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1. Introduction

Let M be a compact 2-dimensional manifold with boundary, and let P be an elliptic,
second-order differential operator on M, self-adjoint with respect to a density du, and

with vanishing zero-order term, so that in local coordinates

n

(P)@)= o)™ Y 95(o(2)g” (2)0nf(2)), dp=olz)da. (1.1)

jk=1

We take the g7%’s to be positive, so that the Dirichlet eigenvalues of P can be written as
2%,

Let xa be the projection of L?(du) onto the subspace spanned by the Dirichlet
eigenfunctions for which A\; €[A, A+1]. In the case where M is compact without boundary
of dimension n>2, and the coefficients of P are C* functions, Sogge [14] established the

following bounds:

Ixaf | aqany SCADDARZVD | £ 1000 2<q< g, (1.2)
Ixaf |l acary <CAM 2V D=2 £ 12, 4n < q < 0. (1.3)

Furthermore, the exponent of X is sharp on every such manifold (see, e.g., [15]). In the
case of a sphere, the examples which prove sharpness are in fact eigenfunctions. For (1.2),
the appropriate example is an eigenfunction which concentrates in a A\~/2-diameter tube
about a geodesic. For (1.3), the example is a zonal eigenfunction of L? norm Nr=1)/2

which takes on values comparable to A on a A~ !-diameter ball about each of the north and
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south poles. Approximate spectral clusters with similar properties can be constructed
in the interior of any smooth manifold, showing that for spectral clusters (though not
necessarily eigenfunctions) the exponents in (1.2) and (1.3) are also lower bounds on
manifolds with boundary.

In [13], the authors showed that, on a manifold of dimension n>2 for which the
boundary is everywhere strictly geodesically concave (such as the complement in R™ of
a strictly convex set), the estimates (1.2) and (1.3) both hold.

On the other hand, Grieser [5] observed that in the unit disk {x:|z|<1} there are
eigenfunctions of the Laplacian, for Dirichlet as well as for Neumann boundary conditions,

of eigenvalue —\? that concentrate within a A\=2/3

-neighborhood of the boundary. These
are the classical Rayleigh whispering gallery modes (see [10] and [9]). The Fourier—
Airy calculus of Melrose and Taylor allows one to construct an approximate spectral
cluster with similar localization properties near any boundary point of M at which the
boundary is strictly convex (the gliding case). Consequently, if M is of dimension 2 and
the boundary has a point of strict convexity with respect to the metric g (for instance,
any smoothly bounded planar domain endowed with the standard Laplacian and either

Dirichlet or Neumann conditions), then the following bounds cannot be improved upon:
Ixafllpaary < CAEBD2ZVD | fll2 2<g <8, (1.4)
I Fllzagany SCNPAETVDT2) £l 2y, 8< g <o, (1.5)

In this paper we show that the estimates (1.4) and (1.5) hold on any 2-dimensional
compact manifold with boundary, for P as above and either Dirichlet or Neumann con-
ditions assumed. Estimate (1.4) follows by interpolation of the trivial case ¢=2 with the
case ¢=06, so we restrict attention to ¢=6 for (1.4). For ¢>6, the above estimates are an

immediate consequence of the following theorem (see for example [8] or [11]).

THEOREM 1.1. Suppose that u solves the Cauchy problem on Rx M,
O?u(t,x) = Pu(t,x), wu(0,2)=f(x), 0mu(0,2)=0, (1.6)
and satisfies either Dirichlet conditions:
u(t,x)=0 if €M,
or Neumann conditions, where N, is a unit normal field with respect to g:
N, -Vu(t,z)=0 if x€0M.

Then, the following bounds hold for 6<q<8:

2/1 1
lll s e qarx i1 < Al any 7<q>3(2q),
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and the following bounds hold for 8<g<oo:

1 1 1
ol s 2 at it < sy, 5<q>2().

In the statement of the theorem, the space H*(M) refers to the Sobolev space of
order s on M determined, respectively, by Dirichlet or Neumann eigenfunctions.

Our approach to proving Theorem 1.1 is to work in geodesic normal coordinates
near 0M, and to extend both the operator P and the solution u across the boundary, to
obtain u as a solution to a wave equation on an open set, but for an operator with coef-
ficients of Lipschitz regularity. We then adapt a frequency dependent scaling argument,
originally developed to handle Lipschitz metrics, to metrics with the particular type of
codimension-1 singularities that the extended P will have.

We remark that, for operators of the type (1.1) with o and the g/*’s of Lipschitz
regularity, the estimate (1.4) is known on the range 2<¢<6, as established by the first
author in [12], along with a weaker version of (1.5) having larger exponent if g<oo.
It is not currently known what the sharp exponents are for general Lipschitz P, since
the known counterexamples satisfy the estimates (1.5). The estimates for g=o00 were
established for eigenfunctions recently by Grieser [6], while the sup-norm estimates for
spectral clusters were obtained by the second author in [16].

For g=00, the squarefunction estimate of Theorem 2.1 below was shown in [12] to
hold for operators P with Lipschitz coefficients, which in particular implies the g=o00
case of Theorem 1.1 for P on a manifold with boundary. Our proof here of the case
q<o0, however, depends crucially on the fact that if u is appropriately microlocalized
away from directions tangent to M, then better squarefunction estimates hold than do
for directions near to tangent. In other words, we exploit the fact that the more highly
localized eigenfunctions considered in [5] are associated only to gliding directions along
OM, not directions transverse to OM.

A historical curiosity is that the critical L2— L8 bounds for y) have an analog in
Euclidean space which seems to be the first restriction theorem for the Fourier transform.
To explain this, we first notice that, by duality, our L2— L2 bounds are equivalent to the
statement that xy: L% 7— L? with norm O(A\'/*). The Euclidean analog would say that
if xx: L% 7(R?)— L?(R?) denotes the projection onto Fourier frequencies |[£]€ [\, A4-1],
then this operator also has norm O(A'/4). An easy scaling argument shows then that

the latter result is equivalent to the following Fourier restriction theorem for the circle

2 1/2
(/ |f<COS(9,SiIl9)|2d9> <0Hf||L8/7(R2), fECgo(RQ)
0
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Motivated by a question of DeLeeuw [4], Stein [17] proved this by a now standard
TT* argument, using the fact that convolution with do maps L%7(R?)— L3(R?) by
the Hardy-Littlewood—Sobolev theorem, as |E§|<C |z| /2. Since this argument does
not use the oscillations of 35, one can strengthen the above restriction theorem to show

that, for j>1, one has the uniform bounds

27 R 1/2 4
([ 1Fcostsmopas) < Cr i fllommey. fECE®R. 0D
0
By the Knapp example, there is no small angle improvement for the critical
LY°(R?) — L*(SY)

restriction theorem of Stein—Tomas. A key step for us is that in the setting of compact
manifolds with boundary, we also get the same O (277 / 8) improvement in our L3-estimates
when microlocalized to regions of phase space that correspond to bicharacteristics that
are of angle comparable to 277 from tangency to the boundary.

In higher dimensions the natural analog of (1.4)—(1.5) would say that

6n+4
I Fll 2o cany <CA(2/3+(”_2)/2)(1/2‘1/‘”||f||L2(M), 2<g< 32—1—4, (1.8)
n(1/2—1/a)— 6n-+4
X fll Lo ary < CX (1/2-1/q) 1/2||f||L2(M)7 Sn_4<q<oo. (1.9)

By higher dimensional versions of the Rayleigh whispering gallery modes, this would be
sharp if true. At present we are unable to prove this estimate but, as we shall indicate
in the final section, we can prove the bounds in (1.9) for the smaller range of exponents
q=4ifn>4, and ¢=5 if n=3. We hope to return to the problem of proving sharp results

in higher dimensions in a future work.

Notation. We use the following notation. The symbol a<b means that a<Cb,
where C is a constant that depends only on globally fixed parameters (or on N, «
and [, in case of inequalities involving general integers).

For convenience, we will let z3 serve as substitute for the time variable t. We use
d=(d1, ds,ds) to denote the gradient operator, and D=—id.

2. Dyadic localization arguments

The estimates of Theorem 1.1 hold if u is supported away from OM, by the results
of [8]. Consequently, by finite propagation velocity and the use of a smooth partition of

unity, we may assume that, for T small, the solution u(¢,z) in Theorem 1.1 is for [t|<T
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supported in a suitably small coordinate patch centered on the boundary. Note that if
we establish Theorem 1.1 on the set [t|<T for some small T', it then holds for T=1 by
energy conservation.

We work in boundary normal coordinates for the Riemannian metric g;; that is dual
to g/¥ of (1.1). Thus, x>0 will define the manifold M, and z; is a coordinate function

on OM which we choose so that 0,, is of unit length along M. In these coordinates,
g(r1,22) =1, gn(r1,0)=1 and gia(1,32) =go1 (w1, 2) =0. (2.1)

The metric g/* for P is the inverse to g;k, and the same equalities hold for it.
We now extend the coefficient g'' and o in an even manner across the boundary, so

that

gn(xh —2) = gn(ffh x2) and oz, —x2) = o(21,2). (2.2)

The extended functions are then piecewise smooth, and of Lipschitz regularity across
x2=0. Because g is diagonal, the operator P is preserved under the reflection o+ —xs.

After multiplying o(x) by a constant, and rescaling variables if necessary, we may
assume that on the ball |z|<1 the function o(z) is C™V(R?)-close to the function 1, and
g’k (z) is CN(R?)-close to the Euclidean metric, where N is suitably large, and cq will
be taken suitably small:

le=1llon®rz) <co and ||gjk—5jk\|cN(R1)<Co' (2.3)

We may then extend o and g/* globally, preserving conditions (2.1)-(2.3), so that P is
defined globally on R? and such that

o(z)=1 and g/*(z)=0"" for |z|>3. (2.4)

We then extend the initial data f and the solution u to be odd in zs (respectively,
even in o in case of Neumann conditions). This extension map is seen to map the
Dirichlet (respectively, Neumann) Sobolev space H2(R") to H2(R"), and hence H°(R")
to H(R") for 0<6<2. The extended solution u thus solves the extended equation
0?u=Pu on RxR?, with the extended initial data f. The result of Theorem 1.1 is

therefore a direct consequence of the following one.

THEOREM 2.1. Suppose that the operator P takes the form (1.1), and that o and g
satisfy conditions (2.1)~(2.4) above. Let u solve the Cauchy problem on RxR?:

O?u(t,x) = Pu(t,x), u(0,2)=f(x), Omu(0,z)=g(x). (2.5)
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Then the following bounds hold for 6<q<8:

2/1 1
lullza w10 S (o +Hlglo-s), 2@ =3(5-1).

and the following bounds hold for 8<q<oc:

1 1 1
ol e xosp < (1 o gl arscos): 6<q>—2<—)—.

We begin by reducing matters to compactly supported u satisfying an inhomoge-
neous equation. Henceforth, we will use the notation zz3=t. Let ¢(x) be a smooth even

function on R?, equal to 1 for |z|<2, and vanishing for |z|>2. We may then write
- 3
> D (2)D;(¢u)(w) =) D;Fi(x),
j=1 j=1

where
a®¥(z)=o(z) and ¥ (z)=—o(zx)g (z) for j=1,2.

