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1. Introduction

Considering the role of affine Hecke algebras in representation theory [IM], [Bo], [BZ],
[BM1], [BM2], [Mol], [Mo2], [Lu3], [Rel], [BHK], [BK] or in the theory of integrable
models [Ch], [HO1], [Mac], [EOS] it is natural to ask for the description of their (alge-
braic) representation theory and for the properties of their representations in relation to
harmonic analysis (e.g. unitarity, temperedness, formal degrees). An analytic approach
to such questions (based on the spectral theory of C*-algebras) was first proposed by
Matsumoto [Mat]. This approach to affine Hecke algebras gives rise to a program in
the spirit of Harish-Chandra’s work on the harmonic analysis on locally compact groups
arising from reductive groups (for a concise account of Harish-Chandra’s work in the
p-adic case see [Wa]). The main challenges to surmount on this classical route designed
to describe the tempered spectrum and the Plancherel isomorphism (the “philosophy of
cusp forms”) are related to understanding the basic building blocks, the so-called discrete
series characters. The most fundamental problems are:

(i) Classify the irreducible discrete series characters;

(ii) Calculate their formal degrees.

In the present paper we will essentially(!) solve both these problems for general abstract
semisimple affine Hecke algebras with arbitrary positive parameters.

The study of harmonic analysis in this context requires the introduction of classical
notions borrowed from Harish-Chandra’s seminal work (e.g. the Schwartz completion,
temperedness, parabolic induction) for abstract affine Hecke algebras. It was shown in
[DO] that the above program can indeed be carried out. In view of [DO] (see also [Op2]),
our solution of (i) can in fact be amplified to yield the classification of all irreducible
tempered characters of the Hecke algebra. The explicit Plancherel isomorphism can be
reconstructed by (ii) and [Opl, Theorem 4.43].

Let us describe the methods used in this paper. The new tool in this study of these
questions for abstract affine Hecke algebras is derived from the presence of a space of
continuous parameters with respect to which the harmonic analysis naturally deforms.
Observe that this aspect is missing in the traditional context of the harmonic analysis
on reductive groups. The main message of this paper is that parameter deformation is
a powerful tool for solving the questions (i) and (ii), especially (but not exclusively) for
non-simply laced root data. There are in fact two other pillars on which our method
rests, based on results from [Opl] and [OS]. We will now give a more detailed account
of these matters.

(1) Our solution of (i) does not cover the cases E,, n=6,7,8, hence in these cases we rely on
[KL]. Our solution of (ii) is complete only up to the determination of a rational constant factor for each
continuous family (in the sense to be explained below) of discrete series characters.
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An affine Hecke algebra H=MH(R, q) is defined in terms of a based root datum
R= (XvROaKRE)/7FO)

and a parameter function g€ @Q=0Q(R). By this we mean that ¢ is a (positive) function
on the set S of simple affine reflections in the affine Weyl group ZRyx Wy, such that
q(s)=q(s’) whenever s and s’ are conjugate in the extended Weyl group W =X xWj.
The deformation method is based on regarding the affine Hecke algebras H(R,q) with
fixed R as a continuous field of algebras, depending on the parameter gq. This enables us
to transfer properties that hold for ¢g=1 or for generic q to arbitrary positive parameters.

We will prove that every irreducible discrete series character dg of H(R,qo) is the
evaluation at gy of a unique maximal continuous family g+ d, of discrete series characters
of H(R,q) defined in a suitable open neighborhood of gy. The continuity of the family
means that the corresponding family of primitive central idempotents g—es5(q) €S (the
Schwartz completion of H(R, q), a Fréchet algebra which is independent of ¢ as a Fréchet
space) is continuous in g with respect to the Fréchet topology of S. The maximal domain
of definition of the family ¢—d, is described in terms of the zero locus of an explicit
rational function on Q. This reduces the classification of the discrete series of H(R, q) for
arbitrary (possibly special) positive parameters to that for generic positive parameters,
a problem that is considerably easier than the general case.

Let us take the discussion one step further to see how this idea leads to a practical
strategy for the classification of the discrete series characters. For this it is crucial to
understand how the “central characters” behave under the unique continuous deforma-
tion g4 of an irreducible discrete series character dg. Since it is known that the set of
discrete series can be non-empty only if Ry spans X ®zQ, we assume this throughout the
paper. To enable the use of analytic techniques we need an involution * and a positive
trace 7 on our affine Hecke algebras H(R, q). A natural choice is available, provided that
all parameters are positive (another assumption we make throughout this paper). Then
H(R,q) is in fact a Hilbert algebra with tracial state 7. The spectral decomposition of 7
defines a positive measure pp; (called the Plancherel measure) on the set of irreducible
representations of H(R,q), cf. [Opl] and [DO]. More or less by definition an irreducible
representation m belongs to the discrete series if upi({w})>0. It is known that this con-
dition is equivalent to the statement that 7 is an irreducible projective representation
of §(R,q), the Schwartz completion of H(R,q). In particular 7 is an irreducible dis-
crete series representation if and only if 7 is afforded by a primitive central idempotent
ex€S(R,q) of finite rank. Thus the definition of continuity of a family of irreducible
characters in the preceding paragraph makes sense for discrete series characters only.
We denote the finite set of irreducible discrete series characters of H(R, q) by A(R,q).



108 E. OPDAM AND M. SOLLEVELD

A cornerstone in the spectral theory of the affine Hecke algebra is formed by Bern-
stein’s classical construction of a large commutative subalgebra ACH(R,q) isomorphic
to the group algebra C[X]. It follows from this construction that the center of H(R,q)

equals Ao =C[X]Wo. Therefore we have a central character map
ceg: Irr(H(R, q)) — Wo\T (1)

(where T is the complex torus Hom (X, C*)) which is an invariant in the sense that this
map is constant on equivalence classes of irreducible representations.

It was shown by “residue calculus” [Opl, Lemma 3.31] that a given orbit Wyte Wy \T'
is the central character of a discrete series representation if and only if Wyt is a Wy-orbit
of so-called residual points of T'. These residual points are defined in terms of the poles
and zeros of an explicit rational differential form on T' (see Definition 2.39), and they
have been classified completely. They depend on a pair (R, ¢) consisting of a (semisimple)
root datum R and a parameter g€ Q. In fact, given a semisimple root datum R, there
exist finitely many Q-valued points r of T', called generic residual points, such that on a
Zariski-open set of the parameter space Q the evaluation r(q)€T is a residual point for
(R, q). Moreover, for every go€ Q(R) and every residual point ro of (R, qg) there exists
at least one generic residual point r such that ro=r(qo).

For fixed go€ Q, these techniques do in general not shine any further light on the
cardinality of A(R,qp). The problem is a well-known difficulty in representation theory:
the central character invariant ccg,(dg) is not strong enough to separate the equivalence
classes of irreducible (discrete series) representations. But this is precisely the point
where the deformation method is helpful. The idea is that at generic parameters the
separation of the irreducible discrete series characters by their central character is much
better (almost perfect in fact, see below) than for special parameters. Therefore we can
improve the quality of the central character invariant for do€A(R, qo) by considering the
family of central characters g—ccy(dq) of the unique continuous deformation g— 4§, of dy
as described above. It turns out that this family of central characters is in fact a Wy-orbit
Wor of generic residual points. We call this the generic central character gee(dg)=Wor
of dg.

Our proof of this fact requires various techniques. First of all the existence and
uniqueness of the germ of continuous deformations of a discrete series character de-
pends in an essential way on the continuous field of the pre-C*-algebras S(R, ¢), where
g runs through Q and S(R,q) is the Schwartz completion of H(R,q) (see [DO]). Pick
do€A(R, qo) with central character ccy, (o) =Woro€Wo\T. With analytic techniques we
prove that there exists an open neighborhood U xV CQXxWo\T of (g0, Woro) such that
(see Lemma 3.2 and Theorems 3.3 and 3.4):
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e there exists a unique continuous family U3¢+, € A(R, ¢) with dq,=0o;

e the cardinality of {6€A(R, q):ccy(d) €V} is independent of geU.

Next, we consider the formal degree ppi({d,}) of d,€A(R,q). In [OS] we proved
an “index formula” for the formal degree, expressing ppi({d,}) as an alternating sum
of formal degrees of characters of certain finite-dimensional involutive subalgebras of
H(R,q). It follows that ppi({d,}) is a rational function of e U, with rational coefficients.
On the other hand, using the residue calculus [Opl] we derive an explicit factorization

pp1({0}) =dsmw,yr(q), q€U, (2)

with ds€Q* independent of ¢ and myy,,(¢) depending only on ¢ and on the central
character ccy(d,)=Woyr(q) (for the definition of m see (39)). Using the classification of
generic residual points, this enables us to prove that g—ccq(dy) is not only continuous
but in fact (in a neighborhood of ¢gg) of the form g—Wyr(q) for a unique orbit of generic
residual points gee(dg) =Wor, the generic central character of dy alluded to above. We

can now write (2) in the form (see Theorem 5.12):

Mpl({5q}) = démgcc(é) (q)v q€evl, (3)

where mgc.(5) is an explicit rational function with rational coefficients on Q, which is
regular on Q and whose zero locus is a finite union of hyperplanes in Q (viewed as a
vector space).

The incidence space O(R) consisting of pairs (Wyr, ¢), with Wyr an orbit of generic
residual points and g€ Q such that r(q) is a residual point for (R, q), can alternatively
be described as O(R)={(Wyr, q):mw,r(¢)#0}. Thus O(R) is a disjoint union of copies
of certain convex open cones in Q. The above deformation arguments culminate in

Theorem 5.7 stating that the map

Ggee: J[ A(R,q) — O(R),
7€Q(R)

A(R,q) 26— (gee(d), 9),

gives A(R):=][,cq(r) A(R,q) the structure of a locally constant sheaf of finite sets on
O(R). Since every component of O(R) is contractible, this result reduces the classifica-
tion of the set A(R) to the computation of the multiplicities of the various components
of O(R) (i.e. the cardinalities of the fibers of the map GCC).

One more ingredient is of great technical importance. Lusztig [Lu2] proved funda-
mental reduction theorems which reduce the classification of irreducible representations
of affine Hecke algebras effectively to the classification of irreducible representations of
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degenerate affine Hecke algebras (extended by a group acting through diagram auto-
morphisms, in general). In this paper we make frequent use of a version of these results
adapted to suit the situation of arbitrary positive parameters (see Theorems 2.6 and 2.8).
These reductions respect the notions of temperedness and discreteness of a representa-
tion. Using this type of results it suffices to compute the multiplicities of the positive
components of O(R) or equivalently, to compute the multiplicities of the correspond-
ing components in the parameter space of a degenerate affine Hecke algebra (possibly
extended by a group acting through diagram automorphisms).

The results are as follows. If Ry is simply laced, then the generic central character
map itself does not contain new information compared to the ordinary central character.
However, with a small enhancement, the generic central character map gives a complete
invariant for the discrete series of D,, as well, using that the degenerate affine Hecke
algebra of type D,, twisted by a diagram involution is a specialization of the degenerate
affine Hecke algebra of type B,,. With this enhancement understood, we can state that
the generic central character is a complete invariant for the irreducible discrete series
characters of a degenerate affine Hecke algebra associated with a simple root system
Ry, except when Ry is of type Fg, Er, Eg or Fy. In the Fy-case with both parameters
unequal to zero there exist precisely two irreducible discrete series characters which have
the same generic central character.

Our solution to problem (i) is listed in §7 and §8. This covers essentially all cases
except type E,, n=6,7,8 (in which cases we rely on [KL] for the classification). In this
classification, the irreducible discrete series characters are parametrized in terms of their
generic central character. The solution to problem (ii) is given by the product formula
(3) (see Theorem 5.12) which expresses the formal degree of ¢, explicitly as a rational
function with rational coefficients on the maximal domain Us CQ to which J, extends
as a continuous family of irreducible discrete series characters (Us is the interior of an
explicitly known convex polyhedral cone). At present we do not know how to compute
the rational numbers ds for each continuous family so our solution is incomplete at this
point.

Let us compare our results with the existing literature. An important special case
arises when the parameter function ¢ is constant on .S, which happens for example when
the root system Ry is irreducible and simply laced. In this case all irreducible repre-
sentations of H(R,q) (not only the discrete series) have been classified by Kazhdan and
Lusztig [KL]. This classification is essentially independent of g€ C*, except for a few
“bad” roots of unity. This work of Kazhdan and Lusztig is of course much more than
just a classification of irreducible characters, it actually gives a geometric construction of
standard modules of the Hecke algebra for which one can deduce detailed information on
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the internal structure in geometric terms (e.g. Green functions). The Kazhdan-Lusztig
parametrization yields the classification of the tempered and the discrete series characters

too.

Next Lusztig [Lu4] has classified the irreducibles of “geometric” graded affine Hecke
algebras (with certain unequal parameters) which arise from a cuspidal local system on
a unipotent orbit of a Levi subgroup of a given almost simple simply connected complex
group “G. In [Lub] these results were refined to include a classification of tempered
and discrete series irreducible modules of the geometric graded Hecke algebras. In [Lu3]
it is shown that such graded affine Hecke algebras arise as completions of “geometric”
affine Hecke algebras (with certain unequal parameters) formally associated with the
above geometric data. On the other hand, let k£ be a p-adic field and let G be the
group of k-rational points of a split adjoint simple group G over k such that “G is the
connected component of its Langlands dual group. In [Lu3] the explicit list of unipotent
“arithmetic” affine Hecke algebras is given, i.e. affine Hecke algebras occurring as the
Hecke algebra of a type (in the sense of [BK]) for a G-inertial equivalence class of a
unipotent supercuspidal pair (L, o) (see also [Mol] and [Mo2]). Remarkably, a case-by-
case analysis in [Lu3] shows that the geometric affine Hecke algebras associated with G
precisely match the unipotent arithmetic affine Hecke algebras arising from G. More

generally, such results hold if G is only assumed to be split over an unramified extension
of k [Lu3].

The geometric parameters in terms of which Lusztig [Lu4], [Lub] classifies the irre-
ducible (tempered, discrete series) modules over geometric graded affine Hecke algebras
are rather complicated. Our present direct approach, based on deformations in the har-
monic analysis of “arithmetic” affine Hecke algebras, gives different and in some sense
complementary information (e.g. formal degrees). We refer to [Bl] for examples of affine
Hecke algebras arising as Hecke algebras of more general types. We refer to [Lu6] for re-
sults and conjectures on the theory of Kazhdan—Lusztig bases of abstract Hecke algebras

with unequal parameters.

The techniques in this paper do not give an explicit construction of the discrete
series representations. In this direction it is interesting to mention Syu Kato’s geometric
construction [Ka] of algebraic families of representations of H(Cy(ll), q). One would like
to understand how Kato’s geometric model relates to our continuous families of discrete

series characters, which are constructed by analytic methods.

Acknowledgment. We thank Gert Heckman, N. Christopher Phillips and Mark

Reeder for discussions and advice.
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2. Preliminaries and notation
2.1. Affine Hecke algebras

2.1.1. Root data and affine Weyl groups

Suppose we are given lattices X and Y in perfect duality (-,-): X xY —Z, and fi-
nite subsets RyCX and Ry CY with a given a bijection V: Ry— Rj. Define endomor-
phisms rov: X=X by rov(z)=z—z(a¥)a and ro: Y =Y by ro(y)=y—a(y)a¥. Then
(Ro, X, Ry ,Y) is called a root datum if

(1) for all € Ry we have a(a¥)=2;

(2) for all o€ Ry we have rov (Ro) C R and 7, (Ry)C Ry .

As is well known, it follows that Ry is a root system in the vector space spanned by the
elements of Ry. A based root datum R=(X, Ro,Y, Ry, Fo) consists of a root datum with
a basis FyC Rg of simple roots.

The (extended) affine Weyl group of R is the group W=W;x X (where Wy=W (Ry)
is the Weyl group of Rp); it naturally acts on X. We identify ¥ xZ with the set of
affine linear, Z-valued functions on X (in this context we usually denote an affine root
a=(a",n) additively as a=a" +n). Then the affine Weyl group W acts linearly on the
set Y xZ via the action wf(z):=f(w™tx). The affine root system R associated with
R is the W-invariant set R:=RY{ xZCY xZ. The basis F, of simple roots induces a
decomposition R=R,UR_ with R,:=Ry, x{0}URy xN and R_=—R,. It is easy to
see that R, has a basis of affine roots F' consisting of the set F|y x {0} supplemented by
the set of affine roots of the form a=(a", 1), where oY € Ry runs over the set of minimal
coroots. The set F is called the set of affine simple roots. Every W-orbit WaC R with
a€ R meets the set F' of affine simple roots. We denote by F the set of intersections of
the W-orbits in R with F'

With an affine root a=(a",n) we associate an affine reflection r,: X — X by r,(x)=
r—a(z)a. We have r,€ W and wr,w~!=r,,. Hence the subgroup WeCW generated
by the affine reflections r, with a€ R is normal. The normal subgroup W¢ has a Coxeter
presentation (W%, S) with respect to the set of Coxeter generators S={r,:a€F}. We
call S the set of affine simple reflections and we write So=SNW,. We call two elements
s,t€ S equivalent if they are conjugate to each other inside W. We put S for the set of
equivalence classes in S. The set S is in natural bijection with the set F.

We define a length function I: W —Z, by l{(w):=|w™*(R_)NR,|. The set

Q:={weW:l(w)=0}

is a subgroup of W. Since W acts simply transitively on the set of positive systems of
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affine roots it is clear that W =W x (). Notice that if we put
Xt={zeX :z(aV)>0 for all a € Fy}

and X~ =—X7, then the sublattice Z=XTNX~CX is the center of W. It is clear that
Z acts trivially on R and in particular, we have ZCQ. We have Q=W/W*=X/Q(Ry),
where Q(Ry) denotes the root lattice of the root system Ry. It follows easily that Q/Z
is finite. We call R semisimple if Z=0. By the above R is semisimple if and only if €2 is
finite.

2.1.2. The generic affine Hecke algebra and its specializations

We introduce invertible, commuting indeterminates v([s]), where [s]€S. Let
A=Clu([s])™" :[s] € 9].

If s€S then we define v(s):=v([s]). The following definition is in fact a theorem (this
result goes back to Tits).

Definition 2.1. There exists a unique associative, unital A-algebra H (R) which has
a A-basis { Ny, }wew parametrized by weW, satisfying the relations

(1) NNy =Ny for all w,w’eW such that [(ww')=I(w)+I(w’);

(2) (Ns—v(s))(Ns+v(s)~1)=0 for all s€S.
The algebra Ha=Hx(R) is called the generic affine Hecke algebra with root datum R.

We put Q.=9(R). for the complex torus of homomorphisms A—C. We equip

the torus Q. with the analytic topology. Given a homomorphism g€ Q. we define a

specialization (?) H(R,q) of the generic algebra by (with C, being the A-module defined
by q)

H(R,q) :=HA(R)®rCq (4)

Observe that the automorphism ¢s: A— A defined by

{¢s(v(t)) o(t), i totws,
¢s(v(s)) = —v(s),

extends to an automorphism of Hy by putting

{(bs(Nt):Nty lft’)(‘WS,
¢s(Ng)=—Ns.

(2) This is not compatible with the conventions in [Op1], [Op2], [Op3] and [OS]! The parameter
g€ Q in the present paper would be called q1/2 in these earlier papers.
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Similarly we have automorphims s: Hp —Ha given by

{ s (v(t)) =

(t), lft’)(‘W S, and { ¢S(Nt):Nt7 lft’%‘W S,
s (v(s))

U(S)ilv 77[}3“\[3):_]\/vs-

These automorphisms mutually commute and are involutive. Observe that ¢s1s respects
the distinguished basis N,, of Hj, and the automorphisms ¢ and 15 individually respect
the distinguished basis up to signs.

We write Q for the set of positive points of Q., i.e. points ¢€ Q. such that g(v(s))>0
for all s€S. Then QC Q. is a real vector group.

There are alternative ways to specify points of @ which play a role in the spectral
theory of affine Hecke algebras (in particular in relation to the Macdonald c-function
[Mac]). In order to explain this we introduce the possibly non-reduced root system
R, CX associated with R by

Ry = RoU{2a:a" €2YNRY} (5)

We let Ri={a€ Ry :2a¢ Ry, } be the set of non-multipliable roots in R,,. Then Ry CX
is also a reduced root system, and Wo=W (Ry)=W (Ry).

We define various functions with values in A. First we define a W-invariant function
R>arv, €A by requiring that

Va+1 :U(Sa) (6)

for all simple affine roots a€ F. Notice that all generators v(s) of A are in the image of

this function. Next we define a Wy-invariant function RY. 2oV +—wv,v €A as follows. If

\

a€ Ry we view oV as an element of R, so that v,v has already been defined. If a=23

with € Ry, then we define
UBv +1
7
Upv ( )

VoV = Vgv/2 =

Finally there exists a unique length-multiplicative function Waw+—v(w)€A such that
its restriction to S yields the original assignment S3s—v(s)EA of generators of A to the
W-orbits of simple reflections of W, and v(w)=1 for all we. Here the notion length-
multiplicative refers to the property v(wjws)=v(w)v(ws) if [(wywe)=I(w;1)+1(ws). We

remark that with this notation we have

v(w) = 11 Vav (8)

QE€ERpr+NW™ TRy —

for all weWj.
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A point g€ Q determines a unique W-invariant function on R with values in R, by
defining g,:=¢(v,). Conversely, such a positive W-invariant function on R determines a

point g€ Q. Likewise we define positive real numbers

qav 3:‘1(UON) (9)

for a€ Ry, and
q(w) := q(v(w)) (10)

for weW. In this way, the points g€ Q are in natural bijection with the set of Wjy-
invariant positive functions on RY, and also with the set of positive length-multiplicative
functions on W which restrict to 1 on €.

Recall that if the finite root system R; is irreducible, it can be extended in a unique

way to an affine root system, which is called Rgl).

Definition 2.2. If R is simple and X =P(R;) (the weight lattice of R;), then we call
H(R,q) of type Rgl). This includes the simple 3-parameter case C with Ry=B,, and
X=Q(Rp)-

2.1.3. The Bernstein presentation and the center

The length function [: W —Zx restricts to a homomorphism of monoids on X*. Hence
the map X*—H} defined by 2+ N, is a homomorphism of monoids too. It has a unique
extension to a group homomorphism 6: X —H; which we denote by z—6,. We denote
by Ax CHa the commutative subalgebra of H, generated by the elements 6, with z€ X.
Similarly we have a commutative subalgebra ACH(R,q). Let Hao=Ha(Wo, So) be
the Hecke subalgebra (of finite rank over the algebra A) corresponding to the Coxeter
system (Wp,Sp). We have the following important result due to Bernstein—Zelevinski
(unpublished) and Lusztig ([Lu2]).

