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Abstract

We are interested in integral functionals of the form

J(U,V ) =
Z

Ω

J
(
x,U(x),V (x)

)
dx,

where J is Carathéodory positive integrand, satisfying some growth condition of order
p ∈]1,+∞[. We show that A(x,∂)−quasiconvexity of the integrand J with respect to
the third variable is a necessary and sufficient condition of lower semicontinuity of J,
where A(x,∂) is a differential operator given by

A(x,∂) =
N

∑
j=1

A( j)(x)∂x j ,

and the coefficients A( j), j = 1, ...,N are only Lipschitzian, i.e. A( j) ∈W 1,∞
(
Ω;Ml×d

)
and satisfy the condition of constant rank. To this end, a framework of paradifferential
calculus is needed to deal with the lower smoothness of the coefficients.
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1 Introduction

Minimization problems appear in many domains, as mechanics, electromagnetism and en-
gineering, as means to compute the relaxed energy. Knowing that the relaxed problems is
one of the pillars of calculus of variations (see [7, 9, 10]) and the existence of the minimum
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requires the lower semicontinuity of the energy. One of the minimization problems gov-
erned by a partial differential system has been recently studied by [11], who proved that
A(∂)-quasiconvexity (see Definition 1.1 below) is a necessary and sufficient condition for
lower semicontinuity of integral functionals, of the form

J(U,V ) =
Z

Ω

J
(
x,U(x),V (x)

)
dx,

where J : Ω×Rm×Rd → [0,+∞) is a normal integrand,Un →U in measure and Vn ⇀ V
in Lp

(
Ω;Rd

)
such that A(∂)Vn → 0 in W−1,p(Ω;Rd), where A(∂) is a differential operator

with constant coefficients defined by

A(∂) =
N

∑
j=1

A( j)
∂x j , A( j) ∈Ml×d

and satisfying the condition of constant rank, namely: there exists r ∈ N such that

rank
( N

∑
j=1

A( j)
ξi

)
= r, for ξ ∈ RN\{0},

by making use of the compensated compactness Theory introduced by [15] and [20].

Let us recall the notion of A(∂)− quasiconvexity for a first order differential operators
of constant coefficients (see e.g.[10]):

Definition 1.1. A function J : Rd → R is A(∂)−quasiconvex if

J(ξ)≤
Z

Ω

f
(
ξ+U(x))dx

for all ξ ∈ Rd and all U ∈ C ∞
per
(
Q ;Rd

)
such that A(∂)U = 0 and

R
Q U(y)dy = 0, where

C ∞
per
(
Q ;Rd

)
is the space of C ∞ functions on RN and Q -periodic.

Among the models included in the framework of A(∂)− quasiconvexity, we can cite for
instance the following:

(1) [Divergence Free Fields] A(∂)U = 0 if and only if divU = 0, where U : RN → RN .

(2) [Maxwell’s Equations] In magnetostatics, the magnetization M : R3 → R3 and the
induced magnetic field J : R3 → R3 satisfy the PDE constraints

A(∂)
(

M
J

)
=
(

div(M + J)
curlJ

)
=
(

0
0

)
.

For further examples, we can refer to [8, 11].

We emphasize that B. Dacorogna ([10] pp. 100-112) is the first one, who exploited the
A(∂)− quasiconvexity to investigate the lower semicontinuity of integral functional of the
type
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V 7→
Z

Ω

J(V (x))dx

in the case, where the kernel of A contains the range of a suitable first order differen-
tial operator. The periodicity of the test function is needed to obtain the necessity of
A−quasiconvexity. To establish the sufficiency, we have to use the constant rank condi-
tion, for more details about this subject, we refer to [11].
Pedro Santos [18] has extended this framework to the variable coefficients case of the form:

A(x,∂) =
N

∑
j=1

A( j)(x)∂x j ,

where the coefficients A( j) ∈ C ∞
(
Ω;Ml×d

)
∩W 1,∞, j = 1, ...,N, satisfy the condition of

constant rank (CR), namely :

rank
( N

∑
j=1

A( j)(x)ξi

)
= const for all (x,ξ) ∈ RN ×RN\{0}. (CR)

He has adapted the notion of A(∂)-quasiconvexity to the variable coefficients case by
freezing the coefficients at each point of Ω. Then, he made use of the pseudodifferential
symbolic calculus to justify the composition of the differential operators with variable co-
efficients.
In the present paper, we will generalize some of the results of [18] in the case where the
coefficients of the operator A(x,∂) are only W 1,∞ . This will be done by using some special
results from the paradifferential calculus introduced by [5, 13, 14].

Here are, now, the main results of this paper:

Theorem 1.2 (Necessary Condition for Lower Semicontinuity). Let Ω ⊂ RN be an open
bounded set, p ∈]1,+∞[ and let J : Ω×Rd → [0,+∞) be a continuous function such that
the following conditions hold:

(A1) There exists ω1 ∈ L∞
loc(Ω) such that for all ξ1,ξ2 in Rd and a.e. x ∈ Ω∣∣J(x,ξ1)− J(x,ξ2)

∣∣≤ ω1(x)
(
1+ |ξ1|p−1 + |ξ2|p−1)|ξ1−ξ2|.

(A2) For any sequences Vn ⇀ V in Lp
(
Ω;Rd

)
satisfying

A(x,∂)Vn =
N

∑
j=1

A( j)(.)∂x jVn → 0
(
W−1,p(Ω,Rl)

)
.

We assume that Z
Ω

J(x,V (x))dx ≤ liminf
n→+∞

Z
Ω

J(x,Vn(x))dx,

where A(x,∂) satisfies the condition (CR). Then J(x, .) is A(x,∂)−quasiconvex for all x∈Ω.
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Theorem 1.3 (Sufficient Condition for Lower Semicontinuity). Let Ω ⊂ RN be an open,
bounded set, p ∈]1,+∞[ and let J : Ω×Rm ×Rd → [0,+∞[ be a Carathéodory function,
satisfying the following assumptions:

(A3) For some locally bounded function ω2 : Ω×Rm → [0,+∞[, for all ξ ∈ Rd , and for
a.e. x ∈ Ω

0 ≤ J(x,ζ,ξ)≤ ω2(x,ζ)
(
1+ |ξ|p

)
.

(A4) For a.e. x ∈ Ω and all ζ ∈ Rm, we assume that

J(x,ζ, .) is A(x,∂)−quasiconvex.

Then for any sequence (Un)n∈N in Lp
(
Ω;Rm

)
be such that Un converging in measure to

U ∈ Lp
(
Ω;Rm

)
and any another sequence (Vn)n∈N in Lp

(
Ω;Rd

)
satisfying

Vn ⇀ V
(
Lp(Ω;Rd)

)
, A(.,∂)Vn → 0

(
W−1,p(Ω;Rl)

)
,

we have: Z
Ω

J
(
x,U(x),V (x)

)
dx ≤ liminf

n→+∞

Z
Ω

J
(
x,Un(x),Vn(x)

)
dx.