We express this equation concisely as DAD(¢u)=DF, and observe that, for 0<d<2,
[oull s (re) + | F'll s (ra) S f 11 + gl mro-1-

This is a consequence of energy estimates, which hold separately on R? and R?, together
with the fact that DAD(¢u) is compactly supported and has integral 0, so may be written
as DF.
We may thus assume that u(z) is supported in the ball |2|<2, and need to show
that
[ullar> S llull v+ Fll g, 6<g<38, (2.6)
[ullzore S llulls +1Fll s,  8<g<oo, (2.7)

where DADu=DF.
Next let T'(€) be a multiplier of order 0, supported in the set

{€: L&) < (&, &) <4813

which equals 1 on the set

{¢:5161<1@, &) < 28]}

The operator DAD is elliptic on the support of 1—I", and we may write

DAD(1-T(D))u=(1-T\(D))DF — D[A,T(D)] Du.
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As a consequence of the Coifman-Meyer commutator theorem [2] (see also [20, Proposi-
tion 3.6.B]) the operator [A,T'(D)] maps H°~'— H® for 0<J<1. Hence, the right-hand
side of the above belongs to H~!, and, by Sobolev embedding and elliptic regularity

(see, for example, [20, Theorem 2.2.B], which applies in the Sobolev setting), we have
[(1=D(D))ullparz S N(1=L(D))ull gswr+1 S ull s +I1E | s -

Indeed, there is an extra 3 derivative in §(¢)+1 beyond the Sobolev index n(1/2—1/q),
so this holds for all 2<{g<oo. Since v(¢q)>d(q) for ¢<8, this implies that (2.6) and (2.7)
hold for u replaced by (1—-I'(D))u on the left-hand side.

It thus remains to establish (2.6) and (2.7) with u replaced on the left by I'(D)u.

We take a Littlewood—Paley decomposition in £ to write
I(Dyu=> Tp(Du=>»u,
k=1 k=1

with 4 supported in a region where | (&1, &2)|~|&3] and |€|~2F. Since these regions have
finite overlap in the &3 axis, we have

ID(D)ullparz < ||Uk||Lq[,§L2 S ||Uk||e§LqL27

where we use ¢>2 at the last step.
Now let Ay denote the matrix of coefficients obtained by truncating the frequencies
of a®(z) to |¢|<c2¥ for a fixed small c. We then have DAy Duj,=DFy, where

F, =T4(D)F+[A,Tx(D)]Du+ (A — A) Duy,. (2.8)

Note that the inhomogeneity Fy is now localized in frequency to |£3]~|¢|~2", by the
frequency localizations of A and uy.
We claim that, for 0<6<1,

oo

> 2EN e < Julldrs + 1 F .
k=1

This follows by orthogonality for the first term on the right of (2.8), and the last term is
handled by the bound ||A— Ag||L~ <27*. The middle term is handled by the Coifman-—
Meyer commutator theorem, which yields that > ;2 ex[A, 'y (D)] maps H*~'—H° for
all sequences e, ==+1.

We thus are reduced to establishing uniform estimates for each dyadically localized
piece u,. We thus fix a frequency scale A=2* for the rest of this paper. We then need
to prove the following estimates, where we now set DAy Duy=F),

Jurllpare sy SN D (Jurllp2mey FAHIEN r2re)),  6<g<8,

Jurllpaze sy SAD (luallrzmey + A | Fallzzmsy), 8 <g< .



114 H. F. SMITH AND C. D. SOGGE

Since we are using z3 orthogonality to make this reduction, we must control the norms
of the u)’s globally. However, since u is supported in the ball of radius 2, it is easy to see
that the norm of uy over |z|>3 is bounded by A~!|ju||1z2, so in fact it suffices to establish
the above estimate with the left-hand side norm taken over the cube of sidelength 3.

If we let vy denote the localization of uy to frequencies where |¢2|> €3/, then the

squarefunction estimates hold for vy as on an open manifold:
[oallLazzrey S XD (Juall2ms) + 1 Fall 2 me)),  6<q< o0,

This will follow as a consequence of the techniques that we use to handle the part of u)
with frequencies localized to angles &1 from the &3 axis.

Consequently, we will assume that
supp(@ia) C {€: 1611 € [3A, 2], [&2] < 15X and €3] € [3A,27] }.
On this region, the operator DAy D is hyperbolic with respect to the x; direction. We
can thus take p(x,¢’), a positive elliptic symbol in £'=(&s,£3), so that
3 ..
a3 (@)(& —p(x.€)") =Y _a¥ ()€} if |2l <gA and || € [3A,3)],
j=1
and such that
p(z, &) =€ if &¢[—gA gA]x[3A4)].
We also smoothly set p(x,&')=1 near £'=0. Thus,
p(x,&), dop(x, &) €51,

and p(x, &) differs from |€’| by a symbol supported in the dyadic shell |¢/|~ .
Next, let py(z,£) be obtained by truncating the symbol p(x,£’) to z’-frequencies
less than cA, where c is a small constant. Then, uniformly over A,

pale,€)—p(z,€) €S, and supp(pr—p) C{€:[€|~A}.

Furthermore, the symbol-composition rule holds for py to first order. Consequently, we
can write
(D1+pa(z, D) (D1—pa(z, D))uy = Fy,

where

1F3 | 223y S Muallpzmsy 1 Fall L2 sy
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The function uy can be written as the sum of four pieces with disjoint Fourier transforms,
according to the possible signs of & and &. We restrict attention to the piece uj,
supported where & >0 and £3>0. Estimates for the other pieces will follow similarly.
Since py is z'-frequency localized, F} also splits into four disjoint pieces. The symbol

&1+p(x, &) is elliptic on the region & >0, hence we may write
Diuf —px(z, D )uy = FY,

where

1E [[22re) S luallze ey + A7 AN L2 ro)-

Finally, we have that
pA(xv D/) —p)\(fv, D/)* € Op(S?,l)v

and is dyadically supported in £’. We have thus reduced the proof of Theorem 2.1 to the

proof of the following result.

THEOREM 2.2. Suppose that the x'-Fourier transform of wuy satisfies the support

condition
supp(n) € {€': 2] < 57 and & € [31,27]},

and that
Diuy—Pyuy=Fj,

where Px=3(px(x,D')+px(z,D')*). Then, for S=[0,1]xR?,

lurllpazzsy SN ([uallpoor2(sy+ | Fallzz(s)), 6<q <8, (2.9)

Jurllzarzcsy SAD(Jurllp=r2(s)+ 1 Fallre(s)), 8 <a< oo

The use of the L>°L? norm of uy is allowed by Duhamel and energy bounds. Here,

as in what follows, we are using the shorthand mixed-norm notation that LPLY=L? L1,.

3. The angular localization

In this section we take a further decomposition of uy, by decomposing its Fourier trans-
form dyadically in the & variable. The reductions of the previous section required only
the fact that the coefficients a// (z) were Lipschitz functions. The reduction to estimates
for angular pieces depends on the fact that the singularities of a//(z), and hence the
points where the xo-derivatives of py(x, &) are large, occur only at 25=0. Consequently,
various error terms that arise in this further reduction will be highly concentrated at

x9=0, which we express through weighted L? estimates.
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We will take a dyadic decomposition of the & variable, from scale £2\2/3 to &y~ .
Thus, for 1<j <Ny=3log, A, let 3;(£)=p;(&2, &3) denote a smooth cutoff satisfying

supp(3;) C 277 72X, 277 N x [30, 4],

and (y, supported in [—A2/3A2/3] x [i)\,4)\], such that, with 5_;(&2,&3)=03j(—&2,&3),

N -1
STBiE)+ DD Bi€)=1 if |&l<iA and & e[ 2],
j=1

Jj=1—Nx

Let
u;(z) = B;(D")ux(z).

If we define
0, = Q—Ij\7

then u; has frequencies localized to {a~=£6,¢3, or |€a| SAT1/3¢5 in case j=Njy.

On the microlocal support of u;, the bicharacteristic equation for the principal sym-
bol & —pa(x, €’) satisfies dzg/dx ~=+0;, respectively as j>0 or j<0. A bicharacteristic
curve passing through the microlocal support of u; will satisfy this condition on an in-
terval of xi-length less than €6;, if € is a small constant. It is thus natural that we will
have good estimates for u; on slabs of width €60; in the x; variable, and it turns out that
this is sufficient to prove Theorem 2.2.

In proving estimates for u;, it is convenient to work with the symbol p; obtained by

1/2)1/2  This finer truncation than that

truncating p(z,{’) to 2’-frequencies less than cf;
of py is chosen so that, after rescaling the space by 6;, the rescaled symbol p;(6;z, -) will
be 2'-frequency truncated at p'/2, where pn="0; X is the frequency scale of the rescaled so-
lution w;(#;2). This square root truncation is consistent with the wave packet techniques
we use, and is standard in the construction of parametrices for rough metrics.

The energy of the induced error term (Py—P;)u will be large at z2=0, but decays
away from zo=0 at a rate that is integrable along bicharacteristic curves that traverse
the boundary at angle ¢;. This error term can thus be considered as a bounded driving
force, and we call this term G; below.

In the next two sections we will establish the following result.
THEOREM 3.1. Let S denote the slab x1 €[keb;, (k+1)eb;] for 0<k<e 1201,
Then, if

D1Uj —Pju]‘ = Fj +Gj,
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it holds uniformly over j, k, and 6<qg<oo, that

< /\5(q)9]1/2—3/q(|

lujllLarzcs; ) S lujllLoer2(s; ) T I1FjllLrr2cs; .

1/4 —1/2,, \—
G207 ) )
ATV A 207 002G s, ) -

For j=N,, it holds that
1/2—-3
lujllarecs, ) S A DO 2 sl oo r2gs, )+ I Es+Gillnrzzcs, )-

The gain of the factor 9;-/ 273/ eflects the fact that, for ¢>6, there is an improvement
in the squarefunction estimates if the solution is localized to a small conic set in frequency.

The terms G arise naturally in both the linearization step of Lemma 4.4 and the
paradifferential smoothing (6.2). They reflect the fact that the singularities of d2a?’ (x)
are localized to xo=0. The weighted L? bound on u; is a characteristic energy estimate.

If 0;~1, then the weighted L? bound on G; dominates the L} L2 . norm of Gj,
and exchanging z; and zo we could treat G; and F) the same. In this case the bound
on u; would be dominated by the LgﬁLilm norm. For small 6;’s, however, we cannot
use xo as our “time” variable, and we are forced to work with the weighted L? norms.
These weighted norms can be thought of as an energy norm along the bicharacteristic flow
at angle ;. Precisely, if one replaced x2 by 6;(x1—c) in the weight, then the weighted
L? norms of u; and G; would behave like the L*>®L? and L'L? norms, respectively. The
crossing point c¢ differs, however, for different bicharacteristics.

The proof of Theorem 3.1 is contained in §4 and §5. In §6 we establish the appro-
priate bounds on the norms occuring on the right side if, as above, u;j=0;(D’)uy, while
F; and G; are defined in (6.1)—(6.2) below.

To state the bounds required, let ¢; ;, denote the term occuring inside the parentheses
on the right-hand side of Theorem 3.1. In §6, we show that, if Djuy— Pyuyx=F), then

we have a uniform summability condition

> i) Shualie zs) I ErlZ2(s)s (3.1)
J

where k(j) denotes any sequence of values for k such that the slabs S ;) are nested, in
that for j>0 we have Sj i1 x(j+1)CSj k() (With the analogous condition for j<0.)

In the remainder of this section we show how Theorem 2.2 follows from Theorem 3.1
together with the bound (3.1).

