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This paper is a sequel to the preceding paper [HSW]. This study of compact Kghler 

manifolds of nonnegative bisectional curvature was inspired by the recent solution of the 

Frankel conjecture by S. Mori ([M]) in a general algebraic setting, and subsequently by 

Siu and Yau ([SY]) in the special context of K/~hler geometry. With the ease of positive 

bisectional curvature out of the way, a general understanding of the case of nonnegative 

bisectional curvature is naturally the next order of business. For complex surfaces, the 

work of Howard and Smyth ([HS]) achieves a complete classification. In  higher dimen- 

sions, the main conclusion of these two papers is tha t  the s tudy of compact Kahler manifolds 

of nonnegative bisectional curvature can be essentially reduced to the special case where 

simple connectivity and the isomorphism H2(M, Z ) ~ Z  are in addition assumed (the 

theorem of [HSW] and Theorem C below), and tha t  with a mild positivity assumption 

these two desirable properties would follow in any ease (Theorem E below). We begin by 

listing the main results; their proofs will be given in subsequent sections, 

THEOREM A. Let M be an n-dimensional compact Kghler mani/old with nonnegative 

Ricci curvature. I / t h e  m a x i m u m  rank o / the  Ricci tensor on M is n -  k, then: 

(A) h m 0(M) = 0 /or  p = k + 1 . . . . .  n ( h"  q( M ) denotes the dimension o/the space o/harmonic 

(p, q)-/orms). 

(B) hl '~ <~k, and h l ' ~  i f / ~ I ( M )  is [inite. 

(C) 1] in addition the bisectional curvature is nonnegative, then h l ' ~  k. 

For the next  theorem, recall from [Wu2] tha t  a covariant Hermit ian tensor is quasi- 

positive iff it is positive definite at one point and positive semi-definite everywhere; the 
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Chern class of a holomorphic line bundle is quasi-positive iff it contains a quasi-positive real 

(1,1)-form. (Throughout this paper, the cohomology ring over (~ is identified with the 

deRham cohomology ring.) 

T~EOREM B. A corapact Ki~hler manifold M satisfying any one o/the following condi- 

tions is a simply connected algebraic manifold without any nonzero holomorphic q-form/or 

q>~l: 

(A) The/irst Chern class cl(M ) is quasi-positive. 

(B) M has nonnegative bisectional curvature and hl"~ 

(C) M has nonnegative bisectional curvature and hl ' l (M)= 1. 

The fact tha t  M is algebraic if cl(M ) is quasi-positive is a special case of a theorem of 

Riemenschneider ([R]); the fact that  M is simply connected if cl(M ) is quasi-positive 

generalizes a theorem of Kobayashi  ([K]) who assumed tha t  cl(M ) is positive. Theorem B 

together with the theorem of [HSW] imply tha t  if the first Chern class of a compact K~hler 

manifold of nonnegative bisectional curvature is quasi-positive, then the manifold possesses 

an Einstein-K~hler metric. 

T ~ E O ~ M  C. Let M1, M.z be simply connected compact manifolds and let M=-MI x M 2. 

Then every KShler metric with nonnegative bisectional curvature on M is a product o/Ki~hler 

metrics on M 1 and M 2. In  particular, M possesses a Ki~hler metric o/nonnegative bisectional 

curvature if/each of M 1 and M2 does. 

The assumption of simple-connectivity in the preceding theorem is necessary because 

there are many  flat  complex tori which are biholomorphic but  not isometric to a product 

of tori. This isometric splitting phenomenon is formally analogous to a theorem of Paul 

Yang ([Y]) on compact K~hler manifolds of negative bisectional curvature, but the under- 

lying reasons are entirely different. In  fact, the proof of Theorem C touches on the can- 

cellation problem for complex manifolds (cf. [Br]), but  we managed to bypass this difficult 

question by systematically exploiting the Ki~hler assumption on the metric. The proof of 

Theorem C also shows tha t  if a product of simply connected compact complex manifolds 

is biholomorphic to a Hermit ian symmetric space, then so is each factor. The next theorem 

uses a few technical concepts: a holomorphic line bundle is quasi-positive iff its Chern 

class is; an exceptional analytic set in a complex space is understood in the sense of the 

well-known work of Grauert ([G]); blowing-up and blowing-down along a submanifold are 

understood in the usual sense of quadratic transforms (cf. [Grill,  pp. 602-608). 
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T H~ OR E M D. Let M be a simply-connected Kbhler mani/old o/nonnegative bisectional 

curvature. Then: 

(A) Every quasi-positive holomorphic line bundle on M is positive. 