Let us describe how the paper is organized.
Section 2 contains four parts. Firstly, we begin by a notion of Young measures as well as
some of its properties. Secondly, we give the essential results on the paradifferential calcu-
lus, which play a very important role in the case, where the coefficients of the differential
operator A(x,∂) are W 1,∞. Thirdly, in order to make use of symbols acting only on spatial
variables, we introduce the Littlewood-Paley decomposition, a paraproduct identity and a
Lemma which characterizes the partial inverse symbols and the associated paradifferential
operator. The fourth part is devoted to a few properties of the differential operator with
constant coefficients. Section 3 gives in detail the proofs of Theorems 1.2 and 1.3. We end
this paper by an appendix, where we give the proof of the Lemma 3.1, which forms the
heart of the proof of the necessary condition.

2 Notations and Preliminaries

In this section, we fix some notations about the most used functional spaces and give some
notions about Young measures and their properties, paradifferential calculus with Lips-
chitzian components, Littlewood-Paley decomposition and differential operators with con-
stant coefficients.
Throughout this paper, Ω is an open bounded subset of RN , Q = (−1,1)N the unit cube
centered at the origin, QR(x0) = x0 + RQ . A function U ∈ Lp

loc

(
RN ;Rd

)
is said to be

Q−periodic if U(x+ei) = U(x) for a.e. all x ∈RN and every i = 1, ...,N, where (e1, ...,eN)
is the canonical basis of RN . Let us recall that Lp

(
Q ;Rd

)
is the closure of C ∞

(
Q ;Rd

)
in

Lp
loc

(
RN ;Rd

)
. If p∈]1,+∞[ then W−1,p

(
Q ;Rd

)
is the topological dual space of W 1,p′

(
Q ;Rd

)
,

with p′ = p
p−1 . The dual of the closure of Cc

(
Ω;Rd

)
is the set of Rd− valued Radon mea-

sures with finite mass M
(
Ω;Rd

)
, through the duality
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〈ν,J〉 de f
=

Z
Ω

J(y)dν(y), ν ∈ M
(
Ω,Rd), J ∈ Cc

(
Ω;Rd).

Also we denote by LN the N− dimensional Lebesgue measure on RN and Ml×d is the set
of l×d real matrices. For a set B the characteristic function is denoted by χB.

2.1 Basic notions on Young measures

Definition 2.1. Let (yn)n∈N be a bounded sequence of L1(Ω). We say that (yn)n∈N is equi-
integrable, if the following property hold. If E ⊂ Ω is a Borel set, then

∀ε > 0, ∃ρ > 0 : LN(E) < ρ ⇒ sup
n∈N

Z
E
|yn(x)|dx < ε.

As directly consequence of the previous definition:

N the equi-integrability is a necessary an sufficient condition for weak compactness in
L1(Ω) of the sequence (yn)n∈N;

N (yn)n∈N is p−equi-integrable if (|yn|p)n∈N is equi-integrable.

Definition 2.2. Let J : Ω×Rd → be a function

(1) J is normal integrand if the two conditions are satisfied

(1.i) x 7→ J(x,V ) is of Borel measurable ;

(1.ii) V 7→ J(x,V ) is lower semicontinuous for all x ∈ Ω.

(2) J is Carathéodory if J and −J are normal integrands.

Now, we collect some important and useful properties for Young measures. For the
detailed proofs, we refer to [3, 21].

Theorem 2.3. Let Π ⊂ RN be a measurable set of finite measure and let (yn)n∈N be a
sequence of measurable functions, yn : Π→Rd . Then there exists a subsequence (ynk)k and
a weak * measurable map ν : Π → M (Rd ;Rd) such that:

(i) νx ≥ 0,‖νx‖M ≤ 1 for a.e. x ∈ Π;

(ii) one has (i’) ‖ν‖M = 1 for a.e. x ∈ Π if and only if

lim
C→+∞

sup
k∈N

LN
(
{x ∈ RN : |ynk(x)| ≥C}

)
= 0; (2.1)

(iii) if ∆ is a compact subset of Rd such that d(ynk ,∆)→ 0 in measure, then

suppνx ⊂ ∆ for a.e. x ∈ Π;
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(iv) if (i’) holds, then in (iii) one may replace ”if” by ”if and only if”;

(v) if J : Ω×Rd → R is a normal integrand bounded from below then:

liminf
k→+∞

Z
Ω

J(x,ynk(x))dx ≥
Z

Ω

〈νx,J(x, .)〉dx,

where

〈νx,J(x, .)〉 de f
=

Z
Rd

J(x,ξ)dνx(ξ);

(vi) if J : Ω×Rd → R is Carathéodory function bounded from below

and if (i’) is satisfied, one has :

lim
k→+∞

Z
Ω

J(x,ynk(x))dx =
Z

Ω

〈νx,J(x, .)〉dx;

if and only if
(
J(.,ynk(.))

)
is equi-integrable. In this case

J(.,ynk(.)) ⇀ 〈νx,J(x, .)〉 in L1(Ω).

Then we have the following definition

Definition 2.4. (1) The map ν : Π→M
(
Rd ;Rd

)
is called the Young measure generated

by the sequences (ynk)k∈N;

(2) the Young measure ν is said to be homogeneous if there is Radon measure ν0 ∈
M
(
Rd ;Rd

)
such that νx = ν0 for a.e. x ∈ Π.

Remark 2.5. (a) In the sense of Theorem 6.2 of [16], p. 97, if we take g ≡ |.|p, the
condition (2.1) holds if

sup
n∈N

Z
Π

|yn|pdx < +∞

(b) As consequence of (vi), if (yn)n∈N is a bounded sequence in Lp and J is continu-
ous function in Rd such that 0 ≤ J(ξ) ≤ C(1 + |ξ|p) for some C > 0, then J(yn) ⇀
〈νx,J(.)〉 in Lp.

Proposition 2.6. If (Vn) generates a Young measure ν and Un →U a.e. in Ω, then the pair
(Un,Vn) generates the Young measure µ defined by

µx
de f
= δU(x)⊗νx, a.e.x ∈ Ω.
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2.2 Basic notions on paradifferential calculus

In this subsection, we want to briefly collect some definitions and results on paradifferential
calculus: a more complete description of these notions can be found in original works of
[5, 6, 13, 14]. We first recall the notion of the usual Sobolev spaces Hs,p. The key ingredient
being to state a continuity theorem for this kind of operators in these spaces.
For any s ∈ R and ξ ∈ RN we denote

〈ξ〉s = (1+ |ξ|2)s/2,

and the operator Λs by

∀v ∈ S(RN) F (Λsu)(ξ) = 〈ξ〉−sF u(ξ),

where F is the Fourier operator.

