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0. In troduct ion ,  def ini t ions  and s ta t emen t s  o f  results  

0.1. In troduc t ion  

Given an arbitrary invertible measure preserving transformation T on a probability 

space X, Birkhoff's pointwise ergodic theorem asserts that for any fELl(X), the av- 

erages of f along an orbit of T, namely the expressions (f(T-nx)+...+f(Tnx))/(2n+ 1) 

converge, for almost all xEX, to the limit ](x), where ] is the conditional expectation 

of f with respect to the a-algebra of T-invariant sets. 

It is natural to wonder whether, given two arbitrary invertible measure preserving 

transformations T and S, there is a natural way to average a function f along the orbits 

of the group generated by T and S, so as to obtain the same conclusion. 

If T and S happen to commute, then, as is well known, e.g. [OWl, the expressions 

(2n+l )  -2 E-n<~nl,n2<<.n f(TnlSn2x) converge for almost all xeX, for any fELl(X), 
and again thel imit  is the conditional expectation of f with respect to the a-algebra of 

sets invariant under T and S .  In other words, the pointwise ergodic theorem holds for 

finite-measure-preserving actions of the free Abelian group on two generators, namely Z 2. 

To answer the question posed above, we need to prove a pointwise ergodic theorem 

for finite-measure-preserving actions of the free non-Abelian group on two generators. 

Note that such a result implies a corresponding one for factor groups, when the weights 

used are those induced by the canonical factor map. 

The problem is thus naturally part of the following general framework: 
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0.2. Definit ion of  pointwise  ergodic sequences 

Let F be a countable group, and let 11(F)={#=~-~.~er #(~/)'Y:~-~--y~r I#(~/)1<~176 denote 

the group algebra. Let (X, B, m) be a standard Lebesgue probability space, and as- 

sume F acts on X by measurable automorphisms preserving the probability measure m. 

The action (% x)~-+~/x induces a representation of F by isometries on the LP(X) spaces, 

l~<p~<cc, and this representation can be extended to the group algebra by (#f)(x)= 

E ~ r  #(~) f (~- lx)  �9 
Let BI={AEB:rn(~/A/XA)=O V~/EF} denote the sub-a-algebra of invariant sets, 

and denote by E1 the conditional expectation operator on LI(X)  which is associated 

with B1. Now consider: 

Definition 1. A sequence u~Ell(F)  is called a pointwise ergodic sequence in L p if, 

for any action of F on a Lebesgue space X which preserves a probability measure, and 

for every f eLP(X) ,  vnf(x)---*Elf(x) for almost all z e X ,  and in the norm of LP(X). 

It is natural to consider sequences in 11(F) which axe given in an explicit geometric 

form. To that  end, assume F is finitely generated, and let S be a finite generating set 

which is symmetric: S = S  -1 (we will assume e~S). S induces a length function on F, 

given by I'Yl--I~/Is =min{n  : "y=81 ... Sn, 8i E S}, lel d o .  Consider the following sequences: 

Definition 2. (i) a n = ( # S n ) - l ~ , ~ e s w ,  where Sn={w:lwl=n } is the sphere of 

radius n, with center e. Define also ~ 1 an=5(an+an+l ). 
(ii) # n = ( n + l )  -1 )-~=0 ak, the average of the first n + l  spheres. 

(iii) ~ = ( # B n )  -1 ~-~.~eBW, where Sn={w:lwl<.n } denotes the ball of radius n 

with center e. 

When we consider the free group Fr ,  the set of generators S will always be taken to 

be a set of free generators (and their inverses). 

0.3. Statement  of  the ergodic theorems 

We can now formulate the following result, the first part  of which is a direct analog of 

Birkhoff's pointwise ergodic theorem: 

THEOREM 1. Consider the free group Fr, r>~2. Then: 

(1) The sequence #n is a pointwise ergodic sequence in L p, for all l~<p<cx). 

(2) The sequence a~n is a pointwise ergodic sequence in L p, for l < p < c o .  

(3) a2,~ converges to an operator of conditional expectation with respect to an Fr -  

invariant sub-a-algebra. /~2,~ converges to the operator E l + ( ( r - 1 ) / r ) E ,  where E is a 
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projection disjoint from El. Given f ELP(X), l < p < o c ,  the convergence is pointwise 
almost everywhere, and in the LP-norm. 

The proof of Theorem 1 utilizes a strong L p maximal inequality, of the follow- 

ing form: Given a sequence vn c l l(F),  define the associated maximal function f*(x)= 
SUPn~> 0 Ivnf(x)l. Let (X,B,  m) be an Fr-space with an invariant a-finite measure, not 

necessarily finite. Then: 

THEOREM 2. For each Fr, r>/2, there exist positive constants Cp(r) such that for 
any f ELP(X) the following inequalities hold: 

(1) IIf~llp, Ill'flip and IIf~llp are all bounded by Cp(r)llfllp, for l < p < c ~ .  

(2) f~ satisfies the maximal inequality of weak type (1, 1), namely: 

A{x: If~(x)l/> 5} ~< Ca(r)5-111flll, for every 5 > O, and f e Lx(X). 

1. T h e  m e t h o d  o f  p r o o f  a n d  s o m e  h i s t o r i c a l  r e m a r k s  

1.1.  S o m e  h i s t o r i c a l  r e m a r k s  

The search for pointwise ergodic theorems has been a central theme in ergodic theory 

ever since the publication of G. D. Birkhoff's theorem [B]. The basic problem is to estab- 

lish, for a general sequence of Markov operators Tk acting in LP(X, B, m), the existence 

of the limit l i m k ~  Tkf(x)=](x), for m-almost all points x e X ,  and in the L p norm. 