(B) Every holomorphic line bundle on M de/ined by a nonzero e//ective divisor is positive. 

(C) M cannot be blown-down along a submani]old. 

(D) I /  H2(M, Z)=~Z and dim M ~ 3 ,  then M has no exceptional nonsingular hyper- 

sur/aces. 

Conditions (A)-(C) above are usually false and in general quite elusive; it is therefore 

remarkable tha t  they should hold for an identifiable sub-collection of complex manifolds. 

We conjecture tha t  compact K~hler manifolds of nonnegative bisectional curvature 

(simply-connected or not) are minimal in the sense tha t  if M is such a manifold and T: M-~ 

M '  is a holomorphic map into a compact complex manifold M '  such tha t  ~ is biholomorphic 

outside an analytic subset of M, then ~ is globally biholomorphic on M. 

Because of Theorem C and the theorem of [HSW], it is of interest to determine which 

of the compact Ki~hler manifolds of nonnegative bisectional curvature satisfy ~ I ( M ) =  1 

and Ha(M, Z) ~ Z. The following is a general criterion in terms of the positivity of a certain 

exterior power of the holomorphic tangent  bundle. A ~ T M  (the/cth exterior power of the 

holomorphic tangent bundle TM) is said to be quasi-positive iff its curvature (with respect 

to the metric induced by the K/~hler metric) is everywhere nonnegative and positive at  a 

point. In  greater detail, let Rxyw be the curvature tensor of the K~hler metric and let 

{el . . . . .  en, ge l  . . . . .  Jew} be an orthonormal basis of the tangent space Mm at  m E M; then the 

quasi-positivity of A kTM means tha t  for all m E M, for all x E Mm and for all orthonormal 

bases {e~,Je~} of M~, ~ (R~j~x, Jx}~O,  and tha t  there exists an m E M  at  which 

strict inequality holds whenever x~=0 (cf. [KW] and IS] for more details). With this defini- 

tion, T M  being quasi-positive means exactly that  M has quasi-positive bisectional curvature, 

i.e., all bisectional curvatures are nonnegative everywhere and are all positive at  a point 

(cf. [Gr]). 

THEOREM E. Let M be a compact Kbhler mani/old with nonnegative bisectional curva- 

ture and suppose 
A m T M  is quasi-positive i] dim M = 2m, 

A m+l T M  is quasi-positive i/ dim M = 2m + 1. 

Then M is simply connected and H2(M, Z) ~ Z. 

Simple examples, e.g., Pm C • C and P,~ C • Pm+l C, show tha t  the theorem is optimal 

with respect to the positivity assumption. The proof of the theorem itself is nothing more 
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than  a refinement of the arguments of M. Berger, Bishop, Goldberg and Kobayashi  ([BG], 

[GK]). 

As mentioned earlier, the theorem of [HSW] and Theorem C above together suggest 

more detailed s tudy of compact K~hler manifolds M of nonnegative bisectional curvature 

which further satisfy z l ( M ) =  1 and H2(M, Z)=~Z. For these manifolds, the results of [M] 

and [SY] point to the strong possibility tha t  the free par t  of He(M , Z) should be integral 

multiples of a rational curve in M. To be more precise, this would be the case if one could 

show that ,  under the above assumptions, every energy minimizing map from the Riemann 

sphere into M is either holomorphic or anti-holomorphie (see Proposition 1 of [SY]). As- 

suming this for the moment,  then the method of [SY] would prove a more general state- 

ment: a compact K~thler mani/old o/quasi-positive bisectional curvature is biholomorphic to 

complex projective space; such a result would seem inaccessible to purely algebraic methods. 

Returning to those M with 7~1(M ) = 1 and H2(M, Z ) ~  Z, one conjectures (with a bit of 

wishful thinking to be sure) that  they are all biholomorphic to irreducible Hermit ian sym- 

metric spaces; furthermore, the rank of the symmetric space should be related to the least 

integer /c such tha t  A k T M  is quasi-positive. In  connection with the latter, note the discus- 

sion at  the beginning of Section 4 below. A more modest conjecture is tha t  these manifolds 

are at least rational algebraic manifolds. 

This paper has many  points of contact with [Wu2]. The author would like to thank 

S. Kobayashi,  0. Riemenschneider and J.  A. Wolf for supplying the needed technical 

information. 