We first remark that, if ¢ is a fixed index with ¢#8, the bounds of Theorem 2.2

hold (with constant depending on ¢) under the weaker assumption that the ¢;’s are
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uniformly bounded by the right-hand side of (3.1). To see this, we sum over the 27¢~!
slabs and write

271 1/
Illinszcs < (3 Ileres, )
k=1

q
S5 1/2—4
M@0 oo e

SADL 2T (luy || oo 205y I Fall2cs) ).

1/3

The values of 0]:2’|j | vary dyadically from A~/3 to 1. For ¢>8 we can sum over j to

obtain
unllporz(s) SAD(Jurl oo rzes)+ | Fall 2 (s))s
and for 6<g<8 the sum yields

9 S )\5(!1)*(1/3)(1/2*4/@(

lurllLarz( lurll Lo r2(s)+1FxllL2(s))-

The above exponent of A equals 7(g), yielding the desired bound. The geometric sum,
however, increases as ¢— 8, and yields a logarithmic loss in A at ¢g=8.

To obtain the bound at ¢=8, and hence uniform bounds over ¢ in Theorem 2.2, we
use the following worst-case branching argument. We consider terms with j>0 here, the
negative terms being controlled by the same argument.

Let Sy (1) denote the slab at scale €271 that maximizes luxllzsL2(s, ). Since the
decomposition of uy into u;’s is a Littlewood—Paley decomposition in the &, variable, we

have
2

L8L2(S1 k(1))

N 1/2
NE <[ (5> 1e)
A L8L2(S1 k(1)) ~ Z u3|
i=1

By the Minkowski inequality,

N 1/2
|(2)
=1 L8L2(Sy k(1))
Ny 1/2
<||u1||%8L2(SLk(1))+( Z ( |Uj2>
j=2

S2,kCS1k1y J=

(NZ |uj|2)1/2

=2

2

8 2/8
LSLZ(S2,I¢)>

)

L8L2(S3 k(2))

2
<l 3s 2o, o) +2%°

where k(2) is chosen to maximize ||(Z;12 |'LL]'|2)1/2||L8(52J€) among the two slabs Sz
contained in Sy j(1). Repeating this procedure yields a nested sequence such that
61/4Hu/\||2L8L2(S) < ||u1||2L8L2(SL,€(1))+22/8Hu2”%8L2(527k(2))+24/8||u3”2L8L2(S3’k(3))+"'
s
SAPENE 1)+ k) ke T+ )s
where the last inequality holds by Theorem 3.1 since 9;-/ 273/8 _9=i/8_ The case q=38 of
Theorem 2.2 follows by (3.1).
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4. The wave packet transform

The purpose of this section and the next one is to establish Theorem 3.1. We assume for
these two sections that we have fixed A and 6;, and consider j>0 so that {&3>0 (except
for the term j= Ny, where || <A?/3).
We will rescale the space by ;. Thus, we work with the function
u(z) = u;(0;7),

which, for j# N, is supported in the set

{¢:62€ [10;1,20,1) and & € [Gp,4p] },
where
o= 9]>\

1/2

is now the frequency scale for u(z). For j=Ny, we have |&|<p'/? and Oy, =p~1/2.

Let g(z,&’) denote the rescaled symbol
Q(xa 5/) = ajpj(gjxv 9;15/),

which is truncated to z’-frequencies less than cu'/2. For |€'| =, the symbol ¢ satisfies

the estimates
oog el {

This follows from (6.32).

In the remainder of this section and the next one, we will drop the index j. The

pt=lel, if |3 =0,

4.1
co(14pUPIm0720, (1 2a0) =N )t =lel it 5] > 1. -

quantities # and p are the two relevant parameters for our purposes. After rescaling
the estimates of Theorem 3.1, and translating S; in x; to x1=0, we are reduced to
establishing the following result. Here, S denotes the (z1,2’) slab [0, ] x R?.
THEOREM 4.1. Suppose that 4(&) is supported in the set
{§:62€ [300,200] and & € [Fp, 4u]},
respectively {£:|§2|<,u1/2 and &3€ [i,u,élu}} in case O=p~1/?

Diu—q(z, D Yu=F+G

. Suppose that u satisfies

on the slab S, where q satisfies (4.1), and is truncated to x'-frequencies less than cpt/?.
Then the following bounds hold, uniformly over 6, u, and 6<g<oo:
[ull Larz(s) S 2P0 2739 (|[ul| oo L2 sy + I Fllprp2csy +1 402 (1" 220) " ul| L2 (s
+M_1/49;1/2||<N1/2$2>2G||L2(S))»
and for O=p /2

ull parzcs) S pODOY23(||u| poo p2() + I F+Gllpir2(s))-
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We introduce at this point the phase-space transform which will be used to establish
Theorem 4.1. This transform is essentially the Cérdoba—Fefferman wave packet trans-
form [3]. The precise form here is a simple modification of the Fourier—Bros—Iagolnitzer
transform used by Tataru in [18] and [19] to establish Strichartz estimates for low reg-
ularity metrics; the difference is that in our applications we use a Schwartz function
with compactly supported Fourier transform, instead of the Gaussian, as the fundamen-
tal wave packet. This is useful in that it strictly localizes the frequency support of the
transformed functions. Our transform will act on the 2’=(xz2,x3) variables.

We use the notion of the previous sections: z=(x1,zq,23)=(21,2’), where z3 de-
notes the variable t.

Fix a real, radial Schwartz function g(z’')€S(R?), with |g||12®2)=(27) "', and as-
sume that its Fourier transform §(¢’) is supported in the ball {¢’:|¢'|<c}. For u>1, we
define 7,: S'(R?)—C>(R*) by the rule

(Tuf)(x’,f'):ul/g/e‘i“"”"“g(ul”(y’—fc’))f(y’)dy’-
A simple calculation shows that
f(y’)=u1/2/e“i/’y/‘x”g(um(y'—w’))(Tuf)(afC5’) da'dg,
so that T);7),=I. In particular,

| T fll2rey = 1 fll2(r2)- (4.2)

It will be useful to note that this holds in a more general setting.

LEMMA 4.2. Suppose that g, ¢/ (y') is a family of Schwartz functions on R?, depend-
ing on the parameters x' and &', with uniform bounds over x’' and &' on each Schwartz

norm of g. Then the operator
(T, €)= p'/? / e g (WP (g~ ) F (3 )y’

satisfies the bound
| T fll2rey Sfl2r2)-

Proof. T, is bounded if and only if 7); is bounded. Since
T3 FIIZs < NI F a1 Fll e,

it suffices to see that T, T is bounded on L?(dy'd¢’).
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The operator 7, T}; is an integral operator with kernel

K@y 02, €) :uei<n’7y/>7i<§',z/>/ei(&’,n/&/)gy/m/(‘ul/2(21_y/))gx/7£/ (ul/Z(Z’—x’)) dz'.
A simple integration by parts argument shows that
(K (s €0 S (U Py =€ |+ Py =) 7Y,

with constants depending only on uniform bounds for a finite collection of seminorms
of g, ¢ depending on N. The L?(R?*) boundedness of 1, T then follows by Schur’s

lemma. O

A corollary of Lemma 4.2 is that, for NV positive or negative,

) N T, Fll gy S 10 ) fll ey, (43)

by considering g, (y)= (' ?22) N (' 2w2—y2) N g(y).
The next two lemmas relate the conjugation of ¢(z, D'), by the wave packet trans-
form, to the Hamiltonian flow under g. These results are analogous to [18, Theorem 1],
in that the error term is one order better where the metric has two bounded derivatives.
In our case the second derivatives are large along the boundary x,=0, which leads to
larger errors there. A key fact for our paper is that the errors are suitably integrable

along the Hamiltonian flow of q.
LEMMA 4.3. Let g(x,&’) satisfy the estimates (4.1). Suppose that |¢'|~u. Then, if
q(y7Dy’)* acts on the y' variable, and y;=x1, we can write
(4(y, D))" —iderq(x, &) -dor tidueq(e, €')-der) [V g (2 (y —2"))
:€i<5’,y’—w’>gm,g, (12 —2')),
where g, ¢ (+) denotes a family of Schwartz functions on R? depending on the parameters

x and &', each of which has Fourier transform supported in the ball of radius 2c. If |||

denotes any of the Schwartz seminorms, we have
ge.er || S T+cou 20 222) 2,
where c¢q is the small constant of (2.3).
Proof. Letting § denote the Fourier transform with respect to ', we write

So(q(y, D)) —ide q(x, &) -dy +idy gz, €)-de) [V = g (W2 (y =2 ()
=) g (2 (i —€),
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where g, ¢ (1) is equal to
/WW Olgla+p= 2y & +u ) —q(2,6) —dw e q(z, &) - (0 Py 1 20))g(y') dy’
1
= [[=o)| [ o on 2 ot | do
0

The spectral restriction on g and g implies that this vanishes for [n’|>2¢c. Consequently, it
suffices to establish C'*° bounds in ' for the term in brackets, uniformly over o0 €[0, 1] and
|n’|<2c. Since the effect of differentiating the integrand with respect to ' is innocuous,
as the rapid decrease in g(y’) counters any polynomial in y’, we content ourselves with

establishing uniform pointwise bounds on the term in brackets. Note that

&' +ou' |~ p.

+1/2

The effect of 92 is to bring out factors of u , and to differentiate ¢ twice. If ¢ is

differentiated at most once in z’, then the bounds
|00 0rq(x,€")| ST and  |02q(x, &) Sp™t for [¢] = p,

yield bounds of size 1 on the term. If ¢ is differentiated twice in z’, then by (4.1) we
have the bounds, for |¢'|~pu,
w02 ga+op™ Py ) S coteop PO Pyt oys) T
Sltcop 0t Pag) =3 ().

The rapid decrease of g(y') absorbs the term (y5)3, leading to the desired bounds. [

We now take the wave packet transform of the solution u(x) with respect to the z’
variables, and introduce the notation u(z,¢")=(T,u)(x,&’). The functions F(z,¢') and
é(x,{’ ) in the next lemma, though, include terms in addition to the transforms of F
and G of Theorem 4.1. Let S denote the (x1,2',£") slab [0, €] ><R4:S><R§,.

LEMMA 4.4. Under the above conditions, we may write
(di —derg(,€') do+drq(e, €)-der ), €)= F(2,€)+G(x, ),

where

||F||L1L2(§)+:u'71/4071/2H<M1/2x2>2G”L2(§) Slullperzsy+1FllLizz(s)
A0 (1 P as) | ) (444)
ATV (0 P 22) G L2 s
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Furthermore, F and G are supported in a set where Ea~0u and &3~ pu.

In case O=p~'/2, we have
IE+Gl 1125 S lullLe 2y +I1F+GllLizzs), (4.5)
and F+G is supported where |&|<p/? and &3~ p.

Proof. Applying T}, to the equation Diu=F+G+q(z, D)u yields
dyi(z, &) =i(T, F)(x, &) +i(T,G)(x, &)

+iu1/2/Q(Il,y’,Dé)*[6“5'*-”’*”””9(#1/2(1/’—x’))]U(:El,y')dy’-

The terms 7T}, F and T),G satisfy the bounds required of F and é, respectively, the latter
by the estimate (4.3) in the case of (4.4). By Lemma 4.3, we can write the last term as

(dg/q(l', f/) 'dz’ _dz/q(xa 5/) dg/)ﬂ(l’, fl)

el [ g 2y Nl o)

For x5 such that u'/20(u'/?x5)~3<1, the latter term is absorbed into F by Lemmas 4.2
and 4.3. For x5 such that p2/20(u/22,)~3>1, the term can be absorbed into G, by (4.3)
and Lemma 4.3. Here we use the simple fact that (4.3) holds for operators of the type
in Lemma 4.2. Note that if 6= ~'/2 the entire term can be absorbed into F.