A particularly interesting case is when the operators in the sequence arise from a measure 

preserving action of a countable group, namely they are (finite) convex combinations of 

the unitary operators associated with the group elements. In this case it is natural to 

consider uniformly distributed weights, so that  one seeks in effect a sequence of aver- 

aging (finite) sets in the group. The standard example arises when one fixes a natural 

translation invariant distance I �9 I on the group, for example the length with respect to a 

finite symmetric generating set defined above. Then a natural choice to consider is the 

sequence of operators flk of averaging a function on balls of radius k. 

If the group is for example a finitely generated Abelian group F, consider the fol- 

lowing three main ingredients which figure in the proof of ergodic theorems for the 

sequence f~k: 

(1) To establish the mean ergodic theorem, one notes that  the sequence of balls in 

the group has the Fr property of being asymptotically invariant under translation, 

i.e., limn_,~ #(BngABn)/#Bn=O. Using this fact it is easy to see that  l~kf has a limit 

in norm, which is invariant under the group action. The assumption of ergodicity of the 

measure preserving action then guarantees that  ]= fx  f dm. 

10--945203 Acta Mathematica 173. Imprim6 le 5 oetobre 1994 
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To establish pointwise convergence rather than just norm convergence one usually 

takes the route of proving an I_2 maximal inequality. The following two arguments are 

the essential ones: 

(2) The transfer principle, due to N. Wiener [W] and formulated generally by 

A. P. Calder6n [Call]: Suppose that  the maximal inequality has been established for the 

action of the averaging sequence j3k in/P(F). Then, given an action of F on a probability 

space X, fix xEX and consider the restriction fN of a function fELP(X) to a subset of a 

E-orbit in X of the form BNX= {gx:lg I <~ N}. Regard the function obtained as a function 

on F, and use the assumption that  (for any n~>0) II sup0~<k~<n If~k *fNI II/p(r)<~CIIfNlll~(r). 
It follows that  ~-~IgL<<.N_ n I suP0~<k~<n 13kf(gx)lP<~C p ~,lgl<<. N If(gx)l p. Since the action is 

measure preserving, integrating over X we obtain: #BN-nI[ suP0~<k<n I~kf(x)l p IIL,<x) <<. 
CP#BNIIflI~,,(x). Since l imN-.~ #BN-n /#BN =1, the maximal inequality follows. 

(3) The covering argument due to N. Wiener [W]: In order to prove the maximal 

inequality for the sequence flk in/P(F), one uses geometric covering properties of balls in 

the group. The basic covering argument needed is a Vitali type "disjointification lemma" 

which asserts that  given a cover of a finite set F in the group using a finite family of 

balls, there exists a subfamily of disjoint balls which covers at least e ( F ) # F  of the points 

of F,  where e(F) is a fixed positive constant. For an elegant proof of the disjointification 

lemma and the resulting L 1 pointwise ergodic theorems for a class of (amenable) groups 

we refer to [OW]. The crucial assumption used, originating in [Cal2], is that  the balls 

in the group (or more generally some nested asymptotically invariant sequence) satisfy 

#(Bn. Bff 1)<< C#Bn for some fixed C. As pointed out in [OW], the only examples known 

to satisfy this condition are groups with polynomial growth, and the condition certainly 

fails for B,~ when the group has exponential growth. 

1.2. The  m e t h o d  of  p r o o f  

Evidently, all three ingredients are unavailable when the group under consideration is a 

finitely generated free non-Abelian group F t .  The sequence of balls (which we take with 

respect to a free generating set) is not asymptotically invariant and the mean ergodic 

theorem cannot be obtained as above. The sequence has exponential growth and 

#BN lira - -  -- (2r-- 1)n, 
N---,co # S N - n  

so the transfer principle does not apply. The disjointification lemma also fails, as one 

sees by considering any covering of Bn by translates of B1. 

The proof of the pointwise ergodic theorems in this case rests on the following two 

observations: 
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(1) The convolution identity 

al*au = ~rran- l+ 1 -  an+l 

holds in the group algebra l l (Fr )  , as is easily established. It implies, by induction, that  

the elements an are linear combinations of the convolution powers a k , 0 ~ k ~ n. Therefore 

the spheres an generate a commutative convolution *-algebra, which we denote A(Fr).  

We note that  the algebra A(F,)  has been introduced into ergodic theory in [AK]. It has 

a simple and explicit spectral theory, discussed e.g. in [Sa], [Car], [Mac], [Mat], [FP]. 

This fact makes it possible to use spectral methods to establish ergodic theorems. Such 

' [G], and methods were utilized to prove the mean ergodic theorem for the sequence a n 

the pointwise ergodic theorem for functions in L 2 IN1]. 

(2) The Markov operators/3k and ffk are comparable, in the sense that  a maximal 

inequality for one sequence implies the same inequality for the other (up to changing 

the constant). This fact follows since an<~C~n, for some fixed positive constant CT, in 

sharp contrast to the situation in the Abelian case. Hence one might as well establish the 

ergodic theorems for spheres rather than for balls. The utility of this observation is in 

showing that  the right approach is to apply methods developed to handle convergence of 

singular means [Stl], [St2]. Originally the methods were devised [Stl] to prove pointwise 

convergence for the (even) powers of a self-adjoint Markov operator, improving the Hopf- 

Dunford-Schwartz theorem for uniform averages of powers. These methods will serve as 

a replacement for the covering arguments and asymptotic invariance of balls, used in the 

Abelian case. 

