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1. Introduction

Considering the role of affine Hecke algebras in representation theory [IM], [Bo], [BZ],
[BM1], [BM2], [Mo1], [Mo2], [Lu3], [Re1], [BHK], [BK] or in the theory of integrable
models [Ch], [HO1], [Mac], [EOS] it is natural to ask for the description of their (alge-
braic) representation theory and for the properties of their representations in relation to
harmonic analysis (e.g. unitarity, temperedness, formal degrees). An analytic approach
to such questions (based on the spectral theory of C∗-algebras) was first proposed by
Matsumoto [Mat]. This approach to affine Hecke algebras gives rise to a program in
the spirit of Harish-Chandra’s work on the harmonic analysis on locally compact groups
arising from reductive groups (for a concise account of Harish-Chandra’s work in the
p-adic case see [Wa]). The main challenges to surmount on this classical route designed
to describe the tempered spectrum and the Plancherel isomorphism (the “philosophy of
cusp forms”) are related to understanding the basic building blocks, the so-called discrete
series characters. The most fundamental problems are:

(i) Classify the irreducible discrete series characters;
(ii) Calculate their formal degrees.

In the present paper we will essentially(1) solve both these problems for general abstract
semisimple affine Hecke algebras with arbitrary positive parameters.

The study of harmonic analysis in this context requires the introduction of classical
notions borrowed from Harish-Chandra’s seminal work (e.g. the Schwartz completion,
temperedness, parabolic induction) for abstract affine Hecke algebras. It was shown in
[DO] that the above program can indeed be carried out. In view of [DO] (see also [Op2]),
our solution of (i) can in fact be amplified to yield the classification of all irreducible
tempered characters of the Hecke algebra. The explicit Plancherel isomorphism can be
reconstructed by (ii) and [Op1, Theorem 4.43].

Let us describe the methods used in this paper. The new tool in this study of these
questions for abstract affine Hecke algebras is derived from the presence of a space of
continuous parameters with respect to which the harmonic analysis naturally deforms.
Observe that this aspect is missing in the traditional context of the harmonic analysis
on reductive groups. The main message of this paper is that parameter deformation is
a powerful tool for solving the questions (i) and (ii), especially (but not exclusively) for
non-simply laced root data. There are in fact two other pillars on which our method
rests, based on results from [Op1] and [OS]. We will now give a more detailed account
of these matters.

(1) Our solution of (i) does not cover the cases En, n=6, 7, 8, hence in these cases we rely on
[KL]. Our solution of (ii) is complete only up to the determination of a rational constant factor for each
continuous family (in the sense to be explained below) of discrete series characters.
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An affine Hecke algebra H=H(R, q) is defined in terms of a based root datum

R=(X,R0, Y,R
∨
0 , F0)

and a parameter function q∈Q=Q(R). By this we mean that q is a (positive) function
on the set S of simple affine reflections in the affine Weyl group ZR0oW0, such that
q(s)=q(s′) whenever s and s′ are conjugate in the extended Weyl group W=XoW0.
The deformation method is based on regarding the affine Hecke algebras H(R, q) with
fixed R as a continuous field of algebras, depending on the parameter q. This enables us
to transfer properties that hold for q≡1 or for generic q to arbitrary positive parameters.

We will prove that every irreducible discrete series character δ0 of H(R, q0) is the
evaluation at q0 of a unique maximal continuous family q 7!δq of discrete series characters
of H(R, q) defined in a suitable open neighborhood of q0. The continuity of the family
means that the corresponding family of primitive central idempotents q 7!eδ(q)∈S (the
Schwartz completion of H(R, q), a Fréchet algebra which is independent of q as a Fréchet
space) is continuous in q with respect to the Fréchet topology of S. The maximal domain
of definition of the family q!δq is described in terms of the zero locus of an explicit
rational function on Q. This reduces the classification of the discrete series of H(R, q) for
arbitrary (possibly special) positive parameters to that for generic positive parameters,
a problem that is considerably easier than the general case.

Let us take the discussion one step further to see how this idea leads to a practical
strategy for the classification of the discrete series characters. For this it is crucial to
understand how the “central characters” behave under the unique continuous deforma-
tion q 7!δq of an irreducible discrete series character δ0. Since it is known that the set of
discrete series can be non-empty only if R0 spans X⊗ZQ, we assume this throughout the
paper. To enable the use of analytic techniques we need an involution * and a positive
trace τ on our affine Hecke algebras H(R, q). A natural choice is available, provided that
all parameters are positive (another assumption we make throughout this paper). Then
H(R, q) is in fact a Hilbert algebra with tracial state τ . The spectral decomposition of τ
defines a positive measure µPl (called the Plancherel measure) on the set of irreducible
representations of H(R, q), cf. [Op1] and [DO]. More or less by definition an irreducible
representation π belongs to the discrete series if µPl({π})>0. It is known that this con-
dition is equivalent to the statement that π is an irreducible projective representation
of S(R, q), the Schwartz completion of H(R, q). In particular π is an irreducible dis-
crete series representation if and only if π is afforded by a primitive central idempotent
eπ∈S(R, q) of finite rank. Thus the definition of continuity of a family of irreducible
characters in the preceding paragraph makes sense for discrete series characters only.
We denote the finite set of irreducible discrete series characters of H(R, q) by ∆(R, q).
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A cornerstone in the spectral theory of the affine Hecke algebra is formed by Bern-
stein’s classical construction of a large commutative subalgebra A⊂H(R, q) isomorphic
to the group algebra C[X]. It follows from this construction that the center of H(R, q)
equals AW0∼=C[X]W0 . Therefore we have a central character map

ccq: Irr(H(R, q))−!W0\T (1)

(where T is the complex torus Hom(X,C×)) which is an invariant in the sense that this
map is constant on equivalence classes of irreducible representations.

It was shown by “residue calculus” [Op1, Lemma 3.31] that a given orbitW0t∈W0\T
is the central character of a discrete series representation if and only if W0t is a W0-orbit
of so-called residual points of T . These residual points are defined in terms of the poles
and zeros of an explicit rational differential form on T (see Definition 2.39), and they
have been classified completely. They depend on a pair (R, q) consisting of a (semisimple)
root datum R and a parameter q∈Q. In fact, given a semisimple root datum R, there
exist finitely many Q-valued points r of T , called generic residual points, such that on a
Zariski-open set of the parameter space Q the evaluation r(q)∈T is a residual point for
(R, q). Moreover, for every q0∈Q(R) and every residual point r0 of (R, q0) there exists
at least one generic residual point r such that r0=r(q0).

For fixed q0∈Q, these techniques do in general not shine any further light on the
cardinality of ∆(R, q0). The problem is a well-known difficulty in representation theory:
the central character invariant ccq0(δ0) is not strong enough to separate the equivalence
classes of irreducible (discrete series) representations. But this is precisely the point
where the deformation method is helpful. The idea is that at generic parameters the
separation of the irreducible discrete series characters by their central character is much
better (almost perfect in fact, see below) than for special parameters. Therefore we can
improve the quality of the central character invariant for δ0∈∆(R, q0) by considering the
family of central characters q 7!ccq(δq) of the unique continuous deformation q 7!δq of δ0
as described above. It turns out that this family of central characters is in fact a W0-orbit
W0r of generic residual points. We call this the generic central character gcc(δ0)=W0r

of δ0.
Our proof of this fact requires various techniques. First of all the existence and

uniqueness of the germ of continuous deformations of a discrete series character de-
pends in an essential way on the continuous field of the pre-C∗-algebras S(R, q), where
q runs through Q and S(R, q) is the Schwartz completion of H(R, q) (see [DO]). Pick
δ0∈∆(R, q0) with central character ccq0(δ0)=W0r0∈W0\T . With analytic techniques we
prove that there exists an open neighborhood U×V ⊂Q×W0\T of (q0,W0r0) such that
(see Lemma 3.2 and Theorems 3.3 and 3.4):
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• there exists a unique continuous family U3q 7!δq∈∆(R, q) with δq0 =δ0;
• the cardinality of {δ∈∆(R, q):ccq(δ)∈V } is independent of q∈U .
Next, we consider the formal degree µPl({δq}) of δq∈∆(R, q). In [OS] we proved

an “index formula” for the formal degree, expressing µPl({δq}) as an alternating sum
of formal degrees of characters of certain finite-dimensional involutive subalgebras of
H(R, q). It follows that µPl({δq}) is a rational function of q∈U , with rational coefficients.
On the other hand, using the residue calculus [Op1] we derive an explicit factorization

µPl({δq}) = dδmW0r(q), q ∈U, (2)

with dδ∈Q× independent of q and mW0r(q) depending only on q and on the central
character ccq(δq)=W0r(q) (for the definition of m see (39)). Using the classification of
generic residual points, this enables us to prove that q 7!ccq(δq) is not only continuous
but in fact (in a neighborhood of q0) of the form q 7!W0r(q) for a unique orbit of generic
residual points gcc(δ0)=W0r, the generic central character of δ0 alluded to above. We
can now write (2) in the form (see Theorem 5.12):

µPl({δq}) = dδmgcc(δ)(q), q ∈U, (3)

where mgcc(δ) is an explicit rational function with rational coefficients on Q, which is
regular on Q and whose zero locus is a finite union of hyperplanes in Q (viewed as a
vector space).

The incidence space O(R) consisting of pairs (W0r, q), with W0r an orbit of generic
residual points and q∈Q such that r(q) is a residual point for (R, q), can alternatively
be described as O(R)={(W0r, q):mW0r(q) 6=0}. Thus O(R) is a disjoint union of copies
of certain convex open cones in Q. The above deformation arguments culminate in
Theorem 5.7 stating that the map

GCC:
∐

q∈Q(R)

∆(R, q)−!O(R),

∆(R, q)3 δ 7−! (gcc(δ), q),

gives ∆(R):=
∐

q∈Q(R) ∆(R, q) the structure of a locally constant sheaf of finite sets on
O(R). Since every component of O(R) is contractible, this result reduces the classifica-
tion of the set ∆(R) to the computation of the multiplicities of the various components
of O(R) (i.e. the cardinalities of the fibers of the map GCC).

One more ingredient is of great technical importance. Lusztig [Lu2] proved funda-
mental reduction theorems which reduce the classification of irreducible representations
of affine Hecke algebras effectively to the classification of irreducible representations of
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degenerate affine Hecke algebras (extended by a group acting through diagram auto-
morphisms, in general). In this paper we make frequent use of a version of these results
adapted to suit the situation of arbitrary positive parameters (see Theorems 2.6 and 2.8).
These reductions respect the notions of temperedness and discreteness of a representa-
tion. Using this type of results it suffices to compute the multiplicities of the positive
components of O(R) or equivalently, to compute the multiplicities of the correspond-
ing components in the parameter space of a degenerate affine Hecke algebra (possibly
extended by a group acting through diagram automorphisms).

The results are as follows. If R0 is simply laced, then the generic central character
map itself does not contain new information compared to the ordinary central character.
However, with a small enhancement, the generic central character map gives a complete
invariant for the discrete series of Dn as well, using that the degenerate affine Hecke
algebra of type Dn twisted by a diagram involution is a specialization of the degenerate
affine Hecke algebra of type Bn. With this enhancement understood, we can state that
the generic central character is a complete invariant for the irreducible discrete series
characters of a degenerate affine Hecke algebra associated with a simple root system
R0, except when R0 is of type E6, E7, E8 or F4. In the F4-case with both parameters
unequal to zero there exist precisely two irreducible discrete series characters which have
the same generic central character.

Our solution to problem (i) is listed in §7 and §8. This covers essentially all cases
except type En, n=6, 7, 8 (in which cases we rely on [KL] for the classification). In this
classification, the irreducible discrete series characters are parametrized in terms of their
generic central character. The solution to problem (ii) is given by the product formula
(3) (see Theorem 5.12) which expresses the formal degree of δq explicitly as a rational
function with rational coefficients on the maximal domain Uδ⊂Q to which δq extends
as a continuous family of irreducible discrete series characters (Uδ is the interior of an
explicitly known convex polyhedral cone). At present we do not know how to compute
the rational numbers dδ for each continuous family so our solution is incomplete at this
point.

Let us compare our results with the existing literature. An important special case
arises when the parameter function q is constant on S, which happens for example when
the root system R0 is irreducible and simply laced. In this case all irreducible repre-
sentations of H(R, q) (not only the discrete series) have been classified by Kazhdan and
Lusztig [KL]. This classification is essentially independent of q∈C×, except for a few
“bad” roots of unity. This work of Kazhdan and Lusztig is of course much more than
just a classification of irreducible characters, it actually gives a geometric construction of
standard modules of the Hecke algebra for which one can deduce detailed information on
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the internal structure in geometric terms (e.g. Green functions). The Kazhdan–Lusztig
parametrization yields the classification of the tempered and the discrete series characters
too.

Next Lusztig [Lu4] has classified the irreducibles of “geometric” graded affine Hecke
algebras (with certain unequal parameters) which arise from a cuspidal local system on
a unipotent orbit of a Levi subgroup of a given almost simple simply connected complex
group LG. In [Lu5] these results were refined to include a classification of tempered
and discrete series irreducible modules of the geometric graded Hecke algebras. In [Lu3]
it is shown that such graded affine Hecke algebras arise as completions of “geometric”
affine Hecke algebras (with certain unequal parameters) formally associated with the
above geometric data. On the other hand, let k be a p-adic field and let G be the
group of k-rational points of a split adjoint simple group G over k such that LG is the
connected component of its Langlands dual group. In [Lu3] the explicit list of unipotent
“arithmetic” affine Hecke algebras is given, i.e. affine Hecke algebras occurring as the
Hecke algebra of a type (in the sense of [BK]) for a G-inertial equivalence class of a
unipotent supercuspidal pair (L, σ) (see also [Mo1] and [Mo2]). Remarkably, a case-by-
case analysis in [Lu3] shows that the geometric affine Hecke algebras associated with LG

precisely match the unipotent arithmetic affine Hecke algebras arising from G. More
generally, such results hold if G is only assumed to be split over an unramified extension
of k [Lu3].

The geometric parameters in terms of which Lusztig [Lu4], [Lu5] classifies the irre-
ducible (tempered, discrete series) modules over geometric graded affine Hecke algebras
are rather complicated. Our present direct approach, based on deformations in the har-
monic analysis of “arithmetic” affine Hecke algebras, gives different and in some sense
complementary information (e.g. formal degrees). We refer to [Bl] for examples of affine
Hecke algebras arising as Hecke algebras of more general types. We refer to [Lu6] for re-
sults and conjectures on the theory of Kazhdan–Lusztig bases of abstract Hecke algebras
with unequal parameters.

The techniques in this paper do not give an explicit construction of the discrete
series representations. In this direction it is interesting to mention Syu Kato’s geometric
construction [Ka] of algebraic families of representations of H(C(1)

n , q). One would like
to understand how Kato’s geometric model relates to our continuous families of discrete
series characters, which are constructed by analytic methods.

Acknowledgment. We thank Gert Heckman, N. Christopher Phillips and Mark
Reeder for discussions and advice.
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2. Preliminaries and notation

2.1. Affine Hecke algebras

2.1.1. Root data and affine Weyl groups

Suppose we are given lattices X and Y in perfect duality 〈· , ·〉:X×Y!Z, and fi-
nite subsets R0⊂X and R∨0 ⊂Y with a given a bijection ∨:R0!R∨0 . Define endomor-
phisms rα∨ :X!X by rα∨(x)=x−x(α∨)α and rα:Y!Y by rα(y)=y−α(y)α∨. Then
(R0, X,R

∨
0 , Y ) is called a root datum if

(1) for all α∈R0 we have α(α∨)=2;
(2) for all α∈R0 we have rα∨(R0)⊂R0 and rα(R∨0 )⊂R∨0 .

As is well known, it follows that R0 is a root system in the vector space spanned by the
elements of R0. A based root datum R=(X,R0, Y,R

∨
0 , F0) consists of a root datum with

a basis F0⊂R0 of simple roots.

The (extended) affine Weyl group of R is the group W=W0nX (where W0=W (R0)
is the Weyl group of R0); it naturally acts on X. We identify Y ×Z with the set of
affine linear, Z-valued functions on X (in this context we usually denote an affine root
a=(α∨, n) additively as a=α∨+n). Then the affine Weyl group W acts linearly on the
set Y ×Z via the action wf(x):=f(w−1x). The affine root system R associated with
R is the W -invariant set R:=R∨0 ×Z⊂Y ×Z. The basis F0 of simple roots induces a
decomposition R=R+∪R− with R+ :=R∨0,+×{0}∪R∨0 ×N and R−=−R+. It is easy to
see that R+ has a basis of affine roots F consisting of the set F∨0 ×{0} supplemented by
the set of affine roots of the form a=(α∨, 1), where α∨∈R∨0 runs over the set of minimal
coroots. The set F is called the set of affine simple roots. Every W -orbit Wa⊂R with
a∈R meets the set F of affine simple roots. We denote by F̃ the set of intersections of
the W -orbits in R with F .

With an affine root a=(α∨, n) we associate an affine reflection ra:X!X by ra(x)=
x−a(x)α. We have ra∈W and wraw

−1=rwa. Hence the subgroup W a⊂W generated
by the affine reflections ra with a∈R is normal. The normal subgroup W a has a Coxeter
presentation (W a, S) with respect to the set of Coxeter generators S={ra :a∈F}. We
call S the set of affine simple reflections and we write S0=S∩W0. We call two elements
s, t∈S equivalent if they are conjugate to each other inside W . We put S̃ for the set of
equivalence classes in S. The set S̃ is in natural bijection with the set F̃ .

We define a length function l:W!Z+ by l(w):=|w−1(R−)∩R+|. The set

Ω := {w∈W : l(w) = 0}

is a subgroup of W . Since W a acts simply transitively on the set of positive systems of
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affine roots it is clear that W=W aoΩ. Notice that if we put

X+ = {x∈X :x(α∨) > 0 for all α∈F0}

and X−=−X+, then the sublattice Z=X+∩X−⊂X is the center of W . It is clear that
Z acts trivially on R and in particular, we have Z⊂Ω. We have Ω∼=W/W a∼=X/Q(R0),
where Q(R0) denotes the root lattice of the root system R0. It follows easily that Ω/Z
is finite. We call R semisimple if Z=0. By the above R is semisimple if and only if Ω is
finite.

2.1.2. The generic affine Hecke algebra and its specializations

We introduce invertible, commuting indeterminates v([s]), where [s]∈S̃. Let

Λ = C[v([s])±1 : [s]∈ S̃].

If s∈S then we define v(s):=v([s]). The following definition is in fact a theorem (this
result goes back to Tits).

Definition 2.1. There exists a unique associative, unital Λ-algebra HΛ(R) which has
a Λ-basis {Nw}w∈W parametrized by w∈W , satisfying the relations

(1) NwNw′=Nww′ for all w,w′∈W such that l(ww′)=l(w)+l(w′);
(2) (Ns−v(s))(Ns+v(s)−1)=0 for all s∈S.

The algebra HΛ=HΛ(R) is called the generic affine Hecke algebra with root datum R.

We put Qc=Q(R)c for the complex torus of homomorphisms Λ!C. We equip
the torus Qc with the analytic topology. Given a homomorphism q∈Qc we define a
specialization (2) H(R, q) of the generic algebra by (with Cq being the Λ-module defined
by q)

H(R, q) :=HΛ(R)⊗ΛCq (4)

Observe that the automorphism φs: Λ!Λ defined by{
φs(v(t))= v(t), if t 6∼W s,
φs(v(s))=−v(s),

extends to an automorphism of HΛ by putting{
φs(Nt) =Nt, if t 6∼W s,
φs(Ns) =−Ns.

(2) This is not compatible with the conventions in [Op1], [Op2], [Op3] and [OS]! The parameter

q∈Q in the present paper would be called q1/2 in these earlier papers.
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Similarly we have automorphims ψs:HΛ!HΛ given by

{
ψs(v(t))= v(t), if t 6∼W s,
ψs(v(s))= v(s)−1,

and
{
ψs(Nt) =Nt, if t 6∼W s,
ψs(Ns) =−Ns.

These automorphisms mutually commute and are involutive. Observe that φsψs respects
the distinguished basis Nw of HΛ, and the automorphisms φs and ψs individually respect
the distinguished basis up to signs.

We write Q for the set of positive points of Qc, i.e. points q∈Qc such that q(v(s))>0
for all s∈S. Then Q⊂Qc is a real vector group.

There are alternative ways to specify points of Q which play a role in the spectral
theory of affine Hecke algebras (in particular in relation to the Macdonald c-function
[Mac]). In order to explain this we introduce the possibly non-reduced root system
Rnr⊂X associated with R by

Rnr =R0∪{2α :α∨ ∈ 2Y ∩R∨0 } (5)

We let R1={α∈Rnr :2α/∈Rnr} be the set of non-multipliable roots in Rnr. Then R1⊂X
is also a reduced root system, and W0=W (R0)=W (R1).

We define various functions with values in Λ. First we define a W -invariant function
R3a 7!va∈Λ by requiring that

va+1 = v(sa) (6)

for all simple affine roots a∈F . Notice that all generators v(s) of Λ are in the image of
this function. Next we define a W0-invariant function R∨nr3α∨ 7!vα∨∈Λ as follows. If
α∈R0 we view α∨ as an element of R, so that vα∨ has already been defined. If α=2β
with β∈R0, then we define

vα∨ = vβ∨/2 :=
vβ∨+1

vβ∨
(7)

Finally there exists a unique length-multiplicative function W3w 7!v(w)∈Λ such that
its restriction to S yields the original assignment S3s 7!v(s)∈Λ of generators of Λ to the
W -orbits of simple reflections of W , and v(ω)=1 for all ω∈Ω. Here the notion length-
multiplicative refers to the property v(w1w2)=v(w1)v(w2) if l(w1w2)=l(w1)+l(w2). We
remark that with this notation we have

v(w) =
∏

α∈Rnr,+∩w−1Rnr,−

vα∨ (8)

for all w∈W0.
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A point q∈Q determines a unique W -invariant function on R with values in R+ by
defining qa :=q(va). Conversely, such a positive W -invariant function on R determines a
point q∈Q. Likewise we define positive real numbers

qα∨ := q(vα∨) (9)

for α∈Rnr, and
q(w) := q(v(w)) (10)

for w∈W . In this way, the points q∈Q are in natural bijection with the set of W0-
invariant positive functions on R∨nr and also with the set of positive length-multiplicative
functions on W which restrict to 1 on Ω.

Recall that if the finite root system R1 is irreducible, it can be extended in a unique
way to an affine root system, which is called R(1)

1 .

Definition 2.2. If R is simple and X=P (R1) (the weight lattice of R1), then we call
H(R, q) of type R(1)

1 . This includes the simple 3-parameter case C(1)
n with R0=Bn and

X=Q(R0).

2.1.3. The Bernstein presentation and the center

The length function l:W!Z>0 restricts to a homomorphism of monoids on X+. Hence
the map X+!H×

Λ defined by x 7!Nx is a homomorphism of monoids too. It has a unique
extension to a group homomorphism θ:X!H×

Λ which we denote by x 7!θx. We denote
by AΛ⊂HΛ the commutative subalgebra of HΛ generated by the elements θx with x∈X.
Similarly we have a commutative subalgebra A⊂H(R, q). Let HΛ,0=HΛ(W0, S0) be
the Hecke subalgebra (of finite rank over the algebra Λ) corresponding to the Coxeter
system (W0, S0). We have the following important result due to Bernstein–Zelevinski
(unpublished) and Lusztig ([Lu2]).

Theorem 2.3. The multiplication map defines an isomorphism of AΛ-HΛ,0-modules
AΛ⊗HΛ,0!HΛ and an isomorphism of HΛ,0-AΛ-modules HΛ,0⊗AΛ!HΛ. The algebra
structure on HΛ is determined by the cross relation (with x∈X, α∈F0, s=rα∨ , and s′∈S
being a simple reflection such that s′∼W rα∨+1):

θxNs−Nsθs(x) =((v(s)−v(s)−1)+(v(s′)−v(s′)−1)θ−α)
θx−θs(x)

1−θ−2α
. (11)

(Note that if s′ 6∼W s then α∨∈2R∨0 , which implies that x−s(x)∈2Zα for all x∈X. This
guarantees that the right-hand side of (11) is always an element of AΛ.)
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Corollary 2.4. The center ZΛ of HΛ is the algebra ZΛ=AW0
Λ . For any q∈Qc

the center of H(R, q) is equal to the subalgebra Z=AW0⊂H(R, q).