The support condition on F and G follows from the support condition on %, and the
fact that g, ¢ has Fourier transform supported in the ball of radius 2¢. Alternatively, we
may multiply both sides of the equation defining F+G by a cutoff supported in the set
E3mp, O (|€2| Spt/?, respectively), which equals 1 on the support of . O

Let O, denote the canonical transform on Ri,@/ =T*(R2,) generated by the Hamil-
tonian flow of ¢. Thus, O ,.(z,&")=~(s), where ~ is the integral curve of the vector field

dy —derq(z, Y odypr+dyrg(x, €) “dgr

with v(r)=(2',¢’). Note that O, is symplectic, thus preserves the measure dz’d¢’, and
hence induces a unitary mapping on L?(R*). Furthermore, O, maps a set of the form
&a~0&5 to a set of similar form, provided |s—r|<1. This follows since |d, q(z, £")|<cb|¢|
for a small constant c.

‘We can now write

(@, &) = (0, 0.0, (2, )+ /O F(s, 00, (2, €)) ds+ /0 Gi(5, 000, (2, €)) ds. (4.6)
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By the preceding comments, for each s the integrands are supported in the flowout
under O ¢ of the set {€:&3~p and &~0u} ({€:&~p and |&] Spl/?}, respectively).
Writing u=1T,;u shows that u(z) can be written as a superposition of functions, each
of which is the restriction to z1 >s of the image under 7} of a function invariant under the
Hamiltonian flow of ¢q. However, in view of the bounds (4.4), the term G may have large
L'L? norm if 6 is small, in contrast to the setting of [19]. As a result, one cannot directly
apply (4.6) to reduce matters to considering estimates for such flow-invariant functions.
Nevertheless, we can use arguments from Koch—Tataru [7] together with (4.4) to see that
we may indeed reduce consideration to the case where @ is invariant under the flow of q.
Roughly, the Vq2 space of [7] permits us to use the weaker condition of integrability of G
along the flow lines of g. We show here that Theorem 4.1 is a consequence of the following

result, which will be proven in the next section.

THEOREM 4.5. Suppose that fcL?(R*) is supported in a set of the form
{€:&~p and & ~0u},

or a set of the form {&:&3/=pu and |&|<p'/?Y in case O=p~/2.
Then, if u=T;[f(O¢x (7',£))], we have for q=6,

[l parz(sy S pODOY2T/9| £l L2 (ray.

In the remainder of this section we demonstrate the reduction of Theorem 4.1 to
Theorem 4.5. In the case §=p~'/2 it is a simple consequence of (4.5) and (4.6).

For general 6 this reduction requires the introduction of the space Vq2 of functions
on S with bounded 2-variation along the Hamiltonian flow of ¢. Recall that ©,. ¢ preserves
the measure dz’d¢’. Then, following Koch—Tataru [7], we define

131> = l[a(o, ')Ilizmﬁsgpz a(sj, ) =a(sj-1, O, 1.5, (D Z2me):
izl

where P denotes the family of finite partitions {{s;}L;:0=s0<s1<...<spm=¢} of [0,¢].

By [7, Lemma 6.4], if [|[|y;2 <co, we may decompose

oo o
U= E crlg, with E |ck|<Ha||qu,
k=1 k=1
where each function 4y, is an atom, in the sense that for some partition {s;}7", in P,

’ng(l’, gl) = Z 1[5_7_1,5j)($1)fj(90,:c1 (xlv 6/))7

j=1
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where, for each ¢>2, it holds that

m 1/q
<Z ||quL2(R4)> <Gy
Jj=1

Note that one may bound C,<Cg for ¢=6, so we may take the C,’s uniformly bounded,
since we work with ¢>6.

We also note that each f; arising in the atomic decomposition of @ will be supported
in the region {€:&3~p and &~0u}. This follows from the inductive construction of the
f;’s in [7], together with the comments surrounding (4.6).

Consider up=T; 4. Then, assuming Theorem 4.5, for =6 we may bound

m 1/q m 1/q
wlizzs) < (L IT@on Mlars ) 5 (S Mllms) $1
j=1 j=1

Summing over k yields ||lul|pazz2(s)S|l@lvz. It thus remains to demonstrate that
lallva S 1300, Mzame) 1 Fl g+ /9072 (1 202G gy, (A7)

since, by Lemma 4.4 and boundedness of T}, the right-hand side here is dominated by
the right-hand side in Theorem 4.1.

We use the decomposition (4.6), and note that the VIIQ norm of the first two terms on
the right-hand side of (4.6) are easily bounded by the first two terms on the right-hand
side of (4.7), the latter since

m

D

j=1

2

/Sj ﬁ(& @S,S]. ($/7§/)) ds_ /sjfl ﬁ<57 @S,S]. ($/7£/)) dS
0 0

L2(R4)

(/ ”F (5,055, (2", € /))||L2(R4)d8)2

s 2
() Ve ) S1PIE o5,

>
>

using the invariance of dz’d¢’ under © in the second equality.
We thus reduce to the case F=0 and (0, 2',¢")=0, and hence, by (4.6),

0. 6)= [ GO .6 .

Note that, by the group property of ©, we have

2
Hﬂ(‘gj? ')_d(sj*h 681'71,5;'('))”%2(1?{4) =

/‘] (s, 04, () ds

L2(R4)
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Given a partition {s; Ty, with 0=s9<s1<...<sp=¢, we first consider the sum of the
quantity (4.8) over those indices j for which |s;—s;_1|<p~/2607!. By the Schwarz

inequality, we may bound the sum by
Z 071/‘71/2”(;(33 GS,SJ' (SU/, 5/)) H%2([s_7~_1,5j]><R4) < M71/2971 HG||2LQ(§)
j=1

Next, consider an index j for which |s;—s;_1|>p~/20~'. We split the interval [s;, s;_1]

into a union of intervals I}, for which %|Ik| <p~ 2071 |I.|. We claim that we may bound

2 2

<

~

L*(RY)

/ G(s,04,5,(-)) ds

j—

‘(u1/2x2>2 /I G(5,0u (1)) ds

L2(R*)

where si denotes the right endpoint of Iy. Given (4.9), we may apply the Schwarz
inequality as before (together with the fact that the weight (u'/?25)? is essentially pre-
served by Oy, , since dzs/dzy~6 on the domain of integration and |s—sx|<p~'/2671)
to bound the sum over k, and then over j, by the right-hand side of (4.7).

To prove (4.9), we write

[ G50, @, €) ds =30 00(Bp i, (€),
Sj—1 k
with
(2, €)= | G(s,04s, (2,€)) ds.

Iy

Then (4.9) will follow by showing that

‘/ Uk (Osps; (2, €)) 0w (O, s, (0, €7)) d' dE'!

B ‘/@’“(Gsk,sk/ (@",&) v (2!, &) da'de’
S =K |72 (1" 2w2) 0k || L2 gy | (1" 2 2)*Bh || L2 (m)-

This, in turn, is a simple consequence of the fact that dzs/dxi~60 on the domain of

integration, and hence, letting x5 denote the xs-coordinate function,
[22(Osy s, (2, €)= 2|~ Ol —spr| o ™2 k=K.

Consequently,
(1 222(Oy 5, (2, €))) 72 (! Pia) 2 S [k H| 2
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5. Homogeneous estimates

In this section we prove Theorem 4.5. For notational convenience, the variables z=(z2, 23)
and (=((2, (3) will be used as dummy variables in the role of 2’ and ¢’, as will w and 7.
We also use real variables r, s and ¢ as dummy variables in the role of z; and y;. For
feL?(da'd¢"), define W by the rule

Wi () =T (f-O0.z)(2).

Let By(&') be a cutoff to the region &3~p and &~y (respectively || <pl/? in case
6=4~'/?). Then, Theorem 4.5 is equivalent to establishing, for ¢>6, the bound

1B6(D YW || parzcs) S po D023/ £l 12 (ma,
which is equivalent to the bound
186(DYWW*Bg(D") F|| Lar2(5) S 7 DO U F| L 125 (5.1)

The operator WW* takes the form
€
(WW*F)(HC):/O Ti(TuF)(s, ) 2Os 0, (2") ds.

If applied to functions truncated by Sp(D’), then WIWW™* may be replaced by the integral

kernel
K(raa'ss.y) = [ €600l o) g 20! 2))g 2 22,0 ) d G
where we use the shorthand notation

(ZS,TaCS,T‘) :®S,T(Za<)' (52)

The factors Bg(D’) in (5.1) can now be ignored (since they are bounded in the desired
norms), and we are reduced to establishing mapping properties for K. We observe that
the proof of (5.1), and hence of Theorem 4.5, can be reduced to establishing the following

pair of bounds:

sup
r,s€[0,e]

<22y, (5-3)

/K(n x5 s,y) f(y') dy

L2(R2?)

Suf(L+p0%r—s)) "2 flls 12 me). (5.4)

y2 Y3

and
H [ Kty

2 2
L3y L2, (R?)
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To see this, note that interpolation yields the bound

H/K(T’ «'ys,9) f(y) dy

S (u0) U =DV ]y e ey
L, L3, (R?) 2 s
If ¢>6, then

(10) =114 pb?|s|) /172 L =t/ agt=6/a) 5| =2/a = | 20(0) g1 =6/a| 5| =2/a
and by the Hardy—Littlewood—Sobolev inequality,

|||8|72/q*fHLq’(R) 5 Hf”Lq(R)a

we obtain the following bound equivalent to (5.1):

The bound (5.3) follows immediately from the L? boundedness of T},, and the fact
that O;, preserves the measure dzd(, so it remains to establish (5.4). We start by

SHH g5/ p|
LiL%, L2 (S)

x

/K(r, 2’y s,y ) F(s,y') dsdy’ Ly ry,r2, (S)

estimating the derivatives of the Hamiltonian flow with respect to the initial parameters z

and ¢. We only need bounds for curves lying entirely in the region

{( (3 € [%u, Qu] and (o € [%9;1, 20,u]}

(respectively {¢:(s€[p,2u] and |C2|<u1/2} in case A=y~ /2). In order to avoid extra-
neous powers of p, it is convenient to exploit homogeneity to reduce to the case |(|~1.
For the purposes of the rest of this section, we thus assume that the symbol ¢ (and
hence the flow ©;,) is homogeneous of degree one in ¢, and agrees with our previous
definition of ¢ on the above region (which had smoothly set ¢=|(| outside the region
{¢:I¢Gsl~p and |2l Sgu})

THEOREM 5.1. Let z,, and (s, be defined as functions of (z,() by (5.2). Let d¢
and d, denote the (-gradient and the z-gradient operators, respectively. Then, for (3=1

172 in case 9:/171/2) the following bounds hold:

and (om0 (respectively |Ca| <p™
do2s,r =1 Sls—7,  dezsel Sls—7ls (5.5)
deCo,r =11 SLs=7], |dosr| S 1.