The method of singular means proceeds in our case as follows [Stl]: 

(1) The first step is to prove an I_2 maximal inequality for uniform, o r  Cesaro 

averages of the singular means an. The proof of the first inequality of Theorem 2, 
v--~N ~ / ~  v-~3N k namely IIf~ lip <. Cp(r)[l/lip, is based on the observation that  Lk=o ak ..~ tJ~ L~=o al ,  which 

enables one to use the Hopf-Dunford-Schwartz maximal inequality [DS]. For the free 

group this estimate will be proved in Lemma 1 below, using the fact that  the word- 

length distribution of the convolution powers a [  is well approximated by the binomial 

distribution bn(k,p) with positive expectation p. Therefore, expanding a~, the weight 

attached to an element ak for k in the interval [np-  v/-~, np+ ~ ] is at least a l / V ~ .  Since 

O'k appears as an element of such an interval at least a 2 v ~  times, the estimate follows. 

(2) The second step is to  embed the Cesaro averages of the singular means in an 

analytic family of complex Cesaro averages S~, defined for any )~EC. The embedding 

is implemented using the complex binomial coefficients, so that  the ordinary Cesaro 

averages correspond to the sequence S ~ and the singular means to S~ -1. There are 

associated maximal operators S. ~, and these satisfy maximal inequalities in L p, p > l ,  
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when ReA>0,  since the ordinary Cesaro averages do (Lemma 4). When ReA~<0, it is 

possible to show (Lemma 5), that  S. ~ satisfy a strong maximal inequality in L 2. For 

A E - N  (the set of poles of the F function), the method is to consider the operators 

on the Fourier transform side and use the Lit t lewood-Paley square-function estimates. 

Here the essential property used is that  the .-characters of the algebra A(FT) decay 

exponentially when evaluated at a ' .  For A ~ - N ,  the maximal inequality is established 

using standard estimates on the complex binomial coefficients and the F function, and 

repeated summation by parts. 

(3) The third step is to use the L p maximal inequalities for S. ~ for ReA>0,  and 

the L 2 maximal inequality for S. ~ for Re A~<0, together with bounds established on the 

constants, and apply the analytic interpolation theorem [St3]. The result is a maximal 

inequality for the singular averages S ,  1, in every L p, p >  1. 

(4) The fourth and final step is to construct a dense set of functions fEL p for which 

the sequence O"nf(X ) converges almost everywhere. It is enough to construct such a set in 

L 2, and that  is easily done using again the spectral theory of A(FT), or more specifically 

the decay estimates on the characters. 

1.3.  T h e  s c o p e  o f  t h e  m e t h o d  

In essence, the method described above shows that  one can embed a given sequence of self 

adjoint Markov operators Pn in an analytic family of operators, and that  if the sequence 

spans a commutative algebra in End L2(X) whose characters decay exponentially (in n) 

it is possible to obtain maximal inequalities in L p for the sequence. As noted above, 

originally the method was devised [Stl] to handle the case of the a lgeb ra / I (N) ,  or in 

other words, to prove the maximal inequalities for the (even) powers of a single self- 

adjoint Markov operator, but its scope is quite general. 

We note that  in the group theoretic set-up there is a great abundance of important  

examples where the method can be expected to apply. In fact, given any simple algebraic 

group G over a local field, there is a natural commutative convolution algebra associated 

to it, namely the algebra of bi-K-invariant L 1 functions, where K is a suitable maximal 

compact subgroup. As is well known, the characters of such an algebra can be identified 

with K-spherical functions on the group. Spherical functions generically decay exponen- 

tially as a function of the distance d(g, ggg)  in G/K [Mac], [Mat], [Sa]. Consequently, 

for suitable self-adjoint singular averages on G the same arguments should apply. More- 

over, it is sometimes possible to embed the algebra in question as a subalgebra of the 

group algebra of a lattice subgroup F CG ,  and obtain ergodic theorems for actions of F. 

The case of the free group considered here properly belongs in this context, and we refer 
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to IN1] for more on the group theoretic point of view. 

Moreover, it is of course interesting to consider spherical singular averages on simple 

real Lie groups as well, and here it is possible to use ideas from the theory of spherical 

singular averages acting on LP(R n) [St4], [SW] to obtain pointwise ergodic theorems for 

group actions in a similar fashion. We refer to [J] for the case of R n actions, and to [N2], 

[N3] for the case of actions of the real hyperbolic groups SO~ 1). 

It would seem, then, that  the natural context for the applications of the theory of 

singular spherical averages to pointwise ergodic theorems for group actions is the context 

of spherical functions on Gelfand pairs, see e.g. [Fa]. 

2. Cesa ro  sums  a n d  m a x i m a l  inequa l i t i e s  

2.1. The  maximal  i nequa l i t y  fo r /~n  

We begin by establishing the maximal inequalities for the sequence #n of ordinary Cesaro 

averages: 

LEMMA 1. 
1 N C ( r )  3N 

# N =  N + I  E an ~< 3N+-----1 E a~. 
n ~ 0  n=O 

Hence the strong maximal inequality I[f~llp~<llf[[p holds for all l < p < c c ,  as well as the 
weak type (1, 1) maximal inequality in L 1. 