In particular HΛ is a finite-type algebra over its center ZΛ, and similarly H(R, q) is
a finite-type algebra over its center Z. The simple modules over these algebras are finite-
dimensional complex vector spaces. The primitive ideal spectrum ĤΛ is a topological
space which comes equipped with a finite continuous and closed map

ccΛ: ĤΛ−! ẐΛ =W0\T×Qc (12)

to the complex affine variety associated with the unital complex commutative algebra ZΛ.
The map ccΛ is called the central character map. Similarly, we have central character
maps

ccq: Ĥ(R, q)−! Ẑ (13)

for all q∈Qc.

We put T=Hom(X,C×), the complex torus of characters of the lattice X equipped
with the Zariski topology. This torus has a natural W0-action. We have Ẑ=W0\T (the
categorical quotient).

2.1.4. Two reduction theorems

The study of the simple modules over H(R, q) is simplified by two reduction theorems
which are much in the spirit of Lusztig’s reduction theorems in [Lu2]. The first of these
theorems reduces to the case of simple modules whose central character is a W0-orbit
of characters of X which are positive on the sublattice of X spanned by R1 (see the
explanation below). The second theorem reduces the study of simple modules of H(R, q)
with a positive central character in the above sense to the study of simple modules of an
associated degenerate affine Hecke algebra with real central character. These results will
be useful for our study of the discrete series characters.

First of all a word about terminology. The complex torus T has a polar decomposi-
tion T=TvTu with Tv=Hom(X,R>0) and Tu=Hom(X,S1). The polar decomposition is
the exponentiated form of the decomposition of the tangent space V =Hom(X,C) of T
at t=e as a direct sum V =Vr⊕iVr of real subspaces, where Vr=Hom(X,R) and i here
is the imaginary unit. The vector group Tv is called the group of positive characters and
the compact torus Tu is called the group of unitary characters. This polar decomposi-
tion is compatible with the action of W0 on T . We call the W0-orbits of points in Tv

“positive” and the W0-orbits of points in Tu “unitary”. In this sense can we speak of
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the subcategory of finite-dimensional H(R, q)-modules with positive central character(3)
which is a subcategory that plays an important special role.

Definition 2.5. Let R be a root datum and let q∈Q=Q(R). For s∈Tu we define
Rs,0={α∈R0 :rα(s)=s}. Let Rs,1⊂R1 be the set of non-multipliable roots corresponding
to Rs,0. One checks that

Rs,1 = {β ∈R1 :β(s) = 1}. (14)

Let Rs,1,+⊂Rs,1 be the unique system of positive roots such that Rs,1,+⊂R1,+, and let
Fs,1 be the corresponding basis of simple roots of Rs,1. Then the isotropy group Ws⊂W0

of s is of the form

Ws =W (Rs,1)oΓs, (15)

where Γs={w∈Ws :w(Rs,1,+)=Rs,1,+} is a group acting through diagram automorphisms
on the based root system (Rs,1, Fs,1).

We form a new root datum Rs=(X,Rs,0, Y,R
∨
s,0, Fs,0) and observe that Rnr,s⊂Rnr.

Hence we can define a surjective map Q(R)!Q(Rs) (denoted by q 7!qs) by restriction
of the corresponding parameter function on R∨nr to R∨nr,s.

Let t=cs∈TvTu be the polar decomposition of an element t∈T . We define W0(t)⊂
Ws for the subgroup defined by

W0(t) := {w∈Ws :wt∈W (Rs,1)t}. (16)

Observe that W0(t) is the semidirect product W0(t)=W (Rs,1)oΓ(t), where

Γ(t) =Γs∩W0(t) (17)

Let MW0t⊂Z denote the maximal ideal of A of elements vanishing at W0t⊂T , and
let 
Z be the MW0t-adic completion of Z. We define

Ā=A⊗Z 
Z. (18)

By the Chinese remainder theorem we have

Ā=
⊕

t′∈W0t

Āt′ , (19)

(3) In several prior publications [HO1], [HO2], [Op1], [Op2], [Op3] the central characters in W0\Tv

were referred to as “real central characters”, where “real” should be understood as “infinitesimally real”.
In the present paper however we change the terminology and speak of “positive central characters”
instead.
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where Āt′ denotes the formal completion of A at t′∈T . Let 1t′ denote the unit of the
summand Āt′ in this direct sum decomposition. We consider the formal completion


H(R, q) =H(R, q)⊗Z 
Z. (20)

On the other hand, we consider the affine Hecke algebra H(Rs, qs) and its commutative
subalgebra As (as defined before when discussing the Bernstein basis) and center Zs=
AW (Rs,1)

s . Let mW (Rs,1)t be the maximal ideal in Zs of elements vanishing at the orbit
W (Rs,1)t=sW (Rs,1)c; let 
Zs and 
H(Rs, qs) be the corresponding formal completions as
before.

The group Γ(t) acts on 
H(Rs, qs) and on its center 
Zs. We note that there exists a
canonical isomorphism


Z −! 
Z Γ(t)
s . (21)

As before we define a localization


H(Rs, qs) =H(Rs, qs)⊗Zs

Zs. (22)

Let et∈Ā⊂
H(R, q) be the idempotent defined by

et =
∑

t′∈W (Rs,1)t

1t′ . (23)

Theorem 2.6. (“First reduction theorem”; see [Lu2, Theorem 8.6]) Let q∈Q and
let t=cs be the polar decomposition of an element t∈T . Let n be the cardinality of the
orbit W0t divided by the cardinality of the orbit W (Rs,1)t. Using the notation introduced
above, there exists an isomorphism of 
Z-algebras

(
H(Rs, qs)oΓ(t))n×n−! 
H(R, q). (24)

Via this isomorphism the idempotent et∈
H(R, q) corresponds to the n×n-matrix with 1
in the upper left corner and 0’s elsewhere. Hence the 
Z-algebras


H(R, q) and 
H(Rs, qs)oΓ(t)

are Morita equivalent. In particular the set of simple modules U of H(R, q) with central
character W0t corresponds bijectively to the set of simple modules V of H(Rs, qs)oΓ(t)
with central character W0(s)t=W (Rs,1)t, where the bijection is given by U 7!etU .

Proof. The proof is a straightforward translation of Lusztig’s proof of [Lu2, Theo-
rem 8.6]. We replace the equivalence relation that Lusztig defines on the orbit W0t by
the equivalence relation induced by the action of W (Rs,1) (i.e. the equivalence classes
are the orbits of W (Rs,1) in W0t; in other words, the role of the subgroup J 〈v0〉⊂T in
Lusztig’s setup is now played by the vector subgroup Tv). After this change the rest of
the proof is identical to Lusztig’s proof.
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The second reduction theorem gives a bijection between simple modules of affine
Hecke algebras with central character W0t satisfying α(t)>0 for all α∈R1 and simple
modules of an associated degenerate affine Hecke algebra with a real central character.
We first need to define the appropriate notion of the associate degenerate affine Hecke
algebra.

LetR=(X,R0, Y,R
∨
0 , F0) be a root datum, let q∈Q, and letW0t∈W0\T be a central

character such that for all α∈R1 we have α(t)∈R>0. Then the polar decomposition of
t has the form t=uc with u∈Tu being a W0-invariant character of X and with c∈Tv

being a positive character of X. Observe that β(u)=1 if β∈R0∩R1 and β(u)=±1 if β∈
R0∩ 1

2R1. We define a W0-invariant real parameter function ku:R1!R by the following
prescription. If α∈R1, we put

ku,α =


log q2α∨ , if α∈R0∩R1,
log q2α∨q

4
2α∨ , if α=2β, with β ∈R0 and β(u) = 1,

log q2α∨ , if α=2β, with β ∈R0 and β(u) =−1.

(25)

Definition 2.7. We define the degenerate affine Hecke algebra H(R1, V, F1, k) asso-
ciated with the root system R1⊂V ∗ where V =R⊗ZY and the parameter function k as
follows. We put P (V ) for the polynomial algebra on the vector space V . The Weyl group
W0 acts on P (V ) and we denote the action by w·f=fw. Then H(R1, V, F1, k) is simul-
taneously a left P (V )-module and a right C[W0]-module, and as such it has the struc-
ture H(R1, V, F1, k)=P (V )⊗C[W0]. We identify P (V )⊗e⊂H(R1, V, F1, k) with P (V )
and 1⊗C[W0]⊂H(R1, V, F1, k) with C[W0] so that we may write fw instead of f⊗w if
f∈P (V ) and w∈W0. The algebra structure of H(R1, V, F1, k) is uniquely determined by
the cross relation (with f∈P (V ), α∈F1 and s=sα∈S1):

fs−sfs = kα
f−fs

α
. (26)

It is easy to see that the center of H(R1, V, F1, k) is equal to the algebra Z=P (V )W0⊂
H(R1, V, F1, k). The vector space Vc=C⊗V can be identified with the Lie algebra of the
complex torus T . Let exp:Vc!T be the corresponding exponential map. It is a W0-
equivariant covering map which restricts to a group isomorphism V!Tv of the real
vector space V to the vector group Tv.

Theorem 2.8. (“Second reduction theorem”; see [Lu2, Theorem 9.3]) Let R=
(X,R0, Y,R

∨
0 , F0) be a root datum with parameter function q∈Q=Q(R). Let V0⊂V

be the subspace spanned by R∨0 . Given t∈T such that α(t)>0 for all α∈R1, we let
ξ=ξt∈V0 be the unique element such that α(t)=eα(ξ) for all α∈R1. It is easy to see that
the map t 7!ξ=ξt is W0-equivariant ; in particular the image of W0t is equal to W0ξ.
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Let t=uc be the polar decomposition of t. Then u∈Tu is W0-invariant , and we define a
W0-invariant parameter function ku on R1 by (25). Let 	Z be the formal completion of
the center Z of H(R1, V, F1, ku) at the orbit W0ξ. Let P=P (V ) and put 
P=P⊗Z

	Z and
�H(R1, V, F1, ku)=H(R1, V, F1, ku)⊗Z

	Z. There exist natural compatible isomorphisms of
algebras 	Z!	Z, Ā!
P and 
H(R, q)!�H(R1, V, F1, ku).

Proof. This is a straightforward translation of the proof of [Lu2, Theorem 9.3].

Corollary 2.9. The set of simple modules of H(R, q) with central character W0t

(satisfying the above condition that α(t)>0 for all α∈R1) and the set of simple modules
of H(R1, V, F1, ku) with central character W0ξ (as described in Theorem 2.8) are in
natural bijection.

Combining the two reduction theorems we finally obtain the following result (see
[Lu2, §10]).

Corollary 2.10. For all s∈Tu the center of H(Rs,1, V, Fs,1, ks)oΓ(t) is equal to
ZΓ(t). If t∈T is arbitrary with polar decomposition t=sc, then the set of simple modules
of H(R, q) with central character W0t is in natural bijection with the set of simple
modules of H(Rs,1, V, Fs,1, ks)oΓ(t) with the real central character Wsξ. Here ξ∈V is
the unique vector in the real span of R∨s,1 such that α(t)=eα(ξ) for all α∈Rs,1, ks is
the real parameter function on Rs,1 associated with qs described by (25), and Γ(t) is the
group defined by (17).

2.2. Harmonic analysis for affine Hecke algebras

2.2.1. The Hilbert algebra structure of the Hecke algebra

Let R be a based root datum and q∈Q be a positive parameter function for R. We turn
H=H(R, q) into a ∗-algebra using the conjugate linear anti-involution ∗:H!H defined
by N∗

w=Nw−1 . We define a trace τ :H!C by τ(Nw)=δw,e. This defines a Hermitian form
(x, y):=τ(x∗y) with respect to which the basis Nw is orthonormal. In particular ( · , ·) is
positive definite. In fact it is easy to show [Op1] that this Hermitian inner product defines
the structure of a Hilbert algebra on H. Let L2(H) be the Hilbert space completion of
H and λ:H!B(L2(H)) the left regular representation of H. Let C:=C∗r (H) be the C∗-
algebra completion of λ(H) inside B(L2(H)). It is called the (reduced) C∗-algebra of
H. It is not hard to show that C is unital, separable and liminal, which implies that the
spectrum Ĉ of C is a compact T1 space with countable base which contains an open dense
Hausdorff subset. The trace τ extends to a finite tracial state τ on C. In this situation
(see [Op1, Theorem 2.25]) there exists a unique positive Borel measure µPl on Ĉ such
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that for all h∈H,

τ =
∫

Ĉ

χπ dµPl(π). (27)

Since τ is faithful, it follows that the support of µPl is equal to Ĉ.

Definition 2.11. We call the measure µPl the Plancherel measure of H.

Definition 2.12. An irreducible ∗-representation (V, π) of the involutive algebra H
is called a discrete series representation of H if (V, π) extends to a representation (also
denoted (V, π)) of C which is equivalent to a subrepresentation of the left regular repre-
sentation of C on L2(H). In this case the finite trace χπ defined by χπ(x)=TrV (π(x)) is
called an irreducible discrete series character.

We have seen that an irreducible representation (V, π) of H is finite-dimensional.
In particular its character χπ is a well-defined linear functional on H. We call χπ an
irreducible character of H. Clearly the character of a finite-dimensional representation
of H only depends on the equivalence class of the underlying representation. The ir-
reducible characters of a set of mutually inequivalent irreducible representations of H
are linearly independent (see [Op1, Corollary 2.11]). Hence the equivalence class of a
finite-dimensional semisimple representation is completely determined by its character.

Definition 2.13. We denote by ∆(R, q) the set of irreducible discrete series characters
of H(R, q). For each irreducible character χ∈∆(R, q) we choose and fix an irreducible
discrete series representation (V, δ) of H such that χ=χδ (by abuse of language, we will
often identify the set of irreducible discrete series characters and (the chosen set of repre-
sentatives of) the set of equivalence classes of irreducible discrete series representations).

The following criterion for an irreducible representation (V, π) of H to belong to the
discrete series follows from a general result of Dixmier (see [Op1]).

Corollary 2.14. (V, π) is a discrete series representation if and only if

µPl({π})> 0.

Corollary 2.15. (See [Op1, Proposition 6.10]) There is a one-to-one correspon-
dence between the set of irreducible discrete series characters χδ and the set of primitive
central Hermitian idempotents eδ∈C of finite rank. The correspondence is such that
τ(eδx)=µPl({δ})χδ(x) for all x∈H.

Corollary 2.16. (See [Op1, Proposition 6.10]) (V, π) is a discrete series represen-
tation if and only if {[π]}⊂Ĉ is a connected component of Ĉ. In particular , the number
of irreducible discrete series characters is finite.
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2.2.2. The Schwartz algebra

We define a nuclear Fréchet algebra S=S(R, q) (the Schwartz algebra) which plays a
pivotal role in the spectral theory of the trace τ on H.

Definition 2.17. We choose once and for all a W0-invariant inner product 〈· , ·〉 on
the vector space V ∗ :=R⊗X, which takes integral values on X×X.

Let V ∗0 be the real vector space spanned by R0. Its orthocomplement is the vector
space V ∗Z =R⊗Z spanned by the center Z of W . Given φ∈V ∗ we decompose φ=φ0+φZ

with respect to the orthogonal decomposition V ∗=V ∗0 ⊕V ∗Z .

Definition 2.18. We define a norm N :W!R+ on W as follows: if w∈W we put

N (w) = l(w)+‖w(0)Z‖. (28)

Next we define seminorms pn:H!R+ on H by

pn(h) := max
w∈W

(1+N (w))n|(Nw, h)|. (29)

Definition 2.19. The Schwartz algebra S of H is the completion of H with respect
to the system of seminorms pn with n∈N.

Theorem 2.20. ([Op1], [So]; see Appendix A) The completion S is a Fréchet algebra
which is continuously and densely embedded in C.

Remark 2.21. The Fréchet algebra S is independent of the choice made in Defini-
tion 2.17. S is also independent of q∈Q as a Fréchet space.

Definition 2.22. A finite-dimensional representation of H is called tempered if it has
a continuous extension to S.

The Fréchet algebra structure of S depends on q∈Q. The basic Theorem 2.20 was
first proven in [Op1] using some qualitative analysis on the spectrum of C; the proof in
[So] is more direct and uses an elementary but non-trivial result due to Lusztig [Lu1] on
the multiplication table of H with respect to the basis Nw. The latter proof also reveals
the following important fact with respect to the dependence of q∈Q.

Theorem 2.23. ([So]; see Appendix A) The dense subalgebra S⊂C is closed for
holomorphic calculus (see also [DO, Corollary 5.9]). The holomorphic calculus is con-
tinuous on S×Q in the following sense. Let U⊂C be an open set. The set VU⊂S×Q
defined by VU ={(x, q):Sp(x, q)⊂U} is open. For any holomorphic function f :U!C the
map VU3(x, q) 7!f(x, q)∈S is continuous.
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The following result shows the fundamental role of S for the spectral theory of τ .

Theorem 2.24. ([DO, Corollary 4.4]) The support of µPl consists precisely of the
set of equivalence classes of irreducible tempered representations of H.

In particular the discrete series representations are tempered. There are various
characterizations of tempered representations and of discrete series representations. Cas-
selman’s criterion is the following characterization.

Theorem 2.25. (Casselman’s criterion, see [Op1, Lemma 2.22]) Let (V, δ) be an
irreducible representation of H. The following are equivalent :

(1) (V, δ) is a discrete series representation of H;
(2) All matrix coefficients of (V, δ) belong to L2(H);
(3) The character χδ of (V, δ) belongs to L2(H);
(4) All generalized A-weights t∈T in V satisfy |x(t)|<1 for all x∈X+\{0};
(5) For every matrix coefficient m of δ there exist constants C, ε>0 such that

|m(Nw)|<Ce−εN (w) for all w∈W ;
(6) The character χδ of (V, δ) belongs to S.

Corollary 2.26. An irreducible representation (V, δ) of H is an irreducible dis-
crete series representation if and only if (V, δ) is afforded by a central primitive idempo-
tent eδ∈S of S (see Corollary 2.15).

Corollary 2.27. The set ∆(R, q) is non-empty only if R is semisimple.

Casselman’s criterion for discrete series in terms of the generalized A-weights can
be transposed to define the notion of discrete series modules over a crossed product
H(R1, V, F1, k)oΓ of a degenerate affine Hecke algebra H(R1, V, F1, k) with a real pa-
rameter function k and a finite group Γ acting by diagram automorphisms of (R1, F1).
(Thus, a simple module (U, δ) is a discrete series representation if and only if the gener-
alized P-weights in U are in the interior of the antidual cone (⊂V ) of the simplicial cone
spanned by F1.) It is clear that this definition is compatible with the bijections afforded
by the two reduction theorems (Theorems 2.6 and 2.8). Hence we obtain the following
consequence from Corollary 2.10.

Corollary 2.28. Let t∈T with polar decomposition t=sc. The set ∆W0t of equiv-
alence classes of irreducible discrete series representations of H(R, q) with central char-
acter W0t is in natural bijection with the set of equivalence classes of irreducible discrete
series representations of H(Rs,1, V, Fs,1, ks)oΓ(t) with the real central character Wsξ.
Here ξ∈V is the unique vector in the real span of R∨s,1 such that α(t)=eα(ξ) for all
α∈Rs,1, ks is the real parameter function on Rs,1 described by (25), and Γ(t) is the
group of diagram automorphisms of (Rs,1, Fs,1) of (17).
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Corollary 2.29. If ∆W0t 6=∅ then the polar decomposition t=sc of t has the prop-
erty that Rs,1⊂R1 is a root subsystem of maximal rank.

If s=u∈Tu is W0-invariant (i.e. if α(u)=1 for all α∈R1) then we obtain the following
result from Corollary 2.28.

Corollary 2.30. Let u∈Tu be W0-invariant and let c∈Tv. There is a natural
bijection between the set ∆(R, q)uW0c of irreducible discrete series characters of H(R, q)
with central character of the form uW0c⊂W0\T and the set of irreducible discrete series
characters of H(R1, V, F1, ku) with the real infinitesimal central character W0 log c.

It is not hard to show that the central character of an irreducible discrete series
character of H(R1, V, F1, ku) is real (see [Sl1, Lemma 1.3.4]). Hence the previous corollary
in particular says the following.

Corollary 2.31. Let u∈Tu be W0-invariant. There is a natural bijection between
the set ∆u(R, q) of irreducible discrete series characters of H(R, q) with a central char-
acter of the form uW0c with c∈Tv on the one hand , and the set ∆H(R1, V, F1, k) of
irreducible discrete series characters of H(R1, V, F1, ku) on the other hand. In this bi-
jection the correspondence of the central characters is as described above.

We can use Corollary 2.28 to reduce the general classification problem of the irre-
ducible discrete series characters of H(R, q) for any semisimple root datum R to the case
of discrete series characters of a degenerate affine Hecke algebra as well, but we have
to pay the price of having to deal with crossed products by certain groups of diagram
automorphisms. In order to deal with the crossed products, one has to resort to Clifford
theory (cf. [RR]).

Corollary 2.26 gives us yet another characterization of the irreducible discrete series
representations.

Theorem 2.32. Let (V, δ) be a simple module over H. The following are equivalent :
(1) (V, δ) is a discrete series representation of H;
(2) (V, δ) extends to a projective S-module.

2.2.3. The Euler–Poincaré pairing and elliptic characters

We recall the main result of [OS].

Theorem 2.33. The affine Hecke algebra H=H(R, q) has global homological dimen-
sion equal to the rank of X. If U and V are finite-dimensional tempered H-modules,
then for all i we have Exti

H(U, V )∼=Exti
S(U, V ).
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Define the Euler–Poincaré pairing on the (complexified) Grothendieck group G(H)
of finite-dimensional virtual characters by sesquilinear extension from the formula

EPH(U, V ) :=
∞∑

i=0

(−1)i dim(Exti
H(U, V )). (30)

It can be seen that this defines a Hermitian positive semidefinite pairing on G(H) ([OS,
Theorem 3.5]). The above result combined with Theorem 2.32 implies the following
result.

Corollary 2.34. The irreducible discrete series characters of H form an orthonor-
mal set with respect to EPH and are orthogonal to all irreducible tempered characters that
are not in the discrete series.

Another crucial result of [OS] says that EPH factors through the quotient Ell(H) of
G(H) by the subspace spanned by all the properly induced finite-dimensional tempered
characters. Then Ell(H) is a finite-dimensional Z-module, equipped with a positive semi-
definite Hermitian pairing EPH with respect to which elements with a disjoint support
on W0\T are orthogonal. Let EllW0t(H) be the Z-submodule corresponding to W0t.

There exists a scaling map σ̃0:G(H)!G(W ) (see [OS, Theorem 1.7]) which descends
to a map

σ̃0: Ell(H)−!Ell(W ) =Ell(C[W ]).

The finite-dimensional Z-module Ell(W ) can be described completely explicitly in terms
of the elliptic characters of the isotropy groups Wt (with t∈T ) for the action of W0 on T .
The pairing EPW on Ell(W ) can be described in these terms as well, and it turns out
that EPW is positive definite on Ell(W ) (for all these results, consult [OS, Chapter 3]).
It turns out that Ell(W ) is non-zero only if R is semisimple, and that the support of
Ell(W ) as a Z-module is contained in the set of orbits W0s such that Rs,1⊂R1 is of
maximal rank. From [OS] we have the following result.

Theorem 2.35. (1) The map σ̃0: Ell(H)!Ell(W ) is isometric with respect to EPH
and EPW .

(2) For all t∈T we have σ̃0(EllW0t(H))⊂EllW0s(W ), where t=sc with s∈Tu and
c∈Tv is the polar decomposition of t.

Combined with Corollary 2.34 we obtain the following upper bounds for the number
of discrete series characters.
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Corollary 2.36. For s∈Tu let Ws denote the isotropy group of s in W0. We
call w∈Ws elliptic if s is an isolated fixed point of w. Let Ell(Ws) be the number of
conjugacy classes of Ws consisting of elliptic elements of Ws. For s∈Tu we denote by
∆s(R, q)⊂∆(R, q) the subset consisting of the irreducible discrete series characters of
H(R, q) whose central characters are W0-orbits which are contained in the set W0sTv.

Then |∆s(R, q)|6Ell(Ws).

2.3. The central support of tempered characters

In this section deformations in the parameters q of the Hecke algebra play a fundamental
role. Let us fix some notation and basic structures. Recall that we attach to a based
root datum R=(X,R0, Y,R

∨
0 , F0) in a canonical way a parameter space Q=Q(R). This

parameter space is itself a vector group, defined as the space of length multiplicative
functions q:W!R+ with the additional requirement that q|Ω=1.