Also,
|d2 25| S (2 |s =), |2 r| S ut/?

|dadeze | S ls=r[(uPls—=r]), dadcCorl S (' ?|s—r]).
Furthermore, for k=2,

(5.6)

A2 S| S L=l (025 =), (5.7)
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Proof. We start with the relations

Zs,r - Z+/ (dfq) (ta Zt,rv Ct,?“) dt and Cs,r - C_/ (dzq) (t, Zt,ra Ct,r) dt

Differentiating with respect to z and ( yields

dzs,r _ dz s dzt,r
(d@) = (d<>+/r M(t,Ztﬂ.th,r)(dCtm>dt, (5.8)

M< dzdcq d(dgq >
_dzdzq _dCdzq

where

The key estimate is that, for j+k=2,

|s—r], if j<1,

dLdEq)(t, 2t G| dE S
[ @t e { TS

This follows by (4.1) (recall that zo equals x2), and the fact that |(diz,)2|~0 in case
0>p~1/2. In case §=p /2, estimate (4.1) shows that the integrand is in fact uniformly
bounded.

An application of the Gronwall lemma yields
|dze | S1 and  [dG,| S 1,

and plugging this into (5.8) yields (5.5).

To control higher order derivatives we proceed by induction. For [>2, we write

dlzg 8 dLz. SO EL(t
( ¢os, ):/ M(tyzt,r,ct,r)< 36 )dt+/ ( 3 )> dt,
dCCS,r r cht,r r E2(t)
where Fi(t) is a sum of terms of the form

(EdE Q) (E, 20, Cor) (A2 200) o (2 20,0 ) (A Cor) o (dETCor),

and Fs is similarly a sum of such terms, but with dJZ""ld’Eq. In both cases, [, <l for
each n, and l; +...4+1;45=I[. By induction, we may thus assume that the estimates (5.5)
and (5.7) hold for all terms arising in E; and Fs.

The bound (4.1) implies, as above, that for |¢|=1,

[s—r], if =0,

° j+1 gk <
/r & dcq)(t’zt’”g”)|dt”{u(j‘”/Q, if > 1. (5:9)
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The induction hypothesis yields that
(A2 2e0) con (A 20,0 ) (AT G ) oo (A Co)| S [t (22t =) 7F,

Together these yield
[ B0l S s ol o)

and the same holds for E. The estimate (5.7) follows by the Gronwall lemma.
To establish the first line of (5.6), we write

dgzs,r _ s dzzt,r s El(t))
<dZCS,T> —/r M(t,zt,r,ct,,.)<d§§m) dt+/r <E2(t) dt, (5.10)

/|E1(t)|dt§1 and /|E2(t)|dt§ul/2.

A first application of the Gronwall lemma yields

where now

|dizsm‘+|d§<s,r| §N1/27

and plugging this into (5.10) and using (5.9) yield the first line of (5.6). The second line

follows by similar considerations. O

COROLLARY 5.2. The following bounds hold for (3=1 and (2~0:
‘dgzs7r—/ d%q(t,@t,r(z,C)) dt‘ <cls—r)?,

where ¢ can be made small by taking the constant cy in condition (2.3) small.

Proof. Given ¢, choosing the constant ¢y small yields the bounds
dedzgal e and [ 124(t. 000050 e <
Together with the bounds (5.5), plugging this into (5.8) yields successively the bounds
|deCsr—1I| <cls—r| and ‘dgzs,r/s dZq(t, O (2,Q)) dt| < c|s—r|>. O

LEMMA 5.3. Suppose that |C|~p and 0 is a number with =>p~"? and pf?|s—r|<1.
Then, for all o and j,
|(C-de)? (uB)* 112 0d ¢ 2 1 S 1, (5.11)

and for all o and j with j+|a|>1,

|(C-de ) (100)* HB{dcCo sy =25 )| S (12 ly—2s.1]). (5.12)
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Proof. First consider (5.11). By homogeneity of z, and its derivatives, it suffices
to consider j=0. We then have, by (5.5)—(5.7) and homogeneity,
|(1000)* 12 0d 2| S 201 s —r| (2 |s—r 1T < (ut/20] s —r]) T S 1.

Here we use the fact that uf2>1, so that u'/20|s—r|<1. For (5.12), note that if |a|=0
and j#0 then the term vanishes by homogeneity, so we may assume |a|>1. By homo-
geneity we may also restrict to the case j=0. First consider the case where all derivatives

fall on (s ,. The resulting term is bounded by
0 T s —r (2 |s =)y — 2o | S (20— YN P ly— 2 l) S (02 ly 25,0 )
If one or more derivatives fall on z; ., the term is bounded by
1 s |2 s — )1 < s (u 285 o) < 1. O

Recall that the kernel we are proving (5.4) for is

K(r,2;5,y)=p / il =i’ =2e.) g (412 (27 — 2)) g (V2 (3 — 20.0)) B0 (C) dz dC,

where (35(¢) is a cutoff to (3~ u and (o~0u, respectively |Co| Spt/? 1/2,

1/2

in case 0=pu~

In what follows, for the case 6>pu~"/% we will need to consider finer angular decom-

positions in ¢, depending on |s—r|. We will assume, for the following theorem, that 55(¢)

59‘}7

where '~ and p~1/2<0<0. For §=p~1/2, we need consider only $5=_3.

is a smooth cutoff function to a set of the form

{(:(3%% (o ~0Op and 9—0'
Gs

THEOREM 5.4. Consider the kernel K with Byg(() replaced by Bg(C), with Bz as
above. Suppose that pf?|s—r|<1. Fiz a vector ¢ in the support of Bz(C), and let
(2§, Vs,r) be the projection of O ,(2',&') onto the cosphere bundle. Thus, x§ .=z,

and Vs,r:‘Cs,rrle,r if z=2' and (=¢&'. Then
K (r,2';5,9)| S p20(14+p0ly' =, |+ pl (e, v/ =2, ) )7V

Proof. We introduce the differential operators, where z, , and (s, are as in (5.2):

L 1—i({¢, 2" —2) = (Corr, ¥ — 25,0) ) (€, de)
1+[(C 2" —2) = (Coprr ' — 28002

1—ipf (@ —z—deCo (Y —2s ) de

12022 — 2 —d G (Y —2s) P

Ly
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Each of these preserves the phase function in K, and an integration by parts argument,

using the estimates (5.11) and (5.12), bounds |K (r,z’; s,y)| by the following integral:
u/(1+uélw'—2—chs,r-(y'—zs,r)\)_N(HKC,w'—z>—<Cs,r,y'—zs,r>|)_N
X (Lt —2) N (1 p |y =240 |) "N dz d,

where the integral is over the support of 35(¢), which has volume p20. We will show
below that

Né|dCCs,r : (x;,r —Zsr)— (x/ —2)|+] {Cs,rs x;,r _Zs,r> —{(¢, xl_z> 1< 1+N|xl _Z|2~ (5.13)
This implies that the integrand is dominated by
(L+p01dcCor- (' =% )|+ (Comr v = )N (122" —2)) .

By (5.5), the matrix d¢(s, is invertible. Also, by (5.5), the angle between (,, and
y ¢Gs, ,

(s, is less than 04|z’ —z|. Since pf>p'/? and | -|=pu, together these dominate the
integrand by

(L4 pbly’ = |+l ve ' =2l ) )N At Pl =2) N,

from which the theorem easily follows.

We now establish (5.13). Consider the first term on the left. By homogeneity, we
may assume that 1=|(|=|¢’|, so that | —¢'|<60. By (5.6) and Taylor’s theorem, we then
have

|$/s,r_zs7r_(dzzs,r)(xl_z)_(dCZS,r)(gl_C”
S Pls—rl) |2’ — 2+ ]s—r|(u!/?|s—r[)(0%+6]2’ — z]).

After multiplication by u#, each term on the right is bounded by 14 u|z’—2|?. Also,
10 (dezs,r ) (C =€) S pb?|s—r| < 1.
Since d(s rAdzs ,=d(Adz, we have
0¢; GOz 26,0 —O0¢; 261 02y, Co.r = Ok
where - pairs the z;5, and (,, indices. By (5.5), we have

Wl o ldoGo |2 — 2] S 210’ 2]



LP? NORM OF SPECTRAL CLUSTERS 133

Together, this yields
Mé‘dCCS,T : (xls,r —Zs,r)— (xl_zﬂ < 1+M|$/ _Z|27

which concludes the bound for the first term.

To handle the second term, it suffices by homogeneity to show that, for |¢|=|¢'|=1,
[(Corrs @y = 25,m) = (G 2" = 2)| S|’ =2 +0%|5 7.

We calculate

d
——{Csrs xls,r_zs,r> =—((d=q)(s,05.+(2,0)), mls,r_zs,r>

ds
+{Cors (deq) (5, 5,0 (2, €)= (dcq) (5, Os,r(2,C)))-
By homogeneity, the right-hand side equals
q(s, 05,0 (2",€')) = (s, 05,0 (2,0)) = (Os,r (2, O) =1 (2,€)) (dz,cq) (5, Os,r (2, C))  (5.14)
plus an error which, since g¢ is Lipschitz, is bounded by
105,(2",€) =050 (2, O S |2" — 2> +62. (5.15)

Let v5(t)=00, - (2', &)+ (1—0)Os+(2,¢). Then (5.14) equals

1 ps
| [ 1-0)un(a’ €)= 00 (. (a2 a7 1) dt o
0Jr
By (5.15), the integral of terms involving d.d.q and dgq are bounded by
|s—r||2’ — 2|2 +|s—7]02 < |2' — 2> +0%|s—7|.

The integral of terms involving d2q are bounded by

s
((sup fof—zarP) sup [ It 20 (O)] e S o' =205,
r<t<s o r

where we use (5.5), (4.1) and the fact that (5,)2=0 in the case 6> pu~1/2. O

Proof of estimate (5.4). We establish (5.4) by showing that

sup / K (r, 2" 5,9)| dys S pf(1+4p6?|s—r[) =/, (5.16)

Z2,T3,Y2
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Transposing (s,y’) and (r,2’) in the formula for K leads to the same kernel if Gy(() is
replaced by B9(¢,s(y',()), and the same proof will show that

sup / K (r, s 5,5/)| dirs < pb(14+p62)s—r]) "2,

T2,Y2,Y3

yielding (5.4) by Schur’s lemma.

Suppose first that uf?|s—r|<1. Then (5.16) follows immediately from Theorem 5.4
with 6=0, since v . =|(s,| (s, is within a small angle of the & axis.

If 46?|s—7|>1, we let f=p~'/?|s—r|~/2, and decompose K into a sum of terms by
writing b’g(()zzj B;(¢), with each 8;(¢) being a cutoff to a sector of angle 6.

We fix 77 in the support of 3;(¢), with

(M)s=p and |()2—(n")2|~ pblj—k|.

We then have decomposed K=5" ; K, where, by Theorem (5.4),
K(r, 25 5,9)| S 0201+ p0ly —wd [+l (vl oy —wl H)7Y,
where (w] ., ,) is the projection onto the cosphere bundle of O, ,.(z’,77). Since

(Vg,r)3 ~1,

we have
/IKj(ﬁ 2’ 5,y")| dys S pb(1+pbly2 — (wl )2)) .

