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Abstract

These are the notes of an introductory lecture series on convexity properties of the
moment map, equivariant cohomology and conjugation spaces.
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Introduction

These notes are based on a minicourse of three lectures I taught at the Séminaire Itinérant
de Géométrie et Physique Mathématique V, which took place in May 2007 at the Université
Cheikh Anta Diop in Dakar, Sénégal. I thank my hosts and the organizers for their hospi-
tality and for offering me the opportunity to speak. The lectures are recorded here almost
verbatim. I invite the reader who wishes to learn more details than I have given to consult
the bibliography. Where available I have given references that are available at no charge on
the web through the arXiv and other eprint repositories.

1 Real Hamiltonian G-manifolds

Real structures

Let X be a symplectic manifold with symplectic form ω. A real structure on X is a smooth
mapping σ : X → X which is an involution (i.e. σ2 = idX ) and which is anti-symplectic (i.e.
σ∗ω =−ω). We call X equipped with the symplectic form ω and the real structure σ a real
symplectic manifold. We put

Xσ = {x ∈ X | σ(x) = x}

and we call Xσ the real locus of X . The following example explains why we call Xσ the
real locus.
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Example 1.1. Let V = Cn, the vector space of column vectors with n complex components.
We view V as a 2n-dimensional real vector space equipped with the symplectic form

ω0 =
i
2

n

∑
j=1

dz j ∧dz̄ j =
n

∑
j=1

dx j ∧dy j,

where x j = Re(z j) and y j = Im(z j). Another useful formula for the symplectic form is

ω0(z,w) = Im(z∗w),

the imaginary part of the Hermitian inner product z∗w = ∑
n
j=1 z̄ jw j of z and w. We define

an involution σ0 on V by component-wise complex conjugation,

σ0(z) = z̄.

Then σ∗0ω0 = −ω0. The real locus of V is V σ0 = Rn. We call ω0 the standard symplectic
form and σ0 the standard real structure on V .

Lemma 1.2. Let X be a symplectic manifold with symplectic form ω and real structure σ.
If the real locus Xσ is nonempty, then it is a Lagrangian submanifold of X.

Proof. Suppose that Xσ is nonempty and take x ∈ Xσ. Let n = 1
2 dim(X) and let V be the

symplectic vector space Cn equipped with the standard symplectic form and real structure
as in Example 1.1. A real version of the Darboux theorem (see for instance [9, Lemma 2.3]
or [29, Appendix A]) says that there exist an open neighbourhood U of x preserved by σ

and a chart φ : U →V centred at x such that

φ
∗
ω = ω0, φ◦σ = σ0 ◦φ.

We conclude that Xσ∩U = φ−1(V σ0) = φ−1(Rn) is a Lagrangian submanifold of U .

Let G be a Lie group. A Hamiltonian G-manifold is a manifold X equipped with a
smooth G-action, a G-invariant symplectic form ω and a moment map, which means a
smooth map Φ : X → g∗ that satisfies the following conditions:

1. d〈Φ,ξ〉= ι(ξX)ω,

2. Φ is equivariant: 〈Φ(g ·x),ξ〉= 〈Φ(x),Ad(g)−1ξ〉

for all ξ ∈ g and x ∈ X . Here 〈·, ·〉 denotes the dual pairing g∗×g→ R,

ξX(x) =
d
dt

(exp(tξ) ·x)
∣∣∣
t=0

is the vector field on X generated by ξ ∈ g, and ι(ξX)ω denotes the 1-form on X obtained
by taking the inner product of the vector field ξX with the 2-form ω.

Example 1.3. Let V = Cn with the standard symplectic structure and let U(n) be the unitary
group acting on V by matrix multiplication on the left. This action preserves the symplectic
form. The Lie algebra u(n) of U(n) consists of all anti-selfadjoint n×n-matrices. The rule
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(ξ,η) =− trace(ξη) defines a U(n)-invariant positive definite inner product on u(n). It will
be convenient to identify u(n)∗ with u(n) by means of this inner product. Since elements
of V are column vectors, the product zz∗ is a selfadjoint n×n-matrix for all z ∈ V . Then a
moment map Φ0 : V → u(n)∗ for the U(n)-action is given by

Φ0(z) =
1
2i

zz∗.

We will call this the standard moment map for the U(n)-action on V . Let us check that the
condition d〈Φ0,ξ〉= ι(ξV )ω is satisfied. On one hand,

〈Φ0(z),ξ〉=− trace(Φ0(z)ξ) =
i
2

trace(zz∗ξ) =
i
2

z∗ξz,

so for all w ∈V

d〈Φ0,ξ〉z(w) =
d
dt
〈Φ0(z+ tw),ξ〉

∣∣∣
t=0

=
i
2

d
dt

(
(z+ tw)∗ξ(z+ tw)

)∣∣∣
t=0

=
i
2
(w∗ξz+ z∗ξw).

On the other hand,

ι(ξV,z)ω(w) = ω(ξz,w) = Im((ξz)∗w) =
1
2i

(z∗ξ∗w− (z∗ξ∗w)∗)

=
1
2i

(z∗ξ∗w−w∗ξz) =
i
2
(z∗ξw+w∗ξz),

where we used that ξ∗ =−ξ. Hence d〈Φ0,ξ〉= ι(ξV )ω. The equivariance of Φ is left as an
exercise for the reader.