THEOREM 2.3. The multiplication map defines an isomorphism of An-Ha o-modules
AN@HA o—Ha and an isomorphism of Ha o-Aa-modules Ha o®Ax—Ha. The algebra
structure on Hy is determined by the cross relation (with x€ X, a€Fy, s=r,v, and s'€S

being a simple reflection such that ' ~wrovi1):

Hw - es(x)

0o = Nobia(a) = ((0(5) = 0(5) ™)+ (") () ™)) 7=

(1)

(Note that if s’ 7w s then oY €2Ry, which implies that x—s(z)€2Za for all x€X. This
guarantees that the right-hand side of (11) is always an element of Ap.)
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COROLLARY 2.4. The center Zz of Ha is the algebra ZA:AKVO. For any qe Q.
the center of H(R,q) is equal to the subalgebra Z=A"° CH(R,q).

In particular Hy is a finite-type algebra over its center Zj, and similarly H(R, ¢q) is
a finite-type algebra over its center Z. The simple modules over these algebras are finite-
dimensional complex vector spaces. The primitive ideal spectrum ﬁA is a topological

space which comes equipped with a finite continuous and closed map
CCAZ']:ZA—>2A=W()\T>< Qc (12)

to the complex affine variety associated with the unital complex commutative algebra Zu.
The map ccp is called the central character map. Similarly, we have central character
maps
ey 'Hm) —Z (13)
for all g€ Q..
We put T=Hom(X,C*), the complex torus of characters of the lattice X equipped
with the Zariski topology. This torus has a natural Wy-action. We have Z=W,\T (the

categorical quotient).

2.1.4. Two reduction theorems

The study of the simple modules over H(R,¢) is simplified by two reduction theorems
which are much in the spirit of Lusztig’s reduction theorems in [Lu2]. The first of these
theorems reduces to the case of simple modules whose central character is a Wy-orbit
of characters of X which are positive on the sublattice of X spanned by R; (see the
explanation below). The second theorem reduces the study of simple modules of H(R, q)
with a positive central character in the above sense to the study of simple modules of an
associated degenerate affine Hecke algebra with real central character. These results will
be useful for our study of the discrete series characters.

First of all a word about terminology. The complex torus 1" has a polar decomposi-
tion T=T,T, with T,=Hom(X,R~) and T,,=Hom(X, S!). The polar decomposition is
the exponentiated form of the decomposition of the tangent space V=Hom(X,C) of T
at t=e as a direct sum V=V, @iV, of real subspaces, where V,,=Hom(X,R) and 4 here
is the imaginary unit. The vector group T, is called the group of positive characters and
the compact torus Ty, is called the group of unitary characters. This polar decomposi-
tion is compatible with the action of Wy on T. We call the Wjy-orbits of points in T,
“positive” and the Wy-orbits of points in T;, “unitary”. In this sense can we speak of



DISCRETE SERIES CHARACTERS AND THEIR FORMAL DEGREES 117

the subcategory of finite-dimensional H(R, g)-modules with positive central character(?)

which is a subcategory that plays an important special role.

Definition 2.5. Let R be a root datum and let g€ Q=0Q(R). For s€T, we define
Rs o={a€Ry:74(s)=s}. Let Ry 1 C R be the set of non-multipliable roots corresponding
to Rs 0. One checks that

RSJ:{ﬁgRliﬂ(S):l}. (14)

Let R, 1.+ CRs 1 be the unique system of positive roots such that R, ,CRy ,, and let
F 1 be the corresponding basis of simple roots of R, 1. Then the isotropy group W,C W,y
of s is of the form

We=W(Rs,1)xTs, (15)

where I's={weWs:w(Rs1,+)=Rs1,+} is a group acting through diagram automorphisms
on the based root system (R 1, Fs1).

We form a new root datum R,=(X, Ry 0,Y, RY, Fs0) and observe that Ry, s C Ry;.
Hence we can define a surjective map Q(R)— Q(R;) (denoted by g+>gs) by restriction
v to RY

nr nr,s*

of the corresponding parameter function on R

Let t=cs€T,T, be the polar decomposition of an element t€T. We define Wy(t)C
W, for the subgroup defined by

Wo(t) ={weW,:wt e W(Rs 1)t} (16)
Observe that Wy(t) is the semidirect product Wy(t)=W (R 1) xI'(t), where
I'(t) =TsNWy(t) (17)

Let Myw,: CZ denote the maximal ideal of A of elements vanishing at WytCT', and
let Z be the My, ;-adic completion of Z. We define

A=A®zZ. (18)
By the Chinese remainder theorem we have

A= @ A, (19)

t’eWpt

(3) In several prior publications [HO1], [HO2], [Op1], [Op2], [Op3] the central characters in Wo\ T
were referred to as “real central characters”, where “real” should be understood as “infinitesimally real”.
In the present paper however we change the terminology and speak of “positive central characters”
instead.
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where Ay denotes the formal completion of A at '€T. Let 14 denote the unit of the

summand A,/ in this direct sum decomposition. We consider the formal completion

On the other hand, we consider the affine Hecke algebra H(Rs, ¢qs) and its commutative
subalgebra A, (as defined before when discussing the Bernstein basis) and center Z,=
AZV(RS'l). Let my (g, )¢ be the maximal ideal in Z; of elements vanishing at the orbit
W (R 1)t=sW(Rs1)c; let Z5 and H(Rs,qs) be the corresponding formal completions as
before.

The group I'(¢) acts on H(Rs, gs) and on its center Z;. We note that there exists a
canonical isomorphism

Z—zro, (21)
As before we define a localization
ﬁ(RsaQS) :H(R37q$)®25 Zs~ (22)

Let e; € ACH(R, q) be the idempotent defined by

€t = Z 1t’ . (23)

tEW (Rq.1)t

THEOREM 2.6. (“First reduction theorem”; see [Lu2, Theorem 8.6]) Let g€ Q and
let t=cs be the polar decomposition of an element t€T. Let n be the cardinality of the
orbit Wyt divided by the cardinality of the orbit W(Rs1)t. Using the notation introduced

above, there exists an isomorphism of Z-algebras
(H(Rs,45) % T(t))nxn — H(R, q). (24)

Via this isomorphism the idempotent e, €H(R,q) corresponds to the nxn-matriz with 1

in the upper left corner and 0’s elsewhere. Hence the Z-algebras

H(R,q) and H(Rs,qs)x(t)

are Morita equivalent. In particular the set of simple modules U of H(R,q) with central
character Wyt corresponds bijectively to the set of simple modules V' of H(Rs,qs)xT'(t)
with central character Wy(s)t=W (Rs1)t, where the bijection is given by U—e,U.

Proof. The proof is a straightforward translation of Lusztig’s proof of [Lu2, Theo-
rem 8.6]. We replace the equivalence relation that Lusztig defines on the orbit Wyt by
the equivalence relation induced by the action of W(Rs 1) (i.e. the equivalence classes
are the orbits of W (R, 1) in Wyt; in other words, the role of the subgroup J(vo)CT in
Lusztig’s setup is now played by the vector subgroup T,). After this change the rest of
the proof is identical to Lusztig’s proof. O



DISCRETE SERIES CHARACTERS AND THEIR FORMAL DEGREES 119

The second reduction theorem gives a bijection between simple modules of affine
Hecke algebras with central character Wyt satisfying a(t)>0 for all «€ R; and simple
modules of an associated degenerate affine Hecke algebra with a real central character.
We first need to define the appropriate notion of the associate degenerate affine Hecke
algebra.

Let R=(X, Ry, Y, Ry, Fy) be aroot datum, let g€ Q, and let Wyt€Wy\ T be a central
character such that for all «€ Ry we have a(t)€R~o. Then the polar decomposition of
t has the form t=wuc with ueT, being a Wy-invariant character of X and with ceT,
being a positive character of X. Observe that S(u)=1 if e RyN Ry and f(u)==1 if e
RoﬂéRl. We define a Wy-invariant real parameter function k,: Ry —R by the following
prescription. If a€ Ry, we put

log ¢2., if a € RyNRy,
kua=1{ logg?.qs,, if a=203, with 8€ Ry and B(u) =1, (25)
log ¢2., if =20, with 3€ Ry and B(u) =—1.

Definition 2.7. We define the degenerate affine Hecke algebra H(R;,V, Fy, k) asso-
ciated with the root system Ry CV™ where V=R®zY and the parameter function k£ as
follows. We put P(V) for the polynomial algebra on the vector space V. The Weyl group
Wy acts on P(V) and we denote the action by w-f=f*. Then H(R;,V, Fy, k) is simul-
taneously a left P(V)-module and a right C[Wy]-module, and as such it has the struc-
ture H(R;,V, F1,k)=P(V)®@C[W;]. We identify P(V)®eCH(R;,V, F1,k) with P(V)
and 1@C[Wy|CH(R,,V, F1, k) with C[IW,] so that we may write fw instead of f®@w if
feP(V) and weWy. The algebra structure of H(Ry, V, F, k) is uniquely determined by
the cross relation (with f€P(V), a€F; and s=s5,€51):

fs—sfszkaf’fs. (26)

(07

It is easy to see that the center of H(Ry, V, Fy, k) is equal to the algebra Z=P(V)"Vo C
H(R,,V, Fy, k). The vector space V.=C®V can be identified with the Lie algebra of the
complex torus T. Let exp: V.—T be the corresponding exponential map. It is a Wy-
equivariant covering map which restricts to a group isomorphism V —T, of the real

vector space V to the vector group 7.

THEOREM 2.8. (“Second reduction theorem”; see [Lu2, Theorem 9.3]) Let R=
(X, Ry, Y, Ry, Fy) be a root datum with parameter function g€ Q=Q(R). Let VoCV
be the subspace spanned by Ry. Given t€T such that a(t)>0 for all a€Ry, we let
=&,V be the unique element such that o(t)=e™® for all € Ry. It is easy to see that
the map t—E&=& is Wy-equivariant; in particular the image of Wyt is equal to WyE.
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Let t=wuc be the polar decomposition of t. Then uel, is Wy-invariant, and we define a
Wo-invariant parameter function k, on Ry by (25). Let Z be the formal completion of
the center Z of H(Ry,V, F1, ky) at the orbit Woé. Let P=P(V) and put P=P®zZ and
H(R,,V,Fy,k,)=H(R,,V, Fy, k,)®zZ. There exist natural compatible isomorphisms of
algebras Z—7Z, A—P and H(R,q)—H(Ry,V, F1,k,).

Proof. This is a straightforward translation of the proof of [Lu2, Theorem 9.3]. O

COROLLARY 2.9. The set of simple modules of H(R,q) with central character Wyt
(satisfying the above condition that a(t)>0 for all «€Ry) and the set of simple modules
of H(R1,V, F1,k,) with central character Wo& (as described in Theorem 2.8) are in

natural bijection.

Combining the two reduction theorems we finally obtain the following result (see
[Lu2, §10)).

COROLLARY 2.10. For all s€T, the center of H(Rs1,V, Fs1,ks)xI'(t) is equal to
ZU®) | If teT is arbitrary with polar decomposition t=sc, then the set of simple modules
of H(R,q) with central character Wyt is in natural bijection with the set of simple
modules of H(Rs1,V, Fs1,ks)XI'(t) with the real central character W §. Here E€V is
the unique vector in the real span of R;/’l such that a(t):ea(f) for all a€R; 1, ks is
the real parameter function on Rs1 associated with qs described by (25), and I'(t) is the
group defined by (17).

2.2. Harmonic analysis for affine Hecke algebras
2.2.1. The Hilbert algebra structure of the Hecke algebra

Let R be a based root datum and g€ Q be a positive parameter function for R. We turn
H=H(R,q) into a *-algebra using the conjugate linear anti-involution *: H—H defined
by N =N,-1. We define a trace 7: H—C by 7(N,,) =0, . This defines a Hermitian form
(z,y):=7(z*y) with respect to which the basis N, is orthonormal. In particular (-,-) is
positive definite. In fact it is easy to show [Op1] that this Hermitian inner product defines
the structure of a Hilbert algebra on ‘H. Let L?(H) be the Hilbert space completion of
H and \: H— B(L?(H)) the left regular representation of H. Let €:=C7(H) be the C*-
algebra completion of \(H) inside B(L?(H)). It is called the (reduced) C*-algebra of
‘H. It is not hard to show that € is unital, separable and liminal, which implies that the
spectrum CofCisa compact T} space with countable base which contains an open dense
Hausdorff subset. The trace 7 extends to a finite tracial state 7 on €. In this situation
(see [Opl, Theorem 2.25]) there exists a unique positive Borel measure pp; on ¢ such
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that for all he™,
T= /A X dppi(m). (27)
¢

Since 7 is faithful, it follows that the support of up; is equal to ¢
Definition 2.11. We call the measure up; the Plancherel measure of H.

Definition 2.12. An irreducible -representation (V, ) of the involutive algebra H
is called a discrete series representation of H if (V, ) extends to a representation (also
denoted (V, 7)) of € which is equivalent to a subrepresentation of the left regular repre-
sentation of € on L?(H). In this case the finite trace x, defined by x.(z)=Try (r(x)) is

called an irreducible discrete series character.

We have seen that an irreducible representation (V,7) of H is finite-dimensional.
In particular its character x, is a well-defined linear functional on H. We call x, an
irreducible character of H. Clearly the character of a finite-dimensional representation
of H only depends on the equivalence class of the underlying representation. The ir-
reducible characters of a set of mutually inequivalent irreducible representations of H
are linearly independent (see [Opl, Corollary 2.11]). Hence the equivalence class of a

finite-dimensional semisimple representation is completely determined by its character.

Definition 2.13. We denote by A(R, q) the set of irreducible discrete series characters
of H(R,q). For each irreducible character xy€A(R,q) we choose and fix an irreducible
discrete series representation (V,d) of H such that y=yxs (by abuse of language, we will
often identify the set of irreducible discrete series characters and (the chosen set of repre-

sentatives of) the set of equivalence classes of irreducible discrete series representations).

The following criterion for an irreducible representation (V, ) of H to belong to the
discrete series follows from a general result of Dixmier (see [Opl]).

COROLLARY 2.14. (V) is a discrete series representation if and only if

ppi({}) > 0.

COROLLARY 2.15. (See [Opl, Proposition 6.10]) There is a one-to-one correspon-
dence between the set of irreducible discrete series characters xs and the set of primitive

central Hermitian idempotents es€@ of finite rank. The correspondence is such that
T(esx)=pup1({6})xs(x) for all zeH.

COROLLARY 2.16. (See [Opl, Proposition 6.10]) (V,7) is a discrete series represen-
tation if and only if {[w]}CE is a connected component of €. In particular, the number

of irreducible discrete series characters is finite.
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2.2.2. The Schwartz algebra

We define a nuclear Fréchet algebra S=S(R,q) (the Schwartz algebra) which plays a

pivotal role in the spectral theory of the trace 7 on H.

Definition 2.17. We choose once and for all a Wy-invariant inner product (-,-) on

the vector space V*:=R® X, which takes integral values on X x X.

Let Vi be the real vector space spanned by Ry. Its orthocomplement is the vector
space V;=R®Z spanned by the center Z of W. Given ¢p€ V™ we decompose p=¢o+pz
with respect to the orthogonal decomposition V*=V;o V.

Definition 2.18. We define a norm N: W —R, on W as follows: if weW we put
N(w) =U(w)+[[w(0)z]|. (28)
Next we define seminorms p,: H—R, on H by

P (h) = max (14N (w))"|(Nuw, h)]. (29)

Definition 2.19. The Schwartz algebra S of H is the completion of H with respect

to the system of seminorms p,, with neN.

THEOREM 2.20. ([Op1], [So]; see Appendix A) The completion S is a Fréchet algebra

which is continuously and densely embedded in €.

Remark 2.21. The Fréchet algebra S is independent of the choice made in Defini-
tion 2.17. S is also independent of g€ Q as a Fréchet space.

Definition 2.22. A finite-dimensional representation of H is called tempered if it has

a continuous extension to S.

The Fréchet algebra structure of S depends on g€ Q. The basic Theorem 2.20 was
first proven in [Opl] using some qualitative analysis on the spectrum of €; the proof in
[So] is more direct and uses an elementary but non-trivial result due to Lusztig [Lul] on
the multiplication table of H with respect to the basis N,,. The latter proof also reveals
the following important fact with respect to the dependence of g€ Q.

THEOREM 2.23. ([So|; see Appendix A) The dense subalgebra SCC is closed for
holomorphic calculus (see also [DO, Corollary 5.9]). The holomorphic calculus is con-
tinuous on S X Q in the following sense. Let UCC be an open set. The set Viy CSx Q
defined by Vy={(z,q):Sp(x,q)CU} is open. For any holomorphic function f:U—C the
map Vy3(x,q)— f(x,q) €S is continuous.
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The following result shows the fundamental role of S for the spectral theory of 7.

THEOREM 2.24. ([DO, Corollary 4.4]) The support of pp) consists precisely of the

set of equivalence classes of irreducible tempered representations of H.

In particular the discrete series representations are tempered. There are various
characterizations of tempered representations and of discrete series representations. Cas-

selman’s criterion is the following characterization.

THEOREM 2.25. (Casselman’s criterion, see [Opl, Lemma 2.22]) Let (V,d) be an
irreducible representation of H. The following are equivalent:
(1) (V,6) is a discrete series representation of H;
(2) All matriz coefficients of (V,d) belong to L?(H);
(3) The character xs of (V,d) belongs to L?(H);
(4) All generalized A-weights t€T in V satisfy |x(t)|<1 for all xe X+\{0};
(5) For every matriz coefficient m of § there exist constants C,e>0 such that
|m(Ny)| <Ce=NW) for all weW;
)

(6) The character x5 of (V,d) belongs to S.

COROLLARY 2.26. An irreducible representation (V,0) of H is an irreducible dis-
crete series representation if and only if (V,0) is afforded by a central primitive idempo-
tent es€S of S (see Corollary 2.15).

COROLLARY 2.27. The set A(R,q) is non-empty only if R is semisimple.

Casselman’s criterion for discrete series in terms of the generalized .A-weights can
be transposed to define the notion of discrete series modules over a crossed product
H(R,,V,F1,k)xT of a degenerate affine Hecke algebra H(Ry,V, Fy, k) with a real pa-
rameter function k& and a finite group I" acting by diagram automorphisms of (Ry, Fy).
(Thus, a simple module (U, d) is a discrete series representation if and only if the gener-
alized P-weights in U are in the interior of the antidual cone (CV') of the simplicial cone
spanned by Fj.) It is clear that this definition is compatible with the bijections afforded
by the two reduction theorems (Theorems 2.6 and 2.8). Hence we obtain the following

consequence from Corollary 2.10.

COROLLARY 2.28. Let t€T with polar decomposition t=sc. The set Aw,, of equiv-
alence classes of irreducible discrete series representations of H(R,q) with central char-
acter Wyt is in natural bijection with the set of equivalence classes of irreducible discrete
series representations of H(Rs1,V, Fs1,ks)xL(t) with the real central character WE.
Here £€V s the unique vector in the real span of R{, such that a(t)=e©) for all
a€R, 1, ks is the real parameter function on Rg:1 described by (25), and I'(t) is the
group of diagram automorphisms of (Rs1,Fs1) of (17).
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COROLLARY 2.29. If Ay, #@ then the polar decomposition t=sc of t has the prop-

erty that Rs 1 C Ry is a root subsystem of maximal rank.

If s=ueT, is Wy-invariant (i.e. if a(u)=1 for all @€ Ry) then we obtain the following
result from Corollary 2.28.

COROLLARY 2.30. Let ueT, be Wy-invariant and let c€T,. There is a natural
bijection between the set A(R,q)uw,e of irreducible discrete series characters of H(R,q)
with central character of the form uWocCWo\T and the set of irreducible discrete series

characters of H(Ry,V, Fy1,k,) with the real infinitesimal central character Wylog c.

It is not hard to show that the central character of an irreducible discrete series
character of H(Ry,V, F, k,,) is real (see [S11, Lemma 1.3.4]). Hence the previous corollary

in particular says the following.

COROLLARY 2.31. Let ueT, be Wy-invariant. There is a natural bijection between
the set A"(R,q) of irreducible discrete series characters of H(R,q) with a central char-
acter of the form uWyc with c€T, on the one hand, and the set AH(Ry,V,Fy, k) of
irreducible discrete series characters of H(R1,V, F1,k,) on the other hand. In this bi-

jection the correspondence of the central characters is as described above.

We can use Corollary 2.28 to reduce the general classification problem of the irre-
ducible discrete series characters of H(R, ¢) for any semisimple root datum R to the case
of discrete series characters of a degenerate affine Hecke algebra as well, but we have
to pay the price of having to deal with crossed products by certain groups of diagram
automorphisms. In order to deal with the crossed products, one has to resort to Clifford
theory (cf. [RR]).

Corollary 2.26 gives us yet another characterization of the irreducible discrete series

representations.

THEOREM 2.32. Let (V, ) be a simple module over H. The following are equivalent:
(1) (V,0) is a discrete series representation of H;

(2) (V,0) extends to a projective S-module.

2.2.3. The Euler—Poincaré pairing and elliptic characters

We recall the main result of [OS].

THEOREM 2.33. The affine Hecke algebra H=H(R,q) has global homological dimen-
sion equal to the rank of X. If U and V are finite-dimensional tempered H-modules,
then for all i we have Extl (U, V)~Exts(U, V).
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Define the Euler—Poincaré pairing on the (complexified) Grothendieck group G(H)

of finite-dimensional virtual characters by sesquilinear extension from the formula

EPy(U,V):= i(—w‘ dim(Ext}, (U, V)). (30)

It can be seen that this defines a Hermitian positive semidefinite pairing on G(H) ([OS,
Theorem 3.5]). The above result combined with Theorem 2.32 implies the following

result.

COROLLARY 2.34. The irreducible discrete series characters of H form an orthonor-
mal set with respect to EPy and are orthogonal to all irreducible tempered characters that

are not in the discrete series.

Another crucial result of [OS] says that EPy factors through the quotient Ell(H) of
G(H) by the subspace spanned by all the properly induced finite-dimensional tempered
characters. Then Ell(H) is a finite-dimensional Z-module, equipped with a positive semi-
definite Hermitian pairing EP7; with respect to which elements with a disjoint support
on Wo\T are orthogonal. Let Elly,;(H) be the Z-submodule corresponding to Wyt.

There exists a scaling map 6¢: G(H)—G(W) (see [OS, Theorem 1.7]) which descends

to a map

&o: EIl(H) — EI(W) = EI(C[W]).