Definition 2.7. For any s ∈ R and p ∈]1,+∞[ , we define the space Hs,p(RN) to consist of
tempered distributions u on RN such that

Λ
−su ∈ Lp(RN).

It is well known that if s = k is a positive integer, p ∈]1,+∞[, the spaces Hs,p(RN)
coincide with the W k,p(RN), and in particular H0,p(RN) coincide with Lp(RN). Hs,p(RN)
is a Banach space equipped with the obvious norm

‖u‖Hs,p = ‖Λ
−su‖Lp .

The dual space of Hs,p(RN) coincide with H−s,p′(RN) where p′ = p
p−1 (see [2, 19], for

more details).

Definition 2.8. A paradifferential symbol of degree m ∈ R and regularity k, k ∈ N is a
function a : RN ×RN → C, (x,ξ) 7→ a(x,ξ) such that a is C ∞ with respect to ξ and for all

α ∈ NN , there is a constant C
de f
= C(α) verifying

∀ξ ∈ RN , ‖∂
α

ξ
a(.,ξ)‖W k,∞ ≤C〈ξ〉m−|α|.

The set of paradifferential symbols of degree m and regularity k is denoted by Γm
k (RN).

It is equipped with the obvious semi-norm.

Definition 2.9. Let (η,ξ) 7→ χ(η,ξ) an admissible cut-off, that is, a smooth function satis-
fying, for two given real 0 < ε1 < ε2 < 1

χ(η,ξ) =

{
1 if |η| ≤ ε1〈ξ〉

0 if |η| ≥ ε2〈ξ〉.

Given a symbol a ∈ Γm
k (RN), we define the paradifferential operator T χ

a associated to
the symbol a as follows :

T χ
a = Op(σχ

a)
de f
= σ

χ
a(x,Dx),
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where the operator Op(σχ
a) acts on the Schwartz’ class S(RN) by the usual formula

∀u ∈ S(RN), ∀x ∈ RN Op(σχ
a)u(x) =

1
(2π)N

Z
RN

ei<x.ξ>
σ

χ
a(x,ξ)û(ξ)dξ.

Here σ
χ
a is defined by :

∀η ∈ RN
σ

χ
a(.,η) = a(.,η)∗Gχ(.,η),

where Gχ(.,η) = F −1(χ(.,η) is the inverse Fourier transform of ξ → χ(ξ,η).

Remark 2.10. Recalling that the Hörmander’s pseudodifferential symbols Sm
1,1(RN) (see

[12]) is defined by

Sm
1,1(RN)

de f
=
{

a ∈ C ∞
(
RN ×RN ;C

)
: sup
|ξ|6=0

|∂β
x ∂α

ξ
a(.,ξ)|

< ξ >(m−|α|+|β|)/2 < +∞

}
,

the functions σ
χ
a belong to the Σm

k (ε) class (see e.g [5]), the subclass of symbols a∈ Sm
1,1(RN)

which have the partial Fourier transform of a with respect to the first variable supported in
|η| ≤ ε|ξ|.

Theorem 2.11. For a given symbol a∈Γm
k (RN), the paradifferential operator T χ

a is a linear
bounded operator from S(RN) to S(RN).

By duality, the operators T χ
a extend as a linear bounded operators from S ′(RN) to

S ′(RN) . One can then, define the adjoint operator T χ,∗
a by the formula

∀ϕ ∈ S(RN) ∀u ∈ S ′(RN) 〈T χ,∗
a u,ϕ〉= 〈u,T χ,∗

a ϕ〉,

where the brackets denote for the bilinear duality S ′(RN)×S(RN).

Let us now focus our attention only on the symbols a ∈ Γm
k (RN) where k = 0,1. For a

given paradifferential symbol a∈Γm
1 (RN), we denote by ā∈Γm

1 (RN) the complex conjugate
of a. We can then identify the adjoint operator T χ,∗

a by the following lemma

Lemma 2.12. (1) If we denote by σ
χ,∗
a (x,ξ)

de f
= e−ix.ξ(T χ,∗

a )eξ(x) where
eξ(x) = eix.ξ, the pseudodifferential symbol associated to T χ,∗

a , then σ
χ,∗
a ∈ Σm

1 ;

(2) there exists a symbol r ∈ Σ
m−1
0 such that

T χ,∗
a = T χ

ā + r(x,Dx).

Thanks to Lemma 2.12, we are now in position to apply the continuity Theorem of [6],
in the Hs,p spaces:

Theorem 2.13. For a given p ∈]1,+∞[ , s ∈ R and a symbol a ∈ Γm
k (RN), the paradiffer-

ential operator T χ
a is a linear bounded operators in the Hs,p(RN) spaces, of order equal or

less than m, that is : there exists a constant C > 0 such that

∀u ∈ Hm+s,p(RN)
∥∥T χ

a u
∥∥

Hs,p ≤C‖u‖Hs+m,p .
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The next Theorem allows us to dispose of a very useful symbolic calculus, detailed as
follows :

Theorem 2.14. (1) For a ∈ Γm
1 (RN) and for two admissible cut-off χ1 and χ2 we have :

T χ1
a −T χ2

a is of order ≤ m−1;

(2) let a ∈ Γm
1 (RN) and b ∈ Γm′

1 (RN). Then ab ∈ Γ
m+m′

1 (RN) and the operator T χ
a ◦T χ

b −
T χ

ab is of order ≤ m+m′−1 for all admissible cut-off functions;

(3) let a ∈ Γm
1 (RN). Then the operator T χ,∗

a −T χ

a∗ is of order ≤ m−1 for all admissible
cut-off functions χ. where T χ,∗

a denotes for the adjoint operator of T χ
a .

The part (1) of the Theorem allows us to fix without loss of generality the same cut-off
function χ for all the paradifferential operators considered. So, we shall write Ta instead of
T χ

a .

2.3 Littlewood-Paley decomposition and paraproduct

Let us start with a classical dyadic decomposition of the full space (see for instance [9]).

Definition 2.15. There exist two radially functions χ∈C ∞
c (RN);0≤ χ≤ 1 and ψ∈C ∞

c (RN\{0})
such that

(i) χ(ξ) = 1 for |ξ| ≤ 1.1; χ(ξ) = 0 for |ξ| ≥ 1.9;

(ii) χ(ξ)+∑q≥0 ψ(2−qξ) = 1,
1
2
≤ χ2(ξ)+∑q≥0 ψ2(2−qξ)≤ 1;

(iii) |k− k
′ | ≥ 2 ⇒ supp ψ(2−k.)∩ supp ψ(2−k

′
.) = /0;

(iv) k ≥ 1 ⇒ supp χ∩ supp ψ(2−k.) = /0.