A real structure on a Hamiltonian G-manifold X is a pair of smooth mappings

σG : G−→ G, σX : X −→ X

where σG is an group involution (i.e. σ2
G = idG and σG(gh) = σG(g)σG(h) for all g, h ∈G),

and where σX is a real structure on the symplectic manifold X . In addition, we require that
the involution σX is compatible with the involution σG in the sense that

σX(g ·x) = σG(g) ·σX(x), Φ(σX(x)) =−σ
∗
GΦ(x)

for all g ∈ G and x ∈ X . Here σ∗G : g∗→ g∗ is defined as the transpose of the Lie algebra
involution (σG)∗ : g→ g induced by the group involution σG. We call the G-manifold X
together with the additional data ω, Φ, σX and σG a real Hamiltonian G-manifold.

When no confusion can arise, we shall abuse the notation by writing σ for all four
involutions σG, (σG)∗, σ∗G and σX . We put

Gσ = {g ∈ G | σ(g) = g}.

Lemma 1.4. Let X be a real Hamiltonian G-manifold. The real locus Xσ is invariant under
the action of Gσ.



Real Symplectic Geometry 37

Proof. Let g ∈ G and x ∈ X . If σ(g) = g and σ(x) = x, then σ(g ·x) = σ(g) ·σ(x) = g ·x, so
g ·x ∈ Xσ. This proves that Gσ ·Xσ ⊆ Xσ.

Example 1.5. Let V = Cn with the standard symplectic structure and the Hamiltonian U(n)-
action of Example 1.3. Let σ0 be the standard involution on Cn. Define an involution σ0 on
U(n) by σ0(g) = ḡ = (g−1)t , the complex conjugate or inverse transpose of g. With these
involutions on V and U(n), V is a real Hamiltonian U(n)-manifold. Note that V σ = Rn is a
Lagrangian submanifold invariant under the subgroup Gσ = O(n), the orthogonal group.

Example 1.6. Let X be a sphere in R3 centred at the origin and let ω be the area form of X .
The rotation group G = SO(3) acts on X and preserves the form ω. The Lie algebra of G
is R3 (with the Lie bracket given by the cross product). With an identification (R3)∗ ∼= R3

given by a suitably normalized inner product, the inclusion map Φ : X → R3 is a moment
map for the action. Let σX be the reflection in the xy-plane. Define σG by σG(g) = σX ◦g◦
σX ; then Gσ ∼= SO(2) is the group of rotations in the xy-plane. The involutions σX and σG

define a structure of real Hamiltonian G-manifold on X . The real locus Xσ is a great circle
(the equator) in X , which is preserved by SO(2).

Example 1.7. Let X , ω, G and Φ be as in Example 1.6. This time we choose as antisym-
plectic involution on X the antipodal map and as involution on G the identity map. This
defines a new real structure on the Hamiltonian G-manifold X , for which the real locus Xσ

is empty and the subgroup Gσ is equal to G.

Examples 1.6 and 1.7 are special cases of two large classes of examples: projective
varieties defined over the real numbers and symmetric coadjoint orbits. The general case is
as follows.

Example 1.8. Let G be a compact Lie group. Let σG be an involution on G and let
φ : G→ U(n) be a smooth homomorphism such that φ(σG(g)) = φ(g) for all g ∈ G. Let
X be a nonsingular algebraic subvariety of the complex projective space Pn−1(C) which
is invariant under the projective linear action of G given by φ. Let Ω be the Fubini-Study
symplectic form of Pn−1(C) and let ω = Ω |X . As in Example 1.3, one can check that a
moment map for the G-action on X is given by

〈Φ([z]),ξ〉=− 1
2πi

z∗ξz
z∗z

for z ∈ V \ {0} and ξ ∈ g. Here V = Cn and [z] denotes the point in Pn−1(C) (i.e. the line
through the origin) determined by z. We view ξ ∈ g as an anti-selfadjoint matrix acting on
vectors via the homomorphism φ∗ : g→ u(n) induced by φ. Now assume that the variety X
is defined over the real numbers. This means that the homogeneous ideal of X is generated
by polynomials with real coefficients, in other words that X can be defined by real equations.
Then the involution σG and the involution

σX([z]) = [z̄]

define a real structure on the Hamiltonian G-manifold X . The real locus of X is Xσ =
X ∩Pn−1(R).
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Example 1.9. Let σG be an involution of G. As before, let (σG)∗ : g→ g be the Lie algebra
involution induced by σG and let σ∗G : g∗ → g∗ be the transpose of (σG)∗. Recall that the
coadjoint action is the linear G-action on g∗ which is dual to the adjoint action on g in the
sense that 〈Ad∗(g)(λ),ξ〉 = 〈λ,Ad(g)−1(ξ)〉 for all λ ∈ g∗ and ξ ∈ g. The coadjoint orbits
(i.e. the orbits of the coadjoint action) are the leaves of the Lie-Poisson structure on g∗ and
each therefore carries a natural G-invariant symplectic form, known as the Kirillov-Kostant-
Souriau symplectic form. The inclusion map X ↪→ g∗ of a coadjoint orbit X is a moment
map for the G-action. Let us call a coadjoint orbit X symmetric if it has the property that
(−σ∗G)(X) = X and define

σX =−σ
∗
G |X .