The following proposition is useful in order to reduce statements about residual
points to the case of simple root data.

Proposition 2.37. Let R=(X,R0, Y,R
∨
0 , F0) be a semisimple based root datum.

(i) Let R0=R(1)
0 ×...×R(m)

0 be the decomposition of R0 in irreducible components.
We denote by X(i) the projection of the lattice X onto RR(i)

0 , and we define R(i)=
(X(i), R

(i)
0 , Y (i), (R(i)

0 )∨, F (i)
0 ) and R′=R(1)×...×R(m). Then the natural inclusion X↪!

X ′ defines an isogeny ψ:R!R′ and if Q(i) denotes be the parameter space of the root
datum R(i), then ψ yields a natural identification Q(R)=Q(R′)=Q(1)×...×Q(m).

(ii) We replace X by the lattice Xmax=P (R1), the weight lattice of R1, and denote
the resulting root datum by Rmax. Then Rmax is a direct product of irreducible root data
and there exists an isogeny ψ:R!Rmax which yields a natural identification Q(R)=
Q(Rmax).

Proof. A length multiplicative function q:W!R+ is determined by its restriction
to the set of simple affine roots and this restriction is a function which is constant on
the intersection of the W -orbits of affine roots intersected with the simple affine roots.
Conversely every such function on the simple affine roots can be extended uniquely to a
length multiplicative function on W . The group Ω'X/Q(R0)⊂W of elements of length
0 acts on the set of simple affine roots by diagram automorphisms which preserve the
components of the affine Dynkin diagram of the affine root system Ra=R∨0 ×Z. The
action of Ω on the ith component factors through the action of Ω(i) :=X(i)/Q(R(i)

0 ).
This proves (i). We also see by this that length multiplicative function q∈Q(R) extends
uniquely to a length multiplicative function for W (Rmax), since α∨ /∈2Y for all α∈R′0
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with R′ being an indecomposable summand which is not isomorphic to an irreducible
root datum of type C(1)

n . This proves (ii).

Given a root datum R and a positive parameter function q∈Q(R), we define the
Macdonald c-function of the pair (R, q). This is the rational function c on the torus
T=Hom(X,C×) defined by

c=
∏

α∈R1,+

cα, (31)

where cα is defined for α∈R1 by

cα(t, q) :=
(1+q−1

α∨α(t)−1/2)(1−q−1
α∨q

−2
2α∨α(t)−1/2)

1−α(t)−1
. (32)

Observe that the function cα is rational in t despite the appearance of the square root
α(t)1/2. Indeed, if 1

2α/∈X then we have q2α∨=1, and the numerator simplifies to

1−q−2
α∨α(t)−1.

The pole order at t=r∈T of the rational function

Xη(t) := (c(t)c(t−1))−1 (33)

is defined as follows. By definition η(t) is a product of rational functions of the form
ηα :=(cα(t)cα(t−1))−1, where α runs over the set R1,+. Let β∈R0 be the unique root
such that α is a positive multiple of β. Then ηα is the pull back via β of a rational
function %α on C×; we define the pole order of ηα at r to be equal to minus the order
of %α at β(r)∈C×. The pole order i{r} of η at r∈T is defined as the sum of these pole
orders.

Theorem 2.38. ([Op3, Theorem 6.1]) For any point r∈T , the pole order i{r} of
η(t) at t=r is at most equal to the rank rk(R0) of R0.

Definition 2.39. We call r∈T a residual point of the pair (R, q) if i{r}=rk(X). The
set of (R, q)-residual points is denoted by Res(R, q).

In particular the set Res(R, q) is non-empty only if R is a semisimple root datum.
The next result is trivial but it explains in conjunction with Proposition 2.37 how

residual points for R can be expressed in terms of residual points of the simple factors
of Rmax.

Lemma 2.40. Let R=(X,R0, Y,R
∨
0 ) be a semisimple root datum.

(i) Suppose that R!R′ is an isogeny which yields an identification Q=Q′ (e.g.
R′=Rmax as in Proposition 2.37). For all q∈Q we have r′∈Res(R′, q) if and only if
r=r′|X∈Res(R, q).
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(ii) Suppose that R=R(1)×...×R(m) is a direct product of simple factors (e.g. if
R=Rmax as in Proposition 2.37). Let T=T (1)×...×T (m) be the corresponding factor-
ization of T and let Q(R)=Q(1)×...×Q(m) be the corresponding factorization of Q.

For all q=(q(1), ..., q(m))∈Q we have a natural bijection

Res(R, q) ≈−!Res(R(1), q(1))×...×Res(R(m), q(m)) (34)

such that r 7!(r(1), ..., r(m)) if and only if r=r(1) ... r(m) with r(i)∈T (i) for all i=1, ...,m.

The following result is straightforward as well.

Lemma 2.41. Let R be a semisimple root datum with root parameter function q∈Q.
Let r∈T with polar decomposition of the form r=sc. Let Rs=(X,Rs,0, Y,R

∨
s,0) be the

root datum with the root parameters qs as in Definition 2.5. Then r is an (R, q)-residual
point if and only if r is an (Rs, qs)-residual point. In particular Rs is semisimple in
this case.

Let L⊂T be a coset of a subtorus TL⊂T . We decompose the product (33) as follows

η= ηLη
L, (35)

where ηL is the product of the factors cα, where α∈RL,1⊂R1, the subset of R1 consisting
of the roots that are constant on L, and ηL is the product over the remaining roots. We
define the order iL of η at L as the order of ηL at L, viewed as a point of the quotient
torus T/TL. Hence by Theorem 2.38 we have iL6rk(RL) for all cosets L, and we give
the following definition.

Definition 2.42. We call a coset L⊂T a residual coset if iL=codim(L) (in particular,
L=T is residual). If we set L=rTL, where r∈TL, the subtorus such that Lie(TL) is the
orthogonal complement of Lie(TL), then L is residual if and only if r is a residual point
for the restriction of ηL to TL. We call r a center of L and we define the tempered part
of L to be Ltemp :=rTL

u (this is well defined).

Recall the following useful results for residual cosets.

Proposition 2.43. ([Op3, Lemma 4.1]) Let L be a residual coset , L 6=T . Then
there exists a residual coset M⊃L such that dimM=dimL+1.

From this result one proves easily by induction on the rank of R0 (alternatively, it
follows from Corollary 2.16 in view of Theorem 2.47) the following consequence.

Theorem 2.44. ([Op3, compare Theorem 1.1]) The set of residual points is finite.

We will also need the following results.
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Theorem 2.45. ([Op3, Theorem 7.4]) Set t∗ := t̄−1. Then W0(Ltemp)∗=W0L
temp.

Theorem 2.46. ([Op3, Theorem 6.1]) If L and M are residual cosets of T , with
L 6=M , then Ltemp 6⊂M temp. Equivalently , the restriction of ηL to Ltemp is smooth.

The relevance of the notion of residual cosets stems from the following result.

Theorem 2.47. ([Op1, Theorem 3.29], [Op3, Theorem 6.1]) An orbit W0r∈W0\T
is the central character of a discrete series character of H(R, q) if and only if r is a
residual point , and W0r is the central character of a tempered character of H(R, q) if
and only if r∈S(q), where

S(q) =
⋃

L tempered

Ltemp. (36)

Remark 2.48. As we have seen above, Res(R, q) 6=∅ only if R is semisimple. By
Lemma 2.40 their classification reduces to the case of simple root data. The residual
points for simple root data have been classified ([HO1, §4] and [Op1, Appendix A]),
and various of the above properties of residual points and cosets were first proven by
classification. In [Op3] most of these properties were proved conceptually (with the
exception of [Op1, Theorem A.14 (iii) and Theorem A.18]). In this paper we will only
use properties of residual points for which we know a classification-free proof unless stated
otherwise.

2.4. Generic residual points

We will study the deformation of discrete series characters with respect to the parameter
q∈Q. We begin by studying the dependence of the central characters on Q. We denote
the set of all positive real parameter functions for R by Q=Q(R). Recall the following
terminology.

Remark 2.49. We choose a base q>1 and define fs∈R such that q(s)=qfs for all
s∈Saff . We equip Q in the obvious way with the structure of the vector group RN

+ , where
N denotes the number of W -conjugacy classes in Saff . Given a base q>1 we identify Q
with the finite-dimensional real vector space of real functions s 7!fs on Saff which are
constant on W -conjugacy classes. In this sense we speak of (linear) hyperplanes in Q
(this notion is independent of q). By a half line in Q we mean a family of parameter
functions q∈Q in which the fs∈R are kept fixed and are not all equal to 0 and q is
varying in R>1.

As was remarked in [Op2], it follows easily from [Op1, Theorem A.7] that the residual
points arise in generic Q-families. Let us state and prove this result precisely.
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Definition 2.50. A real-analytic function r:Q!T is called a generic residual point
of R if there exists an open, dense subset U⊂Q such that the element r(q)∈Res(R, q)
for all q∈U . The set of generic residual points of R is denoted by Res(R).

Definition 2.51. Let r∈Res(R). We call q∈Q an r-regular (or W0r-regular) param-
eter if r(q)∈Res(R, q). We denote by Qreg

W0r⊂Q the subset of W0r-regular parameters.

It is clear that Qreg
W0r⊂Q is the complement of a closed real-analytic subset (for a

more precise statement, see Theorem 2.60). This implies the following basic finiteness
result.

Proposition 2.52. The set Res(R) of generic residual points is finite and W0-
invariant. This set is non-empty if and only if R is semisimple.

Proof. Suppose that there exist infinitely many distinct generic residual Q-families
q 7!r(q). Choose countably infinitely many distinct residual families r1, r2, ... . By Baire’s
theorem we can choose q∈Q such that the ri(q) are all residual and mutually distinct.
But by Theorem 2.44 there are at most finitely many residual points for q, a contradiction.
Hence the set Res(R) is finite. The W0-invariance is clear. By Theorem 2.38 it follows
that this set is empty if the rank of R0 is not equal to the rank of X.

For the converse, assume that R is semisimple and consider the 1-dimensional rep-
resentation Nw 7!q(w) of H(R, q). By Theorem 2.25, this is a discrete series representa-
tion whenever |q(s)|<1 for all s∈S. So, by Theorem 2.47, its X-character r(q)∈T lies
in Res(R, q) for all such q. Since the corresponding subset of Q is Zariski-dense and
r:Q!T is algebraic, it is a generic residual point.

2.4.1. Results on the reduction to simple root systems

The following result is useful to reduce statements about generic residual points to the
case of simple root data.

Lemma 2.53. (i) Let R and R′ be as in Lemma 2.40 (i). The restriction map
r′ 7!r=r′|Q×X is a surjection Res(R′)!Res(R) with fibers of order |X ′ :X|.

(ii) Let R be as in Lemma 2.40 (ii). Then we have a natural bijection

Res(R) ≈−!Res(R(1))×...×Res(R(m)) (37)

such that r 7!(r(1), ..., r(m)) if and only if r(q(1), ..., q(m))=r(1)(q(1)) ... r(m)(q(m)) with
r(i)(q(i))∈T (i) for all i=1, ...,m and all q=(q(1), ..., q(m))∈Q.

(iii) Let R be arbitrary semisimple and let Q=Q(1)×...×Q(m) be the decomposition
of Q=Q(R) as in Proposition 2.37 (i). Suppose that Q′⊂Q is a connected closed subgroup
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of Q such that for each i=1, ...,m the projection πi:Q′!Q(i) is surjective. Let r′:Q′!T
be real-analytic with the property that r′(q′)∈Res(R, q′) for almost all q′∈Q′. Then there
exists a unique r∈Res(R) such that r′=r|Q′ .

Proof. The first two assertions are clear so let us look at (iii). Let

r̃′:Q′−!Hom(Xmax,C×) =T (1)×...×T (m)

be a lifting of r′. Choose homomorphisms φi:Q(i)!Q′ such that πi�φi=idQ(i) for all i.
Lemma 2.40 implies that the map r̃i:Q(i)!T (i) defined by r̃(i)(q(i)):=(r̃′(φi(q(i))))(i) is
a generic residual point for R(i). Let r̃∈Res(R) correspond to (r̃(1), ..., r̃(m)) (using the
notation of (ii)). Then (i) implies that r=r̃|Q×X meets the requirement. If r1 also meets
the requirement let r̃1 be the unique lifting of r1 to Res(Rmax) such that r̃1|Q′=r̃′. Then
it is clear that for all i we must have r̃(i)1 =r̃(i). The uniqueness follows.

Recall the result of Lemma 2.41. We see that if r=sc is a residual point then s∈Tu

belongs to the finite set of points with the property that Rs is semisimple. In particular,
if r:Q!T is a generic residual point then the unitary part s of r is independent of q∈Q
and Rs is semisimple.

Corollary 2.54. Suppose that R is semisimple and s∈Tu is such that Rs is
semisimple. Let φs:Q(R)!Q(Rs) denote the homomorphism q 7!qs.

(i) Let Ress(R) denote the set of generic residual points r with unitary part s.
There exists a natural bijection

Φs: Ress(R)−!Ress(Rs),

r 7−! r�φs.

(ii) Using the notation of Definition 2.5, we have a natural bijection

ΦW0
W0s:W0\ResW0s(R)−!Γs\(W (Rs,1)\Ress(Rs)),

W0r 7−!ΓsW (Rs,1)(r�φs).

Here W0\ResW0s(R) denotes the set of W0-orbits of generic residual points whose uni-
tary part is W0s.

Proof. The image Q′=φ(Q)⊂Qs satisfies the condition as in Lemma 2.53 (iii). The
result (i) then follows from Lemmas 2.41 and 2.53 (iii). The assertion (ii) follows from
(i) and Definition 2.5.

The previous corollary reduces the classification of the set Res(R) to the classification
of those elements r∈Res(R) which are of the form r=sc, where s is W0-invariant. In
this case we further reduce to the level of the degenerate Hecke algebra.
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Definition 2.55. Let R1⊂V ∗ be a semisimple, reduced root system and let K be the
space of W0-invariant real-valued functions on R1. We denote by Reslin(R1) the set of
linear maps ξ:K!V such that for almost all k the point ξ(k)∈V is (R1, k)-residual in
the sense of [HO1], i.e.

|{α∈R1 :α(ξ(k))= kα}|= |{α∈R1 :α(ξ(k))= 0}|+dim(V ). (38)

We refer to this set as the set of generic linear residual points associated with the root
system R1.

Proposition 2.56. Let R be semisimple and let s∈Tu be W0-invariant. Let K be
the vector space of real W0-invariant functions on R1, and given q∈Q let ks∈K be the
W0-invariant function on R1 associated with q by the formulas of equation (25). Let
r=sc be a generic R-residual point.

(i) There exists a unique generic linear residual point ξ∈Reslin(R1) such that

α(c(q))= eα(ξ(ks))

for all α∈R1 and all q∈Q (where ks is related to q as above). We express this relation
between r and ξ by r=s exp(ξ).

(ii) This yields a W0-equivariant bijection between ResW0s(R) and Reslin(R1).
(iii) For all q∈Q we have that r(q) is (R, q)-residual if and only if ξ(ks) is (R1, ks)-

residual (in the sense of [HO1]).
(iv) The generic linear residual points ξ are rational in the sense that α(ξ(k)) is a

rational linear combination of the values kβ for all α∈R1.

Proof. The existence of ξ is a special case of [Op1, Theorem A.7], and the uniqueness
is clear sinceR1 spans V ∗. Similarly (ii) follows from [Op1, Theorem A.7]. The rationality
of ξ follows from the fact that the set of roots contributing to the pole order of c at r
span a sublattice of X of finite index as a consequence of Theorem 2.38.

The following reduction to simple root systems follows easily from the definitions:

Proposition 2.57. Let R1=R1,1, ..., RN,1 be the decomposition in simple root sys-
tems. Then K=K1×...×KN and Reslin(R1)=Reslin(R1,1)×...×Reslin(RN,1).

2.4.2. Rationality results for generic residual points

Nothing that follows in this paper depends on the results in this paragraph in any essential
way, but these results simplify the notation and reveal certain basic facts. The proofs
in this paragraph depend on the classification of positive generic residual points for
irreducible root systems.
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Theorem 2.58. Let R be a semisimple root datum, and let r:Q!T be a generic
residual point of the form r=sc. For all x∈X the expression x(c)∈Λ is a monomial in
the generators v(s)±1 with s∈S. Here v(s) is viewed as a function on Q by (v(s))(q):=
q(v(s)). In other words, r is (the restriction to Q of ) a Qc-valued point of T .

Proof. Using Lemma 2.53 if suffices to show this for R=(X,R0, Y,R
∨
0 , F0) with R0

irreducible and X being the weight lattice of R1. By Corollary 2.54, it suffices to consider
the case where s∈T is W0-invariant. Then we are in the situation of Proposition 2.56. In
terms of the rational linear function ξ:K!V of Proposition 2.56, the assertion amounts
to showing that 2ξ is integral, i.e. x(2ξ) is an integral linear combination of the functions
kβ (with β∈R1) for all integral weights x. We call ξ a generic residual point for R1 (in
the sense of [HO1]).

If R1=An it is easy to see that 2ξ is integral (even for even n).
If R1=Bn it suffices to remark that the integrality of ξ with respect to the root

lattice follows from the description of the residual points as in [HO1, §4] (see also §6).
The generic residual points for R1 of type Cn are in bijection with those of type

Bn as follows. Let k1 denote the parameter of the Cn roots of the form ±ei±ej and k2

the parameter of the Cn roots ±2ei. If ξ′ is a generic Bn-residual point then ξ(k1, k2)=
ξ′

(
k1,

1
2k2

)
is a generic Cn residual point. This sets up a bijective correspondence between

the generic residual points of Bn and of Cn. Hence if ξ is residual for Cn then 2ξ is integral
with respect to the root lattice of Bn, which is equal to the weight lattice of Cn.

If R1 is of type Dn or En we use that ξ is integral with respect to the root lattice
[Op1, Corollary B2]. In order to check the integrality of 2ξ with respect to the weight
lattice one needs to check in addition the integrality of x(2ξ) with respect to the minuscule
fundamental weights. This is an easy verification using the explicit descriptions of the
Bala–Carter diagrams of the distinguished parabolic subgroups in [Ca, §5.9] (see [Op1,
Appendix B] for the explanation of the relation between residual points and Bala–Carter
diagrams for the simply laced types) and Table 1 in [Hu, Chapter III, §13.2] expressing
the fundamental weights in the simple roots. For R1=Dn there are three minuscule
fundamental weights to check, and for R1=E6 there are two of these. For E7 and E8 the
integrality of ξ with respect to the root lattice suffices since the index of the root lattice
in the weight lattice is at most 2.

For F4 and G2 the root lattice is equal to the weight lattice. In these cases the result
follows simply from the tables in [HO1, §4].

We introduce the following notation.

Definition 2.59. Let r=sc∈Res(R). Recall that for all α∈R1, α(r)=α(s)α(c) with
α(s) being a root of unity and α(c) being a monomial in the variables v±1

β∨ (with β∨∈Rnr)
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as described above. We define

Rp,−
r,1 = {α∈R0∩R1 : v2

α∨α(r)−1 =0}∪{2β ∈R1\R0 : vβ∨/2v
2
β∨β(r)−1 =0},

Rp,+
r,1 = {2β ∈R1\R0 : vβ∨/2β(r)+1= 0},

Rz
r,1 = {α∈R1 :α(r)−1 =0},

and we define an element mW0r∈K(Λ) in the quotient field K(Λ) of Λ by (with w0∈W0

being the longest element)

mW0r :=
v(w0)−2

∏
α∈R1\Rz

r,1
(α(r)−1−1)∏

α∈R1\Rp,+
r,1

(v−1
α∨α(r)−1/2+1)

∏
α∈R1\Rp,−

r,1
(v−1

α∨v
−2
2α∨α(r)−1/2−1)

. (39)

As before, if α∈R0∩R1 then v2α∨=1 and the corresponding terms in the denominator
simplify to v−2

α∨α(r)−1−1. Therefore, the expression is rational in the values α(r) with
α∈R0. Observe that the above definition of mW0r is indeed independent of the choice of
r in the W0-orbit W0r, justifying the notation mW0r.

Theorem 2.60. Let r be a generic residual point. We view the generators v(s) of Λ
as functions on Q via v(s)(q):=q(v(s)) as before. The function mW0r is real-analytic on
Q. The set of r-regular points Qreg

W0r :={q∈Q:r(q)∈Res(R, q)} of Q is the complement
of the zero locus Qsing

W0r of mW0r in Q. In particular , this set is the complement of a
union of finitely many (rational) hyperplanes in Q.

Proof. Since r(q) is generically residual it is clear that |Rp,+
r,1 ∪R

p,−
r,1 |−|Rz

r,1|=rk(X).
By Theorem 2.38, it is therefore clear that for all q∈Q the number of factors that are
zero at q in the numerator of mW0r has to be at least equal to the number of factors that
are zero at q in the denominator. This implies that mW0r is real-analytic on Q, and that
the zero locus of mW0r in Q is precisely the set of q such that r(q) is not residual.

Definition 2.61. Let q∈Q. We define Resq(R)={r∈Res(R):r(q)∈Res(R, q)}. Thus
Resq(R) is the set of generic residual points whose specialization at q is residual.

Let r=sc∈Res(R). By Lemma 2.41, the evaluations x(s) with x∈X are roots of
unity. Let K⊃Q be the Galois extension of Q generated by the values x(s) with x∈
X. Theorem 2.58 implies that for all x∈X we have x(r̃)∈K[v(s)±1 :s∈S], the ring
of Laurent polynomials in the variables v(s)±1 (with s∈S) with coefficients in K. Let
σ∈Gal(K/Q). By the above, there is a canonical action r 7!σ(r) of Gal(K/Q) on Res(R)
characterized by x

(
σ̃(r)

)
=σ(x(r̃)) for all x∈X, where σ on the right-hand side is acting

on the coefficients of x(r̃)∈Λ (these are indeed elements of Λ with algebraic coefficients,
by Lemma 2.41 and Theorem 2.58).
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Proposition 2.62. Let R be a semisimple root datum.
(i) Let r∈Res(R) and σ∈Gal(K/Q). Then σ(r)|Q(R0)∈W0r|Q(R0), where Q(R0)⊂

X denotes the root lattice of R0.
(ii) For all r∈Res(R) we have mW0r∈K(ΛZ), the quotient field of the subring ΛZ :=

Z[v([s])±1 :[s]∈S̃]⊂Λ of Λ.
(iii) In the situation of Lemma 2.53 (i), we have mW0r=mW0r′ , and in the situation

of Lemma 2.53 (ii), we have mW0r(q)=mW
(1)
0 r(1)(q(1)) ...mW

(k)
0 r(k)(q(k)).

Proof. The first assertion follows from the proof of [Op1, Proposition 3.27]. Then
(ii) follows from (i) by the fact that mW0r only depends on the restriction of r to Q(R0)
and the fact that the assignment r 7!mW0r is W0-invariant. The assertions of (iii) are
trivial.

2.4.3. Deformation of residual points in the parameter q

The following result is very important: it says that all residual points are obtained from
specialization of the generic residual points.

Proposition 2.63. Let R be a semisimple based root datum. The evaluation map
evq: Resq(R)!Res(R, q) given by evq(r)=r(q) is surjective for all q∈Q.

Proof. We prove this fact by induction on the rank of R0. If the rank of R0 is 1,
the assertion can be verified by an easy inspection. Assume that the result holds for
all maximal proper parabolic subsystems of R0. Let r0∈T be a residual point for the
parameter value q0∈Q. By Proposition 2.43, we know that there exists a residual line
L0=rL,0T

L, where rL,0∈TL is a residual point for a proper maximal parabolic subsystem
RL⊂R0 with the property that r0∈L0. By the induction hypothesis, L0=L(q0) for a
generic family of residual lines L(q)=rL(q)TL (in other words, the RL-residual point
rL,0 is the specialization rL,0=rL(q0) at q0 of a generic RL residual point rL). By
Theorem 2.38 and Definition 2.42, it follows easily that for each fixed q∈Q such that
rL(q) is residual, the rational function ηL (see (35)) on L(q) has poles of order at most 1
on L(q), and x∈L(q) is (R, q)-residual if and only if x is a pole of ηL( · , q). In particular
r0 is a simple pole of ηL( · , q0). Considering the form of the factors in the denominator
of ηL, this implies easily that r0 is the specialization at q=q0 of at least one Q-family
of the form q 7!r(q)∈L(q) such that r(q) is residual for all q in an open neighborhood of
q0. Hence r∈Resq(R) and evq0(r)=r(q0)=r0 as desired.
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Definition 2.64. Let R be a semisimple root datum and let r∈Res(R). We say that
q∈Qreg

W0r is an r-generic (or W0r-generic) parameter if for all r′∈Res(R) the equality
W0r

′(q)=W0r(q) implies that r′∈W0r. The set of r-generic parameters is denoted by
Qgen

W0r. We define the set Qgen of generic parameters by Qgen=
⋂

r∈Res(R)Q
gen
W0r.