We set h = F −1χ and for k ∈ Z

χk(ξ) = χ(2−k
ξ) hk = F −1

χk ψk = χk−χk−1.

Introduce the operators Sk and ∆k acting on S ′:{
Sku = F −1

(
χ(2−kξ)û(ξ)

) de f
= χ(2−kDx)u = hk ?u

∆k = Sk−Sk−1 = (hk−hk−1)?u.

Observe that for every tempered distribution, the support of F (∆ku) is contained in the
ring {ξ : 2k−1 ≤ |ξ| ≤ 2k+1}, and u has the following Littlewood -Paley decomposition:

u = S0u+
∞

∑
k=1

∆ku
(
S ′
)
.

In particular we can characterize the spaces Hs,p(RN)
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Proposition 2.16. A tempered distribution u∈Hs,p(RN) iff there exists a universal constant
C > 0 such that

1
C
‖u‖Hs,p ≤

∥∥∥(∑
k≥1

‖22ks
∆ku‖2

Lp(RN)

) 1
2
∥∥∥

Lp
≤C‖u‖Hs,p ,

where we have used the identity Hs,p(RN) = Fs
p,2(RN), with Fs

p1,p2
(RN) (0 < p1 < ∞) is the

Triebel-Lizorkin space defined by

Fs
p1,p2

(RN) =
{

u ∈ S
′
(RN) : ‖u‖Fs

p1,p2

de f
= ‖2skSku‖Lp1 (`p2 ) < ∞

}
.

For more details about the Besov-Triebel-Lizorkin spaces, we refer the reader to [17].
We recall also the very useful property of the space W 1,∞(RN) through the Littlewood -Paley
decomposition:

Theorem 2.17. If u ∈W 1,∞(RN) then there exists C > 0 such that for every k ∈ N

‖∆ku‖L∞ ≤C2−k‖u‖W 1,∞ . (2.2)

Let now, i ∈ N and

Ψi(η,ξ) =
∞

∑
k=1

χk−i(η)ψk(ξ). (2.3)

Then for i ≥ 3, we can check that Ψi is an admissible function. A function a : x 7→ a(x) ∈
L∞(RN) can be seen as a symbol in Γ0

0(RN), independent of ξ. With Ψi given by (2.3) with
i = 3, this leads to define the paradifferential operator Ta called paraproduct operator with
a by:

Tau = S−3aS0u+
∞

∑
k=1

Sk−3∆ku. (2.4)

Proposition 2.18. For all a ∈ L∞(RN), Ta defined by (2.4) is an operator of order ≤ 0.

In the sequel, we will consider symbols and operators acting on functions with matrix
values Ml×d . Nevertheless, we will make a slight abuse of notation in that we do not refer
to this fact in the used norms.
Given a collection

(
A( j)
)

1≤ j≤N of functions in W 1,∞
(
Ω;Ml×d

)
, we denote by A(x,ξ) for

x ∈ Ω and ξ ∈ RN the matrix symbol

A(x,ξ) =
N

∑
j=1

A( j)(x)ξ j.

We fix a cut-off function δ∈ C ∞
0
(
RN ; [0,1]

)
such that δ≡ 1 for some compact neighborhood

Ω̃ of Ω. We set now for (x,ξ) ∈ RN ×RN\{0}

Aδ(x,ξ) =
N

∑
j=1

δ(x)A( j)(x)ξ j. (2.5)
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The symbol Aδ is positively homogeneous of degree 1 in ξ and it is easy to check that
x 7→ Aδ(x, .) ∈W 1,∞

(
RN ;Ml×d

)
. Thanks to the compactness of SN−1 we get that

∀α ∈ NN ∃Cα > 0 : ‖∂
α

ξ
Aδ(.,ξ)‖W 1,∞ ≤Cα < ξ >1−|α|,

so that Aδ belongs to the paradifferential class of symbols Γ1
1(RN), (see Definition 2.8). For

(x,ξ) ∈ RN ×RN\{0}, let us consider Pδ(x,ξ) the orthogonal projection onto kerAδ(x,ξ):
Pδ(x,ξ) : Rd → Rd

Pδ(x,ξ)V =

{
0 if V ∈

(
kerAδ(x,ξ)

)⊥
V if V ∈ kerAδ(x,ξ).

(2.6)

In the particular case where l = d, the symbol Pδ(x,ξ) may be represented by a Dunford
integral:

∀x ∈ RN ∀ξ ∈ RN\{0} Pδ(x,ξ) =
1

2iπ

Z
γ

(zI−Aδ(x,ξ))−1dz, (2.7)

where γ is a closed path enclosing the roots of zI−Aδ.

For (x,ξ) ∈RN ×RN\{0}, let us introduce Qδ(x,ξ) : Rm →Rd the partial inverse of Aδ

implicitly defined by the equations:

Qδ(x,ξ)W = 0 for all W ∈
(
Aδ(x,ξ)

)⊥ (2.8)

Qδ(x,ξ)Aδ(x,ξ) = Id −Pδ(x,ξ).

The properties of Pδ and Qδ are given by the following Lemma:

Lemma 2.19. Let Pδ and Qδ defined by (2.6) and (2.8). Then we have:

(1) Pδ ∈ Γ0
0(RN);

(2) the symbol Qδ ∈ Γ
−1
1 (RN);

(3) the operator
R = TQδ

◦TAδ
−
(
Id −TPδ

)
is of order≤−1, where Id is the identity operator. In particular there exists a positive
constant C such that for any U ∈ Lp(RN)

‖U −TPδ
U‖Lp ≤C

(
‖TAδ

U‖W−1,p +‖U‖W−1,p

)
, (2.9)

‖TAδ
TPδ

U‖W−1,p ≤C‖U‖W−1,p . (2.10)

Proof. For (1), thanks to the assumption (CR) satisfied by the matrix A(x,ξ) which is pos-
itively homogeneous of degree 1, we can deduce that the mapping (x,ξ) 7→ Pδ(x,ξ) is pos-
itively homogeneous of degree 0 in ξ and inherit clearly the regularity W 1,∞ of Aδ, so
Pδ ∈ Γ0

1(RN). Then, the associated operator TPδ
is of degree ≤ 0.

Concerning (2), since the symbols Aδ and Pδ are positively homogeneous of degree 1 and
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0 in ξ respectively, it a simple routine to check that the symbol Qδ defined by (2.8) is posi-
tively homogeneous of degree −1 and , thanks to the regularity W 1,∞ of Aδ , it can be seen
like a symbol in Γ

−1
1 (RN).

For (3), according to the symbolic calculus of Theorem 2.14, the operator R is of order
≤−1. For the estimate (2.9), we have for every U ∈ Lp(RN)

U −TPδ
U = TQδ

◦TAδ
U −R U.