Proof. As noted above, the following holds in P(F),  (where we denote q = 2 r - 1 ) :  

1 (1 O'1 $O" n = q----~ O ' n _ l -  ~- 

Since the convolution powers a~ are convex combinations of the radial measures ak, 

O<~k<~n, we can write a ~ = ~ = o  an(k)ak. To estimate the coefficients an(k) consider 

the Markov chain on the non-negative integers, with nearest neighbour transition prob- 

abilities of 1/(q-4-1) to the left and 1 - 1 / ( q + 1 )  to the right, except at the point 0, which 

is a reflecting barrier. Clearly, an(k) is the probability that  having started at 0, after n 

steps the chain is at the point k. Now consider the number of paths of length n of the 

chain that  start at 0 and end at k. It is at least the number of paths of length n that  

start at 0 and end at k without having visited 0 again along the way. The latter is given 

by the ballot problem: It is the number of ways in which, counting a ballot containing a 

total of n > 0  votes, the candidate that  ended up receiving �89 votes was always in 

the lead (note that  k and n have the same parity). This number, e.g. [K, Chapter 9, w 
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is given by 

(�89 " )) n n - k  

Hence 
k n 

Now recall that for k satisfying 1�89 <~x/'-n we have, using the standard 

approximation of the binomial coefficient, e.g. [Fe, Chapter 7, w for all n>0: 

Clearly, for k>0 in the prescribed range, also k/n~bq>O. Moreover, denoting 

(q+l)/(q-1) by T, it is easily seen that given k (~ko(q), say), i fn satisfies In-~-kl<. �89 
then k falls in the range prescribed above, so that the estimates hold. Now compute: 

3N k o ( q ) - I  3N 

'= E E: 
n=O k=0  n=ko(q)  k=O k=0  

ko(q) N / rk-I'~/'k/2 

k=O k=ko(q) x n : ~ - k - v ~ / 2  

ko(q) N N 

k=0 k=~o(q) X/Tk/2 k=0 

k=ko(q) -- 

The second part of the lemma, namely the strong maximal inequality for f~ in every 

L p, l<p<oo,  and the weak type (1, 1) maximal inequality in L 1, now follows from the 

Hopf-Dunford-Schwartz theorem [DS] for Markov operators, applied to al.  [] 

2.2.  C o m p l e x  C e s a r o  s u m s  

We recall the following facts and definitions [Z, III, w Let A=a+i f l  be an arbitrary 

complex number, and consider the sequence of complex binomial coefficients 

n! = 1+ , A 1, Ann--d0._ 
k = l  

Given any sequence un, n>~0, consider the sequence defined by S~ = ~ = 0  A~-kuk" S~ is 

called the Cesaro sum of order A of the sequence u0, ..., u,~. 
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Note that for a negative integer - m ,  the binomial coefficients corresponding to 
n m + n  A~ m-1 are given by A ~ m - 1 - - ( - 1 )  ( n ) when O<~n<~m and A n m - l = o  otherwise. 

Therefore, the operator ~ n  m - 1  i s  the operator A m of discrete differentiation of or- 

der m, namely: S~ 2 =un - un-1 a_ Aun, So 2 =Uo, and similarly S~ 3 =un - 2Un- 1 -~-Un-2 : 
s - m - l _ _  m u  _ _  m k m a ( ~ u ~ ) .  In general  ~ - a  ~ - E ~ _ - 0 ( - 1 )  ( ~ ) u ~ _ ~ ,  n~>m. 

We collect the properties of A~ that will be used later, in the following 

LEMMA 2. The complex binomial coefficients satisfy: 

(1) The convolution formula: r ~ - 1  r ~-'n - -  Z-.~k=O ~ * n - - k ~ ' J k  " 

(2) ~ -  ~ ~ _ ~-1  A A~ - A~ - A~_ 1 -  A~ . 

(3) ~ s ~ = s ~ - s L ~ = s ~  -~ 

Proof. As is well known, the following identity holds, for lyl<l: 

1 
(1-y)l+X -- Z A~yk" 

k = O  

If g(y) denotes the formal power series ~'~=o uky k, then clearly multiplication of formal 

power series gives 

g(Y) = ~ s~y ~. 
(1--y)l+;~ k=0 

Since 
g(y) g(y) 1 

(l_y)l+A+~-- ( l_y) l+~ ( l - y )  ~' 

the convolution formula follows: r  a~-I  ~x Substituting ~=1, and A-1 for ' - ' n  - -  Z - ~ k = 0  ~ l n - k ' - ' k  �9 

A, we obtain the identity S ~'x' ' '~ r Taking the sequence uo--1 and un=0 for n -  Z--~k=0 ~ k  �9 

n>0, which amounts to setting g(y)=l ,  we obtain for di=l and A - l :  AnX__~=0 Ak~-l. 

Parts (2) and (3) follow immediately. [] 

We now collect the estimates needed later on the coefficients A~, n~>0, in the fol- 

lowing 

LEMMA 3. Let A=a+it3. Then: 

(1) For a > - l ,  O<b~l<~A,~/(n+l)"<~b,<co. 

(2) For a > - l ,  l <~[A~+i~/A~[<~ a,  exp2~ 2. 

(3) F o r m E N ,  I(n+l)mA;m+~Zl<~Bm exp3f~ 2. 

Proof. Part (1) is an immediate consequence of the Euler product formula for the 

F-function, which states that for c~>- l ,  n-~Ag--*F(a+l) .  