Proposition 2.65. Let R be a semisimple root datum. For all r∈Res(R) the set
Qgen

W0r is the complement of a finite collection of rational hyperplanes in Q.

Proof. This follows easily from Corollary 2.54 and Proposition 2.56.

The proof of the following important proposition depends on the classification of
residual points.

Proposition 2.66. Recall that the central support of the set of tempered irreducible
characters of H(R, q) is given by the union S(q)=

⋃
L L

temp (union over the set of (R, q)-
residual cosets L⊂T ) (see Theorem 2.47). Let Si(q)=

⋃
L L

temp⊂S(q) denote the subset
of S(q), where the union is taken only over the residual cosets of dimension at least i.
The sets

⋃
q∈Q(q, Si(q))⊂Q×T are closed for all i.

Proof. In view of Definition 2.42, it is clear that it suffices to show that if r∈Res(R)
and q0∈Qsing

W0r, then there exists a residual coset L such that r(q0)∈Ltemp. By [Op1,
Theorem A.7], this reduces to the statement that if c is a positive generic residual point,
then c(q0) coincides with the center of a positive residual coset. Since the collection of
centers of positive residual cosets does not depend on the choice of the lattice X, we may
replace X by Xmax (as in Proposition 2.37). Since Rmax is a direct sum of irreducible
summands, this shows that it suffices to prove the statement for a root datum R with
R0 irreducible.

In the case when R0 is simply laced, this follows from the remark thatQsing
W0r={q0=1}

for all r∈Res(R). By Lemma 2.41, we have r(1)=e, which is the center of T temp=Tu. If
R0 is of type Bn or Cn, then this is [Sl2, Proposition 4.15]. For type G2 and F4, it can
be read off from the tables [HO1, Tables 4.10 and 4.15].

3. Continuous families of discrete series

In this section we show that every discrete series character of H=H(R, q) is the special-
ization of a unique maximal “continuous parameter family” of discrete series characters.
Using this fact and our results on EPH, the discrete series can be parametrized explicitly
for all irreducible root data R which are not simply laced. An important ingredient is the
fact that the central characters of the irreducible discrete series characters are precisely
the W0-orbits of residual points.
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Another main result in this section states that the formal degree of a continuous
family of irreducible discrete series characters is a rational function on Q with rational
coefficients. This function has a product expansion in terms of the central character of
the family, and an alternating sum expansion in terms of the branching multiplicities of
the discrete series representation to finite-dimensional Hecke subalgebras.

3.1. Parameter deformation of the discrete series

In this subsection we show that each irreducible discrete series character is a special-
ization in the parameter q of a unique continuous Q-family of irreducible discrete series
characters.

It is useful to remark that such deformations are well understood for scaling de-
formations of the parameters along half lines. What we are about to discuss in this
subsection is what happens for general deformations. Therefore this yields no extra in-
formation whatsoever for the simply laced cases. On the other hand, for the non-simply
laced root systems, the method turns out to be sufficient in most cases to distinguish the
irreducible discrete series characters with the same central character form each other,
and parametrize them by continuous Q-families of discrete series characters.

Definition 3.1. Let R be a semisimple root datum, q0∈Q, and let r0∈T be an
(R, q0)-residual point. We denote by P(r0)={W0r∈W0\Res(R):W0r(q0)=W0r0} the
finite set of W0-orbits of generic residual points which coalesce at W0r0 for the parameter
value q=q0.

For t∈T let ∆W0t(R, q0)⊂∆(R, q0) be the collection of irreducible discrete series
characters with central character W0t.

Lemma 3.2. Let r0=s0c0 be an (R, q0)-residual point , and let 0<ε< 1
3 . There exists

an open neighborhood U⊂Q of q0 and a Hermitian element z∈C[T ]W0 such that
(i) z is positive on S(q) for all q∈Q;
(ii) z(t)<ε for all q∈U and t∈S(q)\{W0r(q):r∈P(r0)};
(iii) There exists M>1 such that 1−ε<z(W0r(q))<M for all q∈U and r∈P(r0).

Proof. According to [Op1, Lemma 3.5], for any δ>0 there exist elements a∈C[T ]W0

such that a(W0r0)=1 and such that the uniform norm of a on an (R, q0)-residual coset
Sc(q0) is smaller than δ for all centers c such that W0c 6=W0c0. By Theorem 2.46, we
know that r0 is disjoint from the union of the tempered residual cosets of dimension at
least 1 (in particular, c0 6=e). Hence we can multiply a by further factors in order to
make sure that a is equal to zero on all tempered residual cosets contained in Sc0(q0)
other than r0. By taking δ small enough, we can arrange that the uniform norm of a
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on all components of S(q0), other than the points of W0r0, is smaller than ε. Define
z∈C[T ]W0 by z(t):=a(t)a(t̄−1). Using Theorem 2.45, we see that z(r0)=1 and that z is
non-negative on S(q) (for all q∈Q). This proves (i).

Define two open subsets V+ :={t∈T :|z(t)|>1−ε} and V− :={t∈T :|z(t)|<ε} of T .
By Proposition 2.66, we see that for all q∈Q the support S(q) is the following union of
compact subsets:

S(q) =
⋃
P

⋃
r∈Res(RP )

W0r(q)TP
u . (40)

Put W0r(q)TP
u =S(P, r, q). By the above it is clear that S(P, r, q0)⊂V+ if and only if

RP =R0 and W0r∈P(r0). On the other hand, S(P, r, q0)⊂V− if and only if RP =R0 and
W0r /∈P(R0) or if RP 6=R0. By the compactness of the sets TP

u and the continuity of the
generic residual cosets r∈Res(RP) (viewed as functions on Q), it is clear that there exists
an open neighborhood U of q0 such that for all q∈U and for all pairs (P, r) we have that
S(P, r, q)⊂V− if and only if S(P, r, q0) and S(P, r, q)∈V+ if and only if S(P, r, q0)∈V+.
Hence for all q∈U we have

S(q) = (S(q)∩V+)∪(S(q)∩V−) (41)

and S(q)∩V+=P(r0)(q). From this we easily deduce (ii) and (iii).

Let L2(W ) denote the abstract Hilbert space with Hilbert basis (Ñw)w∈W indexed
by the elements of W . We identify L2(W ) with the Hilbert completion L2(H(R, q))
(for any fixed q∈Q) by identifying Ñw∈L2(W ) with the basis element Nw∈H(R, q).
In this way L2(W ) comes equipped with the structure of a module over the C∗-algebra
completion of the pre-C∗-algebra H(R, q). By abuse of notation, we will denote the basis
elements Ñw of the module L2(W ) simply by Nw. Similarly we use the notation S(W )
for the abstract Fréchet space of functions on W which are of rapid decay with respect
to the norm function N on W . For each fixed q∈Q we identify S(W ) with the Fréchet
algebra completion S(R, q) of H(R, q).

Given q∈Q and z∈C[T ]W0 , let zq∈H(R, q) denote the element z viewed as an ele-
ment of H(R, q) via the isomorphism defined by the Bernstein basis of the center Z(q)
of H(R, q) with C[T ]W0 . The above lemma implies that zq∈H(R, q) is a positive central
element such that if q∈U its spectrum on L2(H(R, q)) is contained in [0, ε)∪(1−ε,M ].

Theorem 3.3. Let U,M>0 and ε>0 be as in the previous lemma. Let eq :=
p>1−ε(zq)∈S(R, q) denote the element of S(R, q) obtained by holomorphic calculus ap-
plied to zq∈H(R, q) with respect to a function p>1−ε on the spectrum that is equal to 0
in an open neighborhood of [0, ε] and is equal to 1 on an open neighborhood of [1−ε,M ].
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(i) For all q∈U , eq∈S(R, q) is a self-adjoint , central idempotent.
(ii) For all q∈U we have an orthogonal decomposition

eq =
∑

W0r∈P(r0)

∑
δ(q)∈∆W0r(q)(R,q)

eδ(q),q, (42)

where eδ(q),q is the primitive central idempotent of S(R, q) corresponding to the irre-
ducible discrete series character δ(q)∈∆W0r(q)(R, q) (the set of irreducible discrete series
characters of H(R, q0) with central character W0r0).

(iii) For all q∈U the two-sided ideal Iq :=eqS(R, q)⊂S(R, q) is a finite-dimensional ,
semisimple, involutive subalgebra of S(R, q).

(iv) The family q 7!eq∈S(R, q)'S(W ) is continuous with respect to the parameter
q∈U .

(v) The dimension dimC(Iq) is independent of q∈U .
(vi) The isomorphism class of Iq viewed as a (finite-dimensional) C∗-algebra is

independent of q∈U .

Proof. By the previous lemma, it is clear that p>1−ε is holomorphic on the spec-
trum of zq, hence we may apply holomorphic functional calculus. Thus (i) follows from
the fact that S is closed for holomorphic functional calculus, see Theorem 2.23, and the
basic properties of the holomorphic functional calculus. The assertion (ii) follows from
the previous lemma and the definition of the idempotent eq. The finite-dimensionality
of Iq follows simply from (ii). Clearly Iq is an involutive algebra because eq is central
and self-adjoint. Thus the trace τ and the anti-involution ∗ give rise to a positive def-
inite Hermitian inner product on Iq with the property that (ab, c)=(b, a∗c). Hence Iq

is a semisimple subalgebra, proving (iii). It is easy to see that U3q 7!zq∈S(W ) is a
continuous family (by expressing z in the Nw basis of H(R, q)). Hence (iv) follows from
the continuity of the holomorphic functional calculus, see Theorem 2.23. For (v) we first
remark that it is clear that for all q∈U the projection λ(eq)∈B(L2(H(R, q))) (where λ
denotes the left regular representation) is of finite rank (since only finitely many central
characters support the image of eq by construction). On the other hand, it is clear from
Theorem 2.23 and [So, Proposition 5.6] that this family of projections is norm contin-
uous in B(L2(H(R, q))), implying in particular that the rank is constant in the family.
Finally observe that Iq=λ(eq)(L2(H(R, q))). In order to prove (vi), we use the notion of
approximate matrix units in a C∗-algebra [BKR, Definition 2.2]. Let m(i)

j,k(q0) be a basis

of matrix units of Iq0 . Given an element q∈U we define m̃(i)
j,k(q)=eq ·m(i)

j,k(q0), where in

the right-hand side we view m
(i)
j,k(q0) as an element of S(R, q) via the canonical isomor-

phism S(W )'S(R, q). Let ε′>0. By (iv), (v) and [So, Proposition 5.6] we obtain that
there exists an open neighborhood q0∈Uε′⊂U of q0 such that for all q∈Uε′ the elements
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m̃
(i)
j,k(q) form a basis of ε′-approximate matrix units of Iq. This means that for all i, j,

k, l, m, n and for all q∈Uε′ , we have

‖m̃(i)
j,k(q)m̃(l)

m,n(q)−δi,lδk,mm̃
(i)
j,n(q)‖<ε′ (43)

and
‖m̃(i)

j,k−(m̃(i)
k,j)

∗‖<ε′ (44)

(where the norm refers to the C∗-algebra norm). Now [BKR, Lemma 2.3] implies that
for ε′>0 sufficiently small there exists a basis of matrix units m(i)

j,k(q) of Iq with the
property that for all i, j and k,

‖m̃(i)
j,k(q)−m(i)

j,k(q)‖<ε′. (45)

In particular it follows that Iq for q∈Uε′ is isomorphic to Iq0 as a finite-dimensional C∗-
algebra. Using a suitable open covering of U , this result extends easily to q∈U , proving
(vi).

Theorem 3.4. Keep the notation as in Theorem 3.3. Let r0∈Res(R, q0).
(i) There exists an open neighborhood U of q0 such that for each δ0∈∆W0r0(R, q0)

there exists a unique family of primitive central idempotents U3q 7!eδ(q),q∈S(R, q)=
S(W ) with the following properties:

(a) δ(q0)=δ0;
(b) The function U3q 7!λ(eδ(q),q, q)∈B(L2(W )) is continuous;
(c) For all q∈U , the value eδ(q),q∈Iq of this function is a primitive central idempo-

tent ;
(d) The degree of the irreducible character δ(q) of Iq afforded by eδ(q),q is indepen-

dent of q;
(e) For all q∈U the set {eδ(q),q}δ(q0)∈∆W0r0 (R,q0) is the complete set of mutually

inequivalent primitive central idempotents of Iq.
(ii) The continuous families of primitive central idempotents U3q 7!eδ(q),q (with

δ(q0)∈∆W0r0(R, q0)) define, for all q∈U , a canonical bijection δ(q0) 7!δ(q) between the
set ∆W0r0(R, q0) and the union ⋃

W0r∈P(r0)

∆W0r(q)(R, q). (46)

Proof. Using the notation of the previous theorem, we define for all q∈Uε′ and for
all i,

e(i)(q) :=
∑

j

m
(i)
j,j(q). (47)
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This is a primitive central idempotent in Iq which is independent of the choices of the
matrix units m(i)

j,k(q). Indeed, another choice of the matrix units would lead to a central
primitive idempotent norm close to e(i)(q). This implies unitary equivalence in the C∗-
algebra Iq of these idempotents, but since these idempotents are also central, unitary
equivalence means actual equality. It follows from this argument that the family of central
primitive idempotents Uε′3q 7!e(i)(q) is continuous at q0 in the following sense: The
family of bounded operators Uε′3q 7!λ(e(i)(q), q) on L2(H(R, q))=L2(W ) is continuous
at q0. Using the independence of the central primitive idempotents for the choice of
the matrix units, we may repeat this arguments for any q∈Uε′ to prove that the families
Uε′3q 7!e(i)(q) are continuous on Uε′ . If we put U :=Uε′ it is now straightforward to prove
the listed properties of (a)–(e) for the constructed continuous families e(i) of primitive
idempotents. Finally the uniqueness follows again from the above rigidity argument for
central primitive idempotents, in combination with the continuity, proving (i).

In view of Theorem 3.3 (ii), this sets up, for each value of q∈U , a bijection between
the set of continuous (in the above sense) families of primitive central idempotents e(i)

and the set of irreducible discrete series characters δ(q)∈∆W0r(q)(R, q), where W0r runs
over the set W0r∈P(r0). This proves (ii).

The above notion of continuity of a q-family of irreducible discrete series characters
is special for discrete series characters.

Definition 3.5. Let q0∈Q and let δ0∈∆(R, q0). For q∈U (as above) we denote by
δ(q) the equivalence class of irreducible discrete series representations afforded by eδ(q),q.
For any open set U⊂Q we refer to such a family δ: q 7!δ(q) of equivalence classes of
representations afforded by a continuous family of central primitive idempotents in S
(in the above sense, thus in the operator norm of B(L2(W ))) as a “continuous family
of irreducible discrete series characters on U”. We denote the set of such continuous
families by ∆(R, U).

There is also a weaker notion of continuity for a q -family of characters which is
applicable to more general characters.

Definition 3.6. Let U3q 7!π(q) be a family of equivalence classes of irreducible rep-
resentations π(q) of Q(R, q). We say that q 7!π(q) is a weakly continuous family of
irreducible characters of H(R) if U3q 7!χπ(q)(Nw) is a continuous function for all w∈W .

We denote by ∆wk(R, U) be the set of weakly continuous families U3q 7!δ(q) of
irreducible discrete series characters (i.e. weakly continuous families q3U 7!δ(q) such
that for all q∈U we have χδ(q)∈∆(R, q)).

Continuity of a family of discrete series characters implies weak continuity:



142 e. opdam and m. solleveld

Proposition 3.7. Let U⊂Q and let δ∈∆(R, U). Then the family q 7!δ(q) is also
weakly continuous.

Proof. Indeed, by the Plancherel formula for H(R, q) we have

τ(eδ(q),q) =deg(δ(q))µPl(δ(q)), (48)

and hence this function is positive, and continuous by Theorem 3.4 (i) (b). Hence the
basic formula

χδ(q)(Nw) =deg(δ(q))
τ(eδ(q),qNw)
τ(eδ(q),q)

(49)

combined with Theorem 3.4 (i) (b) and (d), implies the desired continuity.

Proposition 3.8. Let δ∈∆wk(R, U). We define the generic central character map
cc(δ, ·):U!W0\T by cc(δ, q)=cc(δ(q)). Then cc(δ) is continuous and for all q∈U we
have cc(δ, q)∈Res(R, q).

Proof. This is a trivial consequence of Theorem 2.47 and Proposition 3.7.

In fact it is true that cc(δ)∈W0\Res(R), but this is not obvious at this point. This
result will be shown in Theorem 5.3.

Actually weak continuity and continuity are equivalent for families of discrete series
characters. We have the following result.

Theorem 3.9. Let ∆(R) and ∆wk(R) be the sheaves on Q defined by the presheaves
U 7!∆(R, U) and U 7!∆wk(R, U), respectively.

(i) The natural sheaf map ∆(R)!∆wk(R) is an isomorphism.
(ii) Let ∆N(R) denote the sheaf of non-negative integral linear combinations of

∆(R), and let ∆wk
N (R) denote the sheaf of weakly continuous families of (not neces-

sarily irreducible) discrete series characters. The natural map ∆N(R)!∆wk
N (R) is an

isomorphism.

Proof. It is clear that all presheaves involved are sheaves of sets.
Let us prove (i). Given δ∈∆wk(R, U) we need to show that δ is continuous in the

strong sense. Let q0∈U , and let W0r0 be the central character of δ(q0). By Theo-
rem 3.4 (ii), there exists a neighborhood V ⊂Q of q0 such that for any σ∈∆W0r0(R, q0)
there exists σ̃∈∆(R, V ) such that σ=σ̃q0 :=evq0(σ̃) (the evaluation of the strongly con-
tinuous family σ̃ at q0∈V ). Moreover, Theorem 3.4 (ii) asserts that for all q∈V the irre-
ducible discrete series characters σ̃q (with σ∈∆(R, q0)) are mutually distinct and range
over the set of all irreducible discrete series characters of H(R, q) whose central char-
acter is of the form W0r(q) for some generic W0r∈P(r0). Now consider δ∈∆wk(R, U).
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By Proposition 3.8, it is clear that for all q∈V the central character cc(δ(q)) is of the
form W0r

′(q) for some W0r
′∈P(r0). The linear independence of irreducible characters,

the finiteness of ∆W0r0(R, q0) and Proposition 3.7 imply that there exists a finite set
A⊂W and a neighborhood V ′3q0 such that for all fixed q∈V ′ the finite set of vec-
tors Σ(q):={ξA

σ (q)∈CA :σ∈∆W0r0(R, q0)} with ξA
σ (q):=(χσ̃q (Nw))w∈A is linearly inde-

pendent. In particular the irreducible characters σ̃q are separated by the vector ξA
σ (q)

of their values on Nw with w∈A. Obviously the maps ξA
σ :U!CA are continuous. By

the weak continuity of δ, it follows similarly that the map ξA
δ :U!CA is continuous and

by the above, for all q∈V we have ξA
δ (q)∈Σ(q). This implies that there exists a unique

σ∈∆W0r0(R, q0) such that δ|V ′=σ̃|V ′ , proving that δ is strongly continuous at q0. Since
q0∈U was arbitrary, the result follows.

Let us now prove (ii). Let δ∈∆wk
N (R, U). We need to show that δ is continuous in a

strong sense. Let q0∈U , and let W0ri (where i=1, ..., k) be the set of central characters
of the irreducible constituents of δ(q0). We have δ|Ugen =

∑
W0r δW0r|Ugen (where W0r

runs over the set W0\Res(R) of orbits of generic residual points), where Ugen :=Qgen∩U
and where Ugen3q 7!δW0r(q) is a weakly continuous family of discrete series characters
such that for all q∈Ugen, cc(δW0r(q))=W0r(q). Recall that Qgen is the complement of
finitely many rational hyperplanes in Q.

We claim that for every connected component U ′⊂Ugen which contains q0 in its
boundary, we have δW0r|U ′ 6=0 only if W0r∈

⋃
i P(ri). Indeed, there exists a z∈Z such

that z(W0ri)=0 for i=1, ..., k but with z(W0r(q0))=1 for all orbits of generic residual
points W0r such that W0r(q0) /∈{W0r1, ...,W0rk}. Observe that for all r∈Res(R) the
value deg(δW0r|U ′)∈Z+ is independent of q∈U ′, since the family δW0r|U ′ is weakly con-
tinuous. By the weak continuity of δ on U , we see that U3q 7!χq :=χδ(q)(z) must be
continuous at q0; however, by definition of z, it follows on the one hand that χq0 =0,
while on the other hand the limit for q 7!q0 from U ′ yields∑

W0r/∈
⋃

i P(ri)

deg(δW0r|U ′).

The claim follows.
We now prove in a similar fashion to the proof in (i) that if W0r∈

⋃
i P(ri) and if

U ′⊂Ugen is a connected component which contains q0 in its boundary then δW0r|U ′ is
strongly continuous and in fact extends uniquely to a neighborhood U ′′ of q0 in a strongly
continuous sense. This finishes the proof.

Remark 3.10. We identify the sheaves ∆(R), ∆wk(R), ∆N(R) and ∆wk
N (R) on Q

with their étale spaces. These sheaves are Hausdorff spaces. As sets we have

∆(R) =
∐
q∈Q

∆(R, q). (50)
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Proof. By Theorem 3.9, it suffices to show this for ∆(R). In this case the result
follows simply from Theorem 3.4 (ii).

Proposition 3.11. A continuous family of irreducible discrete series characters
U3q 7!δ(q) is compatible with the scaling maps σ̃ε (with ε>0) of [OS, Theorem 1.7] in
the sense that σ̃ε(δ(q))=δ(qε).

Proof. We may assume that U⊂Q is an open ball centered around q0∈Q such that
evq0 :∆(R, U)!∆(R, q0) is an isomorphism. Let L⊂Q be the half line generated by q0.
Let δ∈∆(R, q0) and δ̃∈∆(R, U) be such that evq0(δ̃)=δ. Consider the continuous family
δ(1) defined by restricting the section δ̃ to L∩U , and the continuous family δ(2) defined
by scaling L∩U3qε

0 7!σ̃ε(δ). It follows from the analyticity ([OS, Theorem 1.7 (1)]) that
δ(2)∈∆wk(R,L∩U). The result δ(1)=δ(2) follows from Theorem 3.9.

Corollary 3.12. We can extend any continuous family of irreducible discrete series
characters δ∈∆(R, U) in a unique way to δ̃∈∆(R, Ũ), where Ũ=

⋃
ε>0 U

ε is the open
cone in Q generated by U .

Proof. Let L⊂Ũ be a half line. By the above proposition and the properties of the
scaling maps (namely, for ε>0 these maps induce bijections of the sets of equivalence
classes of irreducible discrete series characters), we see that the restriction ∆L(R) of
∆(R) to L is a constant sheaf. The result follows easily from this remark.

4. The generic formal degree

Let U⊂Q be a connected open cone, and let δ∈∆wk(R, U). In this subsection we prove
the rationality of the formal degree U3q 7!µPl(δ(q)), i.e. we prove that this function
is the restriction to U of a rational function of the root parameters qα∨ with rational
coefficients, i.e. of an element of K(ΛZ). We refer to this rational function as the generic
formal degree of the family δ. We combine the rationality of the generic formal degree
with the product formula [Op3, Theorem 4.10] for the formal degree of δ(q) valid for q
varying in a half line in Q. We then obtain the factorization of the generic formal degree
as an element of K(Λ).

4.1. Rationality of the generic formal degree

Let R be a semisimple root datum and let Ω⊂W be the finite subgroup of length-zero
elements. If f is a facet of the fundamental alcove C, then we denote by Wf⊂W a

the finite subgroup generated by the simple affine reflections s∈S that fix f , and by
Ωf⊂Ω the (setwise) stabilizer of f in Ω. Let 〈f〉⊂E be the affine subspace spanned
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by f , and let E/〈f〉 be the linear space formed by the cosets e−〈f〉 (with e∈E) of the
linear subspace associated with 〈f〉. Let εf be the determinant character of the linear
action of Ωf on E/〈f〉. The involutive subalgebras H(R, f, q)=H(Wf , q)oΩf⊂H(R, q)
are finite-dimensional (since Wf oΩf is finite) and semisimple by [OS, Lemma 1.4].