Since Qδ and R are of order ≤−1. Therefore

‖U −TPδ
U‖Lp = ‖TQδ

◦TAδ
U +R U‖Lp

≤ C
(
‖TAδ

U‖W−1,p +‖U‖W−1,p

)
,

which achieves the proof of (2.9).
For (2.10), using the fact that

Aδ(x,ξ)Pδ(x,ξ)≡ 0,

we see, with the help of the symbolic calculus that TAδ
TPδ

is an operator of order ≤ 0, and
the proof of Lemma 2.19 is complete.

2.4 Operators with constant coefficients

We present some results about operators with constant coefficients, namely

A(∂)V =
N

∑
j=1

A( j)
∂x jV

which satisfies the condition (CR).
Following [11], we associate to A(∂), the following continuous projection1

S : Lp(TN ;Rd)→ Lp(TN ;Rd),
where TN is the N torus defined by

TN =
{
(e2πix1 , ...,e2πixN ) ∈ CN : (x1, ...,xN) ∈ RN}.

The space Lp
(
TN ;Rd

)
is identified with Lp

(
Q ;Rd

)
. The properties of S can be summa-

rized in the following lemma

Lemma 2.20. We assume that (CR) assumption holds. Then for p ∈]1,+∞[, we have

(i) S◦SV = SV , and A(∂)
(
SV
)

= 0 for V ∈ Lp
(
TN ;Rd

)
;

(ii) ‖V − SV‖Lp ≤ Cp‖A(∂)(V )‖W−1,p for all V ∈ Lp
(
TN ;Rd

)
such that

R
TN

V (x)dx = 0
and for some Cp > 0;

(iii) if (Vn)n∈N is bounded sequence in Lp
(
TN ;Rd

)
and p−equi-integrable. Then

(∣∣SVn
∣∣)

n∈N
is also p−equi-integrable.

1For the construction of S, we make use of the Fourier multipliers associated to the orthogonal projection
operator P(ξ) : Rd → Rd , with ξ ∈ RN onto kerA(ξ), where A(ξ) is the symbol of A(∂).
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The next lemma gives an important result, called Decomposition lemma

Lemma 2.21. Let p ∈]1,+∞[ and let (Un)n∈N be a bounded sequence in Lp
(
TN ;Rd

)
which

satisfies the following properties:

A(∂)Un → 0
(
W−1,p), Un ⇀ U

(
Lp),

and generates the Young measure ν. Then there exists a p−equi-integrable sequence (Vn)n∈N
in Lp

(
Ω;Rd

)
∩kerA which generates ν and is such that

A(∂)Vn = 0,
Z

Ω

Vn(x)dx =
Z

Ω

U(x)dx, ‖Vn−Un‖Lq → 0 ∀q ∈ [1, p).

For the detailed proof of the previous lemmas, we refer the reader to the paper of [11].

3 Proof of the main result

3.1 Proof of Theorem1.2

Proof. We follow the main lines of the proofs of [11] and [18]. However, in order to deal
with the limited regularity of the coefficients of the operator A(x,∂), we use some features
of the paradifferential calculus recalled in section 2.2. Throughout this proof we denote by
C a generic constant whose value may vary from line to line.
We fix x0 ∈ Ω,κ ∈ Rd and p ∈]1,+∞[. Let R > 0 be such that Q2R(x0) b Ω and W ∈
C ∞
(
RN ;Rd

)
be a Q− periodic function, satisfying

Z
Q

W (y)dy = 0 and A(x0,∂)W
de f
=

N

∑
j=1

A( j)(x0)∂x jW = 0. (3.1)

Let ε > 0, the uniform continuity of the function J on compact sets implies that there
exists a positive integer n0 such that

∀n ∈ N : n ≥ n0, ∀x,x′ ∈ QR(x0), ∀ξ ∈ Q|κ|+‖w‖L∞ (0) (3.2)

|x− x′|< 1
n
⇒ |J(x,ξ)− J(x′,ξ)|< ε.

We first decompose the cube QR(x0) as follows: by the Vitali covering Theorem, up to
sets of measure zero, we know that there exists a finite sequence {xs}1≤s≤nN ⊂ Ω such that

QR(x0) =
nN[

s=1

Q R
n
(xs).

We choose a cut-off function ϕ ∈ C ∞
0
(
QR(x0)

)
such that 0 ≤ ϕ ≤ 1 and LN

{
QR(x0)∩

{ϕ 6= 1}
}

< εRN . We define the sequence (Wm)m by:

Wm(x) = ϕ(x)W ∗
(

mn(x− xs)
R

)
χQ R

n
(xs), (3.3)
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where W ∗(y) = W
(
y+(1, . . . ,1)

)
.

Since W ∗ is Q− periodic, then in virtue of Lemma A.1. p.249 of [4] and (3.1), we get when
m →+∞

W ∗
(

mn(x− xs)
R

)
⇀ 0

(
Lp(Q R

n
(xs);Rd)).

Hence Wm ⇀ 0 in Lp and from the compact embedding Lp ↪→W−1,p, one has

Wm → 0
(
W−1,p).

Furthermore, the sequence {Wm}m is uniformly bounded in La for all a ∈ [1,+∞]. For any
x ∈ RN we set

B( j)
δ

(x) = δ(x)A( j)(x)−A( j)(x0) 1 ≤ j ≤ N.

The functions B( j)
δ

are in W 1,∞. The symbol Aδ defined in (2.5) becomes

Aδ(x,ξ) =
N

∑
j=1

B( j)
δ

(x)ξ j +
N

∑
j=1

A j(x0)ξ j,

so the paradifferential operator associated to Aδ acting on Wm is

TAδ
Wm =

N

∑
j=1

T
B( j)

δ

∂x jWm +
N

∑
j=1

A( j)(x0)∂x jWm, (3.4)

de f
= B1Wm +A(x0,∂)Wm.

In order to treat these two sums we state the following lemma

Lemma 3.1. Let B1 and A(x0,∂) as above. Then following properties hold:

(1) A(x0,∂)Wm → 0
(
W−1,p

)
.

(2) There exists a positive constant C depending on the W 1,∞ norm of the components of
A(x,∂) such that for all m ∈ N

‖B1(Wm)‖W−1,p ≤C

(
N

∑
j=1

(Z
Q2R(x0)

|A( j)(x)−A( j)(x0)|pdx
)1/p

+‖Wm‖Lp

)
. (3.5)

We postpone the proof of the lemma to the Appendix and continue the proof of the
Theorem 1.2:
We introduce the projector Pδ defined in (2.6) and for any m ∈ N, we define

Θm = TPδ
Wm.

As TPδ
is an operator of order ≤ 0, according to Theorem 2.13 the sequence {Θm}m

is uniformly bounded in Lp. Taking into account the weak convergence of the sequence



A− Quasiconvexity and Lower Semicontinuous 69

(Wm)m in Lp, we can extract a subsequence still denoted {Θm}m weakly convergent to 0 in
Lp. Therefore, we deduce

Aδ(x0,∂)Θm → 0
(
W−1,p).