Since puf~puf(1+pub?|s—r|)=1/2, it suffices to show that

sup Y (Lpuflya—(wl,)2)) "V S 1,

T2,23,Y2 j
which we do by recalling that uf2|s—r|=1, and showing that
. A _ ]
[(wl )2 = (W, )2| = O] s—r[|j =kl

We finally show this by noting that, for (=1 and |{3|< %, we have dgzqﬁtvl. Corollary 5.2
thus yields d¢, (2s,r)2~s—r for such ¢. Consequently,

[z (2", 17) = 2e,0 (2,0 ) | 2 ™ s = || (17 )2 = ()2 = O]s—r[|j — K. .
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6. Energy flux estimates

In this section we complete the proof of Theorem 2.2 by establishing the endpoint esti-
mates where ¢g=8. We do this by establishing the nested square-summability condition

(3.1). Recall that we are assuming
Dyuy—Pyuy=F},
where 2Py =py(z, D')+pa(z, D')*, and we write
Diu;—Pju; =F;+Gj,

where u;=0;(D")uy, the operator P;=p;(z, D’) has symbol truncated to z’-frequencies
less than )\1/29;1/2, and

Fj = B;(D")Ex+[8;(D"), Pjlux+03;(D")(Px—pa(z, D"))ux, (6.1)
Gj=B;(D")(pA(x, D")—=pj(z, D'))ux. (6.2)
Let
1/4 —1/2 _
ek = l[ujll Lo nags, o A0 IO207 200) 1 pas, 63
Il pacs, 0+ AT 40 ION207 2 00)2 G s, ).
‘We need to show that
N
Zcik(j) S ||UA||:20<>L2(S)+||FA||2Lz(S)a (6.4)
j=1

where k(j) denotes any sequence of values for k such that the slabs S ;(;) are nested, in
that for j>1 we have S; 1 r(j+1)CSj k(- The analogous bound for j<0 will follow by

an identical proof.

6.1. Estimates on u;

We begin by establishing the square-summability estimates for the first two terms on
the right-hand side of (6.3). By translation invariance we may assume that each .S j ;)
contains 71 =0. We then take S, to be the slab [0,£27%] x R?, and will show that

1/2 —1/2  \—
Z(||Ulc||%oc1:2(sk)+/\l/29k/ ||<>\1/29k /932> 1uk“%2(sk))§||u>\||2L°°L2+||F>\||%2'
k

The same bounds will hold for z; €[—£27%,0].
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Since FyeLl me by Duhamel we can reduce matters to the homogeneous case
F,=0. Assume this, and let f(z')=ux(0,2’). Let W denote the solution operator for

the Cauchy problem associated with Py, so that uy=WJf. It then suffices to show that

181(DYW B5(D) fll 1= 12 (5,0) + A 263 1ON260, 2 5) =2 B (D" YW B (D) f || 12 (1)

. (6:5)
S27 I | .

To prove (6.5), we will construct for each given j a function v which satisfies the following

conditions:
v(0,2') = 3;(D') f(a') and Br(D)yw=0 for |k—j|>5, (6.6)
vl oo r2¢s;) Sz (6.7)
A0 ) " 0 s,y S Dl e (6.8)
and such that
1Dy —Paollpzacs;) S (AY203%) 72 £ e, (6.9)
1D1v— Pyl Lacs;) S (A2032) 7L IN20, 1 2a0) £ o (6.10)

Let us show that these imply the estimate (6.5). Consider the first term on the
left-hand side of (6.5). We will prove the stronger statement

18x (D YW ()35 (D') fll 2, S 27 /O fll 2, |r <emax(27F,279). (6.11)

By self-adjointness (the adjoint of W (r) is the wave map going the other way), we can
then assume that ¢; =2"9>60,=2"F. This assumption now means that we need to control
data at angle 277 for time 277.

We write W3;(D’)f=v—w. The desired estimate holds for the v term by (6.7),
since we may assume |k—j|<4 by (6.6) (and we may shrink ¢ by a factor 16).

To control w, we note that
w(0,2')=0 and Djw—Pyw=Djv—Pyv.
Energy estimates and (6.9) thus yield
leollzoeoqs,) < V2672 £ 2. (6.12)

Since A1/2>23k/2 this yields the desired bound on w.

To estimate the second term in (6.5), we first consider the case 8, <6;. We again
write W G;(D") f=v—w, and note that the desired estimate on v follows by (6.8) and (6.6).
(The operator B(D’) preserves the L?-weight </\1/29,;1/2:r2>_1 since )\1/29;1/2<2_k)\.)
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The estimate on w for 0, <6; follows by (6.12):
1/4 3/4 —3/4 ,3/4
NG wll s,y SN0 w]peracs,) S 05100 £ e

Now consider the case 6;<60;. The above steps handle the case |[k—j|<4, so we
assume k>j+5. We take adjoints to reduce matters to showing that, for j>k+5,

H /|s|<sek (D)W (s) Bu(D)F (s, )|

SATVAg A= G/l (A2 200 B o s, -

This bound, in turn, follows from showing that, for |r|<e27% and j>k+5,
18;(D"YW* (1) Bk (D) fl 2 S (NV26/2) (Y20, 25 f | 2.

We may replace W*(r) by W(r), since W* is the Cauchy map for data at x1=r to x1=0,

and after exchanging k and j this bound is a consequence of (6.10).

6.2. The construction of v.

We assume that 6; is now fixed, and rescale spatial variables by 6;. We thus need to
construct v on the slab S=[0,] xR?. As before, let u=\0; and let 3;(D’) denote the
rescaled localization operators, which will localize to {&a~0;p and &3~pu. Let f denote
the rescaled initial data 3;(D’)f(8; -).

In these rescaled variables it suffices to produce v satisfying

v(0,2")=f(z') and Br(D)v=0 if [k—j|>5, (6.13)
vl Lo z2(sy SN Fllz2s (6.14)
“1/49}/2”wl/?xg)—lvllmm <fllze, (6.15)
and such that
D10 —=QuovllL2(sy S (1'/260;) 7| £ 2, (6.16)
D10 —=QuollLrL2(s) S (1/26;) (' Pa2) £ 2 (6.17)

Here @, is the rescaled operator Py, which has symbol truncated to z’-frequencies less
than cpu.

We will construct v using the modified Fourier-Bros-Iagolnitzer/Cérdoba—Fefferman
transform 7}, introduced in §4. The key idea is that this transform conjugates the op-
erator (), to the Hamiltonian flow field, plus a bounded error which is roughly local.
Precisely, we will show that

1,QuT,=Dy+K,
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where D, is the Hamiltonian vector field of the symbol ¢ (which we recall is frequency
localized to u1/2), and where K is an operator on Li/,gw depending on the parameter x1,
for which we establish weighted L? estimates.

The transform @=1T),u of the exact solution u to Dyju—@Q,u=0, with initial data f,
satisfies

Dyi—Dyi=Kia and a@(0,2,¢") = f(z',€").

The operator K will introduce terms which are well-behaved after integration along the
flow of D1 —D, at angle ;. We will construct the approximate solution v by truncating
the operator K to such angles. For this purpose we introduce cutoffs ¢; (&) and ¢;(¢’),
with slightly larger supports than 3;(£’), such that

dist(supp(1—¢;), supp(6;)) =
dist(supp(1—1);), supp(¢;)) >
and also that
dist(supp(v; ), supp(Br)) =277 if [k—j| > 5.

The &’-support of f lies in the cp~1/2-neighborhood of the support of B;(&’). Since ex1,
0;>p~1/? and |dqq(z,£")|<cb;]€|, we can assume that every integral curve of D;—D,
passing through this neighborhood remains £’-distance at least 2_10,u9j away from the
support of 1—¢;.

Furthermore, we can assume that any integral curve of D; — D, passing at any point
through the support of v; does not meet the cp1/?
B (&), provided |k—j|=5.

We will take v=T);0, where v solves

-neighborhood of the support of

D1o—Dgo=v;Kv and ©(0,2',¢')=f(a',¢). (6.18)
The cutoff 9; restricts the right-hand side to {2~0;u, where the integral of K along
Dy —D, is under control. Furthermore, since the support of ¢ will be contained in the
union of the integral curves of Dy — D, passing through the support of ¢; at some point z1,
then v will satisfy B (D")v=0 for |k—j|=5.
Next, since Q,T,;=T;D,+1T, K, it holds that
Dl’U—QMUZ —T:((1—¢])Kﬂ),
so estimates (6.16) and (6.17) will follow from
| =) Kl o 5y S (12057211 2, (6.19)
N =) Kl 1) S (27205) | (0 22) Fll 2 (6.20)

where S=(0, ] x R ¢
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We thus need to show that K¢ is small away from the set {£:{o~0;u}, which we
do by establishing weighted norm estimates on 0, and decay estimates on the kernel K.
The weights involve the natural distance function on Ri/,g/ associated with the Cérdoba—

Fefferman transform:
dist,, (2, &9/, n') = p! 2|’ =y |+~ 2 = |.

Let K(2',¢';y',n’) denote the integral kernel of K (we supress the parameter x1). Then

we will show that
K@y )| S (Ldist, (o, €3/ ) (6:21)
20, (1 0y~ 2l a2 a1 s )N

where ¢q is the small constant of (2.3).
Let Ep be the subset of Ry, .,

Eo=R2 xsupp(B;(¢)),

and let £, be the image of Ey under the flow along D; —D, for time x;. We consider

the weight function
M(z,&')=M,, (', &) =1+dist,(«/,&'; By, ).

The weighted norm estimates that we establish for solutions of (6.18) are

M5 e o g S 1MF 12, (6.22)
G 2a2) = M gy S (/20) 72| MF 2, (6.23)
G a) "M g 3y S (0/205) 7 14 P2) M . (6.24)

Let us show how (6.14)-(6.17) follow from (6.21)-(6.24). The bounds (6.14) and
(6.15) are direct consequences of (6.22) and (6.23), since M=1 on the support of f.
Also, (6.16)—(6.17) follow from (6.19)—(6.20), so we focus on (6.19)—(6.20).

We write K=K;+ K5, where the kernels K; and K> are dominated by the first and
second terms on the right-hand side of (6.21), respectively.

First note that, since diste (supp(1—¢;), By, )=271u6; for all a1, it follows from
(6.22)~(6.24) that

106530 e ga5) < (5726,) [ Fl,
(P2~ (1= 6,)8] 12 gy S (126;) 72| f| 2,
et 22) (1= 6508l 1 25 S (67207) 72 I P2) | 2

IZANRYAN
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By the bounds on K7 and K3 and Schur’s lemma we thus have

HKl(lf(lsj)@”LooLz(g) ,S (,Ul/zgj)il ”JF”L2
15 (1= 63)0 ) o ) S (6/20,) 2 flL o,
1K (1= )8l 1 12 ) S (101/260;) M (' 22) Fl 2
(S)
Next, we note that the integral of K, as well as the integral of (u'/20;)~"(u!/2ys) Ko,

over the set |¢/—n/|>27'u6; is bounded by (u'/26;)~!, which yields by (6.22)-(6.24)
that

10— ) K165l e o5y S (07205) 1 Fll
(1= 5) K257l gy S (126) /21 s,
(=) K257l g oy S (1/205) 1 (20) o
Together these yield the estimates (6.19) and (6.20).
We turn to the proof of estimates (6.22)—(6.24).

LEMMA 6.1. Take ECR* and let M(2',&")=1+dist,(z/,&'; E). Also, let

Then, for postive integers k and n, and a real number r,
M (P aa)* (02 (20— 1) )" Kigll paray S 1M (' Pao) (12 (22 —1) ) "gl| 12 (R,
and

M (o) (' (o —1) )" Kagl 12 (me)
Sept 20, M (o) N (2 (o —1) ) gll L2 mes)-

The bounds are uniform over all subsets ECR* and real numbers r.