For part (2) write, using the explicit formula for A~ +i~, 

A~+i~ 2 = 12i (1_ t f~2 (1-~ f~2 n < )II( i+z  ) 
A,~ ( l + a ) :  k=2 ( k - l ) 2 / "  
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Since ld-x~<expx for a non-negative x, we have 

( ) < 1+ ( 1 ~ )  2 exp Z 2 1 g ~. ~<a sexp4/32, k=2 (k--l)2 ~< ( l + ( l + a ) - 2 )  e x p ' 2  exp 1~r2~2 2 

where we have used l + ( l d - a ) - 2 Z 2 ~ < ( l d - ( l + a ) - 2 ) e x p Z  2, and )-]~-1 k - 2 = ~  ~r2~<3" 

For part (3), note first that  the case m=O is covered by parts (1) and (2). By 

definition of the binomial coefficients, for n > m/> 1, 

A;m+~ = (-md-l+iZ).. . . . i~ (l+il3).. . . .(n-m+iZ) 
(n-m+l) . . . . .n  (n-m)!  

Therefore, by definition of A~_m, 

InmAxm+i~l= (-m+k+z~)  (n-m+l) . . . . .n  

Estimate the first factor by (m+lZl)m<~mmexpl[31. The second factor is given by 
m - - 1  --1 1-Ik=o (1-k /n)  and converges to 1 as n-~oo. Finally estimate IA~_ml using parts 

(1) and (2) of the lemma. Putt ing the estimates together, part (3) follows: 

](n+l)mAnm+i[3 t < m m exp IZl . B "  "a0 exp 2Z 2 ~< Bm exp 3Z 2. [] 

2.3. M a x i m a l  o p e r a t o r s  

Consider now a sequence Pk, k>~0, of bounded linear operators defined on LP(X), and a 

function fELP(X). There is an associated sequence of Cesaro sums given by S~f(x)= 
)-~=o A~-kPkf(x)" Consider the maximal functions given by 

s .f(x) d=sup s f(x) 
n~>0 ( n + l )  ~+1 " 

Note that,  in an Fr-space X, taking pkdak, we obtain S~ and S ,  l f (x)  -- 
f*(x). To interpolate between the L p maximal inequality for S~ (l~<p<c~) proved in 

Lemma 1, and the desired one for S ,  af, we begin with the following 

LEMMA 4. Let Pk be a sequence of Markov operators of norm 1 in LI(X) and 
L~ Then, for c~>0, there exist positive constants Ca such that for fELP(X), 
][ S~,+iZfl[p <. Ca exp(2~2)[[S ~ If[ [[p, 1 ~<p< c~. 

Proof. Using the estimate in Lemma 3 (1), 

n n 

IS,~I(x)] = V~'A,~ ) <~ b~ ~_,(n-k + l)~Pklfl(x) <<. b~(n+ l)~+lS~ 
k--O-- k----O 
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By the convolution formula of Lemma 2 (1) and the foregoing estimate, 

n a / 2 - 1 + i ~ c ~ / 2  ~ ] 

<~ b,~/2 iAn_ k,~12-x+,~ i(k + l ),~12+~ SOlfl(x)" 
k=O 

Using Lemma 3 (2), the last expression is bounded by 

/ ) ba/2ac~/2_l exp(2~ 2) E ( n - k  + l)a/2-1(k + l) c'/2+1 sOIII(X). 
~ k = 0  

But since 

n 

1 E(n_k+l),~/2_l(k+l)a/2+ 1 
(n+ l ) "+ t  k=0 ~0 

1 
, (1 -t)a/2-1t a/2+1 dt < o~, 

we obtain, for a>0,  IIS~.+iZf]tp<.exp(2D2)C~l]S~ lip. 

145 

[] 

3. The  L i t t l e w o o d - P a l e y  s q u a r e - f u n c t i o n  m e t h o d  

We now turn to a discussion of the operators S~. +iz, c~<~O. For reasons that will be 

explained in w below, we now use the sequence of operators Pk----a2k, the associated 

operators S~, S. ~, and prove: 

LEMMA 5. The n 2 maximal inequality [[S,m+i~f[[2<Cmexp(3~2)[[f[[2 holds, for 
every non-positive integer -m<~O and ~ER. 

Proof. (1) First note that if the desired maximal inequality holds for each non- 

positive integer -m<~0, then it also holds for all complex values of the form -m+i~, 
f~ER. Indeed, fixing f ~ 0 ,  by the convolution formula of Lemma 2 (1), 

[S~m+i~ f(x)l= ~=o + ~ A~-ks:m-l f (x)  
k=n2 

where we put n2= [�89 Consider the second sum first. Using Lemma 3 (2) we obtain 

n An-kSk f(x) (n+l)m-1 E i~ --m--1 •aoexp(2•2)(n--n2) max (n+l)m-l[S[m-lf(x)[. 
' k=n2 n 2 ~ k ~ n  

The last expression is bounded by Cm exp(2~2)s,m-lf(x), by definition of S ,  m-1. 
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Now consider the first sum, to which we apply Abel's summation formula, namely: 
�9 k n 
ff Ak=~'~d= o aj, then ~'~=o Ak(bk+l -bk)=- ~k=O akbk+A,~bn+l. Making use of parts 

(2) and (3) of Lemma 2, the result obtained is 

- -  n 2  * 

k = 0  

We can now appeal to Lemma 3 (3), which implies that the remainder term in the fore- 

going formula is estimated by Bo exp(3/32)(n2+l)-'~+lS:".f(x). Another summation 
d--2+i~ ~,--m+l r  A - - l + i / 3 ~ - - m + l  .f{.T,~I by parts on the main term will yield l~-~2=0.~._k ~'k J ~ J - ~ ' - - n 2  ~n2+1 J ,  ,1" 

Appealing again to Lemma 3 (3), the reminder term is estimated by 

Sl exp(3~2)(n2+ l )-m+lS.'~+l f(x). 