Section 1 

This section supplies the proofs of Theorems A and B. We shall assume the preliminary 

material in Section 1 of [HSW]. 

Proo/ o] Theorem A. If  the Ricci tensor of M has maximum rank n - ]c ,  then the 

universal covering of M is holomorphically isometric to M '  • C z with 1 ~/c, where M '  is a 

compact Ks manifold whose Ricci tensor has maximum rank n - / c .  Consider the finite 

covering M * ~ M  guaranteed by the Cheeger-Gromoll theorem such tha t  M* is diffeo- 

morphic to M# • T ~, where T z is an l-dimensional complex torus and M s is a compact 

Kiihler manifold whose universal covering is M' .  Since M# has a finite fundamental  group, 

dim HI (M *, R ) = d i m  H:(T z, R ) = 2 l  ~2k. Both M* and M being oriented, Hodge theory 

implies that  dim H:(M, R) =din:  H:(M*, R) ~<2/c. Hence h:'~ =�89 H:(M, R) ~k.  

Moreover, with the same notation, h l . 0 ( M ) = 0 ~  dim H:(M, R ) = 0 ~  dim HI (M *, R)=0~=~ 

l = 0 ~  the universal covering of M is the compact manifold M' ;  this is equivalent to the 
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finiteness of ~ ( M ) .  Thus par t  (B) is proved. I f  in addition the bisectional curvature is non- 

negative, then the theorem of [HSW] implies tha t  1 =/c. The preceding inequalities then 

become equalities and (C) immediately follows. To prove par t  (A), i.e., the assertion 

concerning h"~ simply note tha t  it is a consequence of Corollary 3 of [KW] together 

with the remark in [Wu2] that  it suffices to have the positivity of n - / c  eigenvalues at  one 

point if all the eigenvalues of the Rieci tensor are everywhere nonnegative. Q.E.D. 

Proo] o] Theorem B. We first recall a weak form of the Atiyah-Singer fixed point 

theorem ([AS], (4.6)): I f  M is a compact complex manifold and G is a finite group of (holo- 

morphic) automorphisms acting on M, then for each g EG, there is a cohomology class 

0g of M such tha t  

( -  1) j trace (g] Hi(M, 0))= Og[M~], (1) 

where 0 denotes the structure sheaf of M and M a denotes the fixed point set of g in M. 

We have the following simple consequence. 

LEMMA 1. Let M be a compact complex mani/old without any nonzero holomorphic 

q-]orms ]or q ~ 1, and let G be a ]inite 9roup o/automorphisms o] M. Then every element o/G 

has a/ixed point. 

Proo/. Indeed, since Ha(M, O) is the space of all holomorphic ]-forms, the left side of 

(1) reduces to 1 by hypothesis. Thus M g is never empty  for each g E G. (Note: this argument  

is basically not different from the one using the Hirzebruch proportionality principle, ef. 

e.g. [K], Lemma 1.) Q.E.D. 

We now prove par t  (A) of Theorem B. Let  9Ecl(M ) be a quasi-positive real (1,1)- 

form. By Yau's  solution of Calabi's conjecture ([Ya]), there is a K~hler metric H on M 

whose l~icei form is 9. Thus H has quasi-positive Ricci curvature. By Theorem A, h q'~ = 0 

for q ~> 1, and al(M) is finite. The finite group ~zl(M ) then acts as a group of automorphisms 

on the compact universal covering manifold M' of M. Relative to the pull-back of H to 

M', M" also has quasi-positive Rieei curvature. Thus also hq'~ for ~/~1 and by 

Lemma 1, each element of ~I(M) must  have a fixed point in M. This is possible only if 

as(M) reduces to the identity, i.e., M is itself simply connected. Finally it was already 

pointed out that  M is algebraic because of Riemenschneider's theorem ([R]; see also the 

remark at  the end of [Wu2]). 

To prove par t  (B), let hL~ and let the bisectional curvature of M be non- 

negative. Since the first Betti  number  is zero, Corollary 1 of [HSW] shows tha t  M is simply 
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connected; now the theorem of [HSW] shows tha t  M is algebraic and is without nonzero 

holomorphie q-forms for q >~ 1 (part (B) of tha t  theorem). 