The finite-dimensional Z-module Ell(W) can be described completely explicitly in terms
of the elliptic characters of the isotropy groups W, (with t€T') for the action of Wy on T
The pairing EPy on Ell(W) can be described in these terms as well, and it turns out
that EPy is positive definite on EIl(W) (for all these results, consult [OS, Chapter 3]).
It turns out that El(W) is non-zero only if R is semisimple, and that the support of
Ell(W) as a Z-module is contained in the set of orbits Wys such that Rs;CR; is of

maximal rank. From [OS] we have the following result.

THEOREM 2.35. (1) The map &o: EIl(H)—EN(W) is isometric with respect to EPy
and EPy .
(2) For all teT we have &o(Elly,:(H)) CEllw,s(W), where t=sc with s€T, and

c€eT, is the polar decomposition of t.

Combined with Corollary 2.34 we obtain the following upper bounds for the number

of discrete series characters.
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COROLLARY 2.36. For s€T, let W4 denote the isotropy group of s in Wy. We
call weWsy elliptic if s is an isolated fixed point of w. Let EN(Wy) be the number of
conjugacy classes of Wy consisting of elliptic elements of Wy. For s€T, we denote by
A*(R,q)CA(R,q) the subset consisting of the irreducible discrete series characters of
H(R,q) whose central characters are Wy-orbits which are contained in the set WysT,.

Then |A(R, q)|<EIL(W).

2.3. The central support of tempered characters

In this section deformations in the parameters ¢ of the Hecke algebra play a fundamental
role. Let us fix some notation and basic structures. Recall that we attach to a based
root datum R=(X, Ry,Y, Ry, Fo) in a canonical way a parameter space Q=0 (R). This
parameter space is itself a vector group, defined as the space of length multiplicative
functions ¢: W —R, with the additional requirement that glo=1.

The following proposition is useful in order to reduce statements about residual

points to the case of simple root data.

PROPOSITION 2.37. Let R=(X, Ro,Y, Ry, Fy) be a semisimple based root datum.

(i) Let ROZR(()l) ><...><R(()m) be the decomposition of Ry in irreducible components.
We denote by X the projection of the lattice X onto ]RR[()“7 and we define R =
(X, Réi), y @), (R((f))v, Féi)) and R'=RW x...xR™) . Then the natural inclusion X —
X' defines an isogeny 1: R—R’' and if Q) denotes be the parameter space of the root
datum RY | then ) yields a natural identification Q(R)=Q(R')=QWM x...x Q™).

(ii) We replace X by the lattice X™**=P(Ry), the weight lattice of Ry, and denote
the resulting root datum by R™®*. Then R™** is a direct product of irreducible root data
and there exists an isogeny 1: R—R™** which yields a natural identification Q(R)=
Q(Rmax),

Proof. A length multiplicative function ¢: W —R, is determined by its restriction
to the set of simple affine roots and this restriction is a function which is constant on
the intersection of the W-orbits of affine roots intersected with the simple affine roots.
Conversely every such function on the simple affine roots can be extended uniquely to a
length multiplicative function on W. The group Q~X/Q(Ro)CW of elements of length
0 acts on the set of simple affine roots by diagram automorphisms which preserve the
components of the affine Dynkin diagram of the affine root system R®=RY xZ. The
action of Q on the ith component factors through the action of Q):=X®/Q(R{").
This proves (i). We also see by this that length multiplicative function g€ Q(R) extends
uniquely to a length multiplicative function for W (R™2*)  since a¥¢2Y for all a€ R,
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with R’ being an indecomposable summand which is not isomorphic to an irreducible

root datum of type CcV. This proves (ii). O

Given a root datum R and a positive parameter function g€ Q(R), we define the
Macdonald c-function of the pair (R,q). This is the rational function ¢ on the torus

T=Hom(X,C*) defined by
c= H Cars (31)

a€Ry 4+

where ¢, is defined for a€ Ry by

_ (Atagva®) ) (A-glamat)"1/?)
Ca(tvq) T 1_@@),1 . (32)

Observe that the function ¢, is rational in ¢ despite the appearance of the square root
a(t)*/?. Indeed, if %agéX then we have ¢oov =1, and the numerator simplifies to

1—g 2a(t)~".

aV

The pole order at t=reT of the rational function

Xn(t) = (c(t)e(t™) ™! (33)

is defined as follows. By definition 7(t) is a product of rational functions of the form
Nai=(ca(t)ea(t71)) 71, where a runs over the set Ry . Let B€Ry be the unique root
such that « is a positive multiple of 3. Then 7, is the pull back via 3 of a rational
function g, on C*; we define the pole order of 7, at r to be equal to minus the order
of g, at 3(r)cC*. The pole order iy, of n at r€T is defined as the sum of these pole

orders.

THEOREM 2.38. ([Op3, Theorem 6.1]) For any point r€T, the pole order igy of
n(t) at t=r is at most equal to the rank rk(Ro) of Ro.

Definition 2.39. We call r€T' a residual point of the pair (R, q) if if,)=rk(X). The
set of (R, ¢)-residual points is denoted by Res(R, q).

In particular the set Res(R, ¢) is non-empty only if R is a semisimple root datum.

The next result is trivial but it explains in conjunction with Proposition 2.37 how
residual points for R can be expressed in terms of residual points of the simple factors
of Rmax,

LEMMA 2.40. Let R=(X, Ry, Y, RY) be a semisimple root datum.

(i) Suppose that R—R' is an isogeny which yields an identification Q=Q' (e.g.
R'=R™2* qs in Proposition 2.37). For all ¢€Q we have ' €Res(R’,q) if and only if
r=r'|x €Res(R,q).
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(i) Suppose that R=RM x..xR™ is a direct product of simple factors (e.g. if
R=R™* as in Proposition 2.37). Let T=TW x..xT™) be the corresponding factor-
ization of T and let Q(R):Q(l) X ...x QM) pe the corresponding factorization of Q.

For all q=(¢", ...,q"™)€Q we have a natural bijection

Res(R, q) — Res(RW, ¢M) x ... x Res(R™  ¢(™) (34)

such that r—(rM .., if and only if r=r) _.r(™ with rDeT® for all i=1,...,m.
The following result is straightforward as well.

LEMMA 2.41. Let R be a semisimple root datum with root parameter function q€ Q.
Let reT with polar decomposition of the form r=sc. Let Rs=(X, RS,O,Y,RSV)O) be the
root datum with the root parameters qs as in Definition 2.5. Then r is an (R, q)-residual
point if and only if r is an (Rs,qs)-residual point. In particular R is semisimple in

this case.

Let LCT be a coset of a subtorus 77 CT. We decompose the product (33) as follows

n=ncn*, (35)

where 77, is the product of the factors c,, where a€ R, 1 C Ry, the subset of R; consisting
of the roots that are constant on L, and 5’ is the product over the remaining roots. We
define the order iy, of n at L as the order of n;, at L, viewed as a point of the quotient
torus T/T*. Hence by Theorem 2.38 we have i, <rk(Rp) for all cosets L, and we give

the following definition.

Definition 2.42. We call a coset LCT a residual coset if i, =codim(L) (in particular,
L=T is residual). If we set L=rTL, where r€T}, the subtorus such that Lie(7},) is the
orthogonal complement of Lie(T"), then L is residual if and only if r is a residual point
for the restriction of 1z to Tr. We call r a center of L and we define the tempered part
of L to be L*™P:=rTL (this is well defined).

Recall the following useful results for residual cosets.

PROPOSITION 2.43. ([Op3, Lemma 4.1]) Let L be a residual coset, L#T. Then
there exists a residual coset M DL such that dim M =dim L+1.

From this result one proves easily by induction on the rank of Ry (alternatively, it

follows from Corollary 2.16 in view of Theorem 2.47) the following consequence.
THEOREM 2.44. ([Op3, compare Theorem 1.1]) The set of residual points is finite.

We will also need the following results.
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THEOREM 2.45. ([Op3, Theorem 7.4]) Set t*:=f~1. Then Wo(L!*™P)* =W, Ltemp.

THEOREM 2.46. ([Op3, Theorem 6.1]) If L and M are residual cosets of T, with
L#M, then L'™P ¢ M*™P . Equivalently, the restriction of n* to L'**™P is smooth.

The relevance of the notion of residual cosets stems from the following result.

THEOREM 2.47. ([Opl, Theorem 3.29], [Op3, Theorem 6.1]) An orbit WoyreWo\T
is the central character of a discrete series character of H(R,q) if and only if r is a
residual point, and Woyr is the central character of a tempered character of H(R,q) if

and only if r€S(q), where
Sig)= |J L' (36)

L tempered

Remark 2.48. As we have seen above, Res(R,q)#@ ounly if R is semisimple. By
Lemma 2.40 their classification reduces to the case of simple root data. The residual
points for simple root data have been classified ([HO1, §4] and [Opl, Appendix Al),
and various of the above properties of residual points and cosets were first proven by
classification. In [Op3] most of these properties were proved conceptually (with the
exception of [Opl, Theorem A.14 (iii) and Theorem A.18]). In this paper we will only
use properties of residual points for which we know a classification-free proof unless stated

otherwise.

2.4. Generic residual points

We will study the deformation of discrete series characters with respect to the parameter
q€ Q. We begin by studying the dependence of the central characters on @. We denote
the set of all positive real parameter functions for R by Q=0(R). Recall the following

terminology.

Remark 2.49. We choose a base q>1 and define f,€R such that ¢(s)=qf* for all
s€S. We equip Q in the obvious way with the structure of the vector group RY, where
N denotes the number of W-conjugacy classes in S*%. Given a base q>1 we identify Q
with the finite-dimensional real vector space of real functions s+ f, on S which are
constant on W-conjugacy classes. In this sense we speak of (linear) hyperplanes in Q
(this notion is independent of q). By a half line in Q we mean a family of parameter
functions g€ @ in which the f;€R are kept fixed and are not all equal to 0 and q is

varying in R .

As was remarked in [Op2], it follows easily from [Opl, Theorem A.7] that the residual

points arise in generic Q-families. Let us state and prove this result precisely.
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Definition 2.50. A real-analytic function r: @—T is called a generic residual point
of R if there exists an open, dense subset UC Q such that the element r(q)€Res(R, q)
for all geU. The set of generic residual points of R is denoted by Res(R).

Definition 2.51. Let r€Res(R). We call g€ Q an r-regular (or Wyr-regular) param-
eter if 7(g) €Res(R, q). We denote by Qu® . CQ the subset of Wyr-regular parameters.

It is clear that Q;;fTCQ is the complement of a closed real-analytic subset (for a
more precise statement, see Theorem 2.60). This implies the following basic finiteness

result.

PROPOSITION 2.52. The set Res(R) of generic residual points is finite and Wy-

invariant. This set is non-empty if and only if R is semisimple.

Proof. Suppose that there exist infinitely many distinct generic residual Q-families
q—7r(q). Choose countably infinitely many distinct residual families r1, 79, ... . By Baire’s
theorem we can choose g€ Q such that the r;(¢q) are all residual and mutually distinct.
But by Theorem 2.44 there are at most finitely many residual points for ¢, a contradiction.
Hence the set Res(R) is finite. The Wy-invariance is clear. By Theorem 2.38 it follows
that this set is empty if the rank of Ry is not equal to the rank of X.

For the converse, assume that R is semisimple and consider the 1-dimensional rep-
resentation N,,—q(w) of H(R,q). By Theorem 2.25, this is a discrete series representa-
tion whenever |¢(s)|<1 for all s€S. So, by Theorem 2.47, its X-character r(q)€T lies
in Res(R,q) for all such ¢. Since the corresponding subset of Q is Zariski-dense and

r: @—T is algebraic, it is a generic residual point. O

2.4.1. Results on the reduction to simple root systems

The following result is useful to reduce statements about generic residual points to the
case of simple root data.

LEMMA 2.53. (i) Let R and R’ be as in Lemma 2.40 (i). The restriction map
r'—=r=r'|gxx is a surjection Res(R’')—Res(R) with fibers of order | X':X|.

(ii) Let R be as in Lemma 2.40 (ii). Then we have a natural bijection
Res(R) = Res(R™M) x... x Res(R™) (37)

such that r—(rM . r(M) if and only if v(¢, ..., q"™))=r® (W) .. rm™) (™) with
r@ (g eT® for alli=1,...,m and all g=(¢V,...,¢"™)€Q.

(iii) Let R be arbitrary semisimple and let Q=QWM x...x QU™ be the decomposition
of @Q=09(R) as in Proposition 2.37 (). Suppose that Q' CQ is a connected closed subgroup



DISCRETE SERIES CHARACTERS AND THEIR FORMAL DEGREES 131

of Q such that for each i=1, ..., m the projection m;: Q' — QW is surjective. Let r': Q' —T
be real-analytic with the property that ' (q')ERes(R, q") for almost all ¢ €Q’. Then there
exists a unique r€Res(R) such that r'=r|gs.

Proof. The first two assertions are clear so let us look at (iii). Let
7: Q' —s Hom(X™> C*)=TW x ... x 1™

be a lifting of 7. Choose homomorphisms ¢;: Q) — Q' such that miog;=idge for all i.
Lemma 2.40 implies that the map 7;: Q¥ =T defined by #® (¢0):=(#(¢i(¢?)))@ is
a generic residual point for R . Let #€Res(R) correspond to (71, ..., 7#™)) (using the
notation of (ii)). Then (i) implies that r=7|gx x meets the requirement. If r; also meets
the requirement let 71 be the unique lifting of 71 to Res(R™#*) such that 71|g/=7". Then

it is clear that for all ¢ we must have fgi) =7 The uniqueness follows. O

Recall the result of Lemma 2.41. We see that if r=sc is a residual point then s€T,
belongs to the finite set of points with the property that R, is semisimple. In particular,
if 1 @—T is a generic residual point then the unitary part s of r is independent of g€ Q

and R is semisimple.

COROLLARY 2.54. Suppose that R is semisimple and s€T, is such that R is
semisimple. Let ¢s: Q(R)— Q(Rs) denote the homomorphism q—qs.
(i) Let Res®(R) denote the set of generic residual points r with unitary part s.
There exists a natural bijection
®,:Res’(R) — Res®(Ry),

> ros.

(ii) Using the notation of Definition 2.5, we have a natural bijection

@%gsz Wo\Res" o5 (R) — T's\ (W(Rs.1)\Res*(Rs)),
Wor — TW (Rg1)(reds).

Here Wy\Res""*(R) denotes the set of Wy-orbits of generic residual points whose uni-
tary part is Wys.

Proof. The image Q' =¢(Q)C Q; satisfies the condition as in Lemma 2.53 (iii). The
result (i) then follows from Lemmas 2.41 and 2.53 (iii). The assertion (ii) follows from
(i) and Definition 2.5. O

The previous corollary reduces the classification of the set Res(R) to the classification
of those elements r€Res(R) which are of the form r=sc¢, where s is Wy-invariant. In
this case we further reduce to the level of the degenerate Hecke algebra.
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Definition 2.55. Let R1 CV™ be a semisimple, reduced root system and let K be the
space of Wo-invariant real-valued functions on R;. We denote by Res"™™(R;) the set of
linear maps £: L—V such that for almost all k the point {(k)€V is (Ry, k)-residual in
the sense of [HO1], i.e.

{a € Ry :a(E(k)) = ka}| =|{a € Ry : a(£(k)) = 0}|+dim(V). (38)

We refer to this set as the set of generic linear residual points associated with the root

system Rj.

PROPOSITION 2.56. Let R be semisimple and let s€T, be Wy-invariant. Let K be
the vector space of real Wy-invariant functions on Ry, and given q€Q let ks€KC be the
Wo-invariant function on Ry associated with q by the formulas of equation (25). Let
r=sc be a generic R-residual point.

(i) There exists a unique generic linear residual point € €Res'™(Ry) such that
alc(q)) = e*Ek:)

for all «€Ry and all q€Q (where kg is related to g as above). We express this relation
between r and & by r=sexp(§).

(ii) This yields a Wy-equivariant bijection between Res™°*(R) and Res"™(Ry).

(iii) For all g€ Q we have that v(q) is (R, q)-residual if and only if £(ks) is (R1,ks)-
residual (in the sense of [HO1]).

(iv) The generic linear residual points & are rational in the sense that a(£(k)) is a

rational linear combination of the values kg for all a€R;.

Proof. The existence of £ is a special case of [Opl, Theorem A.7], and the uniqueness
is clear since Ry spans V*. Similarly (ii) follows from [Opl, Theorem A.7]. The rationality
of ¢ follows from the fact that the set of roots contributing to the pole order of ¢ at r

span a sublattice of X of finite index as a consequence of Theorem 2.38. O
The following reduction to simple root systems follows easily from the definitions:

PROPOSITION 2.57. Let Ri=Ry1,..., Rn1 be the decomposition in simple root sys-
tems. Then K=K x...xKy and Reshn(Rl):Res“n(RLl) X...xReslin(RN,l).

2.4.2. Rationality results for generic residual points

Nothing that follows in this paper depends on the results in this paragraph in any essential
way, but these results simplify the notation and reveal certain basic facts. The proofs
in this paragraph depend on the classification of positive generic residual points for
irreducible root systems.
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THEOREM 2.58. Let R be a semisimple root datum, and let r: Q—T be a generic
residual point of the form r=sc. For all x€X the expression x(c)EA is a monomial in
the generators v(s)*! with s€S. Here v(s) is viewed as a function on Q by (v(s))(q):=
q(v(s)). In other words, r is (the restriction to Q of) a Q.-valued point of T.

Proof. Using Lemma 2.53 if suffices to show this for R=(X, R, Y, Ry, Fo) with Ry
irreducible and X being the weight lattice of Ry. By Corollary 2.54, it suffices to consider
the case where s€T is Wy-invariant. Then we are in the situation of Proposition 2.56. In
terms of the rational linear function £: X—V of Proposition 2.56, the assertion amounts
to showing that 2¢ is integral, i.e. 2(2€) is an integral linear combination of the functions
ks (with B€R;) for all integral weights x. We call £ a generic residual point for Ry (in
the sense of [HO1]).

If R1=A,, it is easy to see that 2¢ is integral (even for even n).

If R1=B,, it suffices to remark that the integrality of & with respect to the root
lattice follows from the description of the residual points as in [HO1, §4] (see also §6).

The generic residual points for R; of type C,, are in bijection with those of type
B,, as follows. Let k; denote the parameter of the C), roots of the form +e;+e; and &y
the parameter of the C,, roots +2¢;. If £’ is a generic By,-residual point then £(k1, ko)=
& (k:l, %kz) is a generic C), residual point. This sets up a bijective correspondence between
the generic residual points of B,, and of C),. Hence if £ is residual for C,, then 2¢ is integral
with respect to the root lattice of B,,, which is equal to the weight lattice of C,,.

If Ry is of type D,, or E, we use that £ is integral with respect to the root lattice
[Opl, Corollary B2]. In order to check the integrality of 2¢ with respect to the weight
lattice one needs to check in addition the integrality of x(2£) with respect to the minuscule
fundamental weights. This is an easy verification using the explicit descriptions of the
Bala—Carter diagrams of the distinguished parabolic subgroups in [Ca, §5.9] (see [Opl,
Appendix B] for the explanation of the relation between residual points and Bala—Carter
diagrams for the simply laced types) and Table 1 in [Hu, Chapter III, §13.2] expressing
the fundamental weights in the simple roots. For R;=D,, there are three minuscule
fundamental weights to check, and for Ry = Fg there are two of these. For F; and FEg the
integrality of £ with respect to the root lattice suffices since the index of the root lattice
in the weight lattice is at most 2.

For F; and G5 the root lattice is equal to the weight lattice. In these cases the result
follows simply from the tables in [HO1, §4]. O

We introduce the following notation.

Definition 2.59. Let r=sc€Res(R). Recall that for all € Ry, a(r)=a(s)a(c) with
a(s) being a root of unity and «(c) being a monomial in the variables vgfvl (with 8 €Ry;)



134 E. OPDAM AND M. SOLLEVELD

as described above. We define

RET ={a€RoNRy:v2va(r)—1=0}U{28 € Ri\ Ry : vgv/ov3y B(r)—1=0},
Rf)’{r = {256 Rl\Ro : ’Uﬁv/zﬁ(r)—f—l :0}’
r1={a€R;:a(r)-1=0},

and we define an element myy,» € K(A) in the quotient field K(A) of A by (with woeWj
being the longest element)
v(wo)  [aer,\ sz, ((r) 71 =1)

HaeRl\Rf;f (vova(r)=t/2+41) HQGRI\R%; (v svga(r)=t/2—1)

Mwor = (39)

As before, if a€ RgN Ry then vs,v =1 and the corresponding terms in the denominator
simplify to v;vzoz(r)_lfl. Therefore, the expression is rational in the values a(r) with
a€Ry. Observe that the above definition of myy,, is indeed independent of the choice of

r in the Wy-orbit Wyr, justifying the notation myy,,.

THEOREM 2.60. Let r be a generic residual point. We view the generators v(s) of A
as functions on Q via v(s)(q):=q(v(s)) as before. The function my,, is real-analytic on

reg

Q. The set of r-regular points Qe :={q€Q:r(q)€Res(R,q)} of Q is the complement
of the zero locus Qa}:ﬁ of mwyr in Q. In particular, this set is the complement of a

union of finitely many (rational) hyperplanes in Q.

Proof. Since r(q) is generically residual it is clear that |RYURE | |—|RZ ) |=rk(X).
By Theorem 2.38, it is therefore clear that for all g€ @ the number of factors that are
zero at ¢ in the numerator of myy,,» has to be at least equal to the number of factors that
are zero at ¢ in the denominator. This implies that myy,, is real-analytic on Q, and that

the zero locus of myy,, in Q is precisely the set of ¢ such that r(q) is not residual. O

Definition 2.61. Let g€ Q. We define Res,(R)={rcRes(R):r(¢)€Res(R, q)}. Thus

Resq(R) is the set of generic residual points whose specialization at ¢ is residual.

Let r=sc€Res(R). By Lemma 2.41, the evaluations z(s) with z€X are roots of
unity. Let KDQ be the Galois extension of Q generated by the values x(s) with x€
X. Theorem 2.58 implies that for all z€X we have z(7)€ K[v(s)*':5€9], the ring
of Laurent polynomials in the variables v(s)*! (with s€S) with coefficients in K. Let
c€Gal(K/Q). By the above, there is a canonical action r+—o(r) of Gal(K/Q) on Res(R)
characterized by ac(a??))za(x(?)) for all € X, where o on the right-hand side is acting
on the coefficients of z(7)€A (these are indeed elements of A with algebraic coefficients,
by Lemma 2.41 and Theorem 2.58).
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PROPOSITION 2.62. Let R be a semisimple root datum.

(i) Let rcRes(R) and o€Gal(K/Q). Then o(r)|lqry) EWorlQ(ro), where Q(Ro)C
X denotes the root lattice of Ry.