Since (σG)∗ is a Lie algebra involution, its transpose σ∗G is an automorphism of the Poisson
structure of g∗, and therefore σX is an antisymplectic involution of X . The involutions
σG and σX define a structure of real Hamiltonian G-manifold on X . The real locus is
Xσ = X ∩p∗, where

p∗ = {λ ∈ g∗ | σ∗G(λ) =−λ}.

We conclude that the real locus is nonempty if and only if there exists λ ∈ p∗ such that
X = Ad∗(G)(λ).

The notion of a real Hamiltonian G-manifold first arose (under a different name) in
Duistermaat’s paper [9] and was later taken up by O’Shea and me in [29] and by many
others as well. See for instance the references [1, 4, 12, 16, 26]. Duistermaat discovered
a remarkable convexity property of the moment map image of the real locus, which I will
discuss in Lecture 2. He also found some cohomological properties, which I will survey in
the remainder of this lecture.

Cohomology

There are many interesting relationships between the cohomology of a Hamiltonian G-
manifold X and that of its fixed-point set XG, such as the following theorem, the first part
of which is due to Frankel [14]. The second part is due to Duistermaat, who showed in [9]
that in the presence of a real structure a statement parallel to Frankel’s is true for the real
locus.

Theorem 1.10. Let T be a torus (i.e. a Lie group isomorphic to a product of circles U(1)×
U(1)×·· ·×U(1)) and let X be a compact Hamiltonian T -manifold. Let XT be the fixed-
point set of the T -action on X.

1. Let k be a field. Then dimk H∗(X ;k) = dimk H∗(XT ;k).

2. Let σT (t) = t−1 and suppose X has a real structure σX compatible with σT . Let k be
a field of characteristic 2. Then dimk H∗(Xσ;k) = dimk H∗(Xσ∩XT ;k).

Sketch of proof. We choose a generic element ξ of the Lie algebra t of T . In the case of part
(1) we put

A = X , B = XT , f = 〈Φ,ξ〉,
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and in the case of part (2) we put

A = Xσ, B = Xσ∩XT , f = 〈Φ,ξ〉 |A.

One shows that f is a Morse-Bott function on A (i.e. a function with nondegenerate critical
manifolds in the sense of Bott [6]) and that B is the set of critical points of f . The inequality

dimH∗(A;k)≤ dimH∗(B;k)

follows from the Morse-Bott inequalities, which are valid since the normal bundle of B in
A is orientable over k. The inequality

dimH∗(A;k)≥ dimH∗(B;k)

is a result of Floyd [11], valid for any continuous action of the circle S1 or of Z/pZ (p
prime) on a topological space A.

Equivariant cohomology

It turns out that similar facts are true in the theory of equivariant cohomology, which is a
cohomology theory developed by Borel and others for the study of transformation groups
of topological spaces. We recall some of the basic definitions. More details can be found in
the references [2, 8, 19, 23, 27]. Let G be a compact Lie group and let EG be a contractible
topological space on which G acts freely and continuously. The quotient

BG = EG/G

is the classifying space of G, so called because principal G-bundles over a topological space
X are classified up to isomorphism by homotopy classes of maps from X to BG.

Example 1.11. Let G = U(1) = {z ∈ C | |z| = 1} be the unit circle and let EG be the unit
sphere in l2(C), the Hilbert space of square-summable complex sequences. Then G acts
freely on EG by scalar multiplication, EG is contractible, and so BG = EG/G = P∞(C), the
infinite-dimensional complex projective space.

Example 1.12. Let G = Z/2Z and let EG be the unit sphere in l2(R), the Hilbert space of
square-summable real sequences. Then G acts freely on EG by scalar multiplication, EG is
contractible, and so BG = EG/G = P∞(R), the infinite-dimensional real projective space.

Let X be a topological space on which G acts continuously. Then G acts diagonally on
EG×X . Borel’s homotopy quotient of X by G is defined by

XG = (EG×X)/G.

The projection onto the first factor EG×X → EG induces a map XG→ BG, which is a fibre
bundle with fibre X . The projection onto the second factor EG×X→ X induces a surjective
map from the homotopy quotient XG to the ordinary quotient or orbit space X/G. For any
commutative ring k with identity we define the equivariant cohomology ring of X with
coefficients in k to be

H∗G(X ;k) = H∗(XG;k).

The following general properties follow immediately from the definition of equivariant
cohomology.
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Lemma 1.13. Let X be a topological G-space.

1. If the G-action on X is free, then the map XG → X/G is a fibre bundle with con-
tractible fibre EG, so H∗G(X ;k)∼= H∗(X/G;k).

2. If X is a point, then XG = BG, so H∗G(X ;k)∼= H∗(BG;k).

3. The map XG→ BG induces a ring homomorphism

H∗(BG;k)→ H∗G(X ;k),

so H∗G(X ;k) is an algebra over H∗(BG;k).

4. If G acts trivially on X, then XG = BG×X and therefore

H∗G(X ;k)∼= H∗(BG;k)⊗k H∗(X ;k)

if H∗(BG;k) or H∗(X ;k) is a free k-module.

Example 1.14. Let G = U(1). Example 1.11 gives BG = P∞(C), so

H∗G(point;k) = H∗(BG;k) = k[x],

a polynomial algebra in one variable x of degree 2. (See for instance [21, Theorem 3.12].)