Finally to prove par t  (C), let M have nonnegative bisectional curvature and let 

h ~" ~(M) = 1. Suppose dim M = n. I f  n = 1, then M is biholomorphic to P~ C by  the Gauss-  

Bonnet theorem and the classification of compact  Riemann surfaces. The theorem is then 

obvious in this case. Let  now n > 1. I f  bisectional curvature is identically zero, then so is 

the curvature tensor. Thus there exist an n-dimensional complex torus T and a finite 

covering ~: T->M (eft [Wo], Chapter 3). Then from Hodge theory, h~'~(M) =h~'~(T) = (~) > 1 

(binomial coefficient), a contradiction. Thus the bisectional curvature is positive some- 

where, and so is the Ricci form 9. I f  eo is the Kiihler form of M, then ~ A~o ~-~ is every- 

where nonnegative and is positive somewhere. Hence ~M ~ A W n-1 > 0. On the other hand, 

since h 1' ~(M) = 1, the harmonic component of ~ is equal to co~ for some c eR.  Thus ~M (CO) A 

eo~-~= ]M~ A eO n-~, which is positive. This proves c > 0 ,  so ~hat ~ is eohomologous to the 

positive form co. The first Chern class of M is therefore positive, and part  (C) is now a 

consequence of par t  (A). Q.E.D. 

Section 2 

This section proves Theorem C. We begin with a useful lemma. 

LEM~A 2. Let 9): MI ~ M ~ be a holomorphic map between n-dimensional compact K5hler 

mani/olds M 1 and M~ whose K5hler /orms 0.) 1 and 03 satis/y SM 1 0 ~  = ~M~ (D~ and ~*[w~] = 

[Ol] ([wt] denotes the cohomology class o/ ~ ) .  Then vf is biholomorphic. 

Proo/. Suppose ~ is everywhere degenerate, i.e., the Jacobian determinant ~ of 

is everywhere zero, then ~ ' o ~ = 0  so that  ~*[o)~]=0. This contradicts ~*[o~]=[o~]=V0. 

Thus ~ is zero at  most  on a hypersurface J (possibly disconnected). Since M 1 and M~ are 

both compact  and ~ is orientation preserving, a standard argument  shows tha t  ~ must  be 

onto. I t  remains to show ~ is injective. We may  assume SM1 c~ = ~M~ eo~ = 1 so tha t  [o~] 

and [w]] are the fundamental  cohomology classes of M 1 and M 2 respectively. Since ~*[eo~] = 

[o~], the topological degree of ~ is equal to 1. Since ~ is orientation preserving, Sard's 

theorem plus standard algebraic topology show tha t  for all regular values y of ~ in M~ 

(i.e., VyEM~-9(J) ) ,  q~-l(y) consists of exactly one point. (This can also be proved without 

any algebraic topology by  invoking Lemma 2.12 of [Wul].) Thus the restriction ~: M 1 -  

~- l (~( j ) )  _+ M ~ - 9 ( J )  is a biholomorpMc mapping. Note tha t  since ~(J) is a subvariety of 

Mz (proper mapping theorem), 9-1(9(j))  is a proper subvariety of M 1 so tha t  M 1 _9-1(9( j ) )  

is open dense in M I. 
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I f  J is nonempty ,  we shall deduce a contradiction. Thus let J be a hypersurface in 

M~. Observe tha t  T(J) is also of pure dimension n - 1 in M~ because ~*[~o~] = [o~] implies 
* n-1 n-1 ~0 [w~ ] = [wx ] which implies t h a t  for each branch J '  of J ,  

f ~  0)n-1 __ ~ $ r o ) n - l l  ~J'~ f~, CJ'~ ~ - v '  L ~ ~ ~ = [ ~ - ~ ] ( J ' ) =  ~ - ~ 4 0 .  

Thus ~: J~q~(J) is a surjective holomorphic mapping  between complex spaces of pure 

dimension n - 1 .  Let  J~ and q(J)~ be the singular points of the spaces J and ~(J)  and let 

Jl~J-JS-q~-x(q~(J)S), ~(J)2~-q~(J)-q~(J)L Then the restriction map  ~#: Jl->q~(J).z is a 

holomorphic mapping  between complex manifolds of dimension n -  1, and is fur thermore 

nondegenerate  somewhere because ~: J~q;(J) is surjective to begin with. Let  xEJ 1 be a 

point  at  which the Jacobian  determinant  of q# is nonzero, and let y =q#(x). Now choose 

coordinate functions {zl, ..., zn_l, w} of M 1 centered a t  x and coordinate functions 

{u I . . . . .  u~_ 1, v) of M~ centered at  y such tha t  locally J~={w=O} and ~ ( J ) 2 = { v = 0 } ,  