(ii) For all reRes(R) we have mw,,€K(Az), the quotient field of the subring Az:=
Zlv([s])*1:[s]eS]CA of A.

(iil) In the situation of Lemma 2.53 (1), we have my,r =mw,,, and in the situation

of Lemma 2.53 (ii), we have mWOT(q)szé1>T(l>(q(1)) ...mwémr(k)(q(k)).

Proof. The first assertion follows from the proof of [Opl, Proposition 3.27]. Then
(ii) follows from (i) by the fact that my,, only depends on the restriction of r to Q(Ry)
and the fact that the assignment r—myy,, is Wy-invariant. The assertions of (iii) are
trivial. O

2.4.3. Deformation of residual points in the parameter g

The following result is very important: it says that all residual points are obtained from

specialization of the generic residual points.

PROPOSITION 2.63. Let R be a semisimple based root datum. The evaluation map
evy: Resg(R)—=Res(R, q) given by evy(r)=r(q) is surjective for all g€ Q.

Proof. We prove this fact by induction on the rank of Ry. If the rank of Ry is 1,
the assertion can be verified by an easy inspection. Assume that the result holds for
all maximal proper parabolic subsystems of Ry. Let ro€T be a residual point for the
parameter value go€ Q. By Proposition 2.43, we know that there exists a residual line
Lo=rp oT*, where r £,0€T7, is a residual point for a proper maximal parabolic subsystem
Ry, CRy with the property that ro€Lg. By the induction hypothesis, Lo=L(qo) for a
generic family of residual lines L(q)=rr(¢)TT (in other words, the Ry-residual point
rro is the specialization r7 o=rr(qo) at go of a generic Ry residual point r). By
Theorem 2.38 and Definition 2.42, it follows easily that for each fixed g€ Q such that
r1,(q) is residual, the rational function n’ (see (35)) on L(q) has poles of order at most 1
on L(q), and x€ L(q) is (R, q)-residual if and only if z is a pole of n”(-,q). In particular
7o is a simple pole of n’(-,qp). Considering the form of the factors in the denominator
of n’, this implies easily that r is the specialization at g=gqo of at least one Q-family
of the form g—r(q)€ L(q) such that r(q) is residual for all ¢ in an open neighborhood of
go. Hence r€Res,(R) and evy, (r)=r(go)=ro as desired. O
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Definition 2.64. Let R be a semisimple root datum and let r€Res(R). We say that
q€Qyr, is an r-generic (or Wor-generic) parameter if for all 7' €Res(R) the equality
Wor'(¢)=Wor(q) implies that r'€Wyr. The set of r-generic parameters is denoted by

%{}Zr. We define the set Q8™ of generic parameters by Qgen:ﬂTeRes(R) Q‘g/‘c,gr.

PROPOSITION 2.65. Let R be a semisimple root datum. For all r€Res(R) the set

%;27‘ is the complement of a finite collection of rational hyperplanes in Q.

Proof. This follows easily from Corollary 2.54 and Proposition 2.56. O

The proof of the following important proposition depends on the classification of

residual points.

PROPOSITION 2.66. Recall that the central support of the set of tempered irreducible
characters of H(R,q) is given by the union S(q)=J; L*™P (union over the set of (R,q)-
residual cosets LCT) (see Theorem 2.47). Let S;(q)=J; L**™ CS(q) denote the subset
of S(q), where the union is taken only over the residual cosets of dimension at least 1.
The sets |U,eo(q: Si(q)) CQXT are closed for all i.

Proof. In view of Definition 2.42, it is clear that it suffices to show that if r€Res(R)
and qOEQS‘}i[Z%, then there exists a residual coset L such that r(go)€L*™P. By [Opl,
Theorem A.7], this reduces to the statement that if ¢ is a positive generic residual point,
then ¢(qo) coincides with the center of a positive residual coset. Since the collection of
centers of positive residual cosets does not depend on the choice of the lattice X, we may
replace X by X™#* (as in Proposition 2.37). Since R™* is a direct sum of irreducible
summands, this shows that it suffices to prove the statement for a root datum R with
Ry irreducible.

In the case when Ry is simply laced, this follows from the remark that Q?;:)grz{qo:l}
for all reRes(R). By Lemma 2.41, we have r(1)=e, which is the center of T*™P=T,. If
Ry is of type B,, or C,,, then this is [S12, Proposition 4.15]. For type G2 and Fj, it can
be read off from the tables [HO1, Tables 4.10 and 4.15]. O

3. Continuous families of discrete series

In this section we show that every discrete series character of H=H(R, q) is the special-
ization of a unique maximal “continuous parameter family” of discrete series characters.
Using this fact and our results on EP4,, the discrete series can be parametrized explicitly
for all irreducible root data R which are not simply laced. An important ingredient is the
fact that the central characters of the irreducible discrete series characters are precisely
the Wy-orbits of residual points.
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Another main result in this section states that the formal degree of a continuous
family of irreducible discrete series characters is a rational function on @ with rational
coefficients. This function has a product expansion in terms of the central character of
the family, and an alternating sum expansion in terms of the branching multiplicities of

the discrete series representation to finite-dimensional Hecke subalgebras.

3.1. Parameter deformation of the discrete series

In this subsection we show that each irreducible discrete series character is a special-
ization in the parameter ¢ of a unique continuous Q-family of irreducible discrete series
characters.

It is useful to remark that such deformations are well understood for scaling de-
formations of the parameters along half lines. What we are about to discuss in this
subsection is what happens for general deformations. Therefore this yields no extra in-
formation whatsoever for the simply laced cases. On the other hand, for the non-simply
laced root systems, the method turns out to be sufficient in most cases to distinguish the
irreducible discrete series characters with the same central character form each other,

and parametrize them by continuous Q-families of discrete series characters.

Definition 3.1. Let R be a semisimple root datum, ¢o€Q, and let ro€T be an
(R, qo)-residual point. We denote by P(rq)={WoreWy\Res(R):Woyr(qo)=Wopre} the
finite set of Wy-orbits of generic residual points which coalesce at Wyrg for the parameter
value ¢=qq.

For t€T let Aw,:(R,q0) CA(R,qo) be the collection of irreducible discrete series

characters with central character Wyt.

LEMMA 3.2. Let ro=sopco be an (R, qo)-residual point, and let 0<€<%. There exists
an open neighborhood UCQ of qo and a Hermitian element z€C[T)"° such that

(i) z is positive on S(q) for all g€ Q;

(i) z(t)<e for all €U and t€S(q)\{Wor(q):reP(ro)};

(iil) There exists M>1 such that 1—e<z(Wor(q))<M for all €U and reP(rop).

Proof. According to [Opl, Lemma 3.5], for any §>0 there exist elements a€C[T]"o
such that a(Wyrg)=1 and such that the uniform norm of a on an (R, qo)-residual coset
Sc(qo) is smaller than § for all centers ¢ such that Wyc#Wyco. By Theorem 2.46, we
know that rg is disjoint from the union of the tempered residual cosets of dimension at
least 1 (in particular, co#e). Hence we can multiply a by further factors in order to
make sure that a is equal to zero on all tempered residual cosets contained in Se,(qo)
other than ry. By taking § small enough, we can arrange that the uniform norm of a
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on all components of S(qg), other than the points of Wyrg, is smaller than e. Define
2€C[TI™° by 2(t):=a(t)a(t~1). Using Theorem 2.45, we see that z(rg)=1 and that z is
non-negative on S(q) (for all g€ Q). This proves (i).

Define two open subsets V,:={t€T:|z(t)|>1—¢c} and V_:={teT:|z(t)|<e} of T.
By Proposition 2.66, we see that for all g€ Q the support S(q) is the following union of

compact subsets:

So=J U wor@T!. (40)
P reRes(Rp)

Put Wor(q)TE=S(P,r,q). By the above it is clear that S(P,r,qo)CV, if and only if
Rp=Ry and WyreP(rg). On the other hand, S(P,r,qo)CV_ if and only if Rp=Ry and
Wor¢P(Ro) or if Rp#Ry. By the compactness of the sets 7.2 and the continuity of the
generic residual cosets r€Res(Rp) (viewed as functions on Q), it is clear that there exists
an open neighborhood U of gy such that for all €U and for all pairs (P, r) we have that
S(P,r,q)CV_ if and only if S(P,r,qo) and S(P,r,q)€V, if and only if S(P,r,qo)€V,.
Hence for all geU we have

S(q)=(S(@)NVi)u(S(g)NV-) (41)

and S(¢)NV,.=P(r¢)(q). From this we easily deduce (ii) and (iii). O

Let L?(W) denote the abstract Hilbert space with Hilbert basis (N, )wew indexed
by the elements of W. We identify L?(W) with the Hilbert completion L?(H(R,q))
(for any fixed g€ Q) by identifying N, € L2(W) with the basis element N, €H(R,q).
In this way L?(W) comes equipped with the structure of a module over the C*-algebra
completion of the pre-C*-algebra H (R, q). By abuse of notation, we will denote the basis
elements N,, of the module L2(W) simply by N,,. Similarly we use the notation S(WW)
for the abstract Fréchet space of functions on W which are of rapid decay with respect
to the norm function A" on W. For each fixed g€ Q we identify S(W) with the Fréchet
algebra completion S(R,q) of H(R,q).

Given g€ Q and zeC[T|"0, let z,€H(R,q) denote the element z viewed as an ele-
ment of H(R,q) via the isomorphism defined by the Bernstein basis of the center Z(q)
of H(R,q) with C[T]"°. The above lemma implies that z,€H(R, g) is a positive central
element such that if geU its spectrum on L?(H(R,q)) is contained in [0,)U(1—¢, M].

THEOREM 3.3. Let U, M>0 and >0 be as in the previous lemma. Let e,:=
Ps1-e(24) ES(R,q) denote the element of S(R,q) obtained by holomorphic calculus ap-
plied to zg€H(R,q) with respect to a function ps1_. on the spectrum that is equal to 0
in an open neighborhood of [0,¢] and is equal to 1 on an open neighborhood of [1—e, M].
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(i) For all qeU, e,€S(R,q) is a self-adjoint, central idempotent.

(ii) For all qeU we have an orthogonal decomposition

€q = Z Z €5(9),q> (42)

WoreP(ro) 6(0)EAW,r(q)(R,q)

where esq),q 15 the primitive central idempotent of S(R,q) corresponding to the irre-
ducible discrete series character §(q) € Aw,,(q) (R, q) (the set of irreducible discrete series
characters of H(R,qo) with central character Woyrg).

(iii) For all geU the two-sided ideal Zy:=e,S(R,q) CS(R,q) is a finite-dimensional,
semisimple, involutive subalgebra of S(R,q).

(iv) The family q—e,€S(R,q)~S(W) is continuous with respect to the parameter
qeU.

(v) The dimension dimc(Z,) is independent of qeU.

(vi) The isomorphism class of I, viewed as a (finite-dimensional) C*-algebra is
independent of qeU.

Proof. By the previous lemma, it is clear that p~i_. is holomorphic on the spec-
trum of z,, hence we may apply holomorphic functional calculus. Thus (i) follows from
the fact that S is closed for holomorphic functional calculus, see Theorem 2.23, and the
basic properties of the holomorphic functional calculus. The assertion (ii) follows from
the previous lemma and the definition of the idempotent e,. The finite-dimensionality
of Z, follows simply from (ii). Clearly Z, is an involutive algebra because e, is central
and self-adjoint. Thus the trace 7 and the anti-involution x give rise to a positive def-
inite Hermitian inner product on Z, with the property that (ab,c)=(b,a*c). Hence Z,
is a semisimple subalgebra, proving (iii). It is easy to see that U>gr—>z,€S(W) is a
continuous family (by expressing z in the N,, basis of H(R,¢)). Hence (iv) follows from
the continuity of the holomorphic functional calculus, see Theorem 2.23. For (v) we first
remark that it is clear that for all €U the projection A(e,) €B(L*(H(R,q))) (where A
denotes the left regular representation) is of finite rank (since only finitely many central
characters support the image of e, by construction). On the other hand, it is clear from
Theorem 2.23 and [So, Proposition 5.6] that this family of projections is norm contin-
uous in B(L2(H(R,q))), implying in particular that the rank is constant in the family.
Finally observe that Z,=M(e,)(L*(H(R,q))). In order to prove (vi), we use the notion of
approximate matrix units in a C*-algebra [BKR, Definition 2.2]. Let mgl,)c(qo) be a basis
of matrix units of Z,,. Given an element ¢eU we define ﬁly,)c(q):eq-m;fi (go), where in
the right-hand side we view mg-f,)c(qo) as an element of S(R,¢) via the canonical isomor-
phism S(W)~S8(R,q). Let ¢’ >0. By (iv), (v) and [So, Proposition 5.6] we obtain that
there exists an open neighborhood gy€U. CU of qg such that for all geU,/ the elements
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ﬁzgl,)ﬂ(q) form a basis of ¢’-approximate matrix units of Z,. This means that for all 7, j,

k, 1, m, n and for all ¢g€U,/, we have

17 (), (0) —8i.10k,min ) (g)| < € (43)

and
~(i)7 ~ (1) \* / 44
;5 — (my ;)" [ <e (44)

(where the norm refers to the C*-algebra norm). Now [BKR, Lemma 2.3] implies that
for ¢’>0 sufficiently small there exists a basis of matrix units mgzi(q) of 7, with the

property that for all 4, 7 and k,

[k (a) —m @) << (45)
In particular it follows that Z, for €U, is isomorphic to Z,, as a finite-dimensional C*-

algebra. Using a suitable open covering of U, this result extends easily to ¢€U, proving
(vi). O

THEOREM 3.4. Keep the notation as in Theorem 3.3. Let ro€Res(R, qo).

(i) There exists an open neighborhood U of qo such that for each 6o € Awyr, (R, qo)
there exists a unique family of primitive central idempotents USqr—es(q),q€S(R,q)=
S(W

~—

with the following properties:
a) 4(qo)=bo;
b) The function U>q—X(es(q),q,q) EB(L*(W)) is continuous;

c) For all geU, the value e5q),4€Z, of this function is a primitive central idempo-

—~ o~

tent;

(d) The degree of the irreducible character 6(q) of I, afforded by es(q),q s indepen-
dent of q;

(e) For all qeU the set {eé(q),q}é(qo)eAwom(R,qu) is the complete set of mutually
inequivalent primitive central idempotents of Z,.

(i) The continuous families of primitive central idempotents USqr>esq).q (with
0(q0) EAwyro (R, qo)) define, for all qeU, a canonical bijection §(qo)—0(q) between the
set Awyro (R, qo) and the union

U AWor(q) (R7 Q)~ (46)
Wo’r’ep(’r‘o)

Proof. Using the notation of the previous theorem, we define for all g€ U,/ and for
all ¢,

eVlg) =3 mil)(a) )



DISCRETE SERIES CHARACTERS AND THEIR FORMAL DEGREES 141

This is a primitive central idempotent in Z, which is independent of the choices of the
matrix units mgl,)c (¢). Indeed, another choice of the matrix units would lead to a central
primitive idempotent norm close to e(Y(g). This implies unitary equivalence in the C*-
algebra 7, of these idempotents, but since these idempotents are also central, unitary
equivalence means actual equality. It follows from this argument that the family of central
primitive idempotents U, 3q—e(?)(q) is continuous at go in the following sense: The
family of bounded operators U.: g+ A(e(?(q), q) on L?(H(R,q))=L*(W) is continuous
at gop. Using the independence of the central primitive idempotents for the choice of
the matrix units, we may repeat this arguments for any g€ U,/ to prove that the families
U. 3q— e (q) are continuous on U.. If we put U:=U,/ it is now straightforward to prove
the listed properties of (a)—(e) for the constructed continuous families e(*) of primitive
idempotents. Finally the uniqueness follows again from the above rigidity argument for
central primitive idempotents, in combination with the continuity, proving (i).

In view of Theorem 3.3 (ii), this sets up, for each value of ¢€U, a bijection between
the set of continuous (in the above sense) families of primitive central idempotents e(?)
and the set of irreducible discrete series characters §(q) € Ay, ,(q) (R, q), where Wor runs
over the set WyreP(rg). This proves (ii). O

The above notion of continuity of a g-family of irreducible discrete series characters

is special for discrete series characters.

Definition 3.5. Let go€Q and let do€A(R,qp). For qeU (as above) we denote by
d(q) the equivalence class of irreducible discrete series representations afforded by es(q),q-
For any open set UCQ we refer to such a family §:¢—d(q) of equivalence classes of
representations afforded by a continuous family of central primitive idempotents in S
(in the above sense, thus in the operator norm of B(L?(W))) as a “continuous family
of irreducible discrete series characters on U”. We denote the set of such continuous
families by A(R,U).

There is also a weaker notion of continuity for a g-family of characters which is
applicable to more general characters.

Definition 3.6. Let U>g—7(q) be a family of equivalence classes of irreducible rep-
resentations 7(q) of Q(R,q). We say that g—m(q) is a weakly continuous family of
irreducible characters of H(R) if U3¢+ X (q)(Nw) is a continuous function for all weW.

We denote by A¥(R,U) be the set of weakly continuous families U>q++6(q) of
irreducible discrete series characters (i.e. weakly continuous families ¢2U—d(q) such
that for all g€U we have x4 €A(R, q)).

Continuity of a family of discrete series characters implies weak continuity:
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PROPOSITION 3.7. Let UCQ and let € A(R,U). Then the family q—4d(q) is also

weakly continuous.

Proof. Indeed, by the Plancherel formula for H(R, q) we have

7(€5(g),q) = deg(8(q)) p1(6(q)), (48)

and hence this function is positive, and continuous by Theorem 3.4 (i) (b). Hence the

basic formula

7(€5(q),4Vw)
T(eé(q)vq)

combined with Theorem 3.4 (i) (b) and (d), implies the desired continuity. O

Xs(q) (Nw) = deg(6(q)) (49)

PROPOSITION 3.8. Let §€ AVK(R,U). We define the generic central character map
cc(8, - ): U—=Wo\T by cc(d,q)=cc(d(q)). Then cc(d) is continuous and for all geU we
have cc(d,q)€Res(R, q).

Proof. This is a trivial consequence of Theorem 2.47 and Proposition 3.7. O

In fact it is true that cc(d) €Wy \Res(R), but this is not obvious at this point. This
result will be shown in Theorem 5.3.
Actually weak continuity and continuity are equivalent for families of discrete series

characters. We have the following result.

THEOREM 3.9. Let A(R) and AVE(R) be the sheaves on Q defined by the presheaves
U—A(R,U) and U AVY(R,U), respectively.

(i) The natural sheaf map A(R)—AVK(R) is an isomorphism.

(ii) Let An(R) denote the sheaf of non-negative integral linear combinations of
A(R), and let AYX(R) denote the sheaf of weakly continuous families of (not neces-
sarily irreducible) discrete series characters. The natural map Ay(R)—ANK(R) is an

isomorphism.

Proof. 1t is clear that all presheaves involved are sheaves of sets.

Let us prove (i). Given §€AYX(R,U) we need to show that § is continuous in the
strong sense. Let qo€U, and let Wyrg be the central character of §(gg). By Theo-
rem 3.4 (ii), there exists a neighborhood V' CQ of ¢ such that for any o€ Aw, (R, qo)
there exists 6€A(R, V) such that 0=64,:=evy,(F) (the evaluation of the strongly con-
tinuous family & at go€V'). Moreover, Theorem 3.4 (ii) asserts that for all g€V the irre-
ducible discrete series characters ¢, (with c€A(R, go)) are mutually distinct and range
over the set of all irreducible discrete series characters of H(R,q) whose central char-
acter is of the form Wyr(q) for some generic Wor€P(rq). Now consider §€ AV (R, U).
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By Proposition 3.8, it is clear that for all g€V the central character cc(d(q)) is of the
form Woyr'(q) for some Wyr'€P(rg). The linear independence of irreducible characters,
the finiteness of Ay, (R,qo) and Proposition 3.7 imply that there exists a finite set
ACW and a neighborhood V’'3qy such that for all fixed g€V’ the finite set of vec-
tors $(q):={&2(q)€CA:0€ Awyry (R, q0)} With €2(q):=(xs,(Nw))wea is linearly inde-
pendent. In particular the irreducible characters &, are separated by the vector £2(q)
of their values on N,, with weA. Obviously the maps é4:U—C# are continuous. By
the weak continuity of ¢, it follows similarly that the map E;{‘: U—C# is continuous and
by the above, for all g€V we have ££(q)€X(g). This implies that there exists a unique
o€ Aw,r, (R, qo) such that o)y =&y, proving that J is strongly continuous at gg. Since
qo €U was arbitrary, the result follows.

Let us now prove (ii). Let §€ AYX(R, U). We need to show that § is continuous in a
strong sense. Let qo€U, and let Wyr; (where i=1, ..., k) be the set of central characters
of the irreducible constituents of d(qp). We have 5|Ugen:ZWor wor|usen (where Wor
runs over the set Wy'\Res(R) of orbits of generic residual points), where U :=Qg*NU
and where U8 3¢+ dw,(q) is a weakly continuous family of discrete series characters
such that for all geU®", cc(dw,r(q))=Wor(¢g). Recall that Q8™ is the complement of
finitely many rational hyperplanes in Q.

We claim that for every connected component U’'CU8™ which contains qq in its
boundary, we have dy,, | #0 only if WorelJ; P(r;). Indeed, there exists a z€Z such
that z(Woyr;)=0 for i=1, ...,k but with z(Wyr(go))=1 for all orbits of generic residual
points Wyr such that Woyr(qo)¢{Wor1, ..., Worr}. Observe that for all r€Res(R) the
value deg(dw,|u)€Z, is independent of ¢eU’, since the family dy, .|y is weakly con-
tinuous. By the weak continuity of § on U, we see that U>q— x,:=Xs(q)(2) must be
continuous at go; however, by definition of z, it follows on the one hand that x4, =0,
while on the other hand the limit for g—q¢ from U’ yields

> deg(Gworlv).
Worgl, P(r:)
The claim follows.

We now prove in a similar fashion to the proof in (i) that if WorelJ, P(r;) and if
U’'CcU®&™ is a connected component which contains ¢g in its boundary then dw,,|v is
strongly continuous and in fact extends uniquely to a neighborhood U” of qq in a strongly

continuous sense. This finishes the proof. O
Remark 3.10. We identify the sheaves A(R), AYE(R), Ay(R) and A¥*(R) on Q
with their étale spaces. These sheaves are Hausdorfl spaces. As sets we have

AR) =T AR, a). (50)
qeQ
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Proof. By Theorem 3.9, it suffices to show this for A(R). In this case the result
follows simply from Theorem 3.4 (ii). O

ProrosITION 3.11. A continuous family of irreducible discrete series characters
U>q—0d(q) is compatible with the scaling maps . (with €>0) of [OS, Theorem 1.7] in
the sense that 6:(6(q))=0(q%).