Proof. Let Ky denote the integral kernel
Ko(a'. &5y ,n') = (Lbp™ Pl =) 2 (L 2Ly = [+ P s = &) .

By the rapid decrease of K in z’ and &3, both estimates are easily obtained from the

following bound:
IMKogl|r2 <1 Mgllre-
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By making the measure preserving the change of variables (z', &) — (u/22’, u=1/2¢"), we

may assume p=1. By the rapid decrease of Ky in the 2’ and &3 variables, we may bound

HM(x’vf’)/Ko(x',f’;y”n/)g(y/,n’)dy’dn’

L2 (da'd€")

< H [ M om0 o)

L2(d€2dy’dns)

We lastly use Lemma 6.2 below, which is a consequence of the Calderén commutator
theorem [1]. O

LEMMA 6.2. Let M(r) denote a weight function on the real line, satisfying
M(r)=1 and |M(r)—M(s)|<|r—s|.
Then the convolution kernel (r)=2 is bounded on L*(M(r)dr) by a uniform constant.

Proof. We need to show that the integral kernel

M(r)M(s)™ _ M(r)—M(s)
(r=s)? (r=s)?

is bounded on L?(dr). Since M(s)~!<1 and the latter kernel is integrable, it suffices to
show that the map
= M(r)—M(s)
fr—>/700 - f(s)ds
is bounded on L?(dr). Clearly,
fr—
Ir—s|<1

is bounded on L?(dr), and so it suffices to show that

|

s f(s)ds
‘M(T)—M(S) M (r)—M(s)
(

<Ol f1 L2 ar)- (6.25)
L2(dr)

But
3 [M(r)—M(s)| 1

r—s)? (r—s)? S r—s)2(r—s)2 " |r—s3’

which means that (6.25) holds if and only if the map

f'_) |[r—s|>1 (T‘—S)2

is bounded on L?(dr). Since M is Lipschitz, this follows from the classical commutator
estimate of Calderén ([1, Theorem 2]). O
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In the following steps, we will use r and s as real variables that take the place of x;.
Let J,s: R*—R? denote the flow along D;—D,, starting at the slice z;=s and

ending at z1=r. We will also use J, s to denote the unitary map on L?(RY),

(Jr,sf)(xla ¢ = f(Js,r(x/7 £)).

This map is unitary since the Hamiltonian flow is symplectic, hence preserves dz’d¢’. We
also use the fact that, if |a|, 92|~ pb; and |€3], [n3|~p, then the map J,. s approximately

preserves dist,, in that
disty, (Jrs(2', €); Jrs (v, )) R dist, (2, €59/, 7).

By homogeneity of the Hamiltonian flow, this follows from the fact that the flow is
Lipschitz on the set |£/|=1, which is a consequence of Theorem 5.1.

The function v satisfies
D1o—D,o=v;Ko and o(0,2,&)=f(z',¢&).
Let U denote the map, taking the space of functions on S to itself, defined by
UF(r, ) = /0 T KF(s, ) ds.

Thus, (Dy—Dy)UF=1¢;KF. If we let F(r,-)=J,of, so that D;F—D,F=0, then we

can formally write the solution v as

o0
o= U"F.
n=0

We need to show that this sum converges in the appropriate norm, which we do by
showing that U/ is a contraction. We split U =U,+Us, corresponding to the splitting
K=K+ K.

The estimates we require for U; are

IMUF o5y SEIMFl e o) (6.26)
(M 20;) 2| M (P 0) T U F || o 5y SElMF | e 25 (6.27)

For the term Us we require the bounds
IMUF ) S 26,) UM G 2) Fll sy, (629)
HM<M1/2$2>_1U2FHL2(§) S C||M<H1/2$2>_1FHL2(§)- (6.29)
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The inequality (6.26) is a consequence of Lemma 6.1 with k=n=N=0, and the fact
that J, s preserves the distance function dist,, hence the weight M.

For (6.27), we apply Cauchy—Schwarz inequality to yield
€
‘MU1F|2(Ta J)/, 5/) 56/ ‘(Mw]KlF)(& Js,r(x/a 5/))|2 ds.
0

We multiply by <u1/ 229)72 and integrate with respect to dz’d¢’, changing variables by
Js - on the right, to obtain

M 202) U F gy Se [ ] e MK F ) did ds
0.J0 JR*

We next observe that, for ¢’ in the support of v,

/ (1 2ao0 dy ) " 2dr < (u20;) 71, (6.30)

which holds since dza/dr~6;. Lemma 6.1 with k=n=N=0 now yields (6.27).
To show (6.28), we write

2
(MU F)(r, 2", €)[* <

/0(MTZ}jKQF)(S,JS)T(:I;/,é—I))ds
S (20,7 /E | Mt 2a)p; Ko F |2 (s, Jo (2, €)) ds,
0

where we use (6.30). To conclude (6.27), we take the integral dz’d¢’ of both sides, using
the fact that J, , preserves the measure, and apply Lemma 6.1 with k=1, n=0 and N =2.
For (6.29), we write as above

(MU F) (ry 2! €7 S (11205) 7 /O | M (1" 20) 9 Ko F | (s, T (2, €)) ds.
For &' in the support of ¢; we have
(! o) 72 Pz Jo ) 72 S (20,1 —s)) 72,
and, consequently,
(! 222) 2| (MUF) (r, !, €[

S(u1/29j)_1/0 (/2051 —s]) 2 [ M (u 2a2) ) Ko F P (s, Jo (2, €)) ds.

We take the integral dz’d¢’, changing variables by J; ,» on the right, and apply Lemma 6.1
with k=2, n=0 and N=3, to yield (6.29).
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We now turn to the proof of (6.22)—(6.24). First, note that by (6.26)—(6.29), for

small ¢ and ¢ the map U is a contraction in the norm
L B T LA T PYESY
Recall that 9=~ (U"F, where F(r, -)=T}.of. Furthermore, the bound (6.30) yields
IS 1M Fl -

Consequently,
o< 1M f]l 2,

which implies (6.22) and (6.23).
To derive (6.24), we use the fact that each of the estimates (6.26)—(6.29) holds if M
is in each instance replaced by the weight

M (u? (29 —cabj1) ),

where ¢ >0 is a constant such that dxs/dr>ce8; on curves of Dy — D, passing through
the support of ;. This holds since (u'/?(-)_) is positive and decreasing, and hence, if
1;(€')#0 and r>s, then

(2 (a0 Jy s — o) ) < (' (w2 —cabys) ).

Consequently,

1M (2 (g —cab0) ) (1 20) 71| o gy S (205) 72 M (2 () ) f 2
S (uM20;) 72 M ('t Pas) f o

On the other hand, for x1 >0,
(' (wa—cabjan) ) (' Pag) 2 (' /20;1),
hence
M (22720 11 o) S (11 20;) 72 M (2 (w2 = 200) ) (1! Pw2) 710 25,

yielding (6.24).
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6.3. The estimate on K
We establish here the estimate (6.21) for the integral kernel K defined by

T,Q,T: =D, +K.

Here, Quzé(qu(a:7 D")+q,(x, D")*), where g, is the symbol py rescaled by ¢;, and hence
truncated to x’-frequencies less than cu. The symbol ¢, on the other hand, is obtained
by truncating g, to 2’-frequencies less than cu!/2.

It is a simple consequence of Lemmas 4.3 and 4.2 that the kernel of the operator
Tuq(x, D")*T; =D,

satisfies the estimate (6.21). By taking adjoints, the same applies with ¢(z, D’)* replaced
by q(x, D'), and we are reduced to establishing the estimates (6.21) for the kernel of the
operator

T (qu(z, D) —q(z, D/))T:-

The kernel K (2/,&’;y',n’) of this operator takes the form (we suppress the irrelevant

parameter 1)
/ e T g, () = a2 O (S =) g (W (2 —a!)) de'dC

Suppose that p(z') is a smooth function on z5>0, which is constant for zo>1. We
extend p in an even manner to x2<0. Let g, =5S,[p(0; )], and ¢=S /z[p(0; - )], where Sy
denotes smooth truncation of the Fourier transform to frequencies less than cA. It then
follows that

D7 (g () —a(@ )| S 000702 (M 2ag) "N | Dupllon y50), 11<L, (6.31)
| D2 (gpu(2") —a(e DI S 05 (2 (1 2a2) ™ +plpae) ™) | Darpllon vz (2, 50)-
Indeed, it suffices to verify these bounds for x5 >0, and by splitting up p to separately
consider the case where p is smooth across zo=0 and constant for |x2|>1, and the case

where p is smooth on x5 <0 and vanishes for x5 >0. The latter case is handled by simple

size bounds on the convolution kernels S, and S /5. For the smooth part, we have bounds

|p)\_S .;1H1/2p)\|(9j1’/) SJ (0;1M1/2)717N<0j$2>7]v‘|D5+1p”00

SO 2 (2~ NIIDY o,

and the same bounds apply to derivatives.
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By the condition (2.3), we easily obtain the following bounds for |¢'|~u and G2 <2:

105,08 (qu (2, ") —a(2', ') S coby (12 (' 2 20) ™ 4+ ppazg) =) plP2l/2 1o,

In the formula for K we can integrate by parts at will with respect to p!/ D¢ and

p~2D.,, and twice with respect to /fl/QDZ27 to dominate K by

Co9j/(um<u1/222>’N+u<u22>’N)<u”2(Z’*x’)>’N<u1/2(Z’*y’)>’N
X2 =) TN T2 (G —88) TN (T A (G =€) P ' dd,

which is dominated by

009]‘#1/2<M1/2$2>_N<M1/2($/—Z/»_Nw_l/g({?)—773)>_N<M_1/2(§2—772)>_2,

yielding the desired bounds on K.

We note here that similar considerations yield the bounds, for |¢/|~pu,

1-]al if |8] =0,
0208 a(a,€)| < { . 14

6.32
Co(lJr’u(\mfl)/Zoj<M1/2x2>7N)'u17\a|, if w‘ >1. ( )

6.4. Estimates on F; and Gj.

We conclude by establishing the square summability of the inhomogeneities F; and Gj.
Recall that

Fj=B;(D")Fx+[B;(D"), Pjlux+5;(D")(Px—pa(z, D))ux,
Gj=Bi(D")(pa(x, D") =pj(x, D))ux.

‘We need to show that

_ —1/4 —1/2
S NE e,y A0 20, 220)2G 13 0 s, SualRoe 125 HIFAII 25
J

The first term in F; is handled by noting that

DB (D) EAIG pas,) < D 18D FallZas) < IEAl72cs)-
i i

Consider next the term [P}, 5;(D’)]Juy. Since the symbol of P; is truncated to '-
frequencies less than cu!/ 2<cl;p, it holds that

[P, 8;(D")]ux = [P}, B;(D)]¢; (D' )ua.
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We claim that, uniformly over x1,
1155, Bi(DNfll 2, S 21 fll 2, - (6.33)
Given this, we can bound
I[P;, B; (D)) (D YuxllLrr2s,) S 265 (D unllLrracs,) <lldj (D uallLoer2(s,),

since S; is of length 277 in z;. Since ¢;(D’)uy involves By (D’)uy only for |k—j|<4, this
term is square summable over j.