In order to deal with local estimates, we need to localize the sequence {Wm}m. Consider
a cut-off function γ ∈ C ∞

0
(
Q2R(x0)

)
such that 0 ≤ γ ≤ 1, γ ≡ 1 in QR(x0) and set:

Θ̃m = γΘm.

We obviously check that

Θ̃m ⇀ 0
(
Lp), Aδ(x0,∂)Θ̃m → 0 (W−1,p),

so that we apply assumption (A2), it followsZ
Ω

J(x,κ)dx ≤ liminf
m→+∞

Z
Ω

J(x,κ+ Θ̃m(x))dx. (3.6)

On the other hand, applying assumption (A1) for ξ1 = Θ̃m(x) and ξ2 = Wm(x), we get
the following estimate

∣∣∣∣Z
Ω

J(x,κ+ Θ̃m(x))dx−
Z

Ω

J(x,κ+Wm(x))dx
∣∣∣∣ (3.7)

≤ C
Z

Q2R(x0)
|Θ̃m(x)−Wm(x)|

(
1+ |Θ̃m(x)|p−1 + |Wm(x)|p−1)dx.

By making use repeatedly of the Hölder inequality, (3.7) becomes

∣∣∣∣Z
Ω

J(x,κ+ Θ̃m(x))dx−
Z

Ω

J(x,κ+Wm(x))dx
∣∣∣∣ (3.8)

≤ C
(Z

Ω

|Θ̃m(x)−Wm(x)|pdx
)1/p

(
RN/2 +

(Z
QR(x0)

|Θ̃m(x)|p′dx
)1/p′

+
(Z

QR(x0)
|Wm(x)|p′dx

)1/p′
)

.

The function Θ̃m−Wm is supported in Q2R(x0), we thus have in virtue of estimate (2.9)

(Z
Ω

|Θ̃m(x)−Wm(x)|pdx
)1/p

≤ ‖Wm−TPδ
Wm‖Lp ≤C

(
‖TAδ

Wm‖W−1,p +‖Wm‖W−1,p

)
.

This implies
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∣∣∣∣Z
Ω

J(x,κ+ Θ̃m(x))dx−
Z

Ω

J(x,κ+Wm(x))dx
∣∣∣∣ (3.9)

≤
(
‖B1(Wm)‖W−1,p +‖Wm‖W−1,p

)(
RN/p′ +

(Z
QR(x0)

|Wm(x)|p′dx
)1/p′

)
≤ CRN/p′

(
‖B1(Wm)‖W−1,p +‖Wm‖W−1,p

)
.

Letting m →+∞ in (3.9) and applying (3.6), we shall have

Z
QR(x0)

J(x,κ)dx ≤ limsup
m→+∞

Z
QR(x0)

J(x,κ+Wm(x))dx (3.10)

+CRN/2 lim
m→+∞

‖B1(Wm)‖W−1,p .

In the last line we have used that Wm is supported in QR(x0).
Let us now turn to the first term of right-hand side of (3.10). The uniform continuity (3.2)
and the construction of the sequence {Wm}m in (3.3) give

Z
QR(x0)

J(x,κ+Wm(x))dx =
nN

∑
s=1

Z
Q R

n
(xs)

J

(
x,κ+W ∗

(
mn

x− xs

R

))
dx+MεRN ,

where

M
de f
= sup

{
|J(x,z)| : x ∈ QR(x0), |z| ≤ |κ|+‖w‖L∞

}
.

Another application of (3.2) yields

Z
QR(x0)

J(x,κ+Wm(x))dx ≤
nN

∑
s=1

Z
Q R

n
(xs)

J

(
xs,κ+W ∗

(
mn

x− xs

R

))
dx+(1+M)εRN .

After an appropriate change of variables which transforms Q R
n
(xs) into Q we get

Z
QR(x0)

J(x,κ+Wm(x))dx ≤
nN

∑
s=1

RN

nN

Z
Q

J(xs,κ+W (my))dy+(1+2M)εRN .

Thus

limsup
m→+∞

Z
QR(x0)

J(xs,κ+Wm(x))dx (3.11)

≤
nN

∑
s=1

Z
Q R

n
(xs)

(Z
Q

J(xs,κ+W (y))dy
)

dx+2(1+M)εRN ,

≤
Z

QR(x0)

(Z
Q

J(x,κ+W (y))dy
)

dx+2(1+M)εRN .
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Plugging (3.11) in (3.10) and dividing by RN we get

(3.12)
1

RN

Z
QR(x0)

J(x,κ)dx ≤ 1
RN

Z
QR(x0)

(Z
Q

J(x,κ+W (y))dy
)

dx

+
C
RN lim

m→+∞
‖B1(Wm)‖W−1,p +O(ε).

From Lemma 3.1, (3.12) becomes

1
RN

Z
QR(x0)

J(x,κ)dx ≤ 1
RN

Z
QR(x0)

(Z
Q

J(x,κ+W (y))dy
)

dx

+
C
RN

N

∑
j=1

(Z
Q2R(x0)

|A( j)(x)−A( j)(x0)|pdx
)1/p

+O(ε).

When R → 0 respectively ε → 0, we get in view of Lebesgue Theorem

J(x0,κ)≤
Z

Q
J(x0,κ+W (y))dy,

which proves that ξ 7→ J(x0,ξ) is A(x0,∂)-quasiconvex.

3.2 Proof of Theorem 1.3

Proof. Let (Un)n∈N and (Vn)n∈N be two sequences, such that Un →U in measure, Vn ⇀ V
in Lp

(
Ω;Rd

)
and A(x,∂)Vn → 0 in W−1,p

(
Ω;Rl

)
. Our aim is to show that

liminf
n→+∞

Z
Ω

J
(
x,Un(x),Vn(x)

)
dx ≤

Z
Ω

J
(
x,U(x),V (x)

)
dx.

Without loss of generality, we can assume up to a subsequence that

liminf
n→+∞

Z
Ω

J
(
x,Un(x),Vn(x)

)
dx = lim

n→+∞

Z
Ω

J
(
x,Un(x),Vn(x)

)
dx.

Since (Vn)n is weakly convergent in Lp, then it is bounded in Lp, so there exists another
subsequence, not relabeled that generates the Young measure ν = (νx)x∈Ω (see Theorem
6.2. p. 97 of [16]).
According to the Proposition 2.6, the pair

(
Un,Vn

)
generates the Young measure (µx)x∈Ω

defined by: for every x ∈Ω ;µx = δU(x)⊗νx, where δU(.) is the Dirac mass at U(.). Further-
more, by assumption (A3), we get in view of (v) of Theorem 2.3 the following

lim
n→+∞

Z
Ω

J
(
x,Un(x),Vn(x)

)
dx ≥

Z
Ω

Z
Rm×Rd

J(x,ζ,ξ)dµx(ζ,ξ)dx

=
Z

Ω

Z
Rd

J(x,U(x),ξ)dνx(ξ)dx.
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In order to apply Lemma 2.21, we need to truncate the sequence (Vn)n∈N by a family of
functions T h : Rd → Rd taking the form

T h(y)
de f
=

{
y if |y| ≤ h
h

y
|y|

if |y|> h.