Example 1.15. Let G = U(1) and X = S2, a two-dimensional sphere on which G acts by
rotations about a fixed axis. Then H∗G(X ;k) = k[x,y]/(x2− y2), where x and y are variables
of degree 2. Compare this with the ordinary cohomology, which is a truncated polynomial
ring: H∗(X ;k) = k[y]/(y2).

Example 1.16. Let G = Z/2Z. Example 1.12 gives BG = P∞(R), so if the ring k has
characteristic 2, then

H∗G(point;k) = H∗(BG;k) = k[u],

a polynomial algebra in one variable u of degree 1.

Here is an analogue of Theorem 1.10 in equivariant cohomology. The proof, which we
omit, is very similar in spirit. The first part is due to Kirwan [24] and the second part is due
to Biss, Guillemin and Holm [4].

Theorem 1.17. Let T be a torus and let X be a compact Hamiltonian T -manifold. Let F
be the set of connected components of XT .

1. Let k be a field. There exist a family of positive even integers (d(F))F∈F and an
isomorphism of k-vector spaces

H∗T (X ;k)∼=
M
F∈F

H∗−d(F)
T (F ;k).

2. Let σT (t) = t−1 and suppose X has a real structure σX compatible with σT . Let the
integers d(F) be as in part (1) and let k be a field of characteristic 2. There is an
isomorphism of k-vector spaces

H∗T σ(Xσ;k)∼=
M
F∈F

H
∗− 1

2 d(F)
T (Fσ;k).

We will take up the theme of equivariant cohomology again in Lecture 3, but first we
turn to a quite different, but equally striking property of the moment map.
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2 The moment polytope of a Hamiltonian action

A polytope associated with a T -algebra

Let T be a torus and let A =
L

∞
r=0 Ar be a commutative graded algebra over the field of

complex numbers C. We make the following assumptions on A.

1. A is finitely generated.

2. A has no zero divisors.

3. The torus T acts on A by graded algebra endomorphisms. That is to say, the action is
linear,

t ·(c1a1 + c2a2) = c1(t ·a1)+ c2(t ·a2)

for all t ∈ T , c1, c2 ∈ C and a1, a2 ∈ A; multiplicative,

t ·(a1a2) = (t ·a1)(t ·a2)

for all t ∈ T and a1, a2 ∈ A; and preserves the grading,

t ·a ∈ Ar

for all t ∈ T and a ∈ Ar.

4. For all r, the action of T on Ar is continuous.

5. A0 = C, the trivial one-dimensional representation of T .

Notice that, by assumptions (1) and (3), each of the summands Ar is a finite-dimensional
T -module. Therefore assumption (4) makes sense; it simply means, by definition, that the
action of T on Ar is given by a continuous homomorphism from T to the matrix group
GL(Ar). These assumptions enable us to refine the grading of A into a bigrading by weight
and degree. Let X (T ) = Hom(T,U(1)) be the character group of T . Define Aλ,r to be the
collection of all a ∈ Ar such that t ·a = λ(t)a for all t ∈ T . Then

A =
M

(λ,r)∈X (T )×N
Aλ,r.

Assumption (3) implies

6. If a ∈ Aλ,r and b ∈ Aµ,s, then ab ∈ Aλ+µ,r+s.

Let Σ(A) be the set of all (λ,r) ∈ X (T )×N for which the direct summand Aλ,r is
nonzero.

Lemma 2.1. Σ(A) is a finitely generated submonoid of X (T )×N.
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Proof. Assumption (2) and assertion (6) imply that Σ(A) is closed under addition. Assump-
tion (5) implies that (0,0) ∈ Σ(A). Therefore Σ(A) is a submonoid. By assumption (1), the
algebra A is finitely generated. Let a1 ∈ Aλ1,r1 , a2 ∈ Aλ2,r2 ,. . . , ak ∈ Aλk,rk be a set of homo-
geneous generators. Then it follows from assumption (3) that every (λ,r) ∈ Σ(A) can be
written in the form (λ,r) = ∑

k
l=1 nl(λl,rl) with nl ∈ N. Thus Σ(A) is finitely generated as a

monoid.

The monoid Σ(A) can be quite complicated. It is often far from being a saturated sub-
monoid of X (T )×N. Somewhat easier to understand is its “classical limit”,

P (A) =
{

λ

r

∣∣∣ (λ,r) ∈ Σ(A), r > 0
}

,

which is a subset of the Q-vector space X (T )Q = X (T )⊗Z Q. Recall that a convex polytope
in a vector space V over an ordered field is a subset of V which is the convex hull of a finite
subset of V .

Lemma 2.2. P (A) is a convex polytope in X (T )Q.

Proof. Let λ/r, µ/s ∈ P (A). Then it follows from assumption (2) and assertion (6) that
(λ + µ)/(r + s) ∈ P (A). This implies that P (A) is convex. In fact, if (λ1,r1), (λ2,r2),. . . ,
(λk,rk) are generators of Σ(A), then every element of P (A) is a convex combination of
λ1/r1, λ2/r2,. . . , λk/rk. Thus P (A) is a convex polytope.

We call Σ(A) the weight monoid and P (A) the weight polytope of A.