Let F be an algebraic closure of K(ΛZ) and let I⊂F be the integral closure of ΛZ.
We choose an extension to I of the homomorphism q: ΛZ!C. Consider the semisimple F -
algebra HF (R, f)=HF (Wf )oΩf . Let χF be the character of a simple HF (R, f)-module.
According to a well-known argument of Steinberg (see e.g. [Ca, Proposition 10.11.4]),
one has χF (Nw)∈I for all w∈Wf oΩf . Furthermore the C-linear map χ:H(R, f, q)!C
defined by χ(Nw)=q(χF (Nw)) is the character of a simple H(R, f, q)-module, and this
provides a bijection between ̂HF (R, f) and ̂H(R, f, q) (cf. loc. cit.).

Lemma 4.1. Let dχ∈F be the formal degree of χF with respect to the trace form τ

restricted to the algebra HF (R, f). Then dχ∈K(ΛZ) and dχ is regular on Q.

Proof. For all q∈Q the trace form τ of the algebra H(R, f, q) has a non-zero dis-
criminant, proving that H(R, f, q) (and a fortiori HF (R, f)) is a symmetric (and thus
semisimple) algebra. Let (V, σF ) be a matrix representation of HF (R, f) whose character
equals χF . We write dσ :=dχ for its formal degree (with respect to τ).

The orthogonality of characters of a symmetric algebra implies that

dσ =
1
Sσ
, (51)

where Sσ is the Schur element of σF , given by

dimF (V )Sσ =
∑

w×ω∈Wf oΩf

χF (Nw×ω)χF (N(w×ω)−1). (52)

By a well-known result (see e.g. the argument in [Ge, Proposition 4.6], which applies to
our situation as well as one easily checks) one also has the following formula for the Schur
element:

dimF (V )Sσ(q)idV =
∑

w×ω∈Wf oΩf

σF (Nw×ωN(w×ω)−1). (53)

But clearly (loc. cit.)∑
w×ω∈Wf oΩf

σF (Nw×ωN(w×ω)−1) = |Ωf |
∑

w∈Wf

σF (NwNw−1). (54)

This last equality implies that if (σF
1 , V1) is any simple submodule of the restriction of

σF to HF (Wf ), then
dimF (V )Sσ = |Ωf |dimF (V1)Sσ1 . (55)
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The right-hand side of this equation is known to be in K(ΛZ) (see [Ca, §13.5]), proving
the desired result. The last assertion follows from the well-known fact that the Schur
element of Sσ is non-zero at q if and only if σF corresponds to a projective irreducible
representation of the specialized algebra H(Wf , q). Since H(Wf , q) is semisimple for q∈Q
this holds true for all σ.

Let δ∈∆wk(R, U). Following [SS] and [Re1], we define for q∈U the index function
fδ,q∈H(R, q) by

fδ,q =
∑

f

(−1)dim(f)
∑

σ∈ ̂H(R,f,q)

deg(σ)−1[δq|H(R,f,q)⊗εf :σ]eσ, (56)

where f runs over a complete set of representatives of the Ω-orbits of faces of the fun-
damental alcove C, and where eσ∈H(R, f, q) denotes the primitive central idempotent
in the finite-dimensional complex semisimple algebra H(R, f, q) affording σ. The im-
portance of the element fδ,q∈H(R, q) is that it links character theory with the elliptic
pairing. Indeed, following [SS] and [Re1], one shows, using the Euler–Poincaré principle
and Frobenius reciprocity, that for all representations π of finite length of H(R, q), one
has (see [OS, Proposition 3.6])

χπ(fδ,q) =EPH(δ(q), π). (57)

Definition 4.2. The multiplicities [δ(q)|H(R,f,q)⊗εf :σ] are independent of q∈Uδ by
Proposition 3.7. We denote these multiplicities by [δf⊗εf :σ]∈Z>0.

Theorem 4.3. Let U⊂Q be a connected open cone and let δ∈∆wk(R, U). We have
the following index formula for the formal degree µPl({δ(q)}) (with q∈U):

µPl({δ(q)}) = τ(fδ,q) =
∑

f

(−1)dim(f)
∑

σ∈ ̂H(R,f,q)

[δf⊗εf :σ]dσ(q). (58)

Here f runs over a complete set of representatives of the Ω-orbits of faces of C, and
dσ(q) denotes the formal degree of σ in the finite-dimensional Hilbert algebra H(R, f, q)
(as in Lemma 4.1).

Proof. We apply the Plancherel formula (27) to fδ,q. In view of (57) and Corol-
lary 2.34, we see that µPl({δ(q)})=τ(fδ,q). Now use (56) and Definition 4.2.

Corollary 4.4. Let U⊂Q be a connected open cone and let δ∈∆wk(R, U). The
formal degree U3q 7!µPl({δ(q)}) is the restriction to U of a rational function in the
parameters qα∨ (with α∈Rnr) with rational coefficients (or in other words, an element
of K(ΛZ) in the notation of Proposition 2.62 (ii)). This rational function is regular on
Q and positive on U .
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Proof. Consider the index formula as given in Theorem 4.3. The result now follows
from Lemma 4.1 (the positivity on U is obvious).

4.2. Factorization of the generic formal degree

Lemma 4.5. Let δ∈∆wk(R, U) be a weakly continuous family of irreducible discrete
series characters on a convex open cone U⊂Q. The map cc(δ( ·)):U!W0\T is contin-
uous. There exist finitely many mutually disjoint , non-empty connected open subcones
Ui⊂U such that

⋃
i Ui⊂U is dense, and such that for each i there exists an orbit W0ri

of generic residual cosets such that 
Ui∩U⊂Qgen
W0ri

and cc(δ)|Ui =W0ri|Ui . In particular
cc(δ) is continuous and piecewise analytic.

Proof. The continuity of cc(δ) on U follows from Proposition 3.8. Let Ui run over
the finite set of connected components of U∩Qgen. Then the restriction of cc(δ) to Ui

must coincide with the restriction of a unique orbit of generic residual points, by the
continuity of cc(δ) and the definition of Qgen. By continuity, for all q∈
Ui∩U the orbit
W0ri(q) carries discrete series representations. Hence ri(q) is residual, or equivalently
q∈Qreg

W0ri
.

Theorem 4.6. Let δ∈∆wk(R, U) be a weakly continuous family of irreducible dis-
crete series characters on a convex open cone U⊂Q. Let r be a generic residual point
such that there exists a non-empty connected open subcone Ui⊂U such that cc(δ)|Ui =
W0r|Ui (see Lemma 4.5). There exists a constant d∈Q× (depending on δ and W0r) such
that we have the following equality in K(ΛZ):

µPl({δ}) = dmW0r. (59)

Here mW0r∈K(ΛZ) (see Proposition 2.62 (ii)) is the function defined in (39).

Proof. We fix fs∈R and denote the corresponding half line in Q by L⊂Q (see
Remark 2.49). Notice that either L∩Ui=∅ or L⊂Ui; assume that L is such that we are
in the latter situation. By [Op1, Corollary 3.32 and Theorem 5.6], we have

µPl({δ(q)}) = d(q)mW0r(q) (60)

for all q∈Ui, where d(q)∈R× has the property that for all ε∈R+,

d(qε) = d(q), (61)

where qε is defined by qε(s)=q(s)ε for all affine simple reflections s. By Theorem 2.60,
Corollary 4.4 and (60), we see that d is itself a rational function which is regular on Ui.
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Recall that we view q>1 as coordinate on L. The expressions α(r(q))=α(s)α(c(q))
and qα∨ (with α∈Rnr and q∈L) are thus viewed as functions of q>1. By the form of the
right-hand side of (60) as given in (58), and in view of Corollary 4.4, we see that there
exists a unique real number f such that

lim
q!∞

qfµPl({δ})(q) = aL ∈Q×. (62)

On the other hand, by (61) the rational function d has a constant value, dL say, on L.
Hence (60) implies, in view of (39) and Proposition 2.62 (ii), that dLbL=aL, where

lim
q!∞

qfmW0r(q) = bL ∈Q×. (63)

Since d(q) is continuous as a function of q∈Ui, this implies that dL∈Q is independent
of L⊂Ui and thus that d(q)=d is independent of q⊂Ui. Since Ui is an open set, the
equality (59) of rational functions which we have now proved on Ui extends to Q (recall
that both sides are regular on Q).

Corollary 4.7. Let δ∈∆wk(R, U) be weakly continuous on a convex open cone U .
Let W0ri and W0rj be orbits of generic residual points associated with δ as in Lemma 4.5.
There exists a constant d∈Q× such that mW0ri =dmW0rj .

5. The generic central character map and the formal degrees

The following result depends on the classification of residual points.

Lemma 5.1. Let R=(X,R0, Y,R
∨
0 ) be a simple root datum such that R0 is not

simply laced , and let r, r′∈Res(R) be generic residual points with equal unitary part s,
which is W0-invariant. If there exists a constant d∈C× such that mW0r=dmW0r′ , then
W0r=W0r

′.

Proof. Using Lemma 2.53 and Proposition 2.62 (iii), we reduce to the case where R
is irreducible, X=P (R1), and r and r′ are generic residual points with equal W0-invariant
unitary part s∈Tu. Let us write r=sc and r′=sc′. In the C(1)

n case, we have s=(1, ..., 1) or
s=(−1, ...,−1). We use Proposition 2.56. In the first case we find that c and c′ extend to
positive generic residual points for the root datum R′ defined by R′0=Bn and X ′=P (R0),
with the parameters q̃ defined by q̃ei±ei =qei±ej and q̃2ei =q

1/2
2ei
q
1/2
2ei+1. In the second case

c and c′ are positive generic residual points for R′ with the parameter q̃ defined by
q̃ei±ei =qei±ej and q̃2ei =q

−1/2
2ei

q
1/2
2ei+1. In the first case we substitute q2ei =q2ei+1, and in

the second case we substitute q2ei =q
−1
2ei+1; with this substitution we have in either case

mR
W0r(q) =mR′

W0c(q̃) and mR
W0r′(q) =mR′

W0c′(q̃). (64)
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Therefore it suffices to prove the assertion for irreducible root data R such that R0 is
not simply laced and X=P (R0), where W0r and W0r

′ are orbits of generic residual
points with the same W0-invariant unitary part s. We may now replace s by 1 without
loss of generality. Hence we may and will assume that W0r and W0r

′ are orbits of
positive residual points. We again use Proposition 2.56 to compare such points with the
classification in [HO1, §4].

In the cases G2 and F4 the W0-orbit W0r of a generic positive residual points W0r

is distinguished by the set Qreg
W0r as can be seen from Tables 2 and 4. Since this set is the

complement of the zero set of mW0r (by Theorem 2.60) the desired conclusion follows.
Next consider the cases Bn and Cn. Let f be a rational function in q1 and q2 of the

form
f(q) = qN1

1 qN2
2

∏
i

∏
j>0

(qi
1q

j
2−1)ni,j (65)

(with ni,j∈Z). Then the exponents ni,j∈Z are determined by f . Let q1 denote the
parameter of the roots ±ei±ej and q2 the parameter of α∨ for α=ei (if R0 has type
Bn) or α=2ei (if R0 has type Cn). The functions mW0r are all of the above form where
the exponent of q2 is 0, 2 or 4. The W0-orbits of generic positive residual points are
parametrized by partitions of n (see [HO1, §4] and [Op3, Theorem A.7]). Let λ`n and let
W0rλ be the corresponding W0-orbit of residual points. Let us use the notation mW0r=
mλ ifW0r=W0rλ. In the case Bn, the factors ofmλ of the form q2i

1 q
2
2−1 have multiplicity

n2i,2 equal to twice the number of boxes b∈λ such that c(b)=i (where c(b) denotes the
content of b). Hence mλ determines for each i the number of boxes in λ with content i.
Clearly this determines λ. If R0 is of type Cn we use the correspondence between Bn and
Cn positive generic residual points as explained in the proof of Theorem 2.58. It follows
that the factors of mλ of type q4i

1 q
2
2−1 have multiplicity n4i,2 equal to twice the number

of boxes b of λ with c(b)=i, and again we conclude that λ is determined by mλ.

Corollary 5.2. Let R be semisimple and let q0∈Q=Q(R). Let δ0∈∆(R, q0) be
such that cc(δ0)=W0r0 for an r0∈Ress(R, q0) with s∈Tu which is W0-invariant. Then
there exists a unique orbit W0r∈W0\Res(R) of generic residual points which has the fol-
lowing property : there exists an open neighborhood U⊂Q of q0 and a continuous family
of discrete series characters U3q 7!δ(q)∈∆W0r(q)(R, q) such that cc(δ(q))=W0r(q) for
all q∈U .

Proof. The uniqueness of such an orbit W0r of generic residual points is clear from
the fact that a generic residual point is real-analytic on Q. Hence W0r is determined by
its restriction to U .

For existence we first choose a lift r̃0∈Res(Rmax, q0) of r0 and a π0∈∆W0r̃0(R, q0)
with the property that δ0 is a component of the restriction of π0 to Q(R, q0). According
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to Theorem 3.4, there exists an open neighborhood U⊂Q such that π0 extends to a
continuous family π of irreducible discrete series characters of H(Rmax). It is obvious
that π=π(1)⊗...⊗π(m), with π(i) being a continuous family of irreducible discrete series
characters of H(R(i)) defined on U (i) (where R(i), with i=1, ...,m, runs through the
simple factors of Rmax as in Proposition 2.37).

For each i there exists a generic residual point r̃(i)∈Res(R(i)) such that cc(π(i))=
W (R(i)

0 )r̃(i) on U (i). Indeed, if R(i) is simply laced then this is trivial by the scaling
isomorphisms [OS, Theorem 1.7 (1) and (5)]. So let us assume that R(i) is not simply
laced. Then the assertion follows from Theorem 4.6 and Lemmas 4.5 and 5.1 applied to

π
(i)
0 ∈∆

W (R
(i)
0 )r̃

(i)
0

(R(i), q
(i)
0 ). (66)

Let r∈Res(R) be the generic residual point that corresponds to (r̃(1), ..., r̃(m)) by restric-
tion as in Lemma 2.53 (i).

If we restrict the continuous family π fromH(Rmax) toH(R), we obtain a continuous
family of discrete series characters, i.e. a section π|H(R)∈∆N(R, U). Observe that all
irreducible components of π(q)|H(R,q) have the same central character. Using the linear
independence of irreducible characters and Theorem 3.4 (ii), we see that π|H(R) contains
the continuous extension δ of δ0 to U with multiplicity at least 1. In particular we see that
the composition of cc(π):U!W0\Tmax with the natural projection W0\Tmax!W0\T
is the central character cc(δ) of the family δ on U . We conclude that cc(δ) is given on U
by W0r|U , where r∈Res(R) was constructed above. This finishes the proof.

Now we come to the main result of this section. It generalizes Corollary 5.2 to
general irreducible discrete series characters.

Theorem 5.3. Let δ0∈∆(R, q0). Let U⊂Q be a (connected) open neighborhood of
q0 such that there exists a δ∈∆(R, U) with δ(q0)=δ0 (see Theorem 3.4). There exists a
unique orbit W0r∈W0\Resq(R) such that cc(δ( ·))=W0r|U .

Proof. We first show that the notion of weak continuity of a family of characters
(see Definition 3.6) is to some extent compatible with the reduction results Theorem 2.6
and Corollary 2.28.

Let cc(δ(q))=W0t(q), where U3q 7!t(q)∈T is continuous. Write s for the unitary
part of t(q) (which is independent of q). Let ψs:Q!Qs=Q(Rs) be the homomorphism
given by q 7!qs.

We denote by π0∈∆N(Rs, ψs(q0)) the restriction of the irreducible discrete series
module of H(Rs, ψs(q0))oΓ(t(q0)) to H(Rs, ψs(q0)). By Theorems 3.4 and 3.9, there
exists a (connected) open neighborhood Us⊂Qs of ψs(q0) and a family

π ∈∆N(Rs, Us) (67)
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such that π(ψ(q0))=π0. We may and will shrink U in such a way that ψs(U)⊂Us.
Let Ns

w∈H(Rs, qs) for w∈W (Rs) denote the standard basis for the affine Hecke
algebra H(Rs, qs). Recall from Lusztig’s construction (in the variation Theorem 2.6)
that H(Rs, qs) is embedded as a subalgebra of the formal completion 
H(R, q) (as defined
by (20)) via the map Ns

w 7!et(q)Nw, where w∈W (Rs) and where et(q)∈
H(R, q) denotes
the idempotent as in Theorem 2.6.

Let δt(q) be the irreducible discrete series representation of 
H(Rs, qs)oΓ(t(q)) cor-
responding to δ(q) according to Theorem 2.6. This implies in particular that

χδt(q)(N
s
w) =χδ(q)(et(q)Nw) (68)

for all w∈W (Rs).
We claim that

χπ(qs)(Ns
w) =χδt(q)(N

s
w) (69)

for all q∈U and w∈W (Rs). By Theorems 3.4 and 3.9, it suffices to show that for all
w∈W the right-hand side of (68) is continuous as a function of q∈U .

By the continuity of U3q 7!cc(δ(q)), it is easy to see that one can construct, for
each N∈N, a continuous family U3q 7!at,q∈A=C[T ] (i.e. a q-family of Laurent poly-
nomials on T whose coefficients depend continuously on q) such that for all q∈U and
t′∈W (Rs,1)t(q) one has at,q∈1+mN

t′ , while for all t′∈W0t(q)\W (Rs,1)t(q) one has at,q∈
mN

t′ . If N is sufficiently large, this implies easily that for all q∈U and for any w∈W (Rs)
one has

χδ(q)(et(q)Nw) =χδ(q)(at,qNw), (70)

which is indeed continuous in q∈U as was required, thus proving (69).
According to Corollary 5.2, we find that cc(πλ)∈W (Rs,1)\Ress(Rs) for any irre-

ducible component πλ of π. By relation (69) and application of Corollary 2.54, it follows
that for any component πλ of π,

cc(δ) = (ΦW0
W0s)

−1(Γs(cc(πλ))). (71)

This finishes the proof.

In view of Theorem 2.58, this means that the central character of δ∈∆(R, U) actually
extends to a Qc-valued point of W0\T .

Definition 5.4. (Generic central character for discrete series) Let q∈Q. Theorem 5.3
yields a map gccq:∆(R, q)!W0\Resq(R) which extends to a continuous map (in the
sense of Remark 3.10) gcc: ∆(R)!W0\Res(R). We call gccq and gcc the generic central
character maps.
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Definition 5.5. Consider the topological space O(R) given by

O(R) = {(W0r, q)∈W0\Res(R)×Q : q ∈Qreg
W0r}. (72)

The finite map π2:O(R)!Q is a local homeomorphism and the projection

π1:O(R)−!W0\Res(R) (73)

on the first factor defines, for all q∈Q, a bijection between the fiber O(R)q of π2 at q∈Q
and the set W0\Resq(R). We define the following evaluation map:

ev:O(R)−!W0\T×Q,

(W0r, q) 7−! (W0r(q), q).

The generic central character map of Definition 5.4 can be characterized as follows.

Proposition 5.6. We define GCC=gcc×π:∆(R)!O(R), where π:∆(R)!Q is
the canonical map. Then GCC is the unique continuous map such that the following
diagram commutes:

∆(R) GCC //

ccΛ
!!DD

DD
DD

DD
O(R)

ev
}}zz

zz
zz

zz

W0\T×Q.

Proof. This is a reformulation of Theorem 5.3.

We are now in the position to formulate the first main result of this paper.

Theorem 5.7. The map GCC=gcc×π:∆(R)!O(R) is a surjective local homeo-
morphism and gives ∆(R) the structure of a locally constant sheaf on O(R).

Proof. Clearly GCC is a local homeomorphism. Using Definition 5.4 and Proposi-
tion 5.6 we can reformulate Theorem 3.4 (ii) by stating that for any W0r∈W0\Res(R)
and any connected component U⊂Qreg

W0r, the inverse image ∆C(R):=GCC−1(C)⊂∆(R)
of C={W0r}×U⊂O(R) is a locally constant sheaf on C. In particular the cardinality
of the fibers of GCC |∆C(R) is constant. Hence the surjectivity of GCC follows from
Theorem 2.47 by considering a generic parameter q∈U .

Corollary 5.8. Let W0r∈W0 Res(R) and let U⊂Qreg
W0r be a connected component

as in the proof of Theorem 5.7. The restriction ∆C(R) of ∆(R) to the connected com-
ponent C={W0r}×U⊂O(R) of O(R) is a constant sheaf.

Proof. Since U is the interior of a convex polyhedral cone by Theorem 2.60, this
follows trivially from Theorem 5.7.
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Corollary 5.9. For all q∈Q the map gccq:∆(R, q)!W0\Resq(R) is surjective.

Proof. This follows immediately from the surjectivity of GCC.

In particular, if δ0∈∆(R, q0), with gccq(δ0)=W0r∈Resq0(R), is an irreducible dis-
crete series character and U⊂Qreg

W0r denotes the component of q0, then there exists a
unique continuous family δ∈∆(R, U) such that evq0(δ)=δ0. Observe that the open cone
U⊂Q is the maximal set to which δ can be continued as a discrete series character (since
the central character W0r(q) will cease to be residual at every boundary point of U).
Hence the open cone U is determined by δ.

Definition 5.10. We denote this open cone by Uδ, and we call a continuous family of
irreducible discrete series characters δ which is extended to its maximal domain of defi-
nition Uδ3q 7!δ(q) a generic irreducible discrete series character. We denote by ∆gen(R)
the finite set of generic irreducible discrete series characters.

Corollary 5.11. For each component C={W0r}×U of O(R), we define a multi-
plicity MC∈Z>0 of C by MC :=|{δ∈∆gen(R):GCC(δ)=C}|. Then MC>0 for all com-
ponents C={W0r}×U . For all q∈U one has MC =|∆W0r(R, q)|, and for all q∈Q one
has (with χU denoting the characteristic function of U)

|∆(R, q)|=
∑

W0r∈W0\Res(R)

∑
U∈CW0r

χU (q)M{W0r}×U . (74)

We reformulate Theorem 4.6 using our results on the generic central character. This
is the second main theorem of this paper.

Theorem 5.12. Let δ∈∆gen(R). There exists a rational constant dδ∈Q× such that
for all q∈Uδ we have

µPl({δ(q)}) = dδmgcc(δ)(q). (75)

Here mgcc(δ)∈K(ΛZ) is explicitly given by (39).

Remark 5.13. This result proves in particular Conjecture 2.27 in [Op1], and it shows
that the constants defined therein for special values of the parameters can be determined
from the rational constants dδ defined for the irreducible generic discrete series characters.
Indeed, any irreducible discrete series character δ0∈∆(R, q0) determines a unique δ∈
∆gen(R) such that δ0=δ(q0). The constant defined in [Op1, Conjecture 2.27] is equal
to dδ multiplied by a rational number depending on q0 which can be easily expressed in
terms of the sets Rp,+

r,1 , Rp,−
r,1 and Rz

r,1 of roots whose associated factor in mW0r becomes
zero at q0.
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6. The generic linear residual points and the evaluation map

In this section we summarize, following [HO1] and [Sl2], the classification of theW0-orbits
of the generic linear residual points for all irreducible root systems R1 and we describe
the evaluation map at a given parameter k∈K=K(R1) of the parameter space associated
with R1.

For each generic linear residual point ξ of R1 we will describe the open dense set
Kreg

ξ of parameters k such that evk(ξ)=ξ(k) is still residual. In addition, we will describe
the set W0\Reslin(R1, V, k) of residual orbits for each k∈K. To do this, it is convenient
to use the notion of k-weighted distinguished Dynkin diagrams with respect to a given
basis F1={α1, ..., αn} of simple roots of R1.

Definition 6.1. For k∈K we define the set Dyndist(R1, V, F1, k) of distinguished k-
weighted Dynkin diagrams for (R1, V, F1, k) as the set of F1-dominant linear (R1, k)-
residual points. There is a canonical bijection

W0\Reslin(R1, V, k)
'−!Dyndist(R1, V, F1, k) (76)

by which we will identify these two sets. We will represent D∈Dyndist(R1, V, F1, k) by
the Dynkin diagram of F1 in which the vertex corresponding to αi∈F1 is labelled by the
weight αi(D)>0 (or simply by the list of values (α1(D), ..., αn(D))).