To prove (6.33), it suffices to replace P; by p;j(z,D’). The symbol p; equals |{'|
outside of the region [¢'|~\, and p;(2’,¢’) satisfies S, estimates for 2’-derivatives of
order at most 1. Consequently, after subtracting off the term |D’|, we may take p;(z, D’)

to have kernel K, (z', 2’ —vy'), where
(K1 (a', 2)|+ Dy Ko (2, )| S A A2 (14 A1)
On the other hand, §;(D’) is a convolution kernel Ko(z'—y’), where
12/ Ko () s, S2A.

The estimate (6.33) follows by applying Taylor’s theorem to
Ky, Ks)(2',y") :/KQ(SC/*Z/)(Kl(ZE/, 2=y =Ky (2,2 —y)) d7.

To control the last term in F; we note that, since the estimates on K; above also apply

to px(x, D’), we have uniform bounds

|(Pa=pa(a, D) fllsz, = H(palw, D) —pate, D) flz, S f e,

The last term in F} is orthogonal over j, and thus has square sum bounded by |[u||z2(s)-

We now estimate the term G;. We split this up:
Gj=pB;(D")(pa(z, D) =p;(x, D)) $; (D" )ux+B; (D )pa(x, D) (1= ¢;(D"))ua.
Consider the second term in G;. We write
B;(D")pa(w, D) (1=;(D))ur = B;(D)(pa(x, D) = pag, (x, D)) (1= (D) Jua,

where pyg, is the symbol p truncated to z’-frequencies less than cAf;. The symbol
Pax—pae; is supported in the region [¢'|~), and by arguments similar to those deriving

(6.31) (without the rescaling step), we have the estimates

102 (PA—Dao; ) (@, € S 071 (A0ja) VA1,



148 H. F. SMITH AND C. D. SOGGE

Its integral kernel is thus bounded by
05 (\0jm2) NN (1 A2 =y ).
Since Ag; >A/267"/2, it follows that, uniformly in z,,
)\_1/40;1/4“<)\1/20;1/2$2>2(p>\($, D/) —ph, (Jf, D/))fHLi, < A—1/49;5/4||f”Li/’
and the same holds for px(x, D") —pxg, (z, D’) replaced by
ﬂj (Dl)(pk(xv D/) —DPXxo, (33, Dl))v
since 3;(D’) averages on scale smaller than A~/ 29;-/ ®. Thus
ARO[ 207 2y)? 5D pa(ar, D) (1= (D)) s,
SN2 fuy || oo ()

Since 27 runs from 1 to A/3, the right-hand side is square summable over j.

Recalling that the symbol p;(z, £’) is truncated to a’-frequencies less than )\1/29;1/27

similar arguments show that
ARG [N 2 0) 85(D') (pa(r, D) =y (e, D)y (DY s
1/4 —1/2  \—
SN IN205 1 %) 1 (D un s, -

The right-hand side involves wy for |k—j|<4, hence, by the earlier estimate for wuy, is

square summable over j.

7. Results for higher dimensions

We show here that the steps of the preceding sections yield sharp L7 estimates for spec-
tral clusters on compact Riemannian manifolds M with boundary, of dimension n>3,

provided g is sufficiently large. Precisely, we have the following result.
THEOREM 7.1. Suppose that u solves the following Cauchy problem on Rx M:
O2u(t,x) = Pu(t,z), u(0,2)=f(z), Ou(0,x)=0,
and satisfies either Dirichlet conditions
u(t,x)=0 if x€dM,
or Neumann conditions, where N, is a unit normal field with respect to g,
Ng-Vau(t,z)=0 if x€oM.

Then the following bounds hold for 4<q<oo, if n=4, and 5<q<00, if n=3:

1 1 1
el 2ot o < Clf oo 6<q>=n(—)—.
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These bounds of course imply that the estimates in (1.9) hold for the spectral pro-
jector operators, x, when ¢>5 for n=3, and ¢>4 for n>4.

As noted in the introduction, these estimates are expected to hold in the larger
range ¢ (6n+4)/(3n—4), in which case they (and their interpolation with the trivial L2
estimate) would be best possible. Establishing this larger range would require exploiting
dispersion in directions tangent to OM for time 1, rather than times on the order of the
microlocalization angle 6.

Following the earlier sections, we work in a neighborhood of M in geodesic normal
coordinates, and extend the operator P evenly, and the solution u oddly or evenly, in case
of Dirichlet or Neumann conditions, respectively. We set x,41=t and ©'=(z2, ..., Znt1).

We then fix a frequency scale A and a microlocalization angle ;€ A"1/3 ¢]. After

factorizing DA, D, we set
q(xa 5/) = ajpj(gjxv 9;15/)7

which is z/-frequency localized at scale p'/2, where =0\ is the frequency scale of the
rescaled solution u(6z) (we suppress the index j). We work with the wave packet trans-
form % of u with respect to the z’ variables, and let © denote the Hamiltonian flow
along & —q(z,£’). The reduction steps of §§2—4 can then be adapted to reduce matters

to establishing the following result.

THEOREM 7.2. Suppose that f€L*(R?") is supported in a set of the form

{5 : £n+1 ~ K, |§7| < Cﬂaj:27 mvn_]-v and fn z9/“'}

or

{£:£n+1 ~ [, ‘£]| < C/j,,j =2,...,n—1, and |£n| 5/1'1/2}
in case 0=p~1/2.
Then, if u=T;[f(Oo,,(2,¢'))], we have for ¢=2n/(n—2),

llull Lar2(s) §#Mq)@l/%l/qHf||L2(R2n),
and for 2(n+1)/(n—1)<q<2n/(n—2),
[ull pap2sy S pd @D D=2/a) £l gy

This implies Theorem 7.1 for ¢ such that the exponent of 6 is at least 1/q. For n>4,
this happens for ¢=4>2n/(n—2). For n=3, this holds for ¢=>5.

In applying the reductions of §2, care must be taken since d(q)>1 for large n, whereas
the commutator [A, T'(D)] maps H°~!— H® only for 0<J<1. Here, I'(D) is a conic cutoff
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to the set {&:](&1, ..., &n)|=|€n+1|}- To get around this problem, in case §(q) >1 we write
0(¢)=m+3, with 0<5<1. Let dr=(dy,...,dn—1, dn+1) denote the tangential derivatives,
and di* the collection of tangential derivatives of order at most m. Then the extended

and ¢-localized solution u satisfies
ld7 ullgs +ld7 Fll s S\ £l o (ary-
Since dif' A is Lipschitz, it is easy to see that
ld7 [A, D(D)|Dull s < || d7ull s
We also gain powers of d! in the elliptic regularity arguments, and deduce that
ld (1=L(D))ull grs+s S lldpull s+l dp Fl g

The norm on the left is sufficient to control [|(1-T'(D))ulraz2, and we are reduced to
considering I'(D)u. This term, however, has Fourier transform supported outside of a

conic neighborhood of the £, axis, hence
IT(D)ull s = [|[dF T (D)ul| s

The remaining reductions of §2 then follow.
To prove Theorem 7.2, we establish mapping properties for the kernel K of WW*,
localized in (=((2, ..., nt1) by a cutoff Gy(¢) to the set

{C : Cn—i—l ~ W, |<J| < C/Laj:27 ...,TL*]., and Cn %9#‘}
(respectively
{C: G~ Gl <ep,j=2,..,n—1, and || <p'/?}

in case §=p~1/2). The bounds we establish, analogous to (5.3) and (5.4), are

sup / K s, ) @) dy || <Iflle, (7.1)
r,s€[0,e] L2, v
and
H [ 5t dy
L% enli ., (7.2)

1 2 .
Lyz,---,yw,Lyn+1

SH Ot plr—s)) TR pl? - s) 72 /]




LP NORM OF SPECTRAL CLUSTERS 151

To see that this implies Theorem 7.2, note that interpolation yields the bound

| [®atssansay

Lywn 2,

S (U 0) 2Lt =)~ D (L =)~ )

~

If ¢22n/(n—2), then (n—2)(1/2—1/q)>2/q, and by the Hardy-Littlewood—Sobolev

lemma, we obtain

H/K(nw’;s,y’)F(s,y')dy SpP@Dg=a|p)|

LY L2
S,y yn Hy

q Ynt

L7 2, L2 1

o Tn Tp41

If 2n/(n—2)>¢>2(n+1)/(n—1), then

(14| —s]) = (=D A2 D) (14 92| — ) ~(/27 VD =2 ag= 4/ a+(n=2)(A=2/0) | _g|=2/a

and the Hardy—Littlewood—Sobolev lemma yields Theorem 7.2 for this case.

We now turn to the proof of (7.1) and (7.2). The estimate (7.1) follows as does the
estimate (5.3) from the boundedness of T}, and the fact that ©, ; preserves the measure
dx'd¢’. To establish (7.2), we consider as before separate cases, depending on |r—s|.

Consider the case uf%|r—s|>1. We fix §<0 so that uf?|r—s|=1, and decompose
By(¢) into a sum of cutoffs 3;(¢), each of which is localized to a cone of angle 6 about

some direction. As in the proof of (5.16), we have that

)

where the w] s give a (uf)~! separated set after projection onto the (2, ...,n) variables.

Summing over j yields the desired bounds, since

prLgnt = (/2 g (=172

In case puf?|r—s|<1, let >0 be given by

0 =min(p~Y2r—s|71/2,1).

We set ("=(C2,...;(n—1,Cnt1), and let 8; be a partition of unity in cones of angle §

on R*!. We then decompose

Bo(C) = Z B()B; ().
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Let K=Y ; Kj denote the corresponding kernel decomposition. As in the proof of The-

orem 5.4, we can bound K; by

u"/Q/(1+u9|dcfsz,r-(y’—fc’s7r)|+M9Idchs,r-(y’—xé,r)\+|<Cs,r,y’—x;,r>|)‘N

X (14p 2|z’ —2))"Ndz d¢.

Here, (25,5 ) =0s,(2',£}), with & being a fixed vector in the support of 55(¢)3;(¢").
Also, (2,7, Cs,r)=0sr(2,¢). Since d¢(s,, is invertible, and pub>p0>pt’?, the first two
oly —at, |

We first show that we may replace (s by &, =(s,-(2',§}) in the third term in the
parentheses above. By homogeneity, we may consider [(|=|{;|. We take a first order

terms in the integrand dominate p

Taylor expansion, and use bounds (5.7) on df(sﬂ., to write

Cor = Cor(2,6)) = (=€) -dcCor +O(IC =512 2|5 =7

Since

[(C=€)"| S, [(C=E)nl Spb and  ph?|s—r|<1,
this shows that we may replace (s by (s,»(2,§)), as the errors are absorbed by the first
two terms in parentheses. On the other hand, by (5.5),

|<Cs,r(x/7£;)_<-(27§;)’ yl_l./s,r>| S,U,|l'/—z|‘y/—1};)r|,

which is also absorbed by the other terms.
We next use (5.5) to see that we may replace d¢(, » by the identity matrix, since the
error induced is dominated by

1/2

plls—rlly’ —t | <p'?ly’ —af |

Consequently, since 5;77“ has n+1 components comparable to p, we obtain

/IKj(Tv 2’8, dynsr SO0+ pl | (Y — 2 )2 et ) T

The points @/, , are pf-separated in the (2,...,n—1) variables as j varies, which follows

sT
by Corollary 5.2 and the fact that g(z,() is close to ||, hence we can sum over j to
obtain

/ K (r,2's 8, y) | dynsr Sp™ 10720 S pn 01+ plr—s[) - (22,
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