Proof. We may assume that UC Q is an open ball centered around ¢o€ Q such that
evg,: A(R,U)—A(R, qo) is an isomorphism. Let £C Q be the half line generated by go.
Let 6 A(R, qo) and 6 € A(R, U) be such that evy, (§)=0. Consider the continuous family
6W) defined by restricting the section § to £LNU, and the continuous family 6@ defined
by scaling LNU3¢5—6.(6). It follows from the analyticity ([OS, Theorem 1.7 (1)]) that
s e AYE(R, LNU). The result 6V =§? follows from Theorem 3.9. O

COROLLARY 3.12. We can extend any continuous family of irreducible discrete series
characters 6€ A(R,U) in a unique way to d€A(R, [7), where ﬁ:U5>O U® is the open
cone in Q generated by U.

Proof. Let LU be a half line. By the above proposition and the properties of the
scaling maps (namely, for £>0 these maps induce bijections of the sets of equivalence
classes of irreducible discrete series characters), we see that the restriction Az(R) of

A(R) to L is a constant sheaf. The result follows easily from this remark. O

4. The generic formal degree

Let UCQ be a connected open cone, and let §€ A¥¥(R,U). In this subsection we prove
the rationality of the formal degree U3¢~ pup1(d(q)), i.e. we prove that this function
is the restriction to U of a rational function of the root parameters g,v with rational
coefficients, i.e. of an element of K (Az). We refer to this rational function as the generic
formal degree of the family §. We combine the rationality of the generic formal degree
with the product formula [Op3, Theorem 4.10] for the formal degree of d(q) valid for ¢
varying in a half line in Q. We then obtain the factorization of the generic formal degree

as an element of K (A).

4.1. Rationality of the generic formal degree

Let R be a semisimple root datum and let QCW be the finite subgroup of length-zero
elements. If f is a facet of the fundamental alcove C, then we denote by W;CW*
the finite subgroup generated by the simple affine reflections s€S that fix f, and by
QrCQ the (setwise) stabilizer of f in Q. Let (f)CE be the affine subspace spanned
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by f, and let E/(f) be the linear space formed by the cosets e—(f) (with e€E) of the
linear subspace associated with (f). Let €5 be the determinant character of the linear
action of Q¢ on E/(f). The involutive subalgebras H(R, f,q)=H(Wy,q) xQs CH(R, q)
are finite-dimensional (since W %)y is finite) and semisimple by [OS, Lemma 1.4].

Let F be an algebraic closure of K(Az) and let ICF be the integral closure of Ag.
We choose an extension to I of the homomorphism ¢: Az —C. Consider the semisimple F'-
algebra Hp (R, f)=Hr(W;)xQ;s. Let xI be the character of a simple Hz(R, f)-module.
According to a well-known argument of Steinberg (see e.g. [Ca, Proposition 10.11.4]),
one has xI'(Ny) €I for all weW; x ;. Furthermore the C-linear map y: H(R, f,q)—C
defined by x(Ny)=q(x¥(Ny)) is the character of a simple H(R, f,q)-module, and this
provides a bijection between HF/(R\,f) and H@ q) (cf. loc. cit.).

LEMMA 4.1. Let dy € F be the formal degree of X with respect to the trace form T
restricted to the algebra Hp(R, f). Then dy€K(Az) and dy is reqular on Q.

Proof. For all g€ Q the trace form 7 of the algebra H(R, f,q) has a non-zero dis-
criminant, proving that H(R, f,q) (and a fortiori Hp(R, f)) is a symmetric (and thus
semisimple) algebra. Let (V, o) be a matrix representation of Hp (R, f) whose character
equals x¥. We write d,:=d, for its formal degree (with respect to 7).

The orthogonality of characters of a symmetric algebra implies that

where S, is the Schur element of o", given by

dimp(V)So = > X" (Nux) X" (Nwxw)-1)- (52)
wXWEWFxQy

By a well-known result (see e.g. the argument in [Ge, Proposition 4.6], which applies to
our situation as well as one easily checks) one also has the following formula for the Schur
element:

dimF(V)So—(q)idV: Z O'F(wawN(wXW)*l)- (53)
WXWEW X

But clearly (loc. cit.)

Z UF(NwaN(wa)_l):|Qf| Z JF(NwNw_l)' (54)
wWXWEW X Qy weWy

This last equality implies that if (of',V}) is any simple submodule of the restriction of
ot to Hp(W;), then
dimp(V)S, = |Qf|dimp (V1) Se, - (55)
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The right-hand side of this equation is known to be in K(Az) (see [Ca, §13.5]), proving
the desired result. The last assertion follows from the well-known fact that the Schur
element of S, is non-zero at ¢ if and only if o corresponds to a projective irreducible
representation of the specialized algebra H(Wy, ¢). Since H(Wy, g) is semisimple for g€ Q
this holds true for all o. O

Let §€ AVK(R,U). Following [SS] and [Rel], we define for ¢€U the index function
f5.4€H(R,q) by

fsa=Y_(=D)I " deg(0) " [0glrr.1.0) @  Oleo, (56)
- —~

o€H(R,f.q)

where f runs over a complete set of representatives of the Q2-orbits of faces of the fun-
damental alcove C, and where e, €H(R, f,q) denotes the primitive central idempotent
in the finite-dimensional complex semisimple algebra H(R, f,q) affording o. The im-
portance of the element fs5,€H(R,q) is that it links character theory with the elliptic
pairing. Indeed, following [SS] and [Rel], one shows, using the Euler—Poincaré principle
and Frobenius reciprocity, that for all representations 7 of finite length of H(R,q), one
has (see [OS, Proposition 3.6])

X (fs,4) =EP2(6(q), m). (57)

Definition 4.2. The multiplicities [6(q)|x(r,s,q ®€:0] are independent of g€U; by
Proposition 3.7. We denote these multiplicities by [0;®¢ef:0]€Zx0.

THEOREM 4.3. Let UCQ be a connected open cone and let S€EAYE(R,U). We have
the following index formula for the formal degree up1({6(q)}) (with q€U):

pr({8(0)}) =7(fsq) =D (1) N7 [5r@es:0ldo(q). (58)
7 —

o€H(R, f,q)

Here f runs over a complete set of representatives of the Q-orbits of faces of C, and
d,(q) denotes the formal degree of o in the finite-dimensional Hilbert algebra H(R, f,q)

(as in Lemma 4.1).

Proof. We apply the Plancherel formula (27) to fs4. In view of (57) and Corol-
lary 2.34, we see that ppi1({0(¢)})=7(fs4). Now use (56) and Definition 4.2. O

COROLLARY 4.4. Let UCQ be a connected open cone and let €EAVX(R,U). The
formal degree Usq— up1({6(q)}) is the restriction to U of a rational function in the
parameters gov (with o€ Ry,) with rational coefficients (or in other words, an element
of K(Az) in the notation of Proposition 2.62 (ii)). This rational function is reqular on

Q and positive on U.
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Proof. Consider the index formula as given in Theorem 4.3. The result now follows

from Lemma 4.1 (the positivity on U is obvious). O

4.2. Factorization of the generic formal degree

LEMMA 4.5. Let S€AVK(R,U) be a weakly continuous family of irreducible discrete
series characters on a convex open cone UCQ. The map cc(0(-)): U—=Wo\T is contin-
wous. There exist finitely many mutually disjoint, non-empty connected open subcones
U, CcU such that UZ U;CU is dense, and such that for each i there exists an orbit Wyr;
of generic residual cosets such that U;NUC Qe and cc(9)

v, =Worilu,. In particular

cc(d) is continuous and piecewise analytic.

Proof. The continuity of cc(d) on U follows from Proposition 3.8. Let U; run over
the finite set of connected components of UNQ&". Then the restriction of cc(d) to U;
must coincide with the restriction of a unique orbit of generic residual points, by the
continuity of cc(d) and the definition of Q#®. By continuity, for all g€U;NU the orbit
Wori(q) carries discrete series representations. Hence r;(q) is residual, or equivalently

reg

€ Q- O

THEOREM 4.6. Let §€AVY(R,U) be a weakly continuous family of irreducible dis-
crete series characters on a convexr open cone UCQ. Let r be a generic residual point
such that there exists a non-empty connected open subcone U; CU such that cc(6)|y, =
Wor
that we have the following equality in K(Az):

U, (see Lemma 4.5). There exists a constant d€Q* (depending on § and Wyr) such

pei({0}) = dmw,. (59)

Here myy,r €K (Az) (see Proposition 2.62 (ii)) is the function defined in (39).

Proof. We fix f,€R and denote the corresponding half line in Q@ by £LCQ (see
Remark 2.49). Notice that either LNU;=@ or LCU;; assume that £ is such that we are
in the latter situation. By [Opl, Corollary 3.32 and Theorem 5.6], we have

pe1({6(q)}) = d(g)mw,r(q) (60)
for all ¢eU;, where d(q)€R* has the property that for all eeR,,
d(q”) = d(q), (61)

where ¢° is defined by ¢°(s)=¢q(s)¢ for all affine simple reflections s. By Theorem 2.60,
Corollary 4.4 and (60), we see that d is itself a rational function which is regular on U;.
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Recall that we view q>1 as coordinate on L. The expressions a(r(q))=a(s)a(c(q))
and g,v (with € Ry, and g€ L) are thus viewed as functions of g>1. By the form of the
right-hand side of (60) as given in (58), and in view of Corollary 4.4, we see that there

exists a unique real number f such that
lim q up1({6})(q) = ar € Q. (62)
q—o0

On the other hand, by (61) the rational function d has a constant value, d, say, on L.
Hence (60) implies, in view of (39) and Proposition 2.62 (ii), that dzbz=a,, where

lim q/mw,.(q) =bs €Q*. (63)

q—o0

Since d(q) is continuous as a function of ¢€Uj;, this implies that dz€Q is independent
of LCU; and thus that d(q)=d is independent of ¢CU;. Since U; is an open set, the
equality (59) of rational functions which we have now proved on U; extends to Q (recall
that both sides are regular on Q). O

COROLLARY 4.7. Let 6€ AVK(R,U) be weakly continuous on a convex open cone U.
Let Wor; and Wor; be orbits of generic residual points associated with 6 as in Lemma 4.5.

There exists a constant d€Q* such that my,,, =dmw,, -

5. The generic central character map and the formal degrees

The following result depends on the classification of residual points.

LEMMA 5.1. Let R=(X,Ro,Y,RY) be a simple root datum such that Ry is not
simply laced, and let r,7’' €Res(R) be generic residual points with equal unitary part s,
which is Wy-invariant. If there exists a constant d€C* such that mw,,=dmw,,, then
Wor=Wyr'.

Proof. Using Lemma 2.53 and Proposition 2.62 (iii), we reduce to the case where R
is irreducible, X =P(R;), and r and r’ are generic residual points with equal Wy-invariant
unitary part s€T,. Let us write r=sc and ' =sc¢’. In the Cr(Ll) case, we have s=(1,...,1) or
s=(—1,...,—1). We use Proposition 2.56. In the first case we find that ¢ and ¢’ extend to
positive generic residual points for the root datum R’ defined by Ry=B,, and X'=P(Ry),
with the parameters ¢ defined by e, +e, =e,+e, and (eri:(_ééfq;éi2+1. In the second case
¢ and ¢ are positive generic residual points for R’ with the parameter ¢ defined by
Je;te; =Ge;+e; and Goe, :q;eli/zqégﬂ. In the first case we substitute g2e, =g2¢,+1, and in

the second case we substitute gae, :q{; 1 1; with this substitution we have in either case

miy, (@) =mly (q) and my, . (q)=mly . (d). (64)
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Therefore it suffices to prove the assertion for irreducible root data R such that Ry is
not simply laced and X=P(Ry), where Wyr and Wyr’ are orbits of generic residual
points with the same Wy-invariant unitary part s. We may now replace s by 1 without
loss of generality. Hence we may and will assume that Wyr and Wyr’ are orbits of
positive residual points. We again use Proposition 2.56 to compare such points with the
classification in [HO1, §4].

In the cases G2 and Fy the Wy-orbit Wyr of a generic positive residual points Wyr
is distinguished by the set Q%e,%r as can be seen from Tables 2 and 4. Since this set is the
complement of the zero set of myy,, (by Theorem 2.60) the desired conclusion follows.

Next consider the cases B,, and C,,. Let f be a rational function in ¢; and ¢y of the
form

f@Q=a"e" [ [](@d-1m (65)

i j=0

(with n; j€Z). Then the exponents n; ;€Z are determined by f. Let g denote the
parameter of the roots te;%+e; and g2 the parameter of a¥ for a=e; (if Ry has type
B,,) or a=2e; (if Ry has type C,,). The functions myy,, are all of the above form where
the exponent of go is 0, 2 or 4. The Wy-orbits of generic positive residual points are
parametrized by partitions of n (see [HO1, §4] and [Op3, Theorem A.7]). Let A\Fn and let
Wory be the corresponding Wy-orbit of residual points. Let us use the notation my,,=
my if Wor=Wyry. In the case B,,, the factors of m,, of the form ¢#'¢3 —1 have multiplicity
ng;,2 equal to twice the number of boxes b€\ such that ¢(b)=:¢ (where ¢(b) denotes the
content of b). Hence m determines for each i the number of boxes in A\ with content .
Clearly this determines A. If Ry is of type C), we use the correspondence between B,, and
C,, positive generic residual points as explained in the proof of Theorem 2.58. It follows
that the factors of my of type ¢{’¢3 —1 have multiplicity n4; > equal to twice the number

of boxes b of A with ¢(b)=¢, and again we conclude that A is determined by m. O

COROLLARY 5.2. Let R be semisimple and let g€ Q=0(R). Let do€A(R,qo) be
such that cc(dp)=Woyrg for an ro€Res®*(R, qo) with s€T, which is Wy-invariant. Then
there exists a unique orbit WoreWy\Res(R) of generic residual points which has the fol-
lowing property: there exists an open neighborhood UCQ of qo and a continuous family
of discrete series characters U>q—6(q) € Awyr(q) (R, q) such that cc(d(q))=Wor(q) for
all qeU.

Proof. The uniqueness of such an orbit Wyr of generic residual points is clear from
the fact that a generic residual point is real-analytic on Q. Hence Wyr is determined by
its restriction to U.

For existence we first choose a lift 7o €Res(R™**,qp) of ro and a mo€Aw,7, (R, o)
with the property that dp is a component of the restriction of mg to Q(R, qo). According
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to Theorem 3.4, there exists an open neighborhood U CQ such that my extends to a
continuous family 7 of irreducible discrete series characters of H(R™*). It is obvious
that r=7M ®...@7x(™) with 7(!) being a continuous family of irreducible discrete series
characters of H(R®) defined on U® (where R, with i=1,...,m, runs through the
simple factors of R™?* as in Proposition 2.37).

For each i there exists a generic residual point #() €Res(R(?)) such that cc(r(?)=
W (RS on U®. Indeed, if R is simply laced then this is trivial by the scaling
isomorphisms [0S, Theorem 1.7 (1) and (5)]. So let us assume that R is not simply
laced. Then the assertion follows from Theorem 4.6 and Lemmas 4.5 and 5.1 applied to

m0 € Ay agys (R a0”): (66)

Let 7€Res(R) be the generic residual point that corresponds to (71, ..., #("™)) by restric-
tion as in Lemma 2.53 (i).

If we restrict the continuous family 7 from H(R™**) to H(R), we obtain a continuous
family of discrete series characters, i.e. a section 7|y (r)€AN(R,U). Observe that all
irreducible components of 7(q)|(r,q) have the same central character. Using the linear
independence of irreducible characters and Theorem 3.4 (ii), we see that 7|4 () contains
the continuous extension ¢ of §p to U with multiplicity at least 1. In particular we see that
the composition of cc(m): U—Wo\T™** with the natural projection Wo\T™**—=W\T
is the central character cc(d) of the family § on U. We conclude that cc(d) is given on U
by Wor|y, where r€Res(R) was constructed above. This finishes the proof. O

Now we come to the main result of this section. It generalizes Corollary 5.2 to

general irreducible discrete series characters.

THEOREM 5.3. Let 60€A(R,qo). Let UCQ be a (connected) open neighborhood of
qo such that there exists a d€ A(R,U) with 6(qo)=00 (see Theorem 3.4). There exists a
unique orbit WoreWy\Resq(R) such that cc(d(-))=Wor|y.

Proof. We first show that the notion of weak continuity of a family of characters
(see Definition 3.6) is to some extent compatible with the reduction results Theorem 2.6
and Corollary 2.28.

Let cc(d(q))=Wot(q), where Usq—t(q)€T is continuous. Write s for the unitary
part of ¢(¢) (which is independent of ¢). Let 95: Q— Q;=09(R;) be the homomorphism
given by ¢ qs.

We denote by mo€An(Rs,%s(qo)) the restriction of the irreducible discrete series
module of H(Rs,1¥s(q0)) XTI (t(go)) to H(Rs,%s(qo)). By Theorems 3.4 and 3.9, there
exists a (connected) open neighborhood Us C Qs of ¥5(qo) and a family

7€ An(Rs, Us) (67)
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such that (¢ (go))=m0. We may and will shrink U in such a way that ¢s(U)CUs.

Let N3 €H(Rs,qs) for weW (R,) denote the standard basis for the affine Hecke
algebra H(Rs,qs). Recall from Lusztig’s construction (in the variation Theorem 2.6)
that H (R, ¢s) is embedded as a subalgebra of the formal completion H(R, q) (as defined
by (20)) via the map N ey () Nw, where we W (R,) and where e, €H(R, q) denotes
the idempotent as in Theorem 2.6.

Let 6¢(q) be the irreducible discrete series representation of H (R, qs) xI'(t(¢)) cor-
responding to d(q) according to Theorem 2.6. This implies in particular that

X6+ (q) (Nli) =Xd(q) (et(q)Nw) (68)

for all weW (Ry).
We claim that

Xr(a.) Naw) = X5, () (Nop) (69)

for all geU and weW (R). By Theorems 3.4 and 3.9, it suffices to show that for all
w€eW the right-hand side of (68) is continuous as a function of ¢€U.

By the continuity of U>g¢r—cc(d(q)), it is easy to see that one can construct, for
each NeN, a continuous family Usg—a; ,€A=CI[T] (i.e. a ¢g-family of Laurent poly-
nomials on T whose coefficients depend continuously on ¢) such that for all geU and
t'€W (Rs1)t(q) one has a; ,€1+mb, while for all ¥’ € Wyt(q)\W (Rs1)t(q) one has a; €
mb. If N is sufficiently large, this implies easily that for all €U and for any we W (Rs)

one has
Xo(q) (€t(q) Nw) = Xs(g) (@1, Nw), (70)
which is indeed continuous in ¢€U as was required, thus proving (69).
According to Corollary 5.2, we find that cc(my) €W (R, 1)\Res*(R;) for any irre-

ducible component 7y of . By relation (69) and application of Corollary 2.54, it follows

that for any component 7y of ,
_ Wo y—1
ce(0) = (Pyyp,) "~ (Ds(ce(mr)))- (71)

This finishes the proof. O

In view of Theorem 2.58, this means that the central character of € A(R, U) actually
extends to a Q.-valued point of Wy\T.

Definition 5.4. (Generic central character for discrete series) Let ¢€ Q. Theorem 5.3
yields a map gee,: A(R, ¢)—Wy\Res,(R) which extends to a continuous map (in the
sense of Remark 3.10) gce: A(R)—Wo\Res(R). We call gee, and gee the generic central

character maps.
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Definition 5.5. Consider the topological space O(R) given by
O(R) ={(Wor,q) € Wo\Res(R) x Q:q € Qy? . }. (72)
The finite map m2: O(R)— Q is a local homeomorphism and the projection
m1: O(R) — Wp\Res(R) (73)

on the first factor defines, for all g€ Q, a bijection between the fiber O(R), of w3 at g€ Q
and the set Wy\Res,(R). We define the following evaluation map:

ev: O(R) — Wo\T'x Q,
(Wor, ¢) — (Wor(q), 9)-
The generic central character map of Definition 5.4 can be characterized as follows.

PROPOSITION 5.6. We define GCC=gcc xm: A(R)—=O(R), where m: A(R)—Q is

the canonical map. Then GCC is the unique continuous map such that the following

AR) —C L O(R)
N, A

Wo\TX Q

diagram commutes:

Proof. This is a reformulation of Theorem 5.3. O
We are now in the position to formulate the first main result of this paper.

THEOREM 5.7. The map GCC=gcc xm: A(R)—=O(R) is a surjective local homeo-
morphism and gives A(R) the structure of a locally constant sheaf on O(R).

Proof. Clearly GCC is a local homeomorphism. Using Definition 5.4 and Proposi-
tion 5.6 we can reformulate Theorem 3.4 (ii) by stating that for any WyreWy\Res(R)
and any connected component U CQy® , the inverse image Ac(R) :=GCC™HO)CA(R)
of C={Wyr}xUCO(R) is a locally constant sheaf on C. In particular the cardinality
of the fibers of GCC|a (r) is constant. Hence the surjectivity of GCC follows from
Theorem 2.47 by considering a generic parameter geU. O

COROLLARY 5.8. Let WoreWyRes(R) and let UCQy? . be a connected component
as in the proof of Theorem 5.7. The restriction Ac(R) of A(R) to the connected com-
ponent C={Wyr}xUCO(R) of O(R) is a constant sheaf.

Proof. Since U is the interior of a convex polyhedral cone by Theorem 2.60, this
follows trivially from Theorem 5.7. [
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COROLLARY 5.9. For all ¢€Q the map gee,: A(R, q)—Wo\Res,(R) is surjective.
Proof. This follows immediately from the surjectivity of GCC. O

In particular, if do€A(R, o), with gee,(d0)=Wor€eRes,,(R), is an irreducible dis-
crete series character and U C Q;?,%T denotes the component of gg, then there exists a
unique continuous family §€ A(R, U) such that evy, (6)=0dy. Observe that the open cone
U C Q is the maximal set to which § can be continued as a discrete series character (since
the central character Wyr(q) will cease to be residual at every boundary point of U).

Hence the open cone U is determined by §.

Definition 5.10. We denote this open cone by Uy, and we call a continuous family of
irreducible discrete series characters § which is extended to its maximal domain of defi-
nition Us>¢—0(q) a generic irreducible discrete series character. We denote by A8 (R)

the finite set of generic irreducible discrete series characters.