Given k∈K, let W0\Reslink (R1) be the set of orbits of generic linear residual points
W0ξ such that k∈Kreg

ξ . We will also describe in this section the fibers of the evaluation
map

evk:W0\Reslink (R1)−!Dyndist(R1, V, F1, k),

W0ξ 7−!D= ξ(k)+,
(77)

where ξ(k)+∈W0ξ(k) is the unique F1-dominant element in the orbit W0ξ(k).
If D∈Dyndist(R1, V, F1, k) and λ>0, then λD∈Dyndist(R1, V, F1, λk) and −w0(D)=

D (using [Op1, Theorem A.14 (i)]). This gives canonical identifications

Dyndist(R1, V, F1, λk) = |λ|Dyndist(R1, V, F1, k) (78)

for all λ∈R×. Since the generic linear residual points depend linearly on k, this remark
implies that we only need to describe the set Dyndist(R1, V, F1, k) and the fibers of ẽvk

on all lines in the parameter space.
If kα=2 for all α∈R1, then the set Dyndist(R1, V, F1, k) is the usual set of distin-

guished Dynkin diagrams, corresponding to the set of distinguished unipotent orbits of
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gC(R1) via the Bala–Carter theorem. For classical root systems it is known how to gen-
eralize combinatorially the set of (distinguished) unipotent classes and the Bala–Carter
bijection to the set of k-weighted Dynkin diagrams [Sl2]. As this is a very useful descrip-
tion, we will give these generalized Bala–Carter maps as well.

Let ∆H(R1, V, F1, k) be the collection of irreducible discrete series characters of
H(R1, V, F1, k). Consider the “degenerate” generic central character map gccH, which is
the map

gccH:∆H(R1, V, F1, k)−!W0\Reslink (R1) (79)

corresponding to the restriction of gcc to the set ∆s(R, q) (with s∈Tu being a W0-
invariant element) via the canonical bijections of Corollary 2.31 and Proposition 2.56.
In the next section we will prove that for all irreducible non-simply laced root systems
the map gccH maps the subset ∆H

W0D(R1, V, F1, k)⊂∆H(R1, V, F1, k) of elements with
central character W0D bijectively onto the fiber ev−1

k (D), where evk is the evaluation
map of (77) for R1, with one remarkable exception: in the case F4 it turns out that one
has to count every occurrence of the unique singular generic linear residual orbit “f8”
with multiplicity 2. In other words, in the notation of Corollary 5.11, the multiplicities
MW0r×U are always 1 for orbits W0r of positive generic residual point, except for the
unique singular one (called f8) of F4, in which case the multiplicity is always 2 (these
results will be shown in the next section).

It is interesting in addition that this bijection also holds for type Dn after we make
a small adaptation in order to see type Dn as a specialization of type Bn. The proofs
of these facts do not depend on the classical Kazhdan–Lusztig classification. The only
point where one needs to resort to non-trivial computations is in the verification of the
fact that the multiplicity of f8 is always 2. This follows from results by Reeder [Re1].
Since our parametrization clearly also holds for type An, it follows that the deformation
method gives the classification of the discrete series in all cases except for types E6, E7

and E8 (in which cases the Kazdan–Lusztig classification is available of course).
In the “classical situation”, when kα=2 for all α∈R1, one associates a set of Springer

representations Σu(D) of W0 to the distinguished unipotent orbit u=u(D) of Gad
C (R1)

associated with D. The Kazhdan–Lusztig parametrization says that the set

∆H
W0D(R1, V, F1, kα =x)

(equal parameters with x>0) is in canonical bijection with the set Σu(D).
For classical root systems, [Sl2] explained how to generalize combinatorially the set

of “k-unipotent” elements u(D) associated with D∈Dyndist(R1, V, F1, k) and the set of
corresponding “k-Springer representations” Σu(D)(k) of W0. This makes it possible to
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recast the above parametrizations in the form of a generalized Kazhdan–Lusztig corre-
spondence between the set ∆H

W0D(R1, V, F1, kα=x) and the sets of k-Springer represen-
tations Σu(D)(k) on a combinatorial level for arbitrary k. Our result thus establishes this
aspect of the conjectures by Slooten [Sl2].

We will include the generalized Kazhdan–Lusztig parameters for the classical root
systems, and describe their relation with the alternative parametrization (79).

6.1. The case R1=An, n>1

In this case K∼=R. Choose the basis of simple roots F1={e1−e2, ..., en−1−en} for R1, and
define ξ:K!V by the equations α(ξ(k))=k for all α∈F1. Then W0\Reslin(R1)={W0ξ}.
The set Kreg

ξ is equal to K\{0}. For all k∈Kreg
ξ we have Dyndist(R1, V, F1, k)={D(k)}

with D(k)=(|k|, ..., |k|). We have ev−1
k (D(k))={W0ξ}.

6.2. The case R1=Bn, n>2

The results in this subsection are due to Slooten [Sl2]. Put

R1 = {±ei±ej : 1 6 i 6= j6n}∪{±ei : 1 6 i6n}.

Choose as a basis F1={e1−e2, ..., en−1−en, en}. We put k(ei±ej)=k1∈R and k(ei)=
k2∈R and in this way make the identification K=R2. If k1 6=0 then we define m∈R by
m=k2/k1.

We first describe the generic linear residual points. Given a partition λ∈P(n) (i.e.
a partition λ`n), we define a K-valued point ξλ as follows. Given a box b of λ, let i(b)
be its row number and j(b) its column number. We define the content c(b) of the box
b by c(b)=j(b)−i(b). We call the tableau of shape λ in which the boxes b∈λ are filled
with the expression c(b)k1+k2 the generic k-shifted tableau of λ, denoted by T (λ, k). We
order the boxes of T (λ, k) in the standard way by reading the tableau from left to right
and from top to bottom. Then we define ξλ as the K-valued point of V such that the ith
coordinate ei(ξ) is equal to the filling c(bi)k1+k2 of the ith box of T (λ, k).

Theorem 6.2. We have a bijection

Λ:P(n)−!W0\Reslin(R1),

λ 7−!W0ξλ.

The set Kreg
λ of regular parameters for ξλ is of the form

Kreg
λ =K\

⋃
m∈Msing

λ

Lm, (80)
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where Lm={(k1, k2):k2=mk1}⊂K and where M sing
λ is a set of half-integral ratios m∈ 1

2Z
which are called singular with respect to λ and which will be described in Proposition 6.4
below. We first define for m∈ 1

2Z the m-shifted content tableau Tm(λ) of λ as follows.
The tableau Tm(λ) has shape λ and the box b of Tm(λ) is filled with the value |c(b)+m|
(i.e. the absolute value of the filling of the same box in T (λ, (1,m)). The following notion
plays an important role.

Definition 6.3. Let λ`n and m∈ 1
2Z. The list of extremities of Tm(λ) is the weakly

increasing list consisting of the following numbers. If m∈Z (resp. m∈Z+ 1
2 ) then the

extremities are the fillings of the boxes of Tm(λ) at the end of a row of Tm(λ) which are
on or above the 0 diagonal (resp. the upper 1

2 diagonal) and the boxes at the bottom of
a column of Tm(λ) which are on or below the 0 diagonal (resp. the lower 1

2 diagonal).
Here we agree to count 0 twice if 0 is both at the end of a row and of a column.

Proposition 6.4. We have m∈M reg
λ (the complement of M sing

λ , i.e. the values
m∈R such that ξλ(k1,mk1) is residual if k1 6=0) if and only if m/∈ 1

2Z, or m∈ 1
2Z and

the extremities of Tm(λ) are all distinct. If m<1−n or m>n−1 then m is regular with
respect to any partition λ`n.

Let Kreg be the intersection of sets Kreg
ξ =Kreg

W0ξ, where ξ runs over Reslin(R1, V, k).

Corollary 6.5. We have

Kreg =K\
⋃
m

Lm, (81)

where m runs over the half-integral values satisfying 1−n6m6n−1. In particular , if
k /∈Lm for all half-integral m satisfying 1−n6m6n−1, the evaluation map

evk:W0\Reslin(R1)−!Dyndist(R1, V, F1, k) (82)

is bijective.

Let m∈ 1
2Z and λ`n. Suppose that m/∈M sing

λ (in other words

ξλ(k1,mk1)∈Reslin(R1, V, F1, (k1,mk1))

if k1 6=0). Since W0 contains sign changes and permutations, the corresponding element
D(k)∈Dyndist(R1, V, F1, (k1,mk1)) has coordinates which are all of the form p|k1| with
p>0 and p∈m+Z. Conversely, any point D(k)∈Dyndist(R1, V, F1, k) is of this form. In
order to see this, we recall the following result (see [HO1] and [Sl2]).
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Proposition 6.6. Let m∈ 1
2Z and let k=(k1,mk1) with k1 6=0. Let D∈Rn be dom-

inant with respect F1. Then D∈Dyndist(R1, V, F1, k) only if all coordinates of D are of
the form p|k1| with p>0. So let us suppose that all coordinates of D are of the above
mentioned form. Let µp=µp(D) denote the multiplicity of p|k1| as a coordinate of D.
We distinguish the following cases:

(1) If m=0 then D∈Dyndist(R1, V, F1, k) if and only if (i) µr=1 if r is maximal
such that µr 6=0, (ii) µp∈{µp+1, µp+1+1} for all p>0 and (iii) µ0=

⌊
1
2 (µ1+1)

⌋
.

(2) If m∈Z\{0} then D∈Dyndist(R1, V, F1, k) if and only if (i) µr=1 if r is max-
imal such that µr 6=0, (ii) µp∈{µp+1, µp+1+1} for all p>|m|, (iii) µp∈{µp+1−1, µp+1}
for 16p6|m|−1 and finally (iv) µ0=

⌊
1
2µ1

⌋
.

(3) If m∈Z+ 1
2 then D∈Dyndist(R1, V, F1, k) if and only if (i) µr=1 if r is maximal

such that µr 6=0, (ii) µp∈{µp+1, µp+1+1} for all p>|m| and (iii) µp∈{µp+1−1, µp+1} for
1
2 6p6|m|−1.

Definition 6.7. We keep the notation as given in Proposition 6.6. Assume that
D∈Dyndist(R1, V, F1, k). We call p∈m+Z a jump of D if p>|m| and µp=µp+1+1, or if
0<p<|m| and µp=µp+1. Finally we add 0 (if m∈Z) or − 1

2 (if m∈Z+ 1
2 ) to the list of

jumps of D in order to ensure that the number of jumps of D is equal to d|m|e+2ν for
some ν∈Z>0 (this is always possible, see [Sl2]).

Remark 6.8. It is a simple matter to reconstruct D from its list of jumps by com-
puting the multiplicities mp of the entries of the form p|k1|, starting from the top mr=1.

This gives rise to a different classification of the set of k-weighted distinguished
Dynkin diagrams Dyndist(R1, V, F1, k) by the introduction of a combinatorial analogue
Um(n) of the corresponding set of “distinguished m-unipotent classes”:

Definition 6.9. If m∈Z, we define

Udist
m (n) = {u` 2n+m2 : l(u) > |m| and u has odd, distinct parts}, (83)

and if m∈Z+ 1
2 we define

Udist
m (n) =

{
u` 2n+m2− 1

4 : l(u) > b|m|c and u has even, distinct parts}. (84)

Proposition 6.10. Let m∈ 1
2Z and u∈Udist

m (n). Let k=(k1,mk1)∈Lm with k1 6=0.
If m∈Z+ 1

2 we add 0 as a part of u if necessary to assure that the number of parts of
u is equal to d|m|e+2ν for some ν∈Z>0. The list j=j(u) consisting of the numbers
1
2 (ui−1), where ui runs over the parts of u (ordered in ascending order), is the list
of jumps of a unique distinguished k-weighted Dynkin diagram D∈Dyndist(R1, V, F1, k)
(where D is of the form as described in Proposition 6.6). This sets up a bijection

fBC
k :Udist

m (n)−!Dyndist(R1, V, F1, k). (85)
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Finally we remark that Dyndist(R1, V, F1, (0, 0))=∅.

This completes the classification of the set Dyndist(R1, V, F1, k) for all values of k∈K.
It remains to describe, for all special values k∈Lm\{0} and all D∈Dyndist(R1, V, F1, k),
the fiber ev−1

k (D) of the evaluation map

evk:W0\Reslink (R1)−!Dyndist(R1, V, F1, k), (86)

where W0\Reslink (R1) is the set of orbits of generic residual points which remain residual
upon evaluation at k (note that this depends on m=m(k), rather than k). Equivalently,
we will describe, for each D∈Dyndist(R1, V, F1, k), the set

Pm(D) := Λ−1(ev−1
k (D))⊂P(n) (87)

of all partitions λ of n such that W0ξλ(k)=W0D.

Definition 6.11. Let m∈ 1
2Z. Given u∈Udist

m (n), we define a bipartition φm(u)∈
P(2, n) as follows. First assume that m is non-negative. Let j=j(u) be the sequence of
jumps of length dme+2ν∈Z>0 associated with u as in Proposition 6.10. Then we define
φm(u)=(ξm(u), ηm(u))∈P(2, n), where

ξm(u) = (j1, j3, ..., j2ν−1, j2ν+1, j2ν+2−1, j2ν+3−2, ..., j2ν+m−(m−1)),

ηm(u) = (j2+1, j4+1, ..., j2ν +1),

if m∈Z and

ξm(u) =
(
j1+ 1

2 , j3+ 1
2 , ..., j2ν+1+ 1

2 , j2ν+2− 1
2 , j2ν+3− 3

2 , ..., j2ν+m+ 1
2
−(m−1)

)
,

ηm(u) =
(
j2+ 1

2 , j4+ 1
2 , ..., j2ν + 1

2

)
,

if m∈Z+ 1
2 . If m<0, then we define φm(u):=(η−m(u), ξ−m(u))∈P(2, n).

Definition 6.12. Let (ξ, η)∈P(2, n). We recall from [Sl2] the equivalence class of m-
symbols of (ξ, η) denoted by Λ̄m(ξ, η). For m=0 we use the symbol “+”. We denote by
[(ξ, η)]m the set of (ξ′, η′)∈P(2, n) such that Λ̄m(ξ, η) and Λ̄m(ξ′, η′) have representatives
which contain the same entries the same number of times. For u∈Udist

m (n) we define
Σm(u)⊂P(2, n) by Σm(u):=[φm(u)]m.

Finally, the following result of Slooten gives the desired parametrization of the set
Pm(D) (and hence of the fiber ev−1

k (D) of the evaluation map).

Theorem 6.13. ([Sl2, Theorem 5.27]) The joining map Jm (see [Sl2, Definition 5.18])
is well defined on Σm(u) and this yields a bijection

Jm: Σm(u)−!Pm(fBC
k (u)) (88)

whose inverse is given by the splitting map Sm (see [Sl2, Definition 5.16]).
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Corollary 6.14. Let m∈ 1
2Z, let k=(k1,mk1) with k1 6=0 and suppose that D∈

Dyndist(R1, V, F1, k). Put u=(fBC
k )−1(D)∈Um(n). We can arrange that u has dme+2ν

parts (with ν∈Z>0). Then

|Pm(D)|=


(
dme+2ν

ν

)
, if u1 6=0,(

dme+2ν−1
ν

)
, otherwise.

(89)

6.2.1. The case k1=0

If k=(0, 0), then there are no linear residual points, since k is singular for all generic
linear residual points.

The situation where k=(0, k2) with k2 6=0 is an important special case. Its impor-
tance stems in part from the fact that although k is highly non-generic it is regular for
all generic linear residual points. In fact, all generic linear residual orbits coalesce upon
specialization for k1=0 to the unique orbit of residual points W0ξ(k), where ξ is defined
by ξi(k)=k2 for all i=1, ..., n. In other words, we have

Reslink (R1) =Reslin(R1) (90)

and (in the coordinates e1, ..., en of V )

Dyndist(R1, V, F1, k) = {(|k2|, ..., |k2|)}. (91)

The evaluation map evk is the unique map from Reslin(R1) to Dyndist(R1, V, F1, k).

6.3. The case R1=Cn, n>3

Put R1={±ei±ej :16i 6=j6n}∪{±2ei :16i6n}. Choose F1={e1−e2, ..., en−1−en, 2en}
as a basis. We put k(ei±ej)=k1∈R and k(2ei)=k2∈R and in this way make the identi-
fication K=R2. Clearly we have the following equality for all k=(k1, k2):

Reslin(Cn, (k1, k2))= Reslin
(
Bn,

(
k1,

1
2k2

))
. (92)

Since W0(Bn)=W0(Cn), we see that everything reduces to the case R1=Bn.

6.4. The case R1=Dn, n>4

We put R1={±ei±ej :16i 6=j6n}. Choose F1={e1−e2, ..., en−1−en, en−1+en} as a ba-
sis. The case R1=Dn can be reduced to the discussion of §6.2 as well in the following
way, using the Clifford theory discussion from [RR].
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Let F b
1 denote the basis for Bn as in §6.2. Let

ψ:H(Bn, V, F
b
1 , (k1, k2))−!H(Bn, V, F

b
1 , (k1,−k2)) (93)

be the unique algebra isomorphism such that ψ(x)=x for all x∈V ∗=R⊗X, ψ(sei−1−ei)=
sei−1−ei for all i=2, ..., n, and ψ(sen)=−sen (compare with the isomorphisms ψs discussed
in §2.1.2). Then ψ restricts to an involutive automorphism of H(Bn, V, F

b
1 , (k1, 0)). Let

Ψ={1, ψ}∼= 1
2Z be the group of automorphims of H(Bn, V, F

b
1 , (k1, 0)) generated by ψ.

Then it is easy to see that

H(Dn, V, F1, (k1, 0))∼=H(Bn, V, F
b
1 , (k1, 0))Ψ (94)

(where the generator sen−1+en on the left-hand side corresponds to sensen−1−ensen on
the right-hand side).

Let k=k(±ei±ej)∈K(Dn). We use k as a coordinate on the line L0⊂K(Bn) by
identifying k with the element (k, 0)∈L0. Let us from now assume that k∈Kreg(Dn)=
K(Dn)\{0} (and in the context of R1=Bn we identify k with (k, 0)∈L0). We have
W0(Bn)=W0(Dn)oΓ, where Γ={e, γ}∼= 1

2Z and γ is the diagram automorphism that
exchanges en−1−en and en1 +en. Hence the center equals (see Corollary 2.10)

Z(Bn, F
b
1 , (k, 0))=Z(Dn, F1, k)Γ. (95)

It is easy to see that for every u∈Udist
0 (n) (defined as in §6.2) the orbit W0(Bn)fBC

k (u)∈
W0(Bn)\Res(Bn, k) is in fact a single W0(Dn)-orbit of residual points for R1=Dn. It
follows that

fBC
k :Udist

0 (n)−!Dyndist(Dn, F1, k) (96)

is a bijection.
Observe that we have (using the notation of Theorem 6.2) the relation

W0ξλ′(k1,−k2) =W0ξλ(k1, k2), (97)

where λ 7!λ′ is the conjugation involution of P(n). Thus the set W0(Bn)\Reslin0 (Bn)
of orbits of generic residual Bn-points which remain residual if we restrict (k1, k2) to a
(non-zero) element (k, 0)∈L0, admits an involution ι given (via Λ) by the conjugation
involution. By Proposition 6.4 this involution acts in a fixed point free manner on
W0\Reslin0 (Bn). The involution is clearly compatible with the evaluation map ev0. It
follows from (97) that for all δ∈∆H(Bn, V, F

b
1 , (k, 0)) we have

gccH(δ�ψ) = ι(gccH(δ)). (98)
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Accordingly, we define

W0(Dn)\Reslin(Dn)#k := (W0(Bn)\Reslin0 (Bn))/{e, ι}, (99)

and we have a corresponding evaluation map

W0(Dn)\Reslin(Dn)#k −!Dyndist(Dn, F1, k). (100)

Remark 6.15. The relation with the usual Kazhdan–Lusztig parameters for Dn is
as follows. For all u∈Udist

0 (n) the involution ι acts without fixed points on the set Σ0(u)
by

ι: Σ0(u)−!Σ0(u),

(ξ, η) 7−! (η, ξ).

The set ΣDn(u) of Springer representations of W0(Dn) associated with u is the set of
{1, ι}-orbits in Σ0(u). In particular, for all D∈Dyndist(Dn, F1, k) we have a natural bijec-
tion between the fiber (ev#

k )−1(D) and the set of classical Kazhdan–Lusztig parameters
ΣDn(u) associated with u=u(D).

6.5. The case R1=En, n=6, 7, 8

In the simply laced cases we can classify the generic linear residual orbits with the
weighted Dynkin diagrams for the distinguished nilpotent orbits (see [Op1, Proposi-
tion B.1 (i)]). Since the weighted Dynkin diagrams characterize the nilpotent orbits
completely by the Bala–Carter theorem (see [Ca]), we obtain for all k 6=0 a bijection

fBC
k :Udist(R1)−!Dyndist(R1, V, F1, k), (101)

where Udist(R1) denotes the set of distinguished nilpotent orbits of the simple complex Lie
algebra with root system R1. It is well known that the values of the roots on the generic
linear residual points are integral linear combinations of the k(α) (corresponding to the
fact that the roots take even values on the distinguished weighted Dynkin diagrams). We
refer to [Ca, pp. 176–177] for the tables of the distinguished weighted Dynkin diagrams.

6.6. The case R1=F4

Let (α1, α2, α3, α4) be a basis of simple roots of R1 such that α1 and α2 are long, α3 and
α4 are short, and α2(α∨3 )=−2.
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Orbits f =W0ξ ξ

f1 ξ1 =(k1, k1, k2, k2)
f2 ξ2 =(k1, k1, k2−k1, k2)
f3 ξ3 =(k1, k1, k2−k1, k1)
f4 ξ4 =(k1, k1, k2−2k1, k2)
f5 ξ5 =(k1, k1, k2−2k1, 2k1)
f6 ξ6 =(k1, k1, k2−2k1, k1)
f7 ξ7 =(k1, k1, k2−2k1,−2k2)
f8 ξ8 =(0, k1, 0, k2−k1)

Table 1. F4: Generic linear residual orbits.

Orbit Kreg
ξ

f1 (2k1+3k2)(3k1+4k2)(3k1+5k2)(5k1+6k2) 6=0
f2 (k2

1−(6k2)2)k2 6=0
f3 (3k1+2k2)(k1+3k2)(2k1+3k2)(3k1+4k2) 6=0
f4 (2k1−3k2)(3k1−4k2)(3k1−5k2)(5k1−6k2) 6=0
f5 ((3k1)2−(2k2)2)(k2

1−(3k2)2) 6=0
f6 (3k1−2k2)(k1−3k2)(2k1−3k2)(3k1−4k2) 6=0
f7 ((3k1)2−k2

2)k1 6=0
f8 k1k2 6=0

Table 2. F4: Regular parameters.

The set W0\Reslin(F4) was completely classified in [HO1, Table 4.10], but unfortu-
nately this table contains an error (the coordinates of f7 are incorrect). We therefore
include the corrected table (see Table 1) below. There are eight orbits of generic lin-
ear residual points for F4, numbered f1, ..., f8. The orbits are generically regular with
respect to the W0-action, except for f8 which generically has an isotropy group of type
A1×A1. In Table 2 we have specified for each generic linear residual orbit fn=W0ξn

a generic linear residual point ξn by means of the vector of values (α1(ξn), ..., α4(ξn)).
Here k=(k1, k2), where k1 is the parameter of the long roots.

In Table 3 we list the non-generic values of k, together with the set Dyndist(k):=
Dyndist(R1, V, F1, k) of k-weighted Dynkin diagrams, and for each D∈Dyndist(k) the
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inverse image ev−1
k (D) of the map

evk:W0\Reslink −!Dyndist(k). (102)

Remark 6.16. In Table 3 we assume that x>0. Not all special parameters are listed
in Table 3 but all other special values can be obtained from the listed ones by applying the
following symmetries. First of all we have fi(k1, k2)=fi(−k1,−k2) (since − id∈W0) and
fi(k1, k2)=fθ(i)(k1,−k2)=fθ(i)(−k1, k2) with θ=(14)(36). With these transformations
we can reach all quadrants of K from the positive quadrant. In addition, we have used
the following symmetry (arising from interchanging the long and short roots) to reduce
the length of Table 3: Let Ψ(a, b, c, d)=(2d, 2c, b, a). Then we can define Di(2k2, k1)
by Di(2k2, k1)=Ψ(Di(k1, k2)). The map Ψ acts as follows on the set of generic linear
residual orbits: Ψ(fi(k1, k2))=fσ(i)(2k2, k1), where σ is the transposition (27). Observe
that Ψ2(a, b, c, d)=(2a, 2b, 2c, 2d), and thus Ψ2 corresponds to replacing x by 2x.