First application: projective varieties

Let φ : T → U(n) be a Lie group homomorphism. This homomorphism defines an action
of T on the vector space V = Cn by unitary transformations and an action on the projective
space Pn−1(C) by projective unitary transformations. Let X be an irreducible algebraic
subvariety of Pn−1(C) preserved by the action of T . (We do not need to assume that X is
nonsingular.) We put

S = C[x1,x2, . . . ,xn], the algebra of polynomial functions on Cn,

I(X) = { f ∈ S | f |X = 0}, the homogeneous ideal of X ,

A(X) = S/I(X), the homogeneous coordinate ring of X .

Then A(X) is a graded algebra and T acts on A(X) by algebra endomorphisms. Because X
is a variety, A(X) is finitely generated. Because X is irreducible, A(X) has no zero divisors.
Let P (X) = P (A(X)) be the weight polytope of A(X).

The interpretation of this polytope is as follows. Recall from Example 1.8 that the
projective space Pn−1(C) is a Hamiltonian T -manifold equipped with the Fubini-Study
symplectic form and the moment map Φ : Pn−1(C)→ t∗ given by

〈Φ([z]),ξ〉=− 1
2πi

z∗ξz
z∗z
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for z∈V \{0} and ξ∈ t. The Lie algebra of U(1) is the imaginary axis iR, so the differential
λ∗ of a character λ ∈ X (T ) is a linear map t→ iR, that is to say, an element of it∗. The
map X (T )→ t∗ which sends a character λ to the real-valued functional (2πi)−1λ∗ is an
embedding of X (T ) onto a lattice in t∗ and, as is common practice, we will identify X (T )
with its image in t∗ under this embedding. Similarly, we will regard the Q-vector space
X (T )Q as a (dense) subset of t∗, the set of rational points of t∗. With these identifications
we have inclusions

P (X)⊆ X (T )Q ⊆ t∗.

The following theorem says that the weight polytope P (X) determines the moment map
image Φ(X) and, conversely, Φ(X) determines P (X). It is due in various forms to Atiyah
[3], Guillemin and Sternberg [18], Mumford [28] and Brion [7]. See also the monograph
[17] and the survey paper [30].

Theorem 2.3. Let X be an irreducible subvariety of Pn−1(C) invariant under the T -action.

1. Φ(X) = P (X).

2. P (X) = Φ(X)∩X (T )Q.

3. Φ(X) is a convex polytope with rational vertices in the vector space t∗.

The polytope Φ(X) is called the moment polytope of X .

Second application: real projective varieties

Let σT : T → T be an involution of T , for instance σT (t) = t−1, and suppose that σT is
compatible with the standard involution on V = Cn. Then, as we saw in Example 1.8, the
projective space Pn−1(C) is a real Hamiltonian T -manifold. Suppose that the irreducible
subvariety X is defined over R. What can we say about the moment map image of the real
locus Xσ? Since Φ(σ(x)) = −σ(Φ(x)), we have Φ(x) = −σ(Φ(x)) for x ∈ Xσ. In other
words,

Φ(Xσ)⊆ p∗ = {λ ∈ g∗ | σ(λ) =−λ},

and hence Φ(Xσ) ⊆ Φ(X)∩ p∗. The following theorem, which is due to Duistermaat [9],
states that the reverse inclusion also holds.

Theorem 2.4. If Xσ contains a nonsingular point of X, then Φ(Xσ) = Φ(X)∩p∗. In par-
ticular, Φ(Xσ) is a convex polytope with rational vertices.

See [1, 13, 29] for various generalizations.

Example 2.5. Let G be a compact connected Lie group with maximal torus T and let λ∈ t∗

be an integral point, i.e. λ ∈ X (T ). Then the coadjoint orbit X = Ad∗(G)(λ) of λ is an
integral symplectic manifold. We will view X as a Hamiltonian T -manifold and compute
its moment polytope. It is known that the Kostant-Kirillov-Souriau symplectic form is
Kählerian (for a suitable choice of complex structure on X), so it follows from Kodaira’s
theorem that X is a complex projective variety. (The facts concerning coadjoint orbits used
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here can be found in [10, Chapter 4] and [17, Chapter 4].) It follows from the Borel-Weil
theorem that

A(X) =
∞M

r=0

Vrλ.

Here Vµ denotes the irreducible G-module of highest weight µ, where µ is any dominant
weight. As a T -module, the representation Vµ decomposes into weight spaces. A basic
result of representation theory says that the weights occurring in Vµ are exactly those ν ∈
X (T ) such that ν∈ convQ(W ·µ) and ν−µ is in the root lattice. (Here convQ(A) denotes the
convex hull of a set A contained in a Q-vector space, and W ·µ denotes the Weyl group orbit
of µ ∈ t∗.) It follows from this that P (X) = convQ(W ·λ), so by Theorem 2.3 we conclude
that

Φ(X) = convR(W ·λ).

Now suppose G is equipped with an involution σG which preserves the maximal torus T .
Also assume that the element λ is contained in p∗. Then the orbit X is symmetric in the
sense of Example 1.9 and Xσ is nonempty, so Theorem 2.4 gives

Φ(Xσ) = convR(W ·λ)∩p∗.

These results were first obtained by Kostant [25] by entirely different methods.

3 Conjugation spaces

The Betti numbers of a space and its real locus

In Lecture 1, particularly Theorems 1.10 and 1.17, we noticed a close analogy between the
cohomology of a real Hamiltonian G-manifold X and that of its real locus Xσ. This analogy
arises from the fact that every component of the moment map is a Morse-Bott function on
X and that its restriction is a Morse-Bott function on Xσ. However, in certain cases the
analogy goes even further. To avoid problems related to orientability, in this lecture we
shall only consider cohomology with coefficients in the field of two elements F2.