COROLLARY 5.11. For each component C={Wyr}xU of O(R), we define a multi-
plicity Mc€Zxo of C by Mc:=[{0€A&"(R):GCC(6)=C}|. Then Mc>0 for all com-
ponents C={Wyr}xU. For all q€U one has Mc=|Aw,-(R,q)|, and for all g€ Q one
has (with xu denoting the characteristic function of U)

AR, q)| = > > xv(@)Mwyryxu- (74)

WoreWo\Res(R) UECwr

We reformulate Theorem 4.6 using our results on the generic central character. This

is the second main theorem of this paper.

THEOREM 5.12. Let §€ A%™(R). There exists a rational constant ds€Q* such that
for all geUs we have

re1({6(q)}) = dsmgee(s)(4)- (75)
Here mgeo(5) €K (Az) is explicitly given by (39).

Remark 5.13. This result proves in particular Conjecture 2.27 in [Opl], and it shows
that the constants defined therein for special values of the parameters can be determined
from the rational constants ds defined for the irreducible generic discrete series characters.
Indeed, any irreducible discrete series character do€A(R,qo) determines a unique €
A& (R) such that do=0(gp). The constant defined in [Opl, Conjecture 2.27] is equal
to ds multiplied by a rational number depending on gy which can be easily expressed in

P, +

terms of the sets R}, RY’; and R} of roots whose associated factor in myy,, becomes

zero at qq.
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6. The generic linear residual points and the evaluation map

In this section we summarize, following [HO1] and [S12], the classification of the Wy-orbits
of the generic linear residual points for all irreducible root systems R; and we describe
the evaluation map at a given parameter k€ C=K(R;) of the parameter space associated
with R;.

For each generic linear residual point £ of Ry we will describe the open dense set
ICZeg of parameters k such that evy(€)=E£(k) is still residual. In addition, we will describe
the set Wy \Res"(Ry,V, k) of residual orbits for each k€. To do this, it is convenient
to use the notion of k-weighted distinguished Dynkin diagrams with respect to a given

basis Fy={ay, ..., } of simple roots of R;.

Definition 6.1. For ke we define the set Dyn"**(Ry,V, Fy, k) of distinguished k-
weighted Dynkin diagrams for (Ry,V, Fi,k) as the set of Fj-dominant linear (Ry,k)-
residual points. There is a canonical bijection

Wo\Res"™ (R, V, k) = Dyn®™Y(R,, V, Fy, k) (76)

by which we will identify these two sets. We will represent DeDyns* (R1,V, F1,k) by
the Dynkin diagram of F; in which the vertex corresponding to a; € F} is labelled by the
weight a;(D)>0 (or simply by the list of values (a1 (D), ..., an(D))).

Given k€K, let Wo\Res;™(R;) be the set of orbits of generic linear residual points
Wo such that k€K™, We will also describe in this section the fibers of the evaluation

map

evi: Wo\Res" (Ry) — Dyn®' (R, V, Fy, k),

(77)
Wol— D=¢(k)+,

where £(k), €Woé(k) is the unique Fi-dominant element in the orbit Wo& (k).
If DeDyn®" (R, V, Fy, k) and A>0, then ADeDyn™" (R, V, F1, \k) and —wo(D)=
D (using [Opl, Theorem A.14 (i)]). This gives canonical identifications

Dyn®*(Ry, V, Fy, \k) = |\| Dyn""(R,, V, Fy, k) (78)

for all AéR*. Since the generic linear residual points depend linearly on k, this remark
implies that we only need to describe the set Dyn®t (R1,V, Fy,k) and the fibers of évy,
on all lines in the parameter space.

If ko=2 for all a€ Ry, then the set Dyn™'(Ry,V, F, k) is the usual set of distin-
guished Dynkin diagrams, corresponding to the set of distinguished unipotent orbits of
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gc(Ry) via the Bala—Carter theorem. For classical root systems it is known how to gen-
eralize combinatorially the set of (distinguished) unipotent classes and the Bala—Carter
bijection to the set of k-weighted Dynkin diagrams [S12]. As this is a very useful descrip-
tion, we will give these generalized Bala—Carter maps as well.

Let AB(R;,V, F,k) be the collection of irreducible discrete series characters of
H(R,,V, Fy, k). Consider the “degenerate” generic central character map gcct, which is
the map

gec: AH(Ry, V, Fy, k) — Wo\Res" (R1) (79)

corresponding to the restriction of gee to the set A%(R,q) (with s€T, being a Wy-
invariant element) via the canonical bijections of Corollary 2.31 and Proposition 2.56.
In the next section we will prove that for all irreducible non-simply laced root systems
the map gect maps the subset AI‘;IVOD(RMV,Fl,k)CAH(Rl,V,Fl,k) of elements with
central character Wy D bijectively onto the fiber evlzl(D), where evy is the evaluation
map of (77) for Ry, with one remarkable exception: in the case Fj it turns out that one
has to count every occurrence of the unique singular generic linear residual orbit “fg”
with multiplicity 2. In other words, in the notation of Corollary 5.11, the multiplicities
Mw,rxu are always 1 for orbits Woyr of positive generic residual point, except for the
unique singular one (called fg) of Fy, in which case the multiplicity is always 2 (these
results will be shown in the next section).

It is interesting in addition that this bijection also holds for type D,, after we make
a small adaptation in order to see type D,, as a specialization of type B,,. The proofs
of these facts do not depend on the classical Kazhdan—Lusztig classification. The only
point where one needs to resort to non-trivial computations is in the verification of the
fact that the multiplicity of fg is always 2. This follows from results by Reeder [Rel].
Since our parametrization clearly also holds for type A, it follows that the deformation
method gives the classification of the discrete series in all cases except for types Eg, Er
and Eg (in which cases the Kazdan—Lusztig classification is available of course).

In the “classical situation”, when k., =2 for all o€ Ry, one associates a set of Springer
representations Y, (py of Wy to the distinguished unipotent orbit u=u(D) of GX(R;)

associated with D. The Kazhdan—Lusztig parametrization says that the set
AW, p(B1, V. Fi ko =12)

(equal parameters with 2>0) is in canonical bijection with the set X, p).

For classical root systems, [S12] explained how to generalize combinatorially the set
of “k-unipotent” elements u(D) associated with DeDyn"*(Ry,V, Fy, k) and the set of
corresponding “k-Springer representations” ¥,(p)(k) of Wy. This makes it possible to
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recast the above parametrizations in the form of a generalized Kazhdan—Lusztig corre-
spondence between the set AIV{VO p(R1,V, Fy, ko,=x) and the sets of k-Springer represen-
tations X, (p)(k) on a combinatorial level for arbitrary k. Our result thus establishes this
aspect of the conjectures by Slooten [S12].

We will include the generalized Kazhdan—Lusztig parameters for the classical root

systems, and describe their relation with the alternative parametrization (79).

6.1. The case Ri=A,, n>1

In this case K=R. Choose the basis of simple roots Fy ={e; —ea, ...,e,_1—e€, } for Ry, and
define &: K—V by the equations a(¢(k))=k for all a€ F}. Then Wo\Res™ (R1)={Wo¢}.
The set K™ is equal to K\{0}. For all k€ we have Dyn®Y (R, V, Fy, k)={D(k)}
with D(k)=(|k|, ..., |k|). We have ev; ' (D(k))={Wo&}.

6.2. The case R1=B,, n>2

The results in this subsection are due to Slooten [S12]. Put
Ri={xe;xe;: 1<i#j<n}U{te;:1<i<n}.

Choose as a basis F1={ej—ea,....,en_1—€n,e,}. We put k(e;+e;)=k1€R and k(e;)=
k2€R and in this way make the identification =R?. If k;#0 then we define meR by
m=ks/k.

We first describe the generic linear residual points. Given a partition AeP(n) (i.e.
a partition AFn), we define a K-valued point &, as follows. Given a box b of A, let i(b)
be its row number and j(b) its column number. We define the content ¢(b) of the box
b by c(b)=;(b)—i(b). We call the tableau of shape A in which the boxes b€ are filled
with the expression c(b)k1+ko the generic k-shifted tableau of A, denoted by T'(\, k). We
order the boxes of T'(A, k) in the standard way by reading the tableau from left to right
and from top to bottom. Then we define £y as the K-valued point of V' such that the ith
coordinate e;(&) is equal to the filling ¢(b;)k1 + k2 of the ith box of T'(A, k).

THEOREM 6.2. We have a bijection
A:P(n) — Wo\Res"™(R;),
A— Woéa.

The set K\ of regular parameters for £y is of the form

KeE=k\ |J L, (80)

sing
me My
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where L, ={(k1, k2):ka=mk;} CK and where Mimg is a set of half-integral ratios me %Z
which are called singular with respect to A and which will be described in Proposition 6.4
below. We first define for me1Z the m-shifted content tableau T;,(A) of A as follows.
The tableau T), () has shape A and the box b of T, ()) is filled with the value |e(b)+m)|
(i.e. the absolute value of the filling of the same box in T'(X, (1,m)). The following notion
plays an important role.

Definition 6.3. Let Abn and me £Z. The list of extremities of T}, ()) is the weakly
increasing list consisting of the following numbers. If meZ (resp. meZ—&—%) then the
extremities are the fillings of the boxes of T,,,(\) at the end of a row of T,,,(A\) which are
on or above the 0 diagonal (resp. the upper % diagonal) and the boxes at the bottom of
a column of T,,(A\) which are on or below the 0 diagonal (resp. the lower % diagonal).

Here we agree to count 0 twice if 0 is both at the end of a row and of a column.

PROPOSITION 6.4. We have meM\® (the complement of M/S\ing, i.e. the values
meER such that &x(k1,mk1) is residual if k1#£0) if and only if mg;‘%Z, or mG%Z and
the extremities of Ty, (\) are all distinct. If m<l—n or m>n—1 then m is reqular with

respect to any partition Abn.
Let K*® be the intersection of sets /CzegZIC;f,gog, where ¢ runs over Res"™(Ry, V, k).

COROLLARY 6.5. We have
,Creg:;c\U Lo, (81)

where m runs over the half-integral values satisfying 1—n<m<n—1. In particular, if

k¢ Ly, for all half-integral m satisfying 1 —m<m<n—1, the evaluation map
evy: Wo\Res"™(Ry) — Dyn® ™Y (R, V, Fy, k) (82)
is bijective.
Let me1Z and Abn. Suppose that m¢ M3 ™ (in other words

Ex(k1,mk1) € Res™ (Ry, V, Fy, (k1, mk1))

if k1£0). Since Wy contains sign changes and permutations, the corresponding element
D(k)eDyn®Y (R, V, Fy, (k1,mk;)) has coordinates which are all of the form pl|k;| with
p>0 and pem+Z. Conversely, any point D(k)eDyn®™"(R,,V, Fy, k) is of this form. In
order to see this, we recall the following result (see [HO1] and [S12]).
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PROPOSITION 6.6. Let mG%Z and let k=(k1, mky) with k1#0. Let DER™ be dom-
inant with respect Fy. Then DeDyn"*(Ry,V, Fy, k) only if all coordinates of D are of
the form plki| with p=0. So let us suppose that all coordinates of D are of the above
mentioned form. Let p,=p,(D) denote the multiplicity of plki| as a coordinate of D.
We distinguish the following cases:

(1) If m=0 then DeDyn" YRy, V, F\, k) if and only if (i) pr=1 if r is mazimal
such that p,#0, (ii) pp€{pp+1, ttp+1+1} for all p>0 and (iii) uozg(ul—}—l)J.

(2) If meZ\{0} then DeDyn""(Ry,V, Fy, k) if and only if (i) pr=1 if r is maz-
imal such that p,#0, (ii) pp€{pp+1, tpt1+1} for all p=|m|, (iil) pp€{ptp+1—1, tpt1}
for 1<p<|m|—1 and finally (iv) po=|%p1].

3) If mEZ—F% then DeDyn"*(Ry, V, Fy, k) if and only if (i) pr=1if r is mazimal
such that (1,70, (ii) pp €{tp+1, tp+1+1} for all p=|m| and (iil) pp€{pp+1—1, pps1} for
3 <p<|m|—1.

Definition 6.7. We keep the notation as given in Proposition 6.6. Assume that
DeDyn®" (R, V, Fy, k). We call pem+Z a jump of D if p>|m/| and tp=ppt1+1, or if
0<p<|m| and p,=p,41. Finally we add 0 (if m€Z) or —3 (if meZ+31) to the list of
jumps of D in order to ensure that the number of jumps of D is equal to [|m|]+2v for
some vE€Zxq (this is always possible, see [S12]).

Remark 6.8. It is a simple matter to reconstruct D from its list of jumps by com-

puting the multiplicities m,, of the entries of the form p|k:|, starting from the top m,=1.

This gives rise to a different classification of the set of k-weighted distinguished
Dynkin diagrams DyndiSt(Rl, V, F1,k) by the introduction of a combinatorial analogue

U (n) of the corresponding set of “distinguished m-unipotent classes”:

Definition 6.9. If meZ, we define
UL () = {uF2n+m? : 1(u) > |m| and u has odd, distinct parts}, (83)
and if mGZJr% we define
U (n) = {ut2n+m?—%:1(u) > ||m|] and u has even, distinct parts}. (84)

PROPOSITION 6.10. Let me 37 and uweUEs (n). Let k=(ky,mky)€ Ly, with ki#0.
If meZ—l—% we add 0 as a part of w if necessary to assure that the number of parts of
u is equal to [|m|]+2v for some v€Zsq. The list j=3j(u) consisting of the numbers
3(u;—1), where u; runs over the parts of u (ordered in ascending order), is the list
of jumps of a unique distinguished k-weighted Dynkin diagram DEDyndiSt (R1,V, F1,k)

(where D is of the form as described in Proposition 6.6). This sets up a bijection

FEC:US (n) — Dyn™"(Ry, V, Fy, k). (85)
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Finally we remark that Dyn"*(R,,V, Fy, (0,0))=2.

This completes the classification of the set Dyns* (R1,V, F1, k) for all values of k€.
It remains to describe, for all special values k€ L,,\{0} and all DeDyn"*(R,,V, Fy, k),
the fiber evy ' (D) of the evaluation map

evi: Wo\Resi™(R1) — Dyn"™"(Ry, V, Fy, k), (86)

where Wy \Resi® (R, ) is the set of orbits of generic residual points which remain residual
upon evaluation at k (note that this depends on m=m(k), rather than k). Equivalently,
we will describe, for each D€Dyndi3t(R1, V, F1,k), the set

Pin(D):=A""(ev; (D)) CP(n) (87)
of all partitions A of n such that Wy, (k)=WyD.

Definition 6.11. Let me3Z. Given uelds®*(n), we define a bipartition ¢, (u)e
P(2,n) as follows. First assume that m is non-negative. Let j=j(u) be the sequence of

jumps of length [m]+2v€Zs( associated with w as in Proposition 6.10. Then we define
G (u)=(&m (u), 7m (u)) €P(2, 1), where
Em(w) = (J1, Js s Jov—1, Jov+1, Jovt2 — 1, Jovt3 =2, oo, f2ugm — (Mm—1)),
Nm(u) = (J2+1, ja+1, .., ja, +1),
if meZ and
Em(u)=(j1+3,J3+F5, - Jovr1 3, Jovra— 3, Jovts— 3, o J2upmtd —(m—1)),
N (w) = (jo+ 5, Ja+ 5, - Jov+35),
if meZ+1. If m<0, then we define ¢y, (u):=(n_n, (u), E_m(u)) EP(2,n).

Definition 6.12. Let (§,n)€P(2,n). We recall from [S12] the equivalence class of m-
symbols of (&,7) denoted by A™(&,7n). For m=0 we use the symbol “+”. We denote by
[(&,m)]m the set of (¢/,1)€P(2,n) such that A™(£,n) and A™ (£, 1) have representatives

which contain the same entries the same number of times. For u€ldt(n) we define
Y (w)CP(2,n) by B, (u):= [ ()]

Finally, the following result of Slooten gives the desired parametrization of the set
P, (D) (and hence of the fiber ev, ' (D) of the evaluation map).

THEOREM 6.13. ([S12, Theorem 5.27]) The joining map Jpm, (see [S12, Definition 5.18])
is well defined on 3., (u) and this yields a bijection

T B (1) = Pin (f7€ (w) (83)

whose inverse is given by the splitting map S,, (see [S12, Definition 5.16]).
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COROLLARY 6.14. Let mG%Z, let k=(ki,mki) with k1#0 and suppose that D€
Dyn®*(Ry,V, Fy, k). Put u=(f2°)"Y(D)€U(n). We can arrange that u has [m]-+2v
parts (with v€Zx). Then

2
(|_m-‘+ V); qul?éol

v
2v—1
([mPr v >, otherwise.

14

6.2.1. The case k;=0

If k=(0,0), then there are no linear residual points, since k is singular for all generic
linear residual points.

The situation where k=(0, k2) with k270 is an important special case. Its impor-
tance stems in part from the fact that although & is highly non-generic it is regular for
all generic linear residual points. In fact, all generic linear residual orbits coalesce upon
specialization for k1 =0 to the unique orbit of residual points Wy&(k), where £ is defined
by &;(k)=ks for all i=1,...,n. In other words, we have

Resp™(R;) =Res"™(R;) (90)
and (in the coordinates ey, ..., e, of V)
Dyn®™ (R, V. F1, k) = {(|kal, ..., [k2])}. (91)

The evaluation map evy, is the unique map from Res"™(R;) to Dyn™* (R, V, F, k).

6.3. The case R1=C,, n>3
Put Ri={%e;te;:1<i#j<n}U{£2e;:1<i<n}. Choose F1={e1—eq,...,en_1—€n,2¢,}
as a basis. We put k(e;+e;)=Fk1; €R and k(2¢;)=k2 €R and in this way make the identi-
fication L=R?2. Clearly we have the following equality for all k=(k1, ko):

Res"™(Cy, (K1, k2)) =Res"™ (B, (k1, 1k2)). (92)

Since Wy(B,,)=Wy(C,,), we see that everything reduces to the case R;=B,,.

6.4. The case Ry =D,, n>4

We put Ry={xe;*e;:1<i#j<n}. Choose Fi={e1—ea,....,epn_1—€n,en_1+e€,} as a ba-
sis. The case R;=D,, can be reduced to the discussion of §6.2 as well in the following
way, using the Clifford theory discussion from [RR].
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Let F} denote the basis for B,, as in §6.2. Let
V:H(B,, V, F? (k1,ks)) — H(B,,, V, F?, (k1, —k2)) (93)

be the unique algebra isomorphism such that ¢ (z)=x for all teV*=R® X, ¥(Se,_, —¢;)=
Se;_q—e,; foralli=2,...,n, and ¥(s., )=—3,, (compare with the isomorphisms 1), discussed
in §2.1.2). Then 1) restricts to an involutive automorphism of H(B,,V, F}, (k;,0)). Let
W={1,9}=3Z be the group of automorphims of H(B,,V, F{, (k1,0)) generated by v.

Then it is easy to see that
H(Dnv‘/7F17(kbo))gH(BTHV?Flb?(kl?O))\P (94)

(where the generator s, ,ie, on the left-hand side corresponds to s, Se, ,—e, Se, O
the right-hand side).

Let k=k(+e;+e;)e(Dy). We use k as a coordinate on the line LoCK(B,) by
identifying k& with the element (k,0)€Lg. Let us from now assume that k€ K™¢(D,,)=
K(Dn)\{0} (and in the context of Ry=DB,, we identify k with (k,0)€Lg). We have
Wo(Bn)=Wy(D,)xT', where I'={e,7}=~17Z and v is the diagram automorphism that

exchanges e,_1—e, and e,, +e,. Hence the center equals (see Corollary 2.10)
Z(B,, F!, (k,0))=Z(D,, F1, k). (95)

It is easy to see that for every uc€lUd®(n) (defined as in §6.2) the orbit Wy (B,,) f2¢(u)€
Wo(Bn)\Res(By, k) is in fact a single Wy(D),)-orbit of residual points for Ry =D,,. It
follows that

BC. Ut (n) — Dyn®=*(D,,, Fy, k) (96)

is a bijection.
Observe that we have (using the notation of Theorem 6.2) the relation

Wolxr (k1, —ka) = Woéx(k1, k2), (97)

where A=) is the conjugation involution of P(n). Thus the set Wo(B,)\Rest™(By,)
of orbits of generic residual B,-points which remain residual if we restrict (k1,k2) to a
(non-zero) element (k,0)€ Ly, admits an involution ¢ given (via A) by the conjugation
involution. By Proposition 6.4 this involution acts in a fized point free manner on
Wo\Resi™(B,,). The involution is clearly compatible with the evaluation map evq. It
follows from (97) that for all € AH(B,,, V, F?, (k,0)) we have

gec (do1)) = 1(gec™(9)). (98)
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Accordingly, we define
Wo(Dy)\Res™ (D) := (Wo(Bn) \Resg™(Bn))/{e, i1, (99)
and we have a corresponding evaluation map
Wo(Dy)\Res"™(D,,)# — Dyn"™(D,,, F1, k). (100)

Remark 6.15. The relation with the usual Kazhdan—Lusztig parameters for D,, is
as follows. For all u€l™*t(n) the involution ¢ acts without fixed points on the set ¥o(u)

by

t: ¥p(u) — o (u),
(&n)— (0, 6).

The set 377 (u) of Springer representations of Wy(D,,) associated with wu is the set of
{1, 1}-orbits in Xg(u). In particular, for all DeDyn®**(D,,, F1, k) we have a natural bijec-
tion between the fiber (ev?)~(D) and the set of classical Kazhdan—Lusztig parameters
¥Pn (u) associated with u=u(D).

6.5. The case R1=F,,, n=6,7,8

In the simply laced cases we can classify the generic linear residual orbits with the
weighted Dynkin diagrams for the distinguished nilpotent orbits (see [Opl, Proposi-
tion B.1(i)]). Since the weighted Dynkin diagrams characterize the nilpotent orbits
completely by the Bala—Carter theorem (see [Ca]), we obtain for all £#0 a bijection

2O YUY (R)) — Dyn"Y(Ry, V, F1, k), (101)

where U9t (R} ) denotes the set of distinguished nilpotent orbits of the simple complex Lie
algebra with root system R;. It is well known that the values of the roots on the generic
linear residual points are integral linear combinations of the k(«) (corresponding to the
fact that the roots take even values on the distinguished weighted Dynkin diagrams). We
refer to [Ca, pp. 176-177] for the tables of the distinguished weighted Dynkin diagrams.

6.6. The case Ri=F,

Let (o, g, a3, q) be a basis of simple roots of Ry such that oy and as are long, az and

ay are short, and as(ay)=—2.
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Orbits f =Wyt ¢
fi §1= (k1 k1, ko, k2)
fa &o = (k1, k1, ko —k1, k)
f3 §3=(k1, k1, ko —k1, k1)
fa &4 = (K1, k1, ka—2k1, ko)
fs &5 = (K1, k1, ko —2k1, 2k1)
f6 :(k k1, ko—2k1, k1)
fr = (k1, k1, ko —2k1, —2k2)
fs fg—(O k1,0,ka—kq)

Table 1. F4: Generic linear residual orbits.