Similarly, performing the summation by parts on the main term m times, the ex- 

pression left to estimate is 

I~f TM A-m+i~r r ,(x,[ 
n - k  ~ 'k  J k  1 ~  n - - - -2  " 2 + 1 ; ~ '  J l "  

Using Lemma 3 (3) once again, the bound obtained for the foregoing expression is 

(n2 + 1)B,. exp(3~2)(n2+l)-"S:lf(x)+Bm_l exp(3~Z)(n-n2)-"+lS~lf(x) 
~< C. , (n+  1) - ' + 1  exp(3~2)S[lf(x). 

Recalling that the properly normalized maximal operator is 

s.m+i~ f(x) = sup I(n+ l)~-l S~m+i~ f(x)l 
n~>o 

we see that the maximal inequality holds for S .  m+~ if it holds for S .  m, mEN. 

(2) To prove the L 2 maximal inequality for $2 -m, mEN, we use the Littlewood- 

Paley square-function method. Given an arbitrary complex number A=a+i~ ,  we have 

by Abel's summation formula (using even indices for notational convenience) 

2 n  2 n  2 n  

k = n  k = n  k----n 

Rewrite and use the Canchy-Schwarz inequality: 

2n 2n 

k= (k-kl)A+3/2(k-i-1)-A-1/2AS~ 

~< (~-~l(k+l)2'x+31) t(k+l)-'~'-'ll"XS#l ~ /2. 
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Note that  the first factor in the last equation can be estimated as follows: 

Denote the integral by co, and now divide the first formula in this subsection by 

(2n+ l )  ~+2, and use the foregoing to obtain the following estimate: 

~2~n / 2n \1/2 2n n-1 . 

(2n-t- 1)~+1 -k=n - k=0 

Recall that  the following identity holds: ~ = o  ~ - ~ + l ~ k  - ~ n  . Let us now fix a negative 

integer - m  for the parameter A. Using the foregoing, and noting t h a t  the last formula 

also holds for odd indices by the same argument, we can write 

] Snm / o o  \1/2 ] s~m_t_ 1 

( n + l ) - m + l  x<c-m 
Xk= 1 . n~>0 

The Littlewood-Paley square-function of order m is defined by 

o o  

2rn--1 --rn--1 2 Rm(f,  x) ~- = ~"~(k+ 1) ]Sk f (x l l  . 
k--0 

Recalling that  AS~'~=S-~ m-l, and taking the supremum over n>~0, we obtain 

s.mf(x) <~ c-tuRin(f,  x)-t-2B.(m-1)f(x). 

Consequently, if H R . ( f , .  )H2~<g,~[[ffl2 for all feL2(X) and m E N ,  then the maximal 

inequality Hs.mf]]2 <~C-mHfH2, follows from the foregoing estimate by induction on m, 

using Lemma 1 for the case m=O. 
Note that  the function Rm(f ,x )  2 is a sum of squares, and therefore, in the special 

case that  the sequence of operators Pk span a commutative .-subalgebra of EndL2(X),  

one can use the spectral theory of the algebra to estimate the square norm of R~  on the 
Fourier transform side, as we proceed to do. 

4. Spectral theory 

4.1. The algebra A(F~) and its characters 

As already noted, the spherical measures a,~ satisfy the convolution identity al*~r,~---- 

(1/(q+ 1))an-1 + ( 1 - 1 / ( q +  1))an+l, and so a~ is a linear combination of the convolution 
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powers a k, O<~k<.n. Therefore, an, #,~ and fl,~ belong to the cyclic algebra generated 

by al in / I (F) ,  the closure of which we denote by A(Fr).  By the convolution identity, a 

character qo: A(Fr)---~C, satisfies the recurrence relations 

~O(al)~(an)= q--~O(an--1)T (1--q--~ )~O((~n+l). 

A continuous character is determined completely by its value ~o(al), since A(Fr)  is cyclic. 

The two linearly independent solutions of the foregoing second order difference equation 

are q-nZ and q-,~0-~), when zT~l+ijlr/logq, and q - '~ ,  nq -n~ otherwise. These solu- 

tions correspond to the eigenvalue ~o~ (al)  = ~ (z) = (qZ + q 1- ~ )/(  q + 1 ). Any character ~o~ is 

a linear combination of the two solutions, with coefficients obtained by solving the linear 

equations ~o~(al)=~/(z), ~z (a0 )= l .  The results are [Car], [Mac], [Mat], [FP]: 

�9 1 ij~r ql-Z_qZ-1 
~(a,~)=c(z)q-'~+c(1-z)q -n(1-z), zTe-~+l~g~gq, c ( z ) =  (q+l)(q_Z_q~_l) 

and ( ~z((~n)= l + n  (-1)Jnq -~/2, z = ~ + l ~ g  q. 

A necessary and sufficient condition for ~z to be continuous is that  it be bounded, 

and this condition is equivalent to 0~<Re z~< 1. The unitary representation of Fr  in 

L2(X), extended to / l (Fr) ,  assigns to al  a self-adjoint operator. Consequently, the 

values ~ ( a l ) = 7 ( z )  are real, for those ~ that  occur in the spectrum of al  in L2(X). 

Note that ~/(z) is real if and only if Rez=�89 or Imz=ij~r/logq. This set, the image of 

which under ~, is the real spectrum of A(Fr) ,  will be denoted by spAr. Note that  for z 

and 1 - z  the same character obtains, so we can assume that 0~<Rez~< �89 

Note also that  the characters corresponding to z=s and to z=s+ijlr/log q differ by 

sign only: qos+ij~r/logq(an)=(-1)Jnqos(an ). In particular, the sign character ~, given by 

e ( a n ) = ( - 1 )  '~, is obtained at the points z=i(2j+l)~r/logq. 
The spectrum is depicted in the following figure, where ~=iTr/log q: 

ir �89162 

z, . . . . .  