Using the fact that (Vn)n∈N generates ν = (νx)x∈Ω, we shall have

lim
h→+∞

lim
n→+∞

Z
Ω

|T h(Vn(x))|pdx = lim
h→+∞

Z
Ω

〈νx, |T h(.)|p〉dx

=
Z

Ω

〈νx, |y|p〉dx < ∞.

This implies that (T h ◦Vn)(h,n)∈N2 generates the Young measure ν and satisfies the same
properties that (Vn)n∈N. Hence, in view of Lemma 2.21 there exists a p−equi-integrable
subsequence Ṽn = T hn ◦Vn still generates the Young measures ν and

A(x,∂)Ṽn → 0
(
W−1,p), lim

n→+∞

Z
Ω

|Ṽn(x)|pdx =
Z

Ω

〈νx, |y|p〉dx (3.13)

lim
n→+∞

‖Ṽn−T h ◦Vn‖Lq = 0 with q ∈]1, p[.

Let x0 ∈ Ω be a Lebesgue point of x 7→ 〈νx, |z|p〉 and x 7→ |V (x)|p. Let Σ be a countable
subset in C0

(
Rd ;Rd

)
2, then for every φ ∈ Σ we get

lim
R→0+

Z
Q
|〈νx0+Ry,φ〉−〈νx0 ,φ〉|dx = 0. (3.14)

On the other hand, define the sequence Wn,R in Lp
(
Q ;Rd

)
by Wn,R(y)

de f
= Ṽn(x0 + Ry)

for y ∈ Q . In view of (3.13), we have

lim
n→+∞

N

∑
j=1

A( j)(x0 +Ry)∂y jWn,R(.) = 0 in
(
W−1,q) (3.15)

lim
R→0+

lim
n→+∞

Z
Q
|Wn,R(y)|pdy = 〈νx0 , |y|p〉.

Furthermore, for every ψ ∈ Lq′

lim
R→0+

lim
n→+∞

Z
Q

(
Wn,R(y)−V (x0)

)
·ψ(y)dy = 0.

Now, from (vi) of Theorem 2.3, it follows

φ◦Wn,R
∗
⇀ 〈νx0 ,φ〉 in L∞.

2C0
(
Rd ;Rd)= {J ∈ C

(
Rd ;Rd) : limξ→+∞ J(ξ) = 0};
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Consequently, for every ϕ ∈ Cc
(
Q ;Rd

)
3 and φ ∈ Σ (for which (3.14) holds)

lim
R→0+

lim
n→+∞

Z
Q

ϕ(y) ·φ
(
Wn,R(x0 +Ry)

)
dy = 〈νx0 ,φ〉

Z
Q

ϕ(y)dy.

A diagonal argument ensures that there exists a map (R,n) 7→ Rn, with Rn → 0+ when

n→+∞ and sequence (W̃n)n∈N in Lp
(
Q ;Rd

)
defined for every y∈Q by W̃n(y)

de f
= Wn,Rn(x0 +

Rny) such that W̃n ⇀ V (x0) in Lp,

N

∑
j=1

A( j)(x0 +Rny)∂y jW̃n(y)→ 0
(
W−1,q) (3.16)

and, for every (θ,φ) ∈ Γ×Σ, one has

lim
n→+∞

Z
Q

θ(y) ·φ(W̃n(y))dy = 〈νx0 ,φ〉
Z

Q
θ(y)dy, (3.17)

where Γ is a countable dense subset in L1(Q ). In addition, as (Ṽn)n∈N is p− equi-integrable
we have

lim
n→+∞

Z
Q

∣∣W̃n(y)
∣∣pdy = 〈νx0 , |y|p〉.

Thus, we deduce that the sequence (W̃n)n∈N is p−equi- integrable and generates νx0 .
Other important properties of (W̃n)n∈N are collected in the following proposition:

Proposition 3.2. Let (W̃n)n∈N be the sequence defined as above. Then we have

(P1) A(x0,∂)W̃n → 0
(
W−1,q

)
;

(P2) for a.e. x ∈Ω there exists a sequence (W n)n∈N in Lp,Q− periodic, and such that the
following assertions hold:

(P2.i) (W n)n∈N is p−equi- integrable and generates the homogeneous Young measure
νx0;

(P2.ii)
R

Q W n(y)dy = V (x0).

Proof of Proposition 3.2. First of all, let us mention that up to a mollifier sequence, we can

show that, if ρR stands for the dilatation operator defined by ρRϕ(.)
de f
= ϕ(R.), then ∂y j ρR

may be identified with RρR∂y j in W 1,∞.
Thus, denoting by τ−x0 the translation operator : τ−x0ϕ(.) = ϕ(x0 + .), for (P1), we have

A(x0,∂)W̃n(y) =
N

∑
j=1

∂y j

[(
A( j)(x0)−ρRn

(
τ−x0A( j))(y))W̃n(y)

]
+Rn

N

∑
j=1

∂y j

[
ρRn

(
τ−x0A( j))(y)]W̃n(y)+

N

∑
j=1

ρRn

(
τ−x0A( j))(y)∂y jW̃n(y)

de f
= In,1 + In,2 + In,3,

3Cc
(
Q ;Rd)= {J ∈ C

(
Q ;Rd) : suppJ is compact}.
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Since the coefficients A( j) j = 1, ...,N are continuous and (W̃n)n∈N is q−equi- integrable,
this yields In,1 −→ 0 in W−1,q.

For the second member of right-hand side, using the fact that (W̃n)n∈N is bounded and
Rn → 0+, we get In,2 −→ 0 in W−1,q.

The third member In,3 goes to 0 is directly consequence of (3.16), and (P1) is proved.
Concerning (P2), let us observe that for all ϕ ∈ C ∞

0
(
Q ; [0,1]

)
A(x0,∂)(ϕW̃n) = ϕA(x0,∂)(W̃n)+

N

∑
j=1

A( j)(W̃n)∂y j ϕ → 0
(
W−1,p),

where we have used (P1) and the compact embedding Lp ↪→W−1,p.
Under this remark we may consider a sequence of smooth cut-off functions ϕs ∈C ∞

0
(
Q; [0,1]

)
with ϕs ↗ 1, and such that, setting Ŵs,n(y)

de f
=
(
ϕsW̃n

)
(y), with y ∈ Q . We have Ŵs,n ∈

Lp
(
Q ;Rd

)
, and for all (θ,φ) ∈ Γ×Σ we obtain

lim
s→+∞

lim
n→+∞

Z
Q

θ(y) ·φ(Ŵs,n(y))dy = 〈νx0 ,φ〉 ·
Z

Q
θ(y)dy.