Example 3.1. The real projective space Pn(R) is the real locus of the complex projective
space Pn(C) for a suitable antisymplectic involution on Pn(C). (See Example 1.8.) The
Betti numbers (over F2) of Pn(C) are

dimF2 Hk(Pn(C);F2) =

{
1 if k even, 0≤ k ≤ 2n,

0 otherwise,

whereas the Betti numbers of Pn(R) are

dimF2 Hk(Pn(R);F2) =

{
1 if 0≤ k ≤ n,

0 otherwise.

Thus dimF2 H2k(Pn(C);F2) = dimF2 Hk(Pn(R);F2) for all k.
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Borel and Haefliger [5] observed that the equality

dimF2 H2k(X ;F2) = dimF2 Hk(Xσ;F2)

between Betti numbers holds more generally for a certain class of complex projective va-
rieties defined over R. In this lecture I will survey some recent work of Hausmann, Holm
and Puppe [22], Franz and Puppe [15] and van Hamel [20] related to this equality. But first
let me give an example to show that it is not always true.

Example 3.2. Let V = Hn be the space of column vectors with n quaternionic components,
viewed as a right vector space over the division algebra of the quaternions H. The map
J : V →V defined by left multiplication by j,

J(q1,q2, . . . ,qn)t = ( jq1, jq2, . . . , jqn)t ,

is an H-linear map. The map C2n→V defined by

(z1,w1,z2,w2, . . . ,zn,wn)t 7−→ (z1 +w1 j,z2 +w2 j, . . . ,zn +wn j)t

(where we regard a complex number a + bi as a quaternion a + bi + 0 j + 0k) is a complex
linear isomorphism, which we shall use to identify C2n with V . Let X = Gr(2,2n,C) be the
Grassmannian of complex 2-planes in V . Define an involution σ of X by σ(W ) = J(W ).
There exists a symplectic structure ω on X such that σ is antisymplectic. Thus X is a real
symplectic manifold. A point W ∈ X (i.e. a complex 2-plane in V ) is fixed under σ if and
only if J(W ) =W , which is the case if and only if W is a one-dimensional quaternionic sub-
space of V . Thus the real locus of X is Xσ = Pn−1(H), the n−1-dimensional quaternionic
projective space. The cohomology ring H∗(X ;F2) is generated by classes of degree 2, but
the cohomology ring H∗(X ;F2) is generated by a class of degree 4. Thus it is not true that
dimF2 H2k(X ;F2) = dimF2 Hk(Xσ;F2) for all k.

For the remainder of this lecture, all cohomology groups will be understood to have
coefficients in F2 and we will drop the coefficient group from the notation.

Review: fundamental classes

We need to review some useful facts from algebraic topology. Let A be a topological space,
let B be a closed subspace and let ι : B→ A be the inclusion map. Then we have the long
exact sequence of the pair (A,A\B),

· · · −→ Hk(A,A\B)−→ Hk(A)−→ Hk(A\B)−→ Hk+1(A,A\B)−→ ·· · .

Let us assume that B has a tubular neighbourhood in A, which means a pair (N, ιN) con-
sisting of a real vector bundle π : N → B and a homeomorphism ιN from N onto an open
neighbourhood of B in A such that ι = ιN ◦ ζ, where ζ : B→ N is the zero section of N.
(For instance, this is the case if A is a smooth manifold and B a closed submanifold by the
tubular neighbourhood theorem of differential topology.) We call N the normal bundle of B
in A. The punctured normal bundle is the space N× = N \ζ(B). The map

ι
∗
N : Hk(A,A\B)−→ Hk(N,N×)
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is an isomorphism by the excision property. Let ΘN ∈ Hd(N,N×) be the Thom class of N,
i.e. the unique class which for every point b ∈ B restricts to the generator of

Hd(Nb,N×b )∼= Hd(Rd ,Rd \{0})∼= F2.

Here Nb = π−1(b) is the fibre of N over b and d = dim(Nb) is the rank of N. The Thom
isomorphism theorem says that the map

ThN : Hk−d(B)−→ Hk(N,N×)

defined by c 7→ π∗(c) ·ΘN is an isomorphism for all k. (See for instance [21, Section 4.D].)
In fact, the Thom class (over F2) can also be characterized as the unique class ΘN for which
ThN is an isomorphism. The Gysin homomorphism ι∗ : Hk−d(B)→ Hk(A) associated with
ι is by definion the composition of the maps

Hk−d(B) ThN−→ Hk(N,N×)
(ι∗N)−1

−→ Hk(A,A\B)−→ Hk(A).

Inserting this into the long exact sequence we obtain the long exact Gysin sequence of the
pair (A,B),

· · · −→ Hk−d(B) ι∗−→ Hk(A)−→ Hk(A\B)−→ Hk−d+1(B)−→ ·· · .

The class [B] = ι∗(1) ∈Hd(A) is called the fundamental class, or also the orientation class,
of B in A.

Frequently we identify Hk(A,A \B) with Hk(N,N×) through the isomorphism ι∗N and
consider the Thom class ΘN as an element of Hk(A,A \B). With this identification, the
fundamental class [B] is the image of the Thom class under the natural map from Hk(A,A\
B) to Hk(A).