,-),(o) 

o 
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4.2. Spectral estimates: conclusion of  the proof  of  Lemma 5 

To conclude the proof of Lemma 5, we estimate the L 2 norm of the square-function 

(3O 

k+l  2m--1 s - m - i f  x 2 R m ( f , x ) 2 = Z (  ) I ~ ( ) l .  
k=O 

Recall that  the operators S~f(x) are defined using the sequence Pk=a2k. Now 

since S~ m-1 is a linear combination of the operators o'2j, O<<.j<<.k, and a2j are linear 

combinations of powers of a l ,  we have, by the spectral theorem, 

--m--I 2 : ; IlSk fl[2 I  (s;m-1)l dvf(z), 
AT 

where uf is the spectral measure determined by f6L2(X).  Consequently, 

O 0  

[[Rm(f,.)llN = f~ ~-~(k+l)2m-ll~(Skm-1)12duy(z). 
pA~ k=O 

An estimate of I]Rm (f,")112 is possible for functions f 6 L 2 (X) which are orthogonal to the 

space 7-l• alf=• The spectral measure vf of such a function assignes 

zero mass to the trivial character and the sign character e. Therefore, to obtain the 

desired L 2 norm bound on Rm(f ,"  ), it is enough to show that  the integrand appearing 

in the last formula is a bounded function of z, as z ranges over the set spAr \ {ijTr/log q}, 
i.e., omitting the trivial character 1 and the sign character e. We proceed to estimate 

the integrand: 

(1) First note that  the sequence q-n~, n~m, transforms as follows under the discrete 

differentiation operators Am: Amq -nz : (q -Z_  1)mq-(~-m)~. Consider the characters of 

the form ~z(a2n):C(Z)q'2nZ+C(1--z)q -2n(1-z), where z:s+i jr / logq,  0 < s < � 8 8  Note 

that  the choice of the even index operators O'2k implies that  it is enough to consider z=s, 
j=O. Now 

OO 

~-~(k+ 1)2m-llAmq-2ks[2 <~ nm -t- [ q - 2 S -  112m ~ (k+ 1)2m-lq -4(k-m)s. 
k : 0  k=m 

The last infinite series is a sum of derivatives of 1 / ( q - 4 ~ - l ) ,  up to the ( 2 m - 1 ) s t  order. 

Therefore the denominator ( q - 2 8 - 1 ) ( q - 2 ~ + l )  appears to at most the 2ruth power, and 

cancels out with the factor preceding it. Taking into account that  the c-function is 

1 (see the previous section), we obtain a bound Km bounded in the strip 0 ~< Re z ~< 

independent of z. 

1 A glance at the (2) Now consider the characters corresponding to �88 

explicit expression for ~(a ,~)  for z: �89  and z : � 8 9  (where 0~<6~<�88 shows that  
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[~oz(an)[<.Cnq -~/4. (Writing out the expression explicitly this estimate is a conse- 

quence of [sin nt/sin t[ <~n for 0 < t <  r,  and sinh nS/sinh $~n  cosh n8 for 8>0.) Therefore, 

if n>~m, 
k m  L'nq -(n-m)/2. 

k=0 

The square norm of the square-function itself is estimated by 

OO 

Lm+L~ ~ ( m + k + l ) 2 m - l q  -~ ~ Kin. 
k=0 

The bound [[R~(f,. )[12~<Km[[fH2 has now been established for functions f orthog- 

onal to the spaces ker(al+I) .  For functions in each of these spaces the maximal in- 

equality is obvious, by definition of S ,  m, and our choice of the operators a2k. Therefore 

][•,rnfl[2<.C_rn[lfl[2, for any -feL2(X). The proof of Lernma 5 is now complete. [] 

5 .  A n a l y t i c  i n t e r p o l a t i o n  

To conclude the proof of Theorem 2 we will make use of the following result [St2], [St3]: 

ANALYTIC INTERPOLATION THEOREM. Let (X, 13, m) be a a-finite measure space, 
and let T(A): IF ( X ) --, IF ( X ) , 0~<Re~<l, be a family of bounded linear operators defined 

simultaneously for all 1<.p< cr Assume the -following: 

(1) For each -fEIF(X) and gELP'(X) (1/p+l/p~=l) the f~nction 

A ~-, I x  T()~)-fg dm 

is analytic in the interior of the strip and continuous in its closure. 

(2) IlT(i~)fl[po ~<CoHfllpo for fe I .Y  ~ 

(3) IIT(l+if~)fllp~ ~<C~llfllp, for f ~ ' .  
If p~ is defined by 

1 1 - t  t 

Pt Po Pl 

where 0~<t~<l, then IIT(t)-fllp, ~<Cdlfllp,. 

We can now turn to 

Conclusion of the proof of Theorem 2. (1) We use interpolation in order to complete 

the proof of the L p maximal inequality, 1 < p <  oo, for the maximal operator supn~> o la2nf[. 
Recall the maximal inequalities proved in Lemmas 4 and 5: 

[[s:m+iOf[12 <<. C-,n exp(3/32)llfl12, Ils,l+iBfllp • C1 exp(2/32)llf[lp, 



A GENERALIZATION OF BIRKI-IOFF'S POINTWlSE ERGODIC THEOREM 151 

where - m  is a negative integer and l~<p<c~. 

