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Abstract

In this paper, we study the exponential stability of li
with multiple delays. Using Lyapunov-like function,
the exponential stability in terms of the solution of,
results are illustrated with numerical examples.
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1 Introduction

ystems has been an interesting research area in
e stability analysis of differential equations is the
. Time delays are frequently encountered in many physi-
as in the models of hereditary systems, Lotka-Volterra
th of global economy, control of epidemics, etc. Therefore,

x=f(t,x(t),x(r—h)), t>0,
X(l):q)(l), ZG[—h,O],

is o-stable, with o > 0, if there is a function &(.) such that for each ¢(.), the solution x(z,¢)
of the system satisfies

(2, 0) | <&(ll9l)e™, vt =0,

where ||¢|| = max{||¢(¢)]| : # € [—h,0]}. This implies that for o > 0, the system can be made
exponentially stable with the convergent rate o. It is well known that there are many differ-
ent methods to study the stability problem of time-delay linear autonomous systems. The
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widely used method is the approach of Lyapunov functions with Razumikhin techniques
and the asymptotic stability conditions are presented in terms of the solution of either linear
matrix inequalities or Riccati equations [2, 7, 8]. By using both the time-domain and the
frequency-domain techniques, the paper [15] derived sufficient conditions for the asymp-
totic stability of a linear autonomous system with multiple time delays of the form

X(1) =Aox(r) + Y Aix(t —hy), 1>0,
i=1

1

(1.1)
x(t) :¢(l), S [—h,OL

where A; are given constant matrices, h = max{h; : i = 1,2,...,m}. These conditions de-
pend only on the eigenvalues of Ag and the norm values of A; of thg y. For studying

the a-stability problem, based on the asymptotic stability of the yed part, i.e.
Ao is a Hurwitz matrix, the papers [13, 14] proposed sufficien e o-stability
of system (1.1) in terms of the solution of a scalar inequal 1genvalues, the
matrix measures and the spectral radius of the syste @ 1t iggworth noticing that

although the approach used in these papers allows ess conservative sta-
bility conditions, but it can not be applied to no ay systems. The reason
is that, the assumption Ay (7) to be a Hurwit ht>0,ie RelA(A(r)) <O,
for each ¢, does not implies the exponentialftability gf the [inear non-autonomous system
x = Ao(t)x. It is the purpose of this paper t cient conditions for the o-stability

the results obtained in [3, 14] to the gomous systems with multiple delays. Do not
using any Lyapunov stability thagrem \gPestablish sufficient conditions for the o.-stability
of system (2.1), which are 4 of the solution of a Riccati differential equation
(RDE). These conditio iny stability property of the system matrix Ag(%).
Although the proble o of RDEs is in general still not easy, various effective ap-
proaches for findi pf RDEs can be found in [1, 4, 9, 16].

The paper 4 s follows. Section 2 presents notations, mathematical defini-
tions and a used in the next section. The sufficient conditions for the
o-stability in Section 3. Numerical examples illustrated the obtained result
are a n 3. The paper ends with cited references.

2 iminaries

The following notations will be used for the remaining this paper.

R* denotes the set of all real non-negative numbers; R” denotes the n-dimensional space
with the scalar product (.,.) and the vector norm ||.||;

R™" denotes the space of all matrices of dimension (n x r). AT denotes the transpose of
the vector/matrix A; a matrix A is symmetric if A = AT I denotes the identity matrix;

A(A) denotes the set of all eigenvalues of A; Amax(A) = max{Rel: A € A(A)};

||A|| denotes the spectral norm of the matrix defined by

Al = \/ Amax (ATA);
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N(A) denotes the matrix measure of the matrix A given by

1
NA) = 5xmax(A +AT).

C([a,b],R") denotes the set of all R"-valued continuous functions on [a,b];
Matrix A is called semi-positive definite (A > 0) if (Ax,x) > 0, for all x € R";A is positive
definite (A > 0) if (Ax,x) > 0 for all x # 0;

In the sequel, sometimes for the sake of brevity, we will omit the arguments of matrix-
valued functions, if it does not cause any confusion.

Let us consider the following linear non-autonomous system with multiple delays

x(t) = Ap(t)x(t) + iAi(t)x(t —hi), t>0 @D

K1) =00, 1[0,

where h = max{h; : i = 1,2,....,m},A;(t),i = 0,1,...
0(z) € C([-h,0],R").

JQE en gatrix functions and

Definition

The system (2.1) is said to be o-stable, if tre is a ffiction §(.) : R™ — R™ such that for
each ¢(r) € C([—h,0],R"), the solution x(7, (RS the gffstem satisfies

[1x(z,9)l », VieR'.

The following well-kng
be used in the proof of

ich is derived from completing the square, will

Lemma 2.1. Ass " is a symmetric positive definite matrix. Then for every
P, Q e Rm<n

3
Consi e linear non-autonomous delay system (2.1), where the matrix functions A;(z),
i=0,1,..7,m, are continuous on R™. Let us set

Aoa(t) =Ao(t) + o, A;g(t) =e™iA(t),i=1,2,....m.