More about projective space

Let us now have a closer look at Example 3.1. Let X = Pn(C), let σ be the involution defined
by complex conjugation and let Xσ = Pn(R) be the real locus of X . Let Γ = Gal(C/R) be
the Galois group of C over R. The involution σ on X can be thought of as a Γ-action and
the real locus is then the fixed point set of the action. Recall from Example 1.12 the space
EΓ, which is the unit sphere in l2(R), and the classifying space BΓ = P∞(R). The homotopy
quotient XΓ = (EΓ×X)/Γ is a fibre bundle over BΓ, whose fibre over a fixed basepoint is X .
Because Γ acts trivially on Xσ, its homotopy quotient is (Xσ)Γ = BΓ×Xσ. In this section
we will contemplate the commutative diagram

XΓ

iΓ←−−−− BΓ×Xσ

j
x x jσ

X i←−−−− Xσ,
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where i is the inclusion of the real locus, iΓ is its equivariant counterpart, and j and jσ are
the inclusions of the fibre. The associated diagram in cohomology is

H∗
Γ
(X)

i∗
Γ−−−−→ H∗(Xσ)⊗H∗(BΓ)

j∗
y y

H∗(X) i∗−−−−→ H∗(Xσ).

For d = 1, 2,. . . , n let Zd be the projective linear subspace Pn−d(C) of X . These subspaces
have the following properties:

1. σ(Zd) = Zd and Zσ

d = Pn−d(R);

2. the codimension of Zd in X is 2d and the codimension of Zσ

d in Xσ is d;

3. the collection of fundamental classes

{ [Zd ] ∈ H2d(X) | d = 1, 2,. . . , n}

is a basis of H∗(X) and the collection of fundamental classes

{ [Zσ

d ] ∈ Hd(Xσ) | d = 1, 2,. . . , n}

is a basis of H∗(Xσ).

This enables us to define a linear map

κ : H2∗(X)−→ H∗(Xσ)

by κ([Zd ]) = [Zσ

d ]. This map does not preserve the degrees, but divides them in half. To
define the map s, consider the homotopy quotient (Zd)Γ = (EΓ×Zd)/Γ, which is a subman-
ifold of codimension 2d < ∞ in XΓ. It has a tubular neighbourhood in XΓ and therefore a
well-defined fundamental class

[Zd ]Γ ∈ H2d(XΓ) = H2d
Γ (X).

The intersection of (Zd)Γ with the fibre X is equal to Zd , so j∗([Zd ]Γ) = [Zd ]. In other words,
the linear map

s : H∗(X)−→ H∗Γ(X)

defined on basis elements by s([Zd ]) = [Zd ]Γ is a section (right inverse) of the restriction
map to the fibre: j∗ ◦ s = idH∗(X). We call [Zd ]Γ a Γ-equivariant extension of the class [Zd ].
What can we say about the restriction of [Zd ]Γ to the real locus, that is the image of [Zd ]Γ
under the restriction map

i∗Γ : H∗Γ(X)−→ H∗Γ(Xσ)

induced by the inclusion Xσ ↪→ X? Since (Xσ)Γ = BΓ×Xσ, it follows from the Künneth
theorem that

H∗Γ(Xσ)∼= H∗(Xσ)⊗F2[u]∼= H∗(Xσ)[u],
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a polynomial ring over H∗(Xσ) in a variable u of degree 1. Therefore we can express the
class i∗

Γ
([Zd ]Γ) of degree 2d as a polynomial in u,

i∗Γ([Zd ]Γ) =
2d

∑
k=0

ckuk,

with coefficients ck ∈ H2d−k(Xσ). It was observed by van Hamel [20] that all the terms
above degree d of this polynomial vanish, and he also found an expression for the leading
coefficient cd .

Theorem 3.3. ck = 0 for k > d and cd = [Zσ

d ] = κ([Zd ]).

Proof. By definition, the fundamental class [Zd ]Γ ∈ H2d
Γ

(X) is the image of the Thom class
ΘN ∈H2d

Γ
(X ,X \Zd) of the normal bundle N of (Zd)Γ in XΓ. For all l the following diagram

commutes:
H l

Γ
(X ,X \Zd) −−−−→ H l

Γ
(X)

i∗
Γ

y yi∗
Γ

H l
Γ
(Xσ,Xσ \Zσ

d ) −−−−→ H l
Γ
(Xσ).

By the Thom isomorphism theorem, H l
Γ
(Xσ,Xσ \ Zσ

d ) ∼= H l−d
Γ

(Zσ

d ), which is 0 for l < d.
Thus the coefficients of the polynomial i∗

Γ
([Zd ]Γ) = ∑

2d
k=0 ckuk vanish for 2d− k < d.