Orbit ke
f1 | (2ky43ks) (3ky +4ks) (3k1 +5ka) (51 +6ks) #0
fa (kT —(6k2)*) k2 #0

fs | (3k1+2ko) (k1 +3ks) (2 +3k2 ) (3k1 +4ks) #0
fi | (2k1—3ko)(3k1 —Aks) (3%, —5ks) (5k1 —6ks) #0

f5 ((3k1)* —(2k2)?)(kf — (3k2)?) #0

o | (3k1—2ks) (k1 —3k2)(2k: —3ka) 3k —4ka) #0
fr ((3Kk1)*=k3)E1 #0

E kika #0

Table 2. F4: Regular parameters.

The set Wy \Res"™(F;) was completely classified in [HO1, Table 4.10], but unfortu-
nately this table contains an error (the coordinates of f; are incorrect). We therefore
include the corrected table (see Table 1) below. There are eight orbits of generic lin-
ear residual points for Fj, numbered fi,..., fs. The orbits are generically regular with
respect to the Wy-action, except for fg which generically has an isotropy group of type
Ay xA;. In Table 2 we have specified for each generic linear residual orbit f,=Wy&,
a generic linear residual point &, by means of the vector of values (a1 (&), ..., aa(&n))-
Here k=(ky, k2), where k; is the parameter of the long roots.

In Table 3 we list the non-generic values of k, together with the set Dyn®*(k):=
Dyn"(Ry,V, Fy, k) of k-weighted Dynkin diagrams, and for each DeDyn®'(k) the
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inverse image ev;, (D) of the map

evy: Wo\Resi™ — Dyn®™ (k). (102)

Remark 6.16. In Table 3 we assume that £>0. Not all special parameters are listed
in Table 3 but all other special values can be obtained from the listed ones by applying the
following symmetries. First of all we have f;(k1, ko)=fi(—k1, —k2) (since —ideWy) and
fi(k1, ko)= foq) (k1, —k2)= foqi)(—Fk1, k2) with 6=(14)(36). With these transformations
we can reach all quadrants of /C from the positive quadrant. In addition, we have used
the following symmetry (arising from interchanging the long and short roots) to reduce
the length of Table 3: Let ¥(a,b,c,d)=(2d,2¢,b,a). Then we can define D;(2ks, k1)
by D;(2ka, k1))=Y (D;(k1,k2)). The map ¥ acts as follows on the set of generic linear
residual orbits: W(f;(k1,k2))=fo(i)(2k2, k1), where o is the transposition (27). Observe
that W2 (a, b, ¢, d)=(2a,2b, 2c, 2d), and thus ¥? corresponds to replacing z by 2z.

6.7. The case R1=G-

See [HO1, Proposition 4.15]. There are three orbits of generic linear residual points Wy&y,
Wo&o and Wy€s, which we will refer to as g1, g2 and g3, respectively. Let a; be the simple
long root and s the simple short root. Let k=(k1, ko) with k; being the parameter of
the long root. Table 4 lists the g; =Wy, and the set K;°® where W&, remains residual
upon specialization. We use similar conventions as in the case Fjy.

In Table 5 we list the non-generic values of k, together with the set Dyn®*(k) of
k-weighted Dynkin diagrams and for each D€Dyn®™ (k) the inverse image ev; *(D) of
the map

evy: Wo\Resi™ — Dyn®™ (k). (103)

Remark 6.17. In Table 5 we assume that x>0. Not all special parameters are
listed in Table 5 but all other special values can be obtained from the listed ones by
applying the following symmetries. First of all we have g;(k1, ke)=g;(—k1, —kz) (since
—ideWy) and g;(k1, k2)=go(i) (k1, —k2)=gg(i)(—k1, k2) with 0=(12). With these trans-
formations we can reach all quadrants of /C from the positive quadrant. In addition, we
have used the following symmetry (arising from interchanging the long and short roots)
to reduce the length of Table 5: Let ¥(a,b)=(3b,a). Then we can define D;(3kz, k1)
by D;(3ka, k1)=V(D;(k1,k2)). The map ¥ acts as follows on the set of generic linear
residual orbits: W(fi(k1,k2))=f;(3ks, k1). Observe that ¥2(a,b)=(3a,3b), and thus ¥2
corresponds to replacing = by 3.
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= (k1, k2) D € Dyn®t (k) ev; ' (D)
(O,x) D, =(0,0,z,x) f1, f2, fa
D2*(0 0,,0) I35 5, fs
(z,z) =(z,z,z,x) fi
DQ—(QJ.’EOJZ) f2, f3
D3—(O$L‘OCL‘) f5,f7
D4— (0,,0,0) fa, fe, fs
(z,2x) = (z,z, 2z, 2x) fi
D2 = (z,z,x,2z) f2
Ds=(z,z,z,x) fs
Ds=(z,z,0,2z) fa, f5
Ds = (z,z,0,z) fe, f7
D6— (0,z,0,x) fs
(z,3z) = (z,x,3z,3x) f1
Dg—(m x, 2z, 3x) f2
D3 =(z,z,z,3x) fa
Dy=(z,z,2z,x) f3
Ds =(z,z,z,2x) fs
D¢ = (z,z,x,x) fe
D7f (0,z,0,2z) fs
(2z, 3x) = (2z, 2z, 3z, 3x) fi
=(2z, 2z, z, 3z) fo
= (2z, 2z, z,2x) f3
= (2z,0,z, 2x) Ja, fr
D5 = (0 21‘ 0 I) fg
(3z,2z) = (3z, 3z, 2z, 2x) f1
= (3z,x,z,2x) f3
= (3z,z,z, x) fa
=(2z,x,z,2x) fr
=(2z,x,z, ) fs
=(0,z,x,0) fs
(5z, 3x) = (5z, bz, 3z, 3x) f1
Dy = (5z,z,2x,3x) f3
D3 = (5z, x, 2z, x) fa
Dy = (4z, x, 2z, 3x) f7
= (4z,x, 2z, ) fs
D6_ (z,z,x,T) fe
D7— (O xZ, 2x 0) fg

Table 3.

k-weighted Dynkin diagrams and confluence data for Fj.

165
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Type 3 Ket®
g1 | &= (ki k2) (k1+42ko)(2k1+3k2) #0
g2 | &o=(k1,ka—k1) (k1 —2ko)(2k1 —3k2) #0
93 53:(14717%(]92_]91)) kiko #0

Table 4. Generic linear residual orbits for Ga.

k= (ki,k2) | D€Dyn"™(k) | ev, (D)
(0,z) D, =(0,z) g1, 92
(z,@ Dy = (z,z) 9

Dy = (,0) 92, 93
(2z, x) Dy =(2z,x) g1
Dy=(3,3%) | g3

Table 5. k-weighted Dynkin diagrams and confluence for Ga.

7. The classification of the discrete series of H
We formulate the main theorem of this paper.

THEOREM 7.1. Let Ry CV™* be a non-simply laced irreducible root system or Ry =A,,.
Let F| be a basis of simple roots, and let k€. We denote by AB(Ry,V, Fy, k) the set
of irreducible discrete series characters of H(Ry,V, F1,k). The generic central character

map induces a bijection
gecl: AH(Ry,V, Fy k) — Wy \Res)™ (Ry) (104)
which is compatible with the central character map, in the sense that
evi(gecf (8)) = cc(d)

for all k€K and all € AY(Ry,V, F1, k), except when Ri=F, and kEIC;Zg7 i which case
there are exactly two elements 5fé,5fé/€AH(R1, V, F1, k) with generic central character
fs. This statement is also true for Ry=D,, (with n>4) if we replace Wo(D,)\Resi™(D,,)
by WO(Dn)\ReS}gn(Dn)# and geeft by the map gcc?’# which is equal to the map gccgc”f)ﬂ
for type B, composed with the induction map for characters of H(D,,V,Fi,k) to
H(B,,V, F}, (k,0)).
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Proof. We apply the reduction results Corollaries 2.30 and 2.31 with u=1. In this
situation we will denote the natural map Q—K given by ¢—k,—1=k by k=2loggq.

In view of Proposition 2.56 and Corollaries 2.31 and 5.11, the result is equivalent to
the statement that for all Wo€€Wp\Res}™(R;) and all connected components U CRyre
we have M{w, exp(¢)}xexp(v) =1 except when R;=F; and Wo{=/fs, in which case the
value should be 2 (independent of the choice of U).

If Ry=A, (with n>1), then there is one generic residual orbit Wy&, with two com-

ponents Ky,e={U,,U_}. It is of course well known in this case that

My = Mw, exp(6)y xexp (Ux) =1

and there are many possible proofs for this fact, but we will explain the proof that is
central to the approach in this paper in order to illustrate the method in this basic case.

The multiplicities M, are on the one hand at least 1 (by Corollary 5.11) and on
the other hand at most 1 by Corollaries 5.11, 2.31 and 2.36. This proves the required
equality.

If Ry=B,, (with n>2) we argue in a similar way. By Corollaries 5.11 and 6.5, we see
that for all generic k€K one has [AH(Ry,V, Fy, k)|>|P(n)|, with equality if and only if
M Wy exp(¢)} xexp(u)y=1 for all U such that k€U. On the other hand, it is well known that
the set of elliptic conjugacy classes of Wy(B,,) is naturally in bijection with the set P(n).
Hence Corollaries 2.31 and 2.36 show that |[A®(Ry,V, F1,k)|<|P(n)|. We conclude that
|AH(Ry,V, Fy1, k)|=|P(n)| and thus that M{w, exp(¢)} xexp()=1 for all orbits Wy and
all connected components U CIC;?% ¢ such that Usk. Since k was chosen arbitrarily we
see that My, exp(e)} xexp)=1 for all W& and all Cyy, exp(e), as desired.

If Ry=C), then the result follows easily from the case R;=DB, using the fact that
H(B,, (k1, k2))~H(C,, (ki, %kz))

If Ri=G5 the argument is completely analogous to the case Ry=DB,, using the
results of §6.7.

In the case R1=F, we need additional arguments. The Weyl group Wy(Fy) has
9 elliptic conjugacy classes, but by §6.6, we see that there are only 8 generic linear
residual points fi, ..., fs. The points fi, ..., f7 are (generically) regular. A generic residual
orbit Wy exp(£(k)) carries precisely one irreducible discrete series character (see [S11,
Corollary 1.2.11]), proving that the multiplicities associated with these orbits are all
precisely equal to 1. Now consider fs. By the above numerology, we see that for any
component U of IC;Zg the value of My, xy can be either 1 or 2 and in the rest of the
proof we will show that it has to be always 2. From Table 2 we have K'p®={U. .} with
Ueyen={(k1,k2):€;k;>0,i=1,2}. This simple structure of IC;Zg is very helpful at this
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point. There exist standard automorphisms (for e;=+1)
w€1,62 : H(Rh Vvv Fla (kla k2)) — H(Rlv Vv Fla (Elkla €2k2)) (]—05)

such that ¢, ¢, (x)=xz for all zeV*, ¥, .,(s;)=¢1s; (for i=1,2) and 1., ,(s;)=€28;
(for j=3,4). Clearly twisting by 1., , sends discrete series characters to discrete series
characters and thus the multiplicities M, «xr are independent of U. It was shown by
Mark Reeder [Rel] that there exist two irreducible discrete series with central character
eV (42,2)(fs) for the (generic) parameters (4x,x) (with #>0). In Reeder’s parametriza-
tion these characters are called [A; E7(as), —21] and [A;Er(as), —3]. Reeder’s result is
based on the explicit computation of the weight diagrams of the discrete series modules
(alternatively we could here invoke the standard Kazhdan-Lusztig classification for the
parameters (z,z) (with >0) to arrive at the same conclusion).

Finally let us consider the case Ry=D,. Of course this simply laced case can be
treated directly by the Kazhdan—Lusztig classification (see Remark 6.15) but we want to
show here how to adapt the deformation method so that the classification for Ry=D,, is
also treated by an appropriate version of the generic central character map. It was shown
in §6.4 that the degenerated affine Hecke algebra H(D,,,V, F1,k) is the fixed point al-
gebra of H(B,,V, F1, (k,0)) for the action of the automorphism group ¥=17Z. Our
knowledge of the case Ry =B, implies that the generic central character map gcc(}i’g"
for type B, yields a bijection between A¥(B,,,V, F}, (k,0)) and WO\Resg“(Bn). In §6.4
we have seen that twisting by v acts freely on the set of generic linear residual orbits
Wo\Resi™(B,,). It follows that twisting by 1 acts freely on AR(B,,,V, F?, (k,0)) as well.
Using [RR, Theorems A.6 and A.13] we see that all characters in AH(B,,,V, FP, (k,0))
remain irreducible when restricted to H(D,,V, Fy,k)=H(B,,V, F}?, (k,0))Y, that all
§€AH(D,,,V, F1,k) arise in this way, that there always exist precisely two irreducible
characters &,,0 € A¥(B,,V,F? (k,0)) restricting to §, and that these two characters

are 1-twists of each other. This proves the required result. O

Let us look at an interesting special case.

Ezample 7.2. We have H(B,,,V, Fy, (0, ko)) ~H (A}, V, Fy (A7), ko) xS, with F{*=
{e1,...,en}. Using this, it is easy to see that for ko #£0,

AY(B,,V,Fy, (0, k) = {6, 7€ 8,}, (106)

with §,=0%"®m and where ¢ is the unique irreducible (1-dimensional) discrete series
character of H(A1,V (A1), F1(A1), ka). If k23>0 then

67r(/\)|Wo :X('v)\/)a (107)
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and if k9 <0 then
671'(>\)|W0 :X(Av ')a (108)

where {7(A) }xep(n) denotes the usual parametrization of the irreducible characters of S,
by partitions of n (see e.g. [Ca]), and where {X(7,0)}(7.5)eP(2,n) is the usual parametriza-
tion of the irreducible characters of Wy=W|(B,,) by bipartitions of n.

On the other hand, we recall from §6.2.1 that k=(0, k) is a regular parameter for
all generic linear residual orbits of H(B,,, V, F1, (k1, k2)). Hence the map

8CC(g k)t AP (B, V, F1, (0, k2)) — Wo\Res'"™(B,,) (109)

is a bijection by Theorem 7.1. By continuity (see Theorem 5.7 and Definition 5.10) it
follows that for all A€P(n) the generic irreducible discrete series character dwye, x4 ..
whose domain of definition is the unique connected component U4 =Uw,¢, 400 Of IC{;,% £
which contains (0, k2) for £ks>0, restricts to an irreducible character of S,,, and this
sets up a bijective correspondence between the set of generic linear residual orbits and

the set of irreducible characters of S,,.

Remark 7.3. Unfortunately, we do not know how to compute the generic central

character map in this case. We conjecture that

Wog)\/ if ko > 0,

cc O =
8CC(0 k) (Fm()) {Wof,\ if ko <0.

The following corollary of Theorem 7.1 was known for degenerate affine Hecke alge-

bras with equal parameters by the work of Reeder [Re2].

COROLLARY T7.4. Let k€K™ be a reqular parameter. The elliptic pairing (see
p.125) is positive definite on EN(H(Ry,V, F1,k)) and the map

EH(H(R17 ‘/7 F17 k)) — EH(WO)a

7] — [l ),

yields an isometric isomorphism with respect to the elliptic pairing.

Proof. We may assume that R, is irreducible. If R; is not simply laced, we see from
our results above that (since k€K*®) the images in EIl(H(Ry,V, F1, k)) of the irreducible
characters in A¥(Ry,V, 1, k) form a linear basis of EIl(H(Ry,V, F1,k)). We also know
that these even form an orthonormal basis with respect to the elliptic pairing, and hence
the elliptic pairing is positive definite in this case. Using results of [OS], it follows that
the limits of these characters for xk (with £—0) form an orthonormal set of elliptic
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characters of Wy (actually, in order to see this using the results of [OS], we need to lift
the characters to H(R,q) using the equivalence of Corollary 2.31, then take the limit
q® with x—0 to get a set of orthonormal elliptic characters for W, and then use the
formula for the elliptic paring of [OS, Theorem 3.2]). Finally we already established in
the previous theorem that the cardinality of this set is equal to the dimension of the
space Ell(W). This yields the desired result for non-simply laced cases. For simply
laced cases (or more generally all cases with equal parameters k, i.e. such that k,=x for
all € Ry) the result is due to Reeder [Re2] (based on the Kazhdan-Lusztig model for
the characters of H(R,q)). O

It is natural to expect that the result of Corollary 7.4 holds for arbitrary k. We

conjecture something stronger (see [ABP] for related conjectures).

Congecture 7.5. A generic family ¢ of irreducible discrete series characters
se AP (R YV, Fy)

with domain of definition U EIC;?,% ¢ Sy, has weakly continuous limits to the points k€U
(the closure of U). In view of the above results this would imply that the elliptic pairing
is positive definite on EN(H(R;,V, Fy,k)) for all semisimple root systems R; and all
ke, and that this space is isometric to EIl(W}) for all ke K.

Remark 7.6. Using the gecH invariant it is not difficult to check that for all irre-
ducible root systems Ry the irreducible discrete series characters are stable for twisting

by diagram automorphisms (a case-by-case verification).

8. The classification of the discrete series of H

Since a semisimple root datum is in general not isomorphic to a direct sum of irreducible
root data, the classification of the irreducible discrete series characters cannot be reduced
to the same problem for an irreducible root datum. However, we have seen (Theorems 2.6
and 2.8) how to reduce the problem to the analogous problem for crossed products of
semisimple degenerate affine algebras by certain groups of diagram automorphisms. In
§7 we have covered the basic building blocks, the simple degenerate affine Hecke algebras.

Even though the classification problem for semisimple affine Hecke algebras can in
general not be reduced to the simple cases, it is instructive to give the classification in
certain basic situations. This is what we seek to do in the present section. In particular
we classify in this section the irreducible discrete series characters for all the irreducible
non-simply laced root data and all possible positive root labels (using Theorems 2.6
and 2.8 to reduce the problem to Theorem 7.1).
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Let R=(X, Ry, Y, Ry, Fu) be an irreducible root datum, and let g€ Q=0Q(R). Recall
the maximal root datum R™®* (with X™*=P(R;), the weight lattice of Ry and Rj***=
Ry) with the natural isogeny ¢: R—R™** such that Q(R)=09Q(R™?*). Let us define

I'=Y/Q(RY)=Hom(X™ /X, C*)CT™. (110)

An element y€I' uniquely extends to a linear character (also denoted «y) of W™
Xmax 5 Wy which is trivial on Wy. T acts on the affine Hecke algebra H™a*=H(R™** ¢
by means of algebra isomorphisms as follows: for weW™* and v€I" we define (V)
~v(w)N,,. With this action of I we have

~—

H(R,q) =H(R™>, ¢)". (111)

We are interested in applying Theorem 2.6 to central characters which carry discrete
series characters of H, in other words to orbits WyreRes(R, q) of residual points in 7.
We know that r€T is of the form r=sexp(§) with s€T, such that

Rs1={a€Ry:a(s)=1} (112)

is of maximal rank, and ¢ is a linear (R, 1, ks)-residual point. If we set WY =W, x 2miY’,
where i here denotes the imaginary unit, then the action groupoid of the action of Wy
on T is equivalent to the action groupoid of WV acting on iV. We have a splitting of the
form

WY =WVY(R™)xT (113)

with WY (R™a) =W (R1V) =W, x 2miQ(RY) on iV, and where T' acts on W (R") via
diagram automorphisms of Rgl). Hence we may assume that s(e)=exp(e) with e E(CV),
the set of extremal points of the closure of the fundamental alcove CV of W(Rgl)). It
follows that

Wie) 2W (Ry(e),1) ¥ Ts(e) (114)

with T'ye)={y€Il':y(e)=e} (compare with Definition 2.5 and Corollary 2.54).

Let FV be the set of simple affine roots of Rgl). If ¢V € FV, then there exists a unique
extremal point e(a¥)€ E(CV) such that a¥(e(a¥))#0. This sets up a canonical bijection
FVY+« E(CV) which we denote by e—~a"(e) and a"—e(a").

Let D(a¥)eV* denote the gradient of a¥. By the above, e#e(a¥) implies that
D(a")(s(e))=1. Hence, if D(a¥) can be written as D(aV)=28 with S€ Ry, then one
has 3(s(e))==1 for all extremal points e€CV with e#£e(a"). In this situation the value
B(s(e))e{+£1} is independent of the choice of e#£e(a") (namely, it equals —1 if and only
if {aV}=FY\F}). Thus the following definition makes sense (in view of (25)).
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Figure 1. Spectral diagram of the Iwahori-Hecke algebra of SO2y,41(F).

Definition 8.1. We define the spectral diagram Y. associated with (R, ¢) as the affine
Dynkin diagram of WV associated with the basis FV of Rgl), where we give all the vertices
a’ €FY of ¥ a weight k,v defined as follows. We define kqv =k p(ov) (as in (25)), where
s=s(e) for ee E(CV)\{e(a")} (an arbitrary choice). Note that ¥ (labelled with these
weights) is invariant for the natural action of I' on FV. We include the action of I' on
the diagram and the marking of the special vertex (extending the diagram of R;) in the

spectral diagram.
Ezxample 8.2. If R=R™** we have I'=1. These cases are referred to as Rgl).

Ezxample 8.3. 1t is possible that the generic affine Hecke algebra of a root datum is
a specialization of the generic affine Hecke algebra of another root datum. For exam-
ple, H(Cy, P(Cy), By, Q(By), Fo(Cy)) is isomorphic to the specialization vgv =1 in the
generic algebra of the type H(B,, Q(B,), Cn, P(Cy), Fo(B,)), where € Ry=B,, is such
that 28€ R;. This is compatible with the previous remark in the sense that both these
cases are referred to as C’r(ll). A basic example in this class is the Iwahori—-Hecke algebra
of the Chevalley group of type G=S02,11(F), with ¢*=|O/P|, the cardinality of the
residue field. See Figure 1 (with k=2logq).

Ezample 8.4. The Iwahori—Hecke algebra of the simply connected group Sps,, (F)
(where we put ¢>=|0/P|) has the spectral diagram displayed in Figure 2 (where k=
2logq). It corresponds to the case Ry=B,, and X=Q(Ry), and therefore it is obviously
also a specialization of C,(Ll) (namely, this case corresponds to the specialization v,v=1
for =20 with B€Ry).

Indeed, the spectral diagram of Figure 2 is equivalent to the diagram of type Cﬁl)
displayed in Figure 3.