6.7. The case R1=G2

See [HO1, Proposition 4.15]. There are three orbits of generic linear residual points W0ξ1,
W0ξ2 and W0ξ3, which we will refer to as g1, g2 and g3, respectively. Let α1 be the simple
long root and α2 the simple short root. Let k=(k1, k2) with k1 being the parameter of
the long root. Table 4 lists the gi=W0ξi and the set Kreg

i where W0ξi remains residual
upon specialization. We use similar conventions as in the case F4.

In Table 5 we list the non-generic values of k, together with the set Dyndist(k) of
k-weighted Dynkin diagrams and for each D∈Dyndist(k) the inverse image ev−1

k (D) of
the map

evk:W0\Reslink −!Dyndist(k). (103)

Remark 6.17. In Table 5 we assume that x>0. Not all special parameters are
listed in Table 5 but all other special values can be obtained from the listed ones by
applying the following symmetries. First of all we have gi(k1, k2)=gi(−k1,−k2) (since
− id∈W0) and gi(k1, k2)=gθ(i)(k1,−k2)=gθ(i)(−k1, k2) with θ=(12). With these trans-
formations we can reach all quadrants of K from the positive quadrant. In addition, we
have used the following symmetry (arising from interchanging the long and short roots)
to reduce the length of Table 5: Let Ψ(a, b)=(3b, a). Then we can define Di(3k2, k1)
by Di(3k2, k1)=Ψ(Di(k1, k2)). The map Ψ acts as follows on the set of generic linear
residual orbits: Ψ(fi(k1, k2))=fi(3k2, k1). Observe that Ψ2(a, b)=(3a, 3b), and thus Ψ2

corresponds to replacing x by 3x.
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k = (k1, k2) D∈Dyndist(k) ev−1
k (D)

(0, x) D1 = (0, 0, x, x) f1, f2, f4

D2 = (0, 0, x, 0) f3, f5, f6

(x, x) D1 = (x, x, x, x) f1

D2 = (x, x, 0, x) f2, f3

D3 = (0, x, 0, x) f5, f7

D4 = (0, x, 0, 0) f4, f6, f8

(x, 2x) D1 = (x, x, 2x, 2x) f1

D2 = (x, x, x, 2x) f2

D3 = (x, x, x, x) f3

D4 = (x, x, 0, 2x) f4, f5

D5 = (x, x, 0, x) f6, f7

D6 = (0, x, 0, x) f8

(x, 3x) D1 = (x, x, 3x, 3x) f1

D2 = (x, x, 2x, 3x) f2

D3 = (x, x, x, 3x) f4

D4 = (x, x, 2x, x) f3

D5 = (x, x, x, 2x) f5

D6 = (x, x, x, x) f6

D7 = (0, x, 0, 2x) f8

(2x, 3x) D1 = (2x, 2x, 3x, 3x) f1

D2 = (2x, 2x, x, 3x) f2

D3 = (2x, 2x, x, 2x) f3

D4 = (2x, 0, x, 2x) f4, f7

D5 = (0, 2x, 0, x) f8

(3x, 2x) D1 = (3x, 3x, 2x, 2x) f1

D2 = (3x, x, x, 2x) f3

D3 = (3x, x, x, x) f2

D4 = (2x, x, x, 2x) f7

D5 = (2x, x, x, x) f5

D6 = (0, x, x, 0) f8

(5x, 3x) D1 = (5x, 5x, 3x, 3x) f1

D2 = (5x, x, 2x, 3x) f3

D3 = (5x, x, 2x, x) f2

D4 = (4x, x, 2x, 3x) f7

D5 = (4x, x, 2x, x) f5

D6 = (x, x, x, x) f6

D7 = (0, x, 2x, 0) f8

Table 3. k-weighted Dynkin diagrams and confluence data for F4.
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Type ξ Kreg
ξ

g1 ξ1 =(k1, k2) (k1+2k2)(2k1+3k2) 6=0
g2 ξ2 =(k1, k2−k1) (k1−2k2)(2k1−3k2) 6=0
g3 ξ3 =

(
k1,

1
2 (k2−k1)

)
k1k2 6=0

Table 4. Generic linear residual orbits for G2.

k=(k1, k2) D∈Dyndist(k) ev−1
k (D)

(0, x) D1 =(0, x) g1, g2

(x, x) D1 =(x, x) g1

D2 =(x, 0) g2, g3

(2x, x) D1 =(2x, x) g1

D2 =
(

1
2x,

1
2x

)
g3

Table 5. k-weighted Dynkin diagrams and confluence for G2.

7. The classification of the discrete series of H

We formulate the main theorem of this paper.

Theorem 7.1. Let R1⊂V ∗ be a non-simply laced irreducible root system or R1=An.
Let F1 be a basis of simple roots, and let k∈K. We denote by ∆H(R1, V, F1, k) the set
of irreducible discrete series characters of H(R1, V, F1, k). The generic central character
map induces a bijection

gccHk :∆H(R1, V, F1, k)
'−!W0\Reslink (R1) (104)

which is compatible with the central character map, in the sense that

evk(gccHk (δ))= cc(δ)

for all k∈K and all δ∈∆H(R1, V, F1, k), except when R1=F4 and k∈Kreg
f8

, in which case
there are exactly two elements δf ′8 , δf ′′8 ∈∆H(R1, V, F1, k) with generic central character
f8. This statement is also true for R1=Dn (with n>4) if we replace W0(Dn)\Reslink (Dn)
by W0(Dn)\Reslink (Dn)# and gccHk by the map gccH,#

k which is equal to the map gccH,Bn

(k,0) ,
for type Bn, composed with the induction map for characters of H(Dn, V, F1, k) to
H(Bn, V, F

b
1 , (k, 0)).
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Proof. We apply the reduction results Corollaries 2.30 and 2.31 with u=1. In this
situation we will denote the natural map Q!K given by q 7!ku=1=k by k=2 log q.

In view of Proposition 2.56 and Corollaries 2.31 and 5.11, the result is equivalent to
the statement that for all W0ξ∈W0\Reslink (R1) and all connected components U⊂Kreg

W0ξ

we have M{W0 exp(ξ)}×exp(U)=1 except when R1=F4 and W0ξ=f8, in which case the
value should be 2 (independent of the choice of U).

If R1=An (with n>1), then there is one generic residual orbit W0ξ, with two com-
ponents KW0ξ={U+, U−}. It is of course well known in this case that

M± :=M{W0 exp(ξ)}×exp (U±) =1

and there are many possible proofs for this fact, but we will explain the proof that is
central to the approach in this paper in order to illustrate the method in this basic case.

The multiplicities M± are on the one hand at least 1 (by Corollary 5.11) and on
the other hand at most 1 by Corollaries 5.11, 2.31 and 2.36. This proves the required
equality.

If R1=Bn (with n>2) we argue in a similar way. By Corollaries 5.11 and 6.5, we see
that for all generic k∈K one has |∆H(R1, V, F1, k)|>|P(n)|, with equality if and only if
M{W0 exp(ξ)}×exp(U)=1 for all U such that k∈U . On the other hand, it is well known that
the set of elliptic conjugacy classes of W0(Bn) is naturally in bijection with the set P(n).
Hence Corollaries 2.31 and 2.36 show that |∆H(R1, V, F1, k)|6|P(n)|. We conclude that
|∆H(R1, V, F1, k)|=|P(n)| and thus that M{W0 exp(ξ)}×exp(U)=1 for all orbits W0ξ and
all connected components U⊂Kreg

W0ξ such that U3k. Since k was chosen arbitrarily we
see that M{W0 exp(ξ)}×exp(U)=1 for all W0ξ and all CW0 exp(ξ), as desired.

If R1=Cn then the result follows easily from the case R1=Bn using the fact that
H(Bn, (k1, k2))'H

(
Cn,

(
k1,

1
2k2

))
.

If R1=G2 the argument is completely analogous to the case R1=Bn, using the
results of §6.7.

In the case R1=F4 we need additional arguments. The Weyl group W0(F4) has
9 elliptic conjugacy classes, but by §6.6, we see that there are only 8 generic linear
residual points f1, ..., f8. The points f1, ..., f7 are (generically) regular. A generic residual
orbit W0 exp(ξ(k)) carries precisely one irreducible discrete series character (see [Sl1,
Corollary 1.2.11]), proving that the multiplicities associated with these orbits are all
precisely equal to 1. Now consider f8. By the above numerology, we see that for any
component U of Kreg

f8
the value of Mf8×U can be either 1 or 2 and in the rest of the

proof we will show that it has to be always 2. From Table 2 we have Kreg
f8

={U±,±} with
Uε1,ε2 ={(k1, k2):εiki>0, i=1, 2}. This simple structure of Kreg

f8
is very helpful at this
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point. There exist standard automorphisms (for εi=±1)

ψε1,ε2 :H(R1, V, F1, (k1, k2))−!H(R1, V, F1, (ε1k1, ε2k2)) (105)

such that ψε1,ε2(x)=x for all x∈V ∗, ψε1,ε2(si)=ε1si (for i=1, 2) and ψε1,ε2(sj)=ε2sj

(for j=3, 4). Clearly twisting by ψε1,ε2 sends discrete series characters to discrete series
characters and thus the multiplicities Mf8×U are independent of U . It was shown by
Mark Reeder [Re1] that there exist two irreducible discrete series with central character
ev(4x,x)(f8) for the (generic) parameters (4x, x) (with x>0). In Reeder’s parametriza-
tion these characters are called [A1E7(a5),−21] and [A1E7(a5),−3]. Reeder’s result is
based on the explicit computation of the weight diagrams of the discrete series modules
(alternatively we could here invoke the standard Kazhdan–Lusztig classification for the
parameters (x, x) (with x>0) to arrive at the same conclusion).

Finally let us consider the case R1=Dn. Of course this simply laced case can be
treated directly by the Kazhdan–Lusztig classification (see Remark 6.15) but we want to
show here how to adapt the deformation method so that the classification for R1=Dn is
also treated by an appropriate version of the generic central character map. It was shown
in §6.4 that the degenerated affine Hecke algebra H(Dn, V, F1, k) is the fixed point al-
gebra of H(Bn, V, F1, (k, 0)) for the action of the automorphism group Ψ∼= 1

2Z. Our
knowledge of the case R1=Bn implies that the generic central character map gccH,Bn

(k,0)

for type Bn yields a bijection between ∆H(Bn, V, F
b
1 , (k, 0)) and W0\Reslin0 (Bn). In §6.4

we have seen that twisting by ψ acts freely on the set of generic linear residual orbits
W0\Reslin0 (Bn). It follows that twisting by ψ acts freely on ∆H(Bn, V, F

b
1 , (k, 0)) as well.

Using [RR, Theorems A.6 and A.13] we see that all characters in ∆H(Bn, V, F
b
1 , (k, 0))

remain irreducible when restricted to H(Dn, V, F1, k)=H(Bn, V, F
b
1 , (k, 0))Ψ, that all

δ∈∆H(Dn, V, F1, k) arise in this way, that there always exist precisely two irreducible
characters δ+, δ−∈∆H(Bn, V, F

b
1 , (k, 0)) restricting to δ, and that these two characters

are ψ -twists of each other. This proves the required result.

Let us look at an interesting special case.

Example 7.2. We have H(Bn, V, F1, (0, k2))'H(An
1 , V, F1(An

1 ), k2)oSn with FA
1 =

{e1, ..., en}. Using this, it is easy to see that for k2 6=0,

∆H(Bn, V, F1, (0, k2))= {δπ :π ∈ Ŝn}, (106)

with δπ=δ⊗n⊗π and where δ is the unique irreducible (1-dimensional) discrete series
character of H(A1, V (A1), F1(A1), k2). If k2>0 then

δπ(λ)|W0 =χ( · , λ′), (107)
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and if k2<0 then
δπ(λ)|W0 =χ(λ, ·), (108)

where {π(λ)}λ∈P(n) denotes the usual parametrization of the irreducible characters of Sn

by partitions of n (see e.g. [Ca]), and where {χ(τ, σ)}(τ,σ)∈P(2,n) is the usual parametriza-
tion of the irreducible characters of W0=W (Bn) by bipartitions of n.

On the other hand, we recall from §6.2.1 that k=(0, k2) is a regular parameter for
all generic linear residual orbits of H(Bn, V, F1, (k1, k2)). Hence the map

gcc(0,k2):∆
H(Bn, V, F1, (0, k2))−!W0\Reslin(Bn) (109)

is a bijection by Theorem 7.1. By continuity (see Theorem 5.7 and Definition 5.10) it
follows that for all λ∈P(n) the generic irreducible discrete series character δW0ξλ×U±∞ ,
whose domain of definition is the unique connected component U±∞=UW0ξλ,±∞ of Kreg

W0ξλ

which contains (0, k2) for ±k2>0, restricts to an irreducible character of Sn, and this
sets up a bijective correspondence between the set of generic linear residual orbits and
the set of irreducible characters of Sn.

Remark 7.3. Unfortunately, we do not know how to compute the generic central
character map in this case. We conjecture that

gcc(0,k2)(δπ(λ)) =
{
W0ξλ′ if k2> 0,
W0ξλ if k2< 0.

The following corollary of Theorem 7.1 was known for degenerate affine Hecke alge-
bras with equal parameters by the work of Reeder [Re2].

Corollary 7.4. Let k∈Kreg be a regular parameter. The elliptic pairing (see
p. 125) is positive definite on Ell(H(R1, V, F1, k)) and the map

Ell(H(R1, V, F1, k))−!Ell(W0),

[π] 7−! [π|W0 ],

yields an isometric isomorphism with respect to the elliptic pairing.

Proof. We may assume that R1 is irreducible. If R1 is not simply laced, we see from
our results above that (since k∈Kreg) the images in Ell(H(R1, V, F1, k)) of the irreducible
characters in ∆H(R1, V, F1, k) form a linear basis of Ell(H(R1, V, F1, k)). We also know
that these even form an orthonormal basis with respect to the elliptic pairing, and hence
the elliptic pairing is positive definite in this case. Using results of [OS], it follows that
the limits of these characters for xk (with x!0) form an orthonormal set of elliptic
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characters of W0 (actually, in order to see this using the results of [OS], we need to lift
the characters to H(R, q) using the equivalence of Corollary 2.31, then take the limit
qx with x!0 to get a set of orthonormal elliptic characters for W , and then use the
formula for the elliptic paring of [OS, Theorem 3.2]). Finally we already established in
the previous theorem that the cardinality of this set is equal to the dimension of the
space Ell(W0). This yields the desired result for non-simply laced cases. For simply
laced cases (or more generally all cases with equal parameters k, i.e. such that kα=x for
all α∈R1) the result is due to Reeder [Re2] (based on the Kazhdan–Lusztig model for
the characters of H(R, q)).

It is natural to expect that the result of Corollary 7.4 holds for arbitrary k. We
conjecture something stronger (see [ABP] for related conjectures).

Conjecture 7.5. A generic family δ of irreducible discrete series characters

δ ∈∆H,gen(R1, V, F1)

with domain of definition U∈Kreg
W0ξ say, has weakly continuous limits to the points k∈
U

(the closure of U). In view of the above results this would imply that the elliptic pairing
is positive definite on Ell(H(R1, V, F1, k)) for all semisimple root systems R1 and all
k∈K, and that this space is isometric to Ell(W0) for all k∈K.

Remark 7.6. Using the gccH invariant it is not difficult to check that for all irre-
ducible root systems R1 the irreducible discrete series characters are stable for twisting
by diagram automorphisms (a case-by-case verification).

8. The classification of the discrete series of H

Since a semisimple root datum is in general not isomorphic to a direct sum of irreducible
root data, the classification of the irreducible discrete series characters cannot be reduced
to the same problem for an irreducible root datum. However, we have seen (Theorems 2.6
and 2.8) how to reduce the problem to the analogous problem for crossed products of
semisimple degenerate affine algebras by certain groups of diagram automorphisms. In
§7 we have covered the basic building blocks, the simple degenerate affine Hecke algebras.

Even though the classification problem for semisimple affine Hecke algebras can in
general not be reduced to the simple cases, it is instructive to give the classification in
certain basic situations. This is what we seek to do in the present section. In particular
we classify in this section the irreducible discrete series characters for all the irreducible
non-simply laced root data and all possible positive root labels (using Theorems 2.6
and 2.8 to reduce the problem to Theorem 7.1).
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Let R=(X,R0, Y,R
∨
0 , F0) be an irreducible root datum, and let q∈Q=Q(R). Recall

the maximal root datum Rmax (with Xmax=P (R1), the weight lattice of R1 and Rmax
0 =

R0) with the natural isogeny ψ:R!Rmax such that Q(R)=Q(Rmax). Let us define

Γ =Y/Q(R∨1 )∼=Hom(Xmax/X,C×)⊂Tmax. (110)

An element γ∈Γ uniquely extends to a linear character (also denoted γ) of Wmax=
XmaxoW0 which is trivial on W0. Γ acts on the affine Hecke algebra Hmax=H(Rmax, q)
by means of algebra isomorphisms as follows: for w∈Wmax and γ∈Γ we define γ(Nw)=
γ(w)Nw. With this action of Γ we have

H(R, q) =H(Rmax, q)Γ. (111)

We are interested in applying Theorem 2.6 to central characters which carry discrete
series characters of H, in other words to orbits W0r∈Res(R, q) of residual points in T .
We know that r∈T is of the form r=s exp(ξ) with s∈Tu such that

Rs,1 = {α∈R1 :α(s) = 1} (112)

is of maximal rank, and ξ is a linear (Rs,1, ks)-residual point. If we set W∨=W0n2πiY ,
where i here denotes the imaginary unit, then the action groupoid of the action of W0

on T is equivalent to the action groupoid of W∨ acting on iV . We have a splitting of the
form

W∨=W∨(Rmax)oΓ (113)

with W∨(Rmax)=W (R(1)
1 )=W0n2πiQ(R∨1 ) on iV , and where Γ acts on W (R(1)

1 ) via
diagram automorphisms of R(1)

1 . Hence we may assume that s(e)=exp(e) with e∈E(C∨),
the set of extremal points of the closure of the fundamental alcove C∨ of W (R(1)

1 ). It
follows that

Ws(e)
∼=W (Rs(e),1)oΓs(e) (114)

with Γs(e)
∼={γ∈Γ:γ(e)=e} (compare with Definition 2.5 and Corollary 2.54).

Let F∨ be the set of simple affine roots of R(1)
1 . If a∨∈F∨, then there exists a unique

extremal point e(a∨)∈E(C∨) such that a∨(e(a∨)) 6=0. This sets up a canonical bijection
F∨$E(C∨) which we denote by e 7!a∨(e) and a∨ 7!e(a∨).

Let D(a∨)∈V ∗ denote the gradient of a∨. By the above, e 6=e(a∨) implies that
D(a∨)(s(e))=1. Hence, if D(a∨) can be written as D(a∨)=2β with β∈R0, then one
has β(s(e))=±1 for all extremal points e∈C∨ with e 6=e(a∨). In this situation the value
β(s(e))∈{±1} is independent of the choice of e 6=e(a∨) (namely, it equals −1 if and only
if {a∨}=F∨\F1). Thus the following definition makes sense (in view of (25)).
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k k k kk k

Figure 1. Spectral diagram of the Iwahori–Hecke algebra of SO2n+1(F ).

Definition 8.1. We define the spectral diagram Σ associated with (R, q) as the affine
Dynkin diagram ofW∨ associated with the basis F∨ of R(1)

1 , where we give all the vertices
a∨∈F∨ of Σ a weight ka∨ defined as follows. We define ka∨=ks,D(a∨) (as in (25)), where
s=s(e) for e∈E(C∨)\{e(a∨)} (an arbitrary choice). Note that Σ (labelled with these
weights) is invariant for the natural action of Γ on F∨. We include the action of Γ on
the diagram and the marking of the special vertex (extending the diagram of R1) in the
spectral diagram.

Example 8.2. If R=Rmax we have Γ=1. These cases are referred to as R(1)
1 .

Example 8.3. It is possible that the generic affine Hecke algebra of a root datum is
a specialization of the generic affine Hecke algebra of another root datum. For exam-
ple, H(Cn, P (Cn), Bn, Q(Bn), F0(Cn)) is isomorphic to the specialization vβ∨=1 in the
generic algebra of the type H(Bn, Q(Bn), Cn, P (Cn), F0(Bn)), where β∈R0=Bn is such
that 2β∈R1. This is compatible with the previous remark in the sense that both these
cases are referred to as C(1)

n . A basic example in this class is the Iwahori–Hecke algebra
of the Chevalley group of type G=SO2n+1(F ), with q2=|O/P|, the cardinality of the
residue field. See Figure 1 (with k=2 log q).

Example 8.4. The Iwahori–Hecke algebra of the simply connected group Sp2n(F )
(where we put q2=|O/P|) has the spectral diagram displayed in Figure 2 (where k=
2 log q). It corresponds to the case R0=Bn and X=Q(R0), and therefore it is obviously
also a specialization of C(1)

n (namely, this case corresponds to the specialization vα∨=1
for α=2β with β∈R0).

Indeed, the spectral diagram of Figure 2 is equivalent to the diagram of type C(1)
n

displayed in Figure 3.

Example 8.5. More generally, let R be of type C(1)
n . Let R0={±ei,±ei±ej} and put

X=Q(R0). Choose F0={e1−e2, ..., en−1−en, en} and put q1=q(sxi−xi+1), q2=q(s2xn)
and q0=q(s1−2x1). Put k=2 log q1 and define m± by m±k=± log q0+log q2. The corre-
sponding spectral diagram is displayed in Figure 4. We refer to [Lu3] and [Bl] for explicit
examples of such affine Hecke algebras as convolution algebras in the representation
theory of p-adic groups.
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Figure 2. Spectral diagram of the Iwahori–Hecke algebra of Sp2n(F ).

kkkk0 2k

Figure 3. Equivalent C
(1)
n -type spectral diagram of the Iwahori–Hecke algebra of Sp2n(F ).

Definition 8.6. With each element e∈E(C∨) we associate the semisimple root sys-
tem Rs(e),1 with basis Fs(e),1 (as in Definition 2.5). Then D(F∨\{a∨(e)}) is a basis
for Rs(e),1. Let ke∈K(Rs(e),1) denote the unique parameter function on Rs(e),1 which
corresponds to the set of weights of Σ restricted to F∨\{a∨(e)}. Then we associate with
e the algebra

He :=H(Rs(e),1, V, Fs(e),1, ke)oΓs(e). (115)

We denote by ∆(He) the set of irreducible discrete series characters of He (in the sense
as explained in the text following Corollary 2.27).

Let us finally formulate our classification theorem.

Theorem 8.7. Let R=(X,R0, Y,R
∨
0 , F0) be a root datum with R0 irreducible, and

let q∈Q. Let ∆(R, q) be the set of irreducible discrete series characters of the Hecke
algebra H(R, q) as usual. There exists a natural bijection

∆(R, q) !
∐

e∈Γ\E(C∨)

∆s(e)(R, q), (116)

where the disjoint union is taken over a set of representatives for the Γ-action on E(C∨).
For each e∈E(C∨) there is a natural bijection

∆s(e)(R, q)'∆(He) (117)

(where the right-hand side denotes the set of irreducible discrete series characters of He).
In particular , if Γs(e)=1 we have

∆s(e)(R, q)'∆H(Rs(e),1, V, Fs(e),1, ke) (118)
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k k k k2m−k 2m+k

Figure 4. Spectral diagram for the general C
(1)
n -case.

k k k k2mk 2mk

Figure 5. Spectral diagram for R0=Cn and X=Q(R0).

(which is completely described by Theorem 7.1). If δH∈∆(He), then its restriction to
H(Rs(e),1, V, Fs(e),1, ke) is a finite sum of irreducible discrete series characters δHi whose
generic central characters gccH(δHi ) constitute one Ws(e)-orbit of a generic linear Rs(e),1-
residual point ξ (using Theorem 7.1). We express this by writing

gccH(δH) =Ws(e)ξ. (119)

With this notation, the bijection above has the property that if δ∈∆s(e)(R, q) corresponds
to δH∈∆(He) with gccH(δH)=Ws(e)ξ, then

gcc(δ) =W0(s(e) exp(ξ)). (120)

Proof. Use Theorems 2.6 and 2.8.

Remark 8.8. If R is of type R(1)
1 then one has Γs(e)=1 for all ∈E(C∨). In general

one needs to apply Clifford theory in order to describe the sets ∆(He) in terms of the
results of Theorem 7.1.