To compute cd we take another look at the Thom isomorphism

ThN : H∗−d
Γ

(Zd)
∼=−→ H∗Γ(X ,X \Zd),

which is an isomorphism of modules over the ring H∗(BΓ)∼= F2[u]. Just like the fundamen-
tal class [Zd ]Γ, the restriction of the Thom class can be written as a polynomial

i∗Γ(ΘN) =
2d

∑
k=0

Θkuk

with coefficients Θk ∈H2d−k(Xσ,Xσ \Zσ

d ). The coefficients Θk vanish in degrees k > d for
the same reason as for [Zd ]. The famous localization theorem of equivariant cohomology
says that for any Γ-space Y the restriction map H∗

Γ
(Y )→ H∗

Γ
(Y Γ) becomes an isomorphism

after inverting the variable u. Thus the Thom isomorphism gives rise to an isomorphism

ThN : H∗−d
Γ

(Zσ

d )u
∼=−→ H∗Γ(Xσ,Xσ \Zσ

d )u,

where the subscript u means “localize at u”, i.e. take tensor product with F2[u,u−1]. It
follows from this that multiplication by the top degree part Θd ∈Hd(Xσ,Xσ \Zσ

d ) of i∗
Γ
(ΘN)

is an isomorphism
H∗−d(Zσ

d )
∼=−→ H∗(Xσ,Xσ \Zσ

d ).

This implies Θd is the Thom class of the normal bundle of Zσ

d in Xσ. Thus cd , which is the
image in Hd(Xσ) of Θd , is the fundamental class of Zσ

d .

Because the classes [Zd ] form a basis of H∗(X), we obtain from this fact the so-called
conjugation equation.

Theorem 3.4. For every a ∈ H2d(X) there exist classes ck ∈ H2d−k(Xσ) for k = 0, 1,. . . ,
d−1 such that i∗

Γ
s(a) = κ(a)ud + cd−1ud−1 + · · ·+ c1u+ c0.
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Frames

This example leads to the following two definitions. The first was stated in a more general
form in [20]. Let X be an arbitrary symplectic manifold with a real structure σ. A geometric
frame is a family of closed symplectic submanifolds (Zα)α∈A such that

1. σ(Zα) = Zα;

2. the collection { [Zα] | α ∈ A} is a basis of H∗(X) and the collection { [Zσ
α] | α ∈ A} is

a basis of H∗(Xσ).

Note that the definition implies that Hk(X) = 0 when k is odd.
The next definition was given in [22] (and preceded the definition of a geometric frame).

Assume that Hk(X) = 0 when k is odd. A cohomological frame is a pair (s,κ), where

s : H∗(X)−→ H∗Γ(X)

is a section of the restriction map j∗ : H∗
Γ
(X)→ H∗(X) and

κ : H2∗(X)−→ H∗(Xσ)

is an additive isomorphism which divides the degrees in half. These two maps are required
to satisfy the conjugation equation: for each a ∈ H2d(X) there exist ck ∈ H2d−k(Xσ) for
k = 0, 1,. . . , d−1 such that

i∗Γs(a) = κ(a)ud + cd−1ud−1 + · · ·+ c1u+ c0.

If a cohomological frame exists, we call the involution σ a conjugation and the manifold X
a conjugation space.

Given a geometric frame (Zα)α∈A one defines κ([Zα]) = [Zσ
α] and s([Zα]) = [Zα]Γ and

proves as in Theorem 3.4 that these two maps define a cohomological frame. Thus:

Theorem 3.5 ([20]). A geometric frame gives rise to a naturally defined cohomological
frame.

We mention a few examples of conjugation spaces. Many more are given in [22].

Example 3.6. Let T be a torus with involution σT (t) = t−1 and let X be a real Hamilto-
nian T -manifold. Suppose the fixed point set XT equipped with the involution σ |XT is a
conjugation space. Then X is a conjugation space.

Example 3.7. Let G be a compact connected Lie group. A Chevalley involution of G is an
involution satisfying σ(g) = g−1 for g in some maximal torus T of G and σ(α) = −α for
all roots α of G. It is known that Chevalley involutions exist for all G and are unique up to
conjugation. For instance, the Chevalley involution of U(n) is given by σ(g) = ḡ and the
Chevalley involution of U(n,H) is given by σ(g) =−JḡJ, where J =

(
0 −I
I 0

)
. With respect

to the Chevalley involution, every coadjoint orbit X is symmetric, and it is proved in [22]
that X is a conjugation space.

Conjugation spaces have many other surprising properties. We finish with a few sample
results.
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Theorem 3.8 ([22]). Let X be a conjugation space.

1. The real locus Xσ is nonempty. If X is connected, then so is Xσ.

2. The cohomological frame (s,κ) of X is unique. Both s and κ are ring homomor-
phisms.

The next result says that not only the leading coefficient, but also the lower order co-
efficients in the conjugation equation can be expressed in terms of the class a. (See [21,
Section 4.L] for a discussion of the Steenrod squaring operations.)

Theorem 3.9 ([15]). Let X be a conjugation space. For each a ∈ H2d(X) the coeffi-
cients ck ∈ Hk(Xσ) in the conjugation equation are uniquely determined by a, namely
ck = Sqd−k(κ(a)), the d− kth Steenrod square of κ(a).

Corollary 3.10 ([15]). κ(a)2 = i∗(a).

Proof. For a class c of degree k we have Sqk(c) = c2. Therefore, since κ(a) has degree
d, c0 = Sqd(κ(a)) = κ(a)2. Moreover, c0 is the constant term in the polynomial, i.e. the
restriction of the equivariant class i∗

Γ
s(a) to the fibre Xσ, so c0 = j∗σi∗

Γ
s(a) = i∗ j∗s(a) =

i∗(a).

Thus the homomorphism κ is a “square root” of the restriction map to the real locus
i∗ : H∗(X)→ H∗(Xσ).
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