Ezxample 8.5. More generally, let R be of type C,(Ll). Let Ry={=*e;, +e;%e;} and put
X=Q(Ry). Choose Fy={e1—ez,...,en_1—€n, e} and put ¢1=q(5z,—2,.,), 2=9(522,,)
and go=q(s1-24,). Put k=2logq; and define my by mik==logqo+loggs. The corre-
sponding spectral diagram is displayed in Figure 4. We refer to [Lu3] and [B]] for explicit
examples of such affine Hecke algebras as convolution algebras in the representation

theory of p-adic groups.
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0 k k k k 2k

Figure 3. Equivalent CT(L1>—type spectral diagram of the Iwahori—Hecke algebra of Spy,, (F).

Definition 8.6. With each element e€ E(C") we associate the semisimple root sys-
tem Ry()1 with basis Fy)1 (as in Definition 2.5). Then D(FY\{a"(e)}) is a basis
for Ry(e),1- Let k. €X(Ry(),1) denote the unique parameter function on Ry, which
corresponds to the set of weights of 3 restricted to F¥'\{a" (e)}. Then we associate with
e the algebra

H :=H(Ry),1,V, Fy(e),1, ke) XTg(e)- (115)
We denote by A(H,) the set of irreducible discrete series characters of H, (in the sense

as explained in the text following Corollary 2.27).
Let us finally formulate our classification theorem.

THEOREM 8.7. Let R=(X, Ry, Y, Ry, Fv) be a root datum with Ry irreducible, and
let geQ. Let A(R,q) be the set of irreducible discrete series characters of the Hecke

algebra H(R,q) as usual. There exists a natural bijection
AR, q)«— [] A*“(R,0q), (116)
e€T\E(CV)
where the disjoint union is taken over a set of representatives for the T'-action on E(CV).

For each e E(CV) there is a natural bijection
AR, q)~ A(H,) (117)

(where the right-hand side denotes the set of irreducible discrete series characters of H,.).

In particular, if T'gey=1 we have

AS(e)(Rv q)2AH(RS(€),17‘/7FS(€),17I€€) (118)
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2m_k k k k k 2my k

Figure 4. Spectral diagram for the general C,(Ll)—case.

2mk k k k k 2mk

Figure 5. Spectral diagram for Ro=C), and X=Q(Rp).

(which is completely described by Theorem 7.1). If SR cA(H,), then its restriction to
H(Rs(e),1,V, Fy(e),1, ke) is a finite sum of irreducible discrete series characters §H whose
generic central characters gecH(68) constitute one W (ey-orbit of a generic linear Ry 1-

residual point € (using Theorem 7.1). We express this by writing
goct(6M) = W(o)€- (119)

With this notation, the bijection above has the property that if 5€AS(6)(R, q) corresponds
to S e A(H,) with gccH(éH):Ws(e)f, then

gee(8) =Wo(s(e) exp(§))- (120)
Proof. Use Theorems 2.6 and 2.8. O

Remark 8.8. If R is of type Rgl) then one has I'y(.y=1 for all € E(C"). In general
one needs to apply Clifford theory in order to describe the sets A(H.) in terms of the

results of Theorem 7.1.

The only non-simply laced classical case which is not of type Rgl) is the case Ry=C),
and X=Q(Ro) (as is clear from the examples above). In this case R™** is of cih-
type with the specialization vgv=vge,, =1 (as in Example 8.3). Using the notation of
Example 8.5 and (6), we see that go=¢(ve,, )=1. Hence we have m=m,=m_, and a
group F%%Z acting on the spectral diagram X as shown in Figure 5.

In the application of Theorem 8.7 everything is straightforward except when n=2a
is even and e=e, corresponds to the middle node of ¥ (the unique node of ¥ with

non-trivial isotropy in I'). In this case we need to describe the set
A(H,,)=A((H(Cy, Vo, Fo, ko) QH(Cy, Vi, Fu, ko)) %), (121)

where the non-trivial element of I' acts by the flip 7 of the two tensor legs.
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THEOREM 8.9. We have
A(H,, ) ~T\(AB(Cy, Vo, Fo ko) x AB(Co, Vi, Fiu ko)), (122)

where for any set A, (AxA)* denotes the Cartesian product of A by itself, with the

diagonal counted twice, and where the unique non-trivial element v€I' acts by
m(7)(01,02) = (82, 01).

Proof. By Clifford theory, it is clear that all irreducible discrete series representations
of H., are obtained by the following recipe. We start from an irreducible discrete series
character §=01 09y of H(Cy, Vy, Fu, ke)QH(Cy, Vy, Fo, kq). Consider its inertia group
for the action of I' on such characters (by twisting). In this simple situation we see that

we can choose an explicit intertwining isomorphism
ﬂ(”y)251®52—>(52®51)07 (123)

given by () (v@w)=w®v. Hence the inertia subgroup in I" of 4; ®J3 is non-trivial if and
only if §; and do are equivalent irreducible representations. If the inertia is trivial then
Clifford theory tells us that the induction of §; ®4d, to H, is irreducible, and otherwise
Clifford theory tells us that the induced representation splits up into two inequivalent
irreducible parts (distinguished from each other by the sign of the trace of «). This

proves the result. O

Appendix A. Analytic properties of the Schwartz algebra

The aim of this appendix is to provide proofs of Theorems 2.20 and 2.23, which concern
the embedding S(R, q) —C;(H(R, q)) and holomorphic functional calculus with varying
parameters q. Our approach is purely analytic and does not make any use of the repre-
sentation theory of H(R,q). The appendix is based on the second author’s thesis [So,
§5.2], where some proofs can be found in more detail.

First we recall some generalities. A Fréchet algebra is a Fréchet space endowed with
a jointly continuous multiplication. We include in the definition that the topology can be
defined by a (countable) family of submultiplicative seminorms. The submultiplicativity
ensures that our Fréchet algebras can be written as projective limits of Banach algebras.
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THEOREM A.1. Let A be a unital Fréchet algebra and let a€ A. Suppose that UCC
is an open neighborhood of the spectrum Sp(a) of a, and let C**(U) be the algebra of
holomorphic functions on U. There exists a unique continuous algebra homomorphism,

the holomorphic functional calculus

CoMNU) — A,
fr— f(a),

such that 1—1 and idy—a. Moreover, if T is a positively oriented smooth simple closed

contour, which lies inside U and encircles Sp(a), then

1) =57 [ £ =a) e

where i here denotes the imaginary unit.

Proof. This is well known for Banach algebras, see for example [Ta, Proposition 2.7].
As noticed in [Ph, Lemma 1.3], we can generalize the result to A, because A is a projective

limit of Banach algebras. O

Remark A.2. If U is disconnected then we may also use finitely many contours T,
each one lying in a different connected component of U. Notice however that in general
Fréchet algebras the spectrum of an element need not be compact, so it may not be

possible to find suitable contours for the holomorphic functional calculus.

The next theorem, which relies on a result of Lusztig, is essential to control the
multiplication in H(R,q). Let u,v€W and let u=wsj ... s5;(,) be a reduced expression,
where [(w)=0 and s;€S. The s; need not all be different. For IC{1,2,...,1(u)} we write

ni=[1,c;(a(si)—q(s;)~*) and

Siy 1fl¢]7
Uy =wSsq ... Sj(v), Where §;=
IR e Sl {e, ifiel.
THEOREM A.3. We have
Ny:Ny= > mDY(I)Nyjo,

Ic{1,2,...,l(u)}

where
(i) D¥(I) 1is either 0 or 1;
(ii) Dy(2)=1 and Dy(I)=0 if [I|>|Rg];
(iif) ZIC{LQ ..... 1w} Dg([)<3(l(u)+1)\33|,
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Proof. Tt follows from the multiplicaton rules in Definition 2.1 that for s€.S,

0, ifli(sv)>I(v),

Ny-Ny = N+ D3 (q(s) —q(s) )N, heeDs_{
0= NewtDyla(s) =a(s) ONo, - where Dy=1 ) ) 00 )

The expression for N, - N,,, with D2(I) being 0 or 1 and DY (@)=1, follows from this, with
induction on [(u). By [Lul, Theorem 7.2], for fixed weW the sum ;. _, nrDy(I) is
a polynomial of degree at most |Rj| in the variables g(s;) —gq(s;)~!. Therefore D¥(I)=0

whenever |I|>|R/| and

Y. D)< HIC{L2, .. l(w)}: [II<IRSIY

Ic{1,2,...1(w)}

IRE| IRE (124)
|R+|
< Z ( ) \R* i Z u)+1)
where we should interpret (I(u)—|RJ|)! as 1 if |RS|=1(u). O

For the reader’s convenience we repeat some notation from §2.2.2 and add some new.

The vector space V*=R®z X decomposes as
V'=VyeV;=RRy®R®zZ,

so that we can write unambigously V*2>¢=¢o+¢z €V, ®V;. The norm on W is defined
by N (w)=l(w)+|zz]| if w=2wy with z€X and wo€Wy. Since Xz:={xz:x€X} is a
lattice in V7, we can adjust the norm on V* so that it takes integral values on Xz. This

is not necessary, but it assures that N'(W)CZxo.

LEMMA A.4. There exists a real number Cnr such that for all n€Z>o,
[{we W : N(w) =n}| < Op(n41)~1,

Proof. Recall that W =W, x X with W, finite. It is easily seen that X possesses the
required property, and taking the semidirect product with a finite group does not disturb
this. [

For n€R we have a norm p,, on H(R,q), defined as

o X ) = sup (V) +1)"

weWw wew

The Schwartz algebra S(R, ¢) is defined as the completion of H(R, q) with respect to the
family of (semi)norms p,,, n€Zxq. It clearly is a Fréchet space (even a Schwartz space),
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but it is not so obvious that the multiplication extends continuously from H(R,q) to
S(R, q); we will prove this later in the appendix.

Let L2(W) be the Hilbert space of square-integrable functions W —C and let S(W)
be the Fréchet space of rapidly decaying functions W —C. We regard these as topological
vector spaces without a specific multiplication. By means of the bases {N,,:weW} we
can identify L?(W) with L?(H(R,q)) and S(W) with S(R, q). We note that *, 7 and the
pn, do not depend on g€ Q, so they are well defined on L?(W). For g€ Q and z€ L*(W) we
denote the corresponding element of L2(H(R,q)) by (z,q). To distinguish the products
for various parameters we add a subscript ¢, thus (z, ¢)-(y, ¢)=(z-4y, q)-

We realize the left regular representation A of C*(H(R,q)) on L?(W) and we ab-
breviate ||(z, q)|lo:=[|A(z, )|l 5(r2(w)). Furthermore let |- ||; be the norm of L*(W), so
that ||z||2=7(z*-qz) for all € L*(W) and g€ Q such that z*-,z is well defined. Since
the number ¢(s)—q(s)~! appears often in the multiplication table of H(R, q), we will use

the following metric on Q:
0(q:q') = max [(g(s)—a(s)™") = (¢'(s)=d'(s) ).

Put b:=rk(X)+1. By Lemma A.4, the following sum converges:

Z N(w)+1)"b < i Ca(n+1)* =1 (1)~ k(D=1 — 0 io:(n—klf2 < 0.

weW n=0 n=0

Hence we may write Cyp:=), .,y (N (w)+1)""€R. For all =", .y N, €S(W) and
ne€Zlxq we get

Dol W) +1)" <Y Slip[l%I(N(v)+1)"+b](N(U)+1)_b = Copnip(x).  (125)

u

Define the parameter function ¢°€ Q by ¢°(s)=1 for all s€S. Fix >0 and let B,(q°,7)
be the corresponding closed ball in Q. To estimate some operator norms, we will use the
number C,,:=3Cj, max{l’nmﬁr\} .

PROPOSITION A.5. For all q,q' € B,(q°,n) and all z€S(W), the following estimates
hold:

1Mz, @) B2 wy) = 12, Do < Copyy gy (@),

1A=, @) =A@, ¢ B2y < o, q")Copyy gz (@)

In particular, S(R, q) is continuously embedded in C;(H(R,q)).
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Proof. Let y=>", y,N,€L*(W). By (125) and Theorem A.3,

quyvNu'qu

u,v

lz-qyll- =

T

ZUID uIv
<Z|mu| Sl

I:|II<|R] |

T

> 1Yol Nuyo
v T

<23\xu\ u)+1 ‘R‘)lmax{l n‘ROI}HyH

<O17101)+|R§|(917)||?J||T-

By the very definition of the operator norm on B(L?*(W)), this yields the first estimate.
That in turn proves that S(R, ¢) is contained in C*(R,q) and that the inclusion map is

continuous. We also have that

z-qy—a-gyll- = Zﬁuyv(Nu'qu*Nu’q’ Ny)

u,v

=" wuye Y (1 —1) DEI) Ny
u,v I

T

T

N

quyvz o(q, Q)|I|77|II 1Du(I)Nuw

<olg )Yl D T

> Y| Nuyo
u I'\I\<|R+\ v T

23\%\ (w)+ 1)1 B max {1,751V |y |,

< (44 )Copy s @)yl

Between lines 4 and 5 we used a small calculation like (124):

IR A X
S a3 ()i < g g 2 sl
LIRS | 0V j=0
< 3(l(u)+1)|R0 ! max{l,n'R‘J’r‘},
and in the last line we may replace [(u) by N (u). O

We now want to show that S(R,q) really is an algebra. To this end we will re-

construct it with an alternative but equivalent family of seminorms, which are closer to
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being submultiplicative. Let C[W]* be the algebraic dual of C[W] and identify it with
the space of all formal sums ), 1y, hy Ny. The norm N on W induces an endomorphism
AN) of C[W]* by

S huNu— Y N(w)hy Ny

weWw weWw
This operator is unbounded on L?(W) but it restricts to a continuous endomorphism
of S(W). For TeB(L*(W)) we define the (in general unbounded) operator D(T):=
[A(W), T]. Inspired by the work of Vignéras [Vi, §7] we consider the following family of
seminorms on H(R, q):
Pu(@) = ID"AN@) | Bz2(w)), 1€ Zx0.

LEMMA A.6. The space S(R,q) is the completion of H(R,q) with respect to the
family of seminorms {p),:n€Z=¢}.

Proof. We have to show that the families of seminorms

{pn:n€Zso} and {p|,:n€Zxp}

are equivalent. Let n=0(q, ¢°), n€N, weW and

y=>_ yN,eL*(W).
veW

From the proof of Proposition A.5, we see that

D"l = o 0 (AT AWNA N,

v =0 .
S0 0 () S mnr oA N
v =0 I T

=3 00 S DED N (ur0) —N ()" N
v I

Z |yv‘ Z |nI|Dg(I)Nu1U
v I

<3N (u)™ (N () +1) 15 max{1,ano*}’

T

< N(u)”

T

Z ‘y1)|Nu1U
= 3N ()" (N (1) + 1)1 | max{ 1, 91551} 1y
Hence, for =%, z,N,eH(R,q),

u

T

1D (@)l sz vy = \

B(L2(W))
n + +
<D 3lzu | W (@) + 1) max {1,551} < Cupy 4y ()
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On the other hand, since Q'={weW:N(w)=0} is finite, we see that

pa(@)® < D (N () +1)*" |

ueW
<Y lwul? 4" Y N(u)* |z
we ueWw

<[ (|17 +-4™ A N) 17

=[] [ A(@)Nel|7+4" | D™ (X)) Ne |7

I IAM@) B2y HA" D" A @) B 22wy

< (YN | Bpzwy) 271D A @) | B2 wy)) 2

which shows that p,, is dominated by a linear combination of p{, and p),. O

THEOREM A.7. (1) S(R,q) is a Fréchet algebra.

(2) S(R,q)* is open in S(R,q) and inverting is a continuous map from this set to
itself.

(3) An element of S(R,q) is invertible if and only if it is invertible in C:(H(R,q)).

(4) The subalgebra S(R,q) CCr(H(R,q)) is closed under the holomorphic functional
calculus of C(H(R,q)).

Proof. (1) We already observed that S(R,q) is a Fréchet space. Because D is a
derivation, S(R,q) is also a topological algebra with jointly continuous multiplication.
A short calculation shows that the norm

m
L

n=0
on S(R,q) is submultiplicative for any me€Zso. The family
m 1 ,
Z —Pp M € Lixo
— nl

is equivalent to {p),:n€Z=¢}, so defines the same topology.
(2) and (3) See Lemmas 16 and 17 of [Vi].
(4) This is a consequence of part (3) and Theorem A.1. O

Our next goal is to show that inverting in S(R,q) also depends continuously on

q€ Q. For this we need two preparatory lemmas. Put

b =20+ |R{| =2rk(X)+|R|+2.
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LEMMA A8. Let neN, ¢,¢'€By(¢°,n) and z;=3", oy iulNu€S(W). Then

m
pn(xl 'q---'qu) < H Oncbpn—&-b/(xi))
=1

pn(xl-q...-qa:m—xl-q/...~

v Tm) < 0(¢,q) [ [ CoCopnyw ().
i=1
Proof. This can be deduced with a piece of careful bookkeeping

pn(xl'q qu <pn<

E T1uy - Tmary Nug g g Nu )
u; €W

m

D s e T [N (1) AN () )™ T IV, @)l
u; EW

i=1
Z |T10y - xmum|HC

Jr1)n+b+u%:+|
uZEW

= H Cy D Jaaal (N () 1)+ 417

ueW

HC Copn v (1),

m—1
PNy geqNuy =Ny oo Ny ) <

gDy g Nuy sy g gt N,
Jj=1

_Nul'q“"qNUj q’NuJ+1 q ’Num)
m—1

< Q q, q HC _’_1)n+b+\R0
j=1

m

<oa,¢) [] CoN () +1)m+0HIES ]

i=1
Pr(T1g o qTm—T1 g o g Trm)
< Z %10y o Ty, [P0 (Nuy g g Nugy = Ny g7 g Nuy )
u; EW
i +
<Y 10y o T l0(a, @) [ [ Cn(N (i) +1) 0o
u, €W i=1
HC >l V() + 1) 1R
ueW
<

(qv q’) H Onpn+b’ (951:)-

i=1
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In these calculations we used (125) and Proposition A.5 several times. O

Knowing how to handle multiple products in S(R,q), we can make some rough
estimates for power series. Let f: Z>—>Z 0 @m 2™ be a holomorphic function on a neigh-
borhood of 0€C and define another holomorphic function f (with the same radius of

convergence) by f(2):=3"5_ @y |2

LEMMA A.9. Let neN and let x€eS(W) and q,q €B,(q°,n) be such that f(x,q)
and f(xz,q') are well defined. Then

pn(f(2,q))
pn(f(fc,q)—f(l‘,q ))

f(Canpn+b’ (I‘)),
0

<
<0(q,q) f(CrCopniw (2)).

Proof. By Proposition A.8, we have

) =pn( > am<x7q>m) <3 lamlpal(z )™

m=0 m=0
< 3 laml(CoCapns (0)™ = F(CoCipmrw ().

m=0
Moreover,
a1~ 1) = 3 (.0 = )™) € 3 fam(.0)” (2.0

m=0 m=0

< i \am|o(q,q)(CoCopnip ()™ = 0(q,¢') F (CoCopnipr ().
m=0

The right-hand sides could be infinite, but that is no problem. O

PROPOSITION A.10. The set of invertible elements |J,co S(R,q)* x{q} is open in

S(W)x Q, and inverting is a continuous map from this set to itself.

Proof. First we recall that if ||[1—h||, <1, then h is invertible in C} (R, ¢), with inverse
S0 o(1—=h)". Take q,¢'€B,(¢°,n), yeS(R), z€S(R,q)* and write a=(x,q)"*. If the

sum converges, then
= 1 _ n—1
aq Y (1=(@+y)-¢a,¢)" =ay (24y)-ga,q) " —ag 1= (w+y,¢') ' —a.  (126)

m=1

By Lemma A.8,

pu((z+Yy)-ga—1) <pp(z-ga—2-ga)+pu(y ¢ a)

(127)
<ol(q, q’)Cﬁ Cb2pn+b/ ()Pt (a)+ 0727 Ob2pn+b’ (Y)Pn+v (a).
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Let U be the open neighborhood of (z, ) consisting of those (z+y,q" ) €S(W)x B,(q°,n)
for which

o(q, q’)CSCfpstRo\ (2)P3p4| Ro| (@) < %7
CrCip3v+ 1 Ro| (V)P30+ R (@) < 5.

By (127) and Proposition A.5, we have
I(@+y)¢a=1,¢)o<1 forall (z+y,q) €U,

so every element of U is invertible. To prove that inverting is continuous, we consider
the holomorphic function

fiz)= Z 2" = 1i2.

m=1

By (126) and Lemma A.9, we have

pu((z+y,¢") ' —a) <CLChpnipy (@)pniw (F(1=(24y) - a,q))
< ngcﬁpmb’ (a)f(cbcnpn+2b’ (1—(z+y)-¢a)).

Since f(0)=0 we deduce from (127) that this expression is small whenever o(q, ¢') and y
are small. O

With Proposition A.10 we can prove that the holomorphic functional calculus in the

various Schwartz algebras is continuous in the most general sense. For UCC we write
Vu:={(z,q) e S(W)xQ:Sp(z,q) CU}.
THEOREM A.11. Let UCC be open. Then Vi is open in S(W)x Q and the map
C*(U)xVy — S(W),
(fs2,q)— f(z,q),
18 continuous.

Proof. By Theorem A.7(4), the spectrum of (z,q) in S(R,q) equals its spectrum
in the unital C*-algebra C}(H(R,q)). By Proposition A.5, (x,q)—||(x,q)]|, is continu-
ous, so Sp(z,q) is uniformly bounded on bounded subsets of S(W)x Q. Together with
Proposition A.10 this shows that Sp(z, ¢) depends continuously on (z, ¢), in the following
sense. Given £>0, there exists a neighborhood N of (x,¢) in S(W)x Q such that for all
(z',¢')EN,

Sp(«’,q') C {z' € C: there exists z € Sp(z, ¢) such that |z2—2'| <e}.
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Since Sp(z, q) is compact, it follows that Vi is open in S(W) x Q.

For every connected component U; of U that meets Sp(z, ¢), let T'; be a positively

oriented smooth simple contour closed in U; that encircles Sp(z,¢)NUj, as in Theo-

rem A.l. Since Sp(z, ¢) is compact, we need only finitely many components. The above

shows that I'; also encircles Sp(z’, ¢')NU; for (z’,¢’) in a small neighborhood of (z, ¢) in
S(W)x Q. Now Theorem A.1 tells us that (being ¢ here the imaginary unit)

!/ ! 1 ! N—1
_——E — dz
(@', q") 2mi 2 /ij(Z)(z z',q") ,

for all such (2’,¢"), so by Proposition A.10, (f,2’,¢" )~ f(2’,¢’) is continuous. O
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