Using the fact
(
W̃n
)

n∈N is p−equi- integrable, we infer that
(
Ŵn
)

n∈N is p−equi- inte-
grable and generates the homogeneous measure νx0 . Moreover, from (P1) and the compact
embedding Lp ↪→W−1,p, we find

lim
s→+∞

lim
n→+∞

A(x0,∂)Ŵs,n = 0
(
W−1,q).

We apply once again a diagonal argument, we shall obtain a new sequence, denoted
(W̄n)n∈N which is p−equi- integrable, generates νx0 and satisfies

W̄n ⇀ V (x0)
(
Lp), A(x0,∂)W̄n → 0

(
W−1,p).

Now, we take

W n
de f
= S

[
W̄n−V (x0)−

Z
Q

(
W̄n−V (x0)

)
dx
]
+V (x0),

where S is the operator defined in Lemma 2.20. The sequence (W n)n∈N remains belong-
ing to Lp,Q− periodic, p−equi-integrable and generates the homogeneous measure νx0 .
Moreover we have

W n ⇀ V (x0),
Z

Q
W n(y)dy = V (x0), A(x0,∂)W n = 0. (3.17)

Which achieves the proof of (P2.i), (P2.ii) and (P.2).

Coming back to the proof of Theorem 1.3. The assumption (A4) of A(x,∂)− quasicon-
vexity of J with respect to the third variable, (v) of Theorem 2.3 and (3.17) yield
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〈νx0 ,J〉 =
Z

Rd
J
(
x0,U(x0),ξ

)
dνx0(ξ)

= lim
n→+∞

Z
Q

J
(
x0,U(x0),W n(y)

)
dy ≥ J(x0,U(x0),V (x0)).

Now, the proof is completed.

4 Appendix

Proof of Lemma 3.1. The first statement of the Lemma follows as in [18] from the weak
convergence of the sequence {Wm}m.
For the second one, recall that, for any j ∈ {1, · · · ,N}

B( j)
δ

(x) = A( j)
δ

(x)−A( j)(x0) ∈W 1,∞.

Introducing the paradifferential operator T
B( j)

δ

we write

T
B( j)

δ

∂xrWm = ∂xr TB( j)
δ

Wm +[T
B( j)

δ

,∂xr ]Wm,

where [T
B( j)

δ

,∂xr ] denotes for the commutator of the two operators.

Since ∂xr B
( j)
δ
∈ L∞, it is easy to check in (2.4) that we can identify between [T

B( j)
δ

,∂xr ] and

T
∂xr B( j)

δ

, if we observe that ∂xr commutes with the operators Sk and ∆k, thanks to the convo-

lution properties. Therefore, by the continuity of ∂xr : Lp →W−1,p, it is enough to estimate
the Lp norm of T

B( j)
δ

Wm.

We introduce a cut-off function γ ∈ C ∞
0
(
Q2R(x0)

)
such that 0 ≤ γ ≤ 1 and γ ≡ 1 in QR(x0)

and write:

T
B( j)

δ

Wm = T
γB( j)

δ

Wm +T
(1−γ)B( j)

δ

Wm. (4.1)

We aim to estimate the Lp norm of each part of the expression (4.1). We will denote by
C j a generic constant depending of the index j and the L∞ norm of γ whose value may vary
from line to line.
Concerning the second term of the right-hand side, the Lp continuity of the paradifferential
operator T

(1−γ)B( j)
δ

on Lp, yields

‖T
(1−γ)B( j)

δ

Wm‖Lp ≤C j‖B( j)
δ
‖W 1,∞‖Wm‖Lp . (4.2)

It remains to deal with the Lp norm of T
γB( j)

δ

Wm: starting with the definition of the para-

product (2.4), and taking into account that both of γB( j)
δ

and Wm are in L∞∩Lp , supported

in Q2R(x0), we make use of the Bony’s decomposition of the expression γB( j)
δ

Wm and write:

γB( j)
δ

Wm = T
γB( j)

δ

Wm +TWmγB( j)
δ

+R (γB( j)
δ

,Wm), (4.3)
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where R (γB( j)
δ

,Wm) = ∑
|k−q|≤3

∆kγB( j)
δ

∆qWm.

For any k ∈ N∗ we set vk(m)
de f
= ∑

|k−q|≤3
∆kγB( j)

δ
∆qWm. In virtue of Theorem 2.17, we

have

‖vk(m)‖Lp ≤ 2−k‖B( j)
δ
‖W 1,∞ ∑

q≥1
‖∆qWm‖Lp ≤ 2−k‖B( j)

δ
‖W 1,∞‖Wm‖Lp .

Summing up over all of k’s, we obtain

‖R (γB( j)
δ

,Wm)‖Lp ≤C‖B( j)
δ
‖W 1,∞‖Wm‖Lp . (4.4)

Let us observe that the left-hand side of (4.3) satisfies:

‖γB( j)
δ

Wm‖Lp ≤C j‖B( j)
δ
‖L∞‖Wm‖Lp . (4.5)

On the other hand, the Lp continuity of the paradifferential operator TWm on Lp spaces
and the fact supp

(
γB( j)

δ

)
⊂ Q2R(x0), implies that

‖TWmγB( j)
δ
‖Lp ≤C j‖Wm‖L∞‖B( j)

δ
‖Lp ≤C j‖Wm‖L∞

(Z
Q2R(x0)

|A( j)(x)−A( j)(x0)|pdx

)1/p

.

(4.6)
Coming back to (4.3), we infer from the estimates (4.4), (4.5) and (4.6) that

‖T
γB( j)

δ

Wm‖Lp ≤C j

(
‖Wm‖L∞

(Z
Q2R(x0)

|A( j)(x)−A( j)(x0)|pdx
)1/p

+‖B( j)
δ
‖L∞‖Wm‖Lp

)
.

(4.7)
Taking into account the uniform boundedness of {Wm}m in L∞ and summing up over j ∈
{1, · · · ,N} in (4.1), (4.2) and (4.7) yields the conclusion of Lemma 3.1.
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13 (1988), 1059-1083.

[7] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Clarendon
Press, Oxford 1998.

[8] A. Braides, I. Fonseca and G. Leoni, A− Quasiconvexity: Relaxation and Homog-
enization. ESAIM: Control, Optimization and Calculus of Variations Vol. 5 (2000),
539-577.

[9] J.-Y. Chemin, Fluides parfaits incompressibles. Astérisque 230 1995.
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Linéaires. Séminaire N. Bourbaki, 550 (1979), 293-302.
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