Theorem 3.1. The linear non-autonomous system (2.1) is a-stable if there is a symmetric
semi-positive definite matrix P(t), t € R" such that

P(1) +AG o (0)[P(1) + 1]+ [P(1) +1]Ao.a(r)

+ Y IPU)+ 1A (DAL (O [P(0) +1]+ml = 0, GD
i=1
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Proof. Let P(t) > 0,7 € R™ be a solution of the RDE (3.1). We take the following change

of the state variable
y(1) =e¥x(1), reRY,

then the linear delay system (2.1) is transformed to the delay system

5(0) = AoaOy(1) + Y. Avalt)y(t — ),
=1

3.2)
y(t) =e*0(t), t€[-h,0],
Consider the following time-varying Lyapunov-like function
V(0) = POy 0+ bR+ X [ Iy
Taking the derivative of V(.) in 7 along the solution of y(r) gfPsyst nd using the
RDE (3.1), we have
V(1))
= (P(0)y(t),y(1)) +2(P()y(1), y(1)) +2(5(t (1)1~ ; y(e —Ra)|1%,
= (P(1)y(1),y(1)) +2(P(t)Ao.a(t)y(1),¥( (O)Aia(t)y(t — i), y(t))
P20l (0). (1) +2 ) (A ()
Fmb @) - X 3
Aoa(1)y(1),5(1)) (3.3)

r—hi>,y<z>>+m||y<r>||2—i||y<r—hz->||2,

T4 1A al0)3( ) 3(0) — Y (e — B y(o — )

I
—_

1
+2([P(1) + 1A o (1)y (2 = i), 3(2)) = ({2 = hi), y(2 = hi)) }
Applying Lemma 2.1 to the above equality, we have

V(t,y(t)) <0, VteR™".
Integrating both sides of this inequality from O to ¢, we find

V(t,y(t))—V(0,y(0)) <0, VteRT,
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and hence
m t
EOOO)+OP + Y [ 1b(6) Pds
< (P(0).5(0) + O+ X / OIRS
where Py = P(0) > 0 is any initial condition. Since
t
Py =0, [ y)ds =0,
0 2 0 os 1 —0h;
[ @ IPds <ol [ evds= - (1-e)
—h; —h; o

it follows that

ly()? < (Poy(0),5(0)) + Iy (0| +

Therefore, the solution y(z,9) of the system (3.2) i ed. Returning to the solution
x(t,0) of system (2.1) and noting that

1Y) = [lx(Ogg o0 (1911,

we have ||x(7,0)]| <E&(||¢||)e”* for a here

g(llol)
This implies syste O
Remark
Note t c QStencal a semi-positive definite matrix solution P(¢) of RDE (3.1) guaran-
teesgfic of the solution of transformed system (3.2), and hence the exponential
stan gacar non-autonomous delay system (2.1). Also, the stability of A(¢) is not
assu

Example 3.2. Consider the following linear non-autonomous delay system in R:
F=Ao(t)x+A1(t)x(t —0.5) + Ay (t)x(t — 1), t€RT,

with any initial function ¢(¢) € C([—1,0],R?) and
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where
Te % —5 1

are) = ey

We have h; = 0.5, hp = 1, m = 2 and the matrix Ap(r) is not asymptotically stable, since
ReA(A(0)) = 0.5 > 0. Taking oo = 1, we have

N G B N O]

The solution of RDE (3.1) is

ao(t) =

Therefore, the system is 1-stable.

For the autonomous delay systems, we have t
consequence.

Corollary 3.3. The linear delay system (2.

if there is a symmetric semi-positive defini
algebraic Riccati equation

Al olP+1+

el 0 e 2 0
5= D) e )

In this ¢ we have m =2, hy =2, hp = 4. Taking o = 0.5, we find

noa)= (5 %) nal == (5 9)

3

and the solution of algebraic Riccati equation (3.4) is

1 -1
= > 0.
r=(1 =0

Therefore, the system is 0.5-stable.
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Remark
Note that we can estimate the value of V (z,y) as follows. Since
2(P+1)Ag o = AL P+ PAg+ Ay + AL +20(P+1),
from (3.3) it follows that
V(e,y(1)) = {[P(t) + AT (t)P(t) + P(t) Ao (t) +mi]y(t),y(1))
+([Ao(1) +AG (D]y(2),¥(1)) +20((P() + 1)y (1), ¥(1))

3 {200+ DAcalo)sa =) 50) = I = 1P}

Using Lemma 2.1, we have

m

y {2<[P+I]Ai,(x)7(t —h:),y (1) — Iy

i=1

f([P—i—I]A (XA olP+ 1]yl

[P(r) + TP Ay ()|,

with & = max{hy,ha,..., hy O, 1A2(0)[1%, ..., |Am(2)||?}, we ob-

tain
V(1) < (24 P(t)Aot) + mI]y(1), (1))
0(1)) T20[P(2) + || + ml| P(t) +1HZez°‘hHA(t)HZ} by
Therefore ility condition of Theorem 3.1 can be given in terms of the solution of

quation, which does not involve o.:
P(t)+A§ (t)P(t) +P(t)Ao(t) +ml = 0. (3.5)
In thiSQgge, if we assume that P(z), A;(¢) are bounded on R* and

N(Ao) := sup N(Ag(r)) < +e, (3.6)

teR™

then the rate of convergence o > 0 can be defined as a solution of the scalar inequality
n(A0) + [P + T |24l < 0. (3.7)

where

2 2
Pp=sup [|P(t) +1, [|A]" = sup |A(t)|".
teR+ teR+

Therefore, we have the following a-stability condition.
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