S be an excellent extension of an ℵ0-continuous regular ring R. Then
(1) R satisfies s-comparability if and only if so does S.
(2) R satisfies almost comparability if and only if so does S.
(3) R satisfies weak comparability if and only if so does S.
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