The only non-simply laced classical case which is not of type R(1)
1 is the case R0=Cn

and X=Q(R0) (as is clear from the examples above). In this case Rmax is of C(1)
n -

type with the specialization vβ∨=v2xn =1 (as in Example 8.3). Using the notation of
Example 8.5 and (6), we see that q0=q(v2xn)=1. Hence we have m=m+=m−, and a
group Γ∼= 1

2Z acting on the spectral diagram Σ as shown in Figure 5.
In the application of Theorem 8.7 everything is straightforward except when n=2a

is even and e=ea corresponds to the middle node of Σ (the unique node of Σ with
non-trivial isotropy in Γ). In this case we need to describe the set

∆(Hea) =∆((H(Ca, Va, Fa, ka)⊗H(Ca, Va, Fa, ka))oΓ), (121)

where the non-trivial element of Γ acts by the flip τ of the two tensor legs.
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Theorem 8.9. We have

∆(Hea
)'Γ\(∆H(Ca, Va, Fa, ka)×∆H(Ca, Va, Fa, ka))�, (122)

where for any set A, (A×A)� denotes the Cartesian product of A by itself , with the
diagonal counted twice, and where the unique non-trivial element γ∈Γ acts by

π(γ)(δ1, δ2) = (δ2, δ1).

Proof. By Clifford theory, it is clear that all irreducible discrete series representations
of Hea are obtained by the following recipe. We start from an irreducible discrete series
character δ=δ1⊗δ2 of H(Ca, Va, Fa, ka)⊗H(Ca, Va, Fa, ka). Consider its inertia group
for the action of Γ on such characters (by twisting). In this simple situation we see that
we can choose an explicit intertwining isomorphism

π(γ): δ1⊗δ2−! (δ2⊗δ1)�τ (123)

given by π(γ)(v⊗w)=w⊗v. Hence the inertia subgroup in Γ of δ1⊗δ2 is non-trivial if and
only if δ1 and δ2 are equivalent irreducible representations. If the inertia is trivial then
Clifford theory tells us that the induction of δ1⊗δ2 to Hea is irreducible, and otherwise
Clifford theory tells us that the induced representation splits up into two inequivalent
irreducible parts (distinguished from each other by the sign of the trace of γ). This
proves the result.

Appendix A. Analytic properties of the Schwartz algebra

The aim of this appendix is to provide proofs of Theorems 2.20 and 2.23, which concern
the embedding S(R, q)!C∗r (H(R, q)) and holomorphic functional calculus with varying
parameters q. Our approach is purely analytic and does not make any use of the repre-
sentation theory of H(R, q). The appendix is based on the second author’s thesis [So,
§5.2], where some proofs can be found in more detail.

First we recall some generalities. A Fréchet algebra is a Fréchet space endowed with
a jointly continuous multiplication. We include in the definition that the topology can be
defined by a (countable) family of submultiplicative seminorms. The submultiplicativity
ensures that our Fréchet algebras can be written as projective limits of Banach algebras.
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Theorem A.1. Let A be a unital Fréchet algebra and let a∈A. Suppose that U⊂C
is an open neighborhood of the spectrum Sp(a) of a, and let Can(U) be the algebra of
holomorphic functions on U . There exists a unique continuous algebra homomorphism,
the holomorphic functional calculus

Can(U)−!A,

f 7−! f(a),

such that 1 7!1 and idU 7!a. Moreover , if Γ is a positively oriented smooth simple closed
contour , which lies inside U and encircles Sp(a), then

f(a) =
1

2πi

∫
Γ

f(z)(z−a)−1 dz,

where i here denotes the imaginary unit.

Proof. This is well known for Banach algebras, see for example [Ta, Proposition 2.7].
As noticed in [Ph, Lemma 1.3], we can generalize the result to A, because A is a projective
limit of Banach algebras.

Remark A.2. If U is disconnected then we may also use finitely many contours Γ,
each one lying in a different connected component of U . Notice however that in general
Fréchet algebras the spectrum of an element need not be compact, so it may not be
possible to find suitable contours for the holomorphic functional calculus.

The next theorem, which relies on a result of Lusztig, is essential to control the
multiplication in H(R, q). Let u, v∈W and let u=ωs1 ... sl(u) be a reduced expression,
where l(ω)=0 and si∈S. The si need not all be different. For I⊂{1, 2, ..., l(u)} we write
ηI =

∏
i∈I(q(si)−q(si)−1) and

uI =ωs̃1 ... s̃l(u), where s̃i =
{
si, if i /∈ I,
e, if i∈ I.

Theorem A.3. We have

Nu ·Nv =
∑

I⊂{1,2,...,l(u)}

ηID
u
v (I)NuIv,

where
(i) Du

v (I) is either 0 or 1;
(ii) Dv

u(∅)=1 and Du
v (I)=0 if |I|>|R+

0 |;
(iii)

∑
I⊂{1,2,...,l(u)}D

u
v (I)<3(l(u)+1)|R

+
0 |.
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Proof. It follows from the multiplicaton rules in Definition 2.1 that for s∈S,

Ns ·Nv =Nsv+Ds
v(q(s)−q(s)−1)Nv, where Ds

v =
{

0, if l(sv)> l(v),
1, if l(sv)< l(v).

The expression for Nu ·Nv, with Dv
u(I) being 0 or 1 and Dv

u(∅)=1, follows from this, with
induction on l(u). By [Lu1, Theorem 7.2], for fixed w∈W the sum

∑
I:uI=w ηID

u
v (I) is

a polynomial of degree at most |R+
0 | in the variables q(si)−q(si)−1. Therefore Du

v (I)=0
whenever |I|>|R+

0 | and∑
I⊂{1,2,...,l(u)}

Du
v (I) 6 |{I ⊂{1, 2, ..., l(u)} : |I|6 |R+

0 |}|

6
|R+

0 |∑
j=0

(
l(u)
j

)
6

l(u)!
(l(u)−|R+

0 |)!

|R+
0 |∑

j=0

1
j!
< 3(l(u)+1)|R

+
0 |,

(124)

where we should interpret (l(u)−|R+
0 |)! as 1 if |R+

0 |>l(u).

For the reader’s convenience we repeat some notation from §2.2.2 and add some new.
The vector space V ∗=R⊗ZX decomposes as

V ∗=V ∗0 ⊕V ∗Z = RR0⊕R⊗ZZ,

so that we can write unambigously V ∗3φ=φ0+φZ∈V ∗0 ⊕V ∗Z . The norm on W is defined
by N (w)=l(w)+‖xZ‖ if w=xw0 with x∈X and w0∈W0. Since XZ :={xZ :x∈X} is a
lattice in V ∗Z , we can adjust the norm on V ∗ so that it takes integral values on XZ . This
is not necessary, but it assures that N (W )⊂Z>0.

Lemma A.4. There exists a real number CN such that for all n∈Z>0,

|{w∈W :N (w) =n}|<CN (n+1)rk(X)−1.

Proof. Recall that W=W0nX with W0 finite. It is easily seen that X possesses the
required property, and taking the semidirect product with a finite group does not disturb
this.

For n∈R we have a norm pn on H(R, q), defined as

pn

( ∑
w∈W

hwNw

)
= sup

w∈W
|hw|(N (w)+1)n.

The Schwartz algebra S(R, q) is defined as the completion of H(R, q) with respect to the
family of (semi)norms pn, n∈Z>0. It clearly is a Fréchet space (even a Schwartz space),
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but it is not so obvious that the multiplication extends continuously from H(R, q) to
S(R, q); we will prove this later in the appendix.

Let L2(W ) be the Hilbert space of square-integrable functions W!C and let S(W )
be the Fréchet space of rapidly decaying functions W!C. We regard these as topological
vector spaces without a specific multiplication. By means of the bases {Nw :w∈W} we
can identify L2(W ) with L2(H(R, q)) and S(W ) with S(R, q). We note that ∗, τ and the
pn do not depend on q∈Q, so they are well defined on L2(W ). For q∈Q and x∈L2(W ) we
denote the corresponding element of L2(H(R, q)) by (x, q). To distinguish the products
for various parameters we add a subscript q, thus (x, q)·(y, q)=(x·qy, q).

We realize the left regular representation λ of C∗(H(R, q)) on L2(W ) and we ab-
breviate ‖(x, q)‖o :=‖λ(x, q)‖B(L2(W )). Furthermore let ‖ · ‖τ be the norm of L2(W ), so
that ‖x‖2

τ =τ(x∗ ·qx) for all x∈L2(W ) and q∈Q such that x∗ ·qx is well defined. Since
the number q(s)−q(s)−1 appears often in the multiplication table of H(R, q), we will use
the following metric on Q:

%(q, q′) := max
s∈S

|(q(s)−q(s)−1)−(q′(s)−q′(s)−1)|.

Put b:=rk(X)+1. By Lemma A.4, the following sum converges:

∑
w∈W

(N (w)+1)−b<

∞∑
n=0

CN (n+1)rk(X)−1(n+1)− rk(X)−1 =CN

∞∑
n=0

(n+1)−2<∞.

Hence we may write Cb :=
∑

w∈W (N (w)+1)−b∈R. For all x=
∑

u∈W xuNu∈S(W ) and
n∈Z>0 we get∑

u

|xu|(N (u)+1)n 6
∑

u

sup
v

[|xv|(N (v)+1)n+b](N (u)+1)−b =Cbpn+b(x). (125)

Define the parameter function q0∈Q by q0(s)=1 for all s∈S. Fix η>0 and let B%(q0, η)
be the corresponding closed ball in Q. To estimate some operator norms, we will use the
number Cη :=3Cb max{1, η|R

+
0 |} .

Proposition A.5. For all q, q′∈B%(q0, η) and all x∈S(W ), the following estimates
hold :

‖λ(x, q)‖B(L2(W )) = ‖(x, q)‖o 6Cηpb+|R+
0 |

(x),

‖λ(x, q)−λ(x, q′)‖B(L2(W )) 6 %(q, q′)Cηpb+|R+
0 |

(x).

In particular , S(R, q) is continuously embedded in C∗r (H(R, q)).
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Proof. Let y=
∑

v yvNv∈L2(W ). By (125) and Theorem A.3,

‖x·qy‖τ =
∥∥∥∥∑

u,v

xuyvNu ·qNv

∥∥∥∥
τ

=
∥∥∥∥∑

u,v

xuyv

∑
I

ηID
u
v (I)NuIv

∥∥∥∥
τ

6
∑

u

|xu|
∑

I:|I|6|R+
0 |

|ηI |
∥∥∥∥∑

v

|yv|NuIv

∥∥∥∥
τ

6
∑

u

3|xu|(l(u)+1)|R
+
0 |max

{
1, η|R

+
0 |

}
‖y‖τ

6Cηpb+|R+
0 |

(x)‖y‖τ .

By the very definition of the operator norm on B(L2(W )), this yields the first estimate.
That in turn proves that S(R, q) is contained in C∗r (R, q) and that the inclusion map is
continuous. We also have that

‖x·qy−x·q′ y‖τ =
∥∥∥∥∑

u,v

xuyv(Nu ·qNv−Nu ·q′Nv)
∥∥∥∥

τ

=
∥∥∥∥∑

u,v

xuyv

∑
I

(ηI−η′I)Du
v (I)NuIv

∥∥∥∥
τ

6

∥∥∥∥∑
u,v

xuyv

∑
I

%(q, q′)|I|η|I|−1Du
v (I)NuIv

∥∥∥∥
τ

6 %(q, q′)
∑

u

|xu|
∑

I:|I|6|R+
0 |

|I|η|I|−1

∥∥∥∥∑
v

|yv|NuIv

∥∥∥∥
τ

6 %(q, q′)
∑

u

3|xu|(N (u)+1)|R
+
0 |max

{
1, η|R

+
0 |

}
‖y‖τ

6 %(q, q′)Cηpb+|R+
0 |

(x)‖y‖τ .

Between lines 4 and 5 we used a small calculation like (124):

∑
I:|I|6|R+

0 |

|I|η|I|−1 6
|R+

0 |∑
j=0

(
l(u)
j

)
jηj−1 6

l(u)!
(l(u)−|R+

0 |)!

|R+
0 |∑

j=0

j

j!
max

{
1, η|R

+
0 |−1

}
< 3(l(u)+1)|R

+
0 |max

{
1, η|R

+
0 |

}
,

and in the last line we may replace l(u) by N (u).

We now want to show that S(R, q) really is an algebra. To this end we will re-
construct it with an alternative but equivalent family of seminorms, which are closer to
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being submultiplicative. Let C[W ]∗ be the algebraic dual of C[W ] and identify it with
the space of all formal sums

∑
w∈W hwNw. The norm N on W induces an endomorphism

λ(N ) of C[W ]∗ by ∑
w∈W

hwNw 7−!
∑

w∈W

N (w)hwNw.

This operator is unbounded on L2(W ) but it restricts to a continuous endomorphism
of S(W ). For T∈B(L2(W )) we define the (in general unbounded) operator D(T ):=
[λ(N ), T ]. Inspired by the work of Vignéras [Vi, §7] we consider the following family of
seminorms on H(R, q):

p′n(x) := ‖Dn(λ(x))‖B(L2(W )), n∈Z>0.

Lemma A.6. The space S(R, q) is the completion of H(R, q) with respect to the
family of seminorms {p′n :n∈Z>0}.

Proof. We have to show that the families of seminorms

{pn :n∈Z>0} and {p′n :n∈Z>0}

are equivalent. Let η=%(q, q0), n∈N, w∈W and

y=
∑
v∈W

yvNv ∈L2(W ).

From the proof of Proposition A.5, we see that

‖Dn(λ(Nu))y‖τ =
∥∥∥∥∑

v

yv

n∑
i=0

(−1)i

(
n

i

)
λ(N )n−iλ(Nu)λ(N )iNv

∥∥∥∥
τ

=
∥∥∥∥∑

v

yv

n∑
i=0

(−1)i

(
n

i

) ∑
I

ηID
u
v (I)N (uIv)n−iN (v)iNuIv

∥∥∥∥
τ

=
∥∥∥∥∑

v

yv

∑
I

ηID
u
v (I)(N (uIv)−N (v))nNuIv

∥∥∥∥
τ

6N (u)n

∥∥∥∥∑
v

|yv|
∑

I

|ηI |Du
v (I)NuIv

∥∥∥∥
τ

6 3N (u)n(N (u)+1)|R
+
0 |max

{
1, η|R

+
0 |

}∥∥∥∥∑
v

|yv|NuIv

∥∥∥∥
τ

=3N (u)n(N (u)+1)|R
+
0 |max

{
1, η|R

+
0 |

}
‖y‖τ .

Hence, for x=
∑

u xuNu∈H(R, q),

‖Dn(λ(x))‖B(L2(W )) =
∥∥∥∥∑

u

xuD
n(λ(Nu))

∥∥∥∥
B(L2(W ))

6
∑

u

3|xu|(N (u)+1)n+|R+
0 |max

{
1, η|R

+
0 |

}
6Cηpn+b+|R+

0 |
(x).
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On the other hand, since Ω′={ω∈W :N (ω)=0} is finite, we see that

pn(x)2 6
∑
u∈W

(N (u)+1)2n|xu|2

6
∑
ω∈Ω′

|xω|2+4n
∑
u∈W

N (u)2n|xu|2

6 |Ω′| ‖x‖2
τ +4n‖λ(N)nx‖2

τ

= |Ω′| ‖λ(x)Ne‖2
τ +4n‖Dn(λ(x))Ne‖2

τ

6 |Ω′| ‖λ(x)‖2
B(L2(W ))+4n‖Dn(λ(x))‖2

B(L2(W ))

6 (|Ω′|1/2‖λ(x)‖B(L2(W ))+2n‖Dn(λ(x))‖B(L2(W )))2,

which shows that pn is dominated by a linear combination of p′0 and p′n.

Theorem A.7. (1) S(R, q) is a Fréchet algebra.
(2) S(R, q)× is open in S(R, q) and inverting is a continuous map from this set to

itself.
(3) An element of S(R, q) is invertible if and only if it is invertible in C∗r (H(R, q)).
(4) The subalgebra S(R, q)⊂C∗r (H(R, q)) is closed under the holomorphic functional

calculus of C∗r (H(R, q)).

Proof. (1) We already observed that S(R, q) is a Fréchet space. Because D is a
derivation, S(R, q) is also a topological algebra with jointly continuous multiplication.
A short calculation shows that the norm

m∑
n=0

1
n!
p′n

on S(R, q) is submultiplicative for any m∈Z>0. The family

{ m∑
n=0

1
n!
p′n :m∈Z>0

}

is equivalent to {p′n :n∈Z>0}, so defines the same topology.
(2) and (3) See Lemmas 16 and 17 of [Vi].
(4) This is a consequence of part (3) and Theorem A.1.

Our next goal is to show that inverting in S(R, q) also depends continuously on
q∈Q. For this we need two preparatory lemmas. Put

b′=2b+|R+
0 |=2 rk(X)+|R+

0 |+2.
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Lemma A.8. Let n∈N, q, q′∈B%(q0, η) and xi=
∑

u∈W xiuNu∈S(W ). Then

pn(x1 ·q ...·qxm) 6
m∏

i=1

CηCbpn+b′(xi),

pn(x1 ·q ...·qxm−x1 ·q′ ...·q′xm) 6 %(q, q′)
m∏

i=1

CηCbpn+b′(xi).

Proof. This can be deduced with a piece of careful bookkeeping:

pn(x1 ·q ...·qxm) 6 pn

( ∑
ui∈W

x1u1 ... xmum
Nu1 ·q ...·qNum

)

6
∑

ui∈W

|x1u1 ... xmum |(N (u1)+...+N (um)+1)n
m∏

i=1

‖(Nui , q)‖o

6
∑

ui∈W

|x1u1 ... xmum
|

m∏
i=1

Cη(N (ui)+1)n+b+|R+
0 |

=
m∏

i=1

Cη

∑
u∈W

|xiu|(N (u)+1)n+b+|R+
0 |

6
m∏

i=1

CηCbpn+b′(xi),

pn(Nu1 ·q ...·qNum
−Nu1 ·q′ ...·q′Num

) 6
m−1∑
j=1

pn(Nu1 ·q ...·qNuj
·qNuj+1 ·q′ ...·q′Num

−Nu1 ·q ...·qNuj ·q′Nuj+1 ·q′ ...·q′Num
)

6
m−1∑
j=1

%(q, q′)
m∏

i=1

Cη(N (ui)+1)n+b+|R+
0 |

6 %(q, q′)
m∏

i=1

Cη(N (ui)+1)n+b+|R+
0 |,

pn(x1 ·q ...·qxm−x1 ·q′ ...·q′xm)

6
∑

ui∈W

|x1u1 ... xmum
|pn(Nu1 ·q ...·qNum

−Nu1 ·q′ ...·q′Num
)

6
∑

ui∈W

|x1u1 ... xmum |%(q, q′)
m∏

i=1

Cη(N (ui)+1)n+b+|R+
0 |

= %(q, q′)
m∏

i=1

Cη

∑
u∈W

|xiu|(N (u)+1)n+b+|R+
0 |

6 %(q, q′)
m∏

i=1

Cηpn+b′(xi).
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In these calculations we used (125) and Proposition A.5 several times.

Knowing how to handle multiple products in S(R, q), we can make some rough
estimates for power series. Let f : z 7!

∑∞
m=0 amz

m be a holomorphic function on a neigh-
borhood of 0∈C and define another holomorphic function f̃ (with the same radius of
convergence) by f̃(z):=

∑∞
m=0 |am|zm.

Lemma A.9. Let n∈N and let x∈S(W ) and q, q′∈B%(q0, η) be such that f(x, q)
and f(x, q′) are well defined. Then

pn(f(x, q))6 f̃(CηCbpn+b′(x)),

pn(f(x, q)−f(x, q′))6 %(q, q′)f̃(CηCbpn+b′(x)).

Proof. By Proposition A.8, we have

pn(f(x, q))= pn

( ∞∑
m=0

am(x, q)m

)
6

∞∑
m=0

|am|pn((x, q)m)

6
∞∑

m=0

|am|(CηCbpn+b′(x))m = f̃(CηCbpn+b′(x)).

Moreover,

pn(f(x, q)−f(x, q′))= pn

( ∞∑
m=0

am((x, q)m−(x, q′)m)
)

6
∞∑

m=0

|am|pn((x, q)m−(x, q′)m)

6
∞∑

m=0

|am|%(q, q′)(CηCbpn+b′(x))m = %(q, q′)f̃(CηCbpn+b′(x)).

The right-hand sides could be infinite, but that is no problem.

Proposition A.10. The set of invertible elements
⋃

q∈Q S(R, q)××{q} is open in
S(W )×Q, and inverting is a continuous map from this set to itself.

Proof. First we recall that if ‖1−h‖o<1, then h is invertible in C∗r (R, q), with inverse∑∞
n=0(1−h)n. Take q, q′∈B%(q0, η), y∈S(R), x∈S(R, q)× and write a=(x, q)−1. If the

sum converges, then

a·q′
∞∑

m=1

(1−(x+y)·q′a, q′)m = a·q′ ((x+y)·q′a, q′)−1−a·q′ 1 = (x+y, q′)−1−a. (126)

By Lemma A.8,

pn((x+y)·q′a−1) 6 pn(x·q′a−x·qa)+pn(y ·q′a)

6 %(q, q′)C2
ηC

2
b pn+b′(x)pn+b′(a)+C2

ηC
2
b pn+b′(y)pn+b′(a).

(127)
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Let U be the open neighborhood of (x, q) consisting of those (x+y, q′)∈S(W )×B%(q0, η)
for which

%(q, q′)C3
ηC

2
b p3b+|R0|(x)p3b+|R0|(a)<

1
2 ,

C3
ηC

2
b p3b+|R0|(y)p3b+|R0|(a)<

1
2 .

By (127) and Proposition A.5, we have

‖((x+y)·q′a−1, q′)‖o< 1 for all (x+y, q′)∈U ,

so every element of U is invertible. To prove that inverting is continuous, we consider
the holomorphic function

f(z) =
∞∑

m=1

zm =
z

1−z
.

By (126) and Lemma A.9, we have

pn((x+y, q′)−1−a) 6C2
bC

2
ηpn+b′(a)pn+b′(f(1−(x+y)·q′a, q′))

6C2
bC

2
ηpn+b′(a)f(CbCηpn+2b′(1−(x+y)·q′a)).

Since f(0)=0 we deduce from (127) that this expression is small whenever %(q, q′) and y
are small.

With Proposition A.10 we can prove that the holomorphic functional calculus in the
various Schwartz algebras is continuous in the most general sense. For U⊂C we write

VU := {(x, q)∈S(W )×Q : Sp(x, q)⊂U}.

Theorem A.11. Let U⊂C be open. Then VU is open in S(W )×Q and the map

Can(U)×VU −!S(W ),

(f, x, q) 7−! f(x, q),

is continuous.

Proof. By Theorem A.7 (4), the spectrum of (x, q) in S(R, q) equals its spectrum
in the unital C∗-algebra C∗r (H(R, q)). By Proposition A.5, (x, q) 7!‖(x, q)‖o is continu-
ous, so Sp(x, q) is uniformly bounded on bounded subsets of S(W )×Q. Together with
Proposition A.10 this shows that Sp(x, q) depends continuously on (x, q), in the following
sense. Given ε>0, there exists a neighborhood N of (x, q) in S(W )×Q such that for all
(x′, q′)∈N ,

Sp(x′, q′)⊂{z′ ∈C : there exists z ∈Sp(x, q) such that |z−z′|<ε}.
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Since Sp(x, q) is compact, it follows that VU is open in S(W )×Q.
For every connected component Uj of U that meets Sp(x, q), let Γj be a positively

oriented smooth simple contour closed in Uj that encircles Sp(x, q)∩Uj , as in Theo-
rem A.1. Since Sp(x, q) is compact, we need only finitely many components. The above
shows that Γj also encircles Sp(x′, q′)∩Uj for (x′, q′) in a small neighborhood of (x, q) in
S(W )×Q. Now Theorem A.1 tells us that (being i here the imaginary unit)

f(x′, q′) =
1

2πi

∑
j

∫
Γj

f(z)(z−x′, q′)−1 dz,

for all such (x′, q′), so by Proposition A.10, (f, x′, q′) 7!f(x′, q′) is continuous.
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Birkhäuser, Basel, 2003.

[Re1] Reeder, M., Formal degrees and L-packets of unipotent discrete series representations
of exceptional p-adic groups. J. Reine Angew. Math., 520 (2000), 37–93.
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