Now take a linear approximation of the maximal operator, as follows: for an 
d 

arbitrary measurable simple function N:X--*N let us define the operator SNf(x)= 
(Y(x)+l)-~-lS~N(x)f(x). Every operator S~ is linear and tS~f(x)l is bounded point- 

wise by the corresponding maximal operator SX.f(x). Fix a negative integer - m ,  

a measurable simple function N, and define the analytic family of linear operators 

T(w)=exp(3w2)S(~ -~~ in the strip 0~Rew~<l. Using the norm bounds on 

SX.f above, the analytic interpolation theorem implies that given 1 <p<  ~ and 0 ~<t~< 1, 

the operator exp(-3t2)T(t)=S(~ -t)(-m)+t has a maximal inequality in/2~(X),  where 

1/pt=�89 
(2) Now solve for the desired operator S~ 1, namely set - l = ( 1 - t ) ( - m ) + t ,  or t=  

(m-1 ) / ( r e+ l ) .  Note that the condition 1/pt= �89 is equivalent to 

p= pt:(m- 1) m--1 
m + l -- pt > Pt "~--~ . 

Therefore, given any value 1 <Pt <c~, it is possible to choose m large enough so that the 

foregoing expression is larger than 1. Then, interpolating with these values of m, p and t, 

the maximal inequality for S~ 1 in L p~ follows. Since the constants do not depend on 

the function N, taking the supremum over all such functions concludes the proof of the 

maximal inequality for supn~> 0 la2nf(x)n. 
(3) The proof of the maximal inequality for the operator supn~> 0 lanf(x)l is a 

straightforward consequence of the previous maximal inequality, since, for a non-negative 

function f e LP(X), 

) 1 Cr2n_lf(X)<~ r  a 2 n + l  f (x)=a2n*alf(z)  
q + l  

where we have used the convolution identity governing the radial averages. 

(4) The maximal inequality for f~ and f~ is an immediate consequence of the max- 

imal inequality for f~, since #n and/~n are convex averages of ak, 0 ~< k ~< n. 

This concludes the proof of Theorem 2. [] 

Remark. It is interesting to note that the differentiation operators (n+l)kAkanf(x) 
satisfy a maximal inequality i n / 2 ,  for each k~>0 and each l<p<c~.  This follows by the 

same argument as above, solving for the operator S -k-1 in (2) instead of the opera- 
tor S -1. 

Conclusion of the proof of Theorem 1. As is well known, it is enough to prove 

Theorem 1 under the additional assumption that the action of Fr on X is ergodic. 
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(I) Start with the case of L2(X): 

(1) Fix 0<5<  �89 and let U~={zespA~ :t~<~Rez<~l-6}. Denote by 7-(~ the subspace 

of vectors in L2(X) whose spectral measure has its support in Us. By the spectral 

estimates of w for f E ~ 6 ,  

I[anfll~ f :o" " ~ dv -< C2n 2--2nS~ltlr2 
J~p Ar 

Hence ~ = o  Icrnf(x)l 2 is a function in LI(X),  and in particular, l im,_.~ a~f(x)=0= 
f x  f din, for almost all x e X. 

(2) The orthogonal complement of [J~>o 7Q is clearly ker(a~-I )  +ker(cq +I) .  On 

the latter space, r acts as the projection E1 onto ker(a~ - I ) ,  ~r2,~ acts as the identity, ~un 

converges to El, and fl2n converges to E1 + ( ( r -1 ) / r )E_x ,  where E_ ~ is the projection 

on ker(crl+I). Therefore, given any fELz (X) ,  each of the four sequences vnf, un=a2n, 
a~, #,~ or ~2n, has the limit E , f  stated in Theorem 1, pointwise almost everywhere. In 

particular, the pointwise limit of Unf exists and is given by the above for every bounded 
function. 

(H) Given f eLP(X) ,  l~<p<oo, and a bounded function h satisfying tlf-hllp<~6, 

"~rite 

II v ~ f -  E ,  f lip ~< [[u~f - v~ h[[~ + IIv,~h - E~h[lp + II E,h  - Ev f lip. 

The middle term converges to zero by Lebesgue's dominated convergence theorem. The 

other two terms are bounded by ~. Therefore the stated limit of ~nf exists in L p norm. 

As noted above, it is also the limit pointwise almost everywhere for the dense set of 

bounded functions. The same conclusion holds for any function in L v, where l < p < c ~  
/ if vn=g2~, ~rn,/32~ (and l~<p<oo if u~=#n). This fact follows from the strong maximal 

inequality using the following standard argument: Choose f E L  p and suppose fk--~f in 

norm, where ~tfk(x) converges almost everywhere for each k. For fixed ~>0 and k, 

consider 

2 } f  - -  

By assumption lira supt :  ~ ~ I(vt - vs) fk (x) [ = 0 a.e. Taking k ~ c~ and using the maximal 

inequalities of Theorem 2, it follows that the set (x: lira supt,8_~o~ Iv, f ( x ) -  vsf(x)l> 2e} 

is a :null set. Hence vtf(x) is a Cauchy sequence for almost all x. This concludes the 

proof of Theorem 1. [] 

Remark: The L 1 problem. The question of whether the sequence a t satisfies a weak 

type (1,1) maximal inequality (or the pointwise ergodic theorem in L/) is still unresolved. 
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We note however, that  for the sequence of even powers of a self adjoint Markov operator  

[Stl], which is our basic motivating case, pointwise convergence generally fails for L 1- 

functions. A counter example was constructed by D. Ornstein in [O]. 
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