Relat ive to these coordinate functions, let the components  of ~# be {/l(Z, w) ..... /n_l(z, w), 
g(z, w)}, where we have wri t ten z = (z x .. . . .  Z~_l). Now along J (and near x), the Jaeobian  

de terminant  of {/1 .. . . .  /~-1, g.~ is zero. Thus  at  all points of the form (z, 0), we have 

det  I ] Og 
= 0 ,  

where ~;he row of zeros is due to the fact  t ha t  dcf((~/~z~)(O))=~j a~j(~/Suj)(O) for i =1  . . . . .  

n - 1. Since the Jaeobian  determinant  of ~# is nonzero along J1 near x, det  [(O//Sz) (z, 0)]=~0 

for all z in a small neighborhood B of 0. Hence (Sg/aw)(z, 0 ) ~ 0  for all z in B. F rom the 

well-known fact  in one complex variable, we deduce the existence of an integer k, k ~> 2, such 

tha t  for each fixed z in B, the mapping  w~-->g(z, w) is k to  1. This implies t ha t  for some 

open set W of M 1 containing x, ~0: W - J  -+ ~(W) - ~ ( J )  is a k to I map.  This contradicts 

the fact  established above tha t  ~ is biholomorphic on a dense open subset of M 1. Thus J 

mus t  be empty  and ~0 is biholomorphic on all of M 1. Q.E.D.  

Proo] o] Theorem C. Given M = M 1 • M2, where dim M~ >~ 1 for ~ = l, 2. Suppose M 

has a K~hler metric of nonnegat ive bisectional curvature.  Since M is compact  and simply 

connected, M splits holomorphieally and isometrically into Q1 • --. x Qs, where each Q~ is 

a simply connected compact  K~hler manifold such t h a t  H~(Q~, Z ) ~  Z for each i. We m a y  
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assume t h a t  the  K~hler  form o~ of Qi is the  posi t ive  genera tor  of H2(Q~, Z), L e t  s~: M-+Q~ 
be the  na tu r a l  project ion;  z~w~ will hencefor th  be a b b r e v i a t e d  to  ~o~. Thus  

H2(M, R) = R[oh] O ... (~R[(o~]. (2) 

Le t  p~: M~M~ be the  na tu ra l  p ro jec t ion  for c~ = 1, 2. Then  

He(M, R) =p~H2(Ms, R) * 2 | H (M2, R). (3) 

After  re -number ing  if necessary,  we m a y  assume t h a t  for an  integer  u, 1 ~<u ~<s, 

p~H~(M, R) ~ R[ah] *D ... @R[oJ=]. (4) 

This expression m a y  be assumed to be irredundant in the  sense t h a t  ff a n y  one fac tor  

Z[eoj] (1 47" ~<u) is de le ted  from (4), the  inclusion will no longer be val id.  Le t  d im M s  =m(~)  

for ~ = l ,  2 and  let  d im Qi =q( i )  for i = 1 . . . . .  S.  W e  claim t h a t  q(1) + ... +q(u) =re ( l ) .  Indeed ,  

let  ~1 be the  Ki~hler form of some K/~hler met r ic  on M 1 and  let  * u p1[~1] = Xj=l aj[oj], 
where each qj E R. Rais ing  bo th  sides to  the  power  re(l) ,  we ge t  

/ u \ rn(1) 

where t he  left  i nequa l i t y  is due to  the  in jec t iv i ty  of p~ on cohomology.  A t  the  same t ime,  

w~ (~ = 0  for  each i = 1 . . . .  , s, so t h a t  

u ~q(1)+...+q(u)+l 

: o .  

Thus  re( l )  ~<q(1) + ... +q(u). Suppose  s t r ic t  i nequa l i t y  holds.  An  e l emen ta ry  vec tor  space 

a r g u m e n t  using the  i r r edundancy  of (4) shows t h a t  there  exists  an  [~7] Ep~HS(M1, R) such 

t h a t  [~?] =X~%z hi[co j] and  each bj~=0. Then 

F ] [~]~(~)+'"+~(~] = (X bJ[~s]) ~(~)+'''+~(~)= Co H b](J)co] ~ + O, 
./ Li=1 J 

r l j = l  denotes  ex ter ior  p roduc t  and  c o denotes  the  p roduc t  of b inomial  where the  p roduc t  J=~ 

coefficients: 

q(J) E q(J) 
]=1  j = l  

CO ~ u - 1  u - 2  

J= j . . . .  

qO)+q(2)).q(1) 
(5) 
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Since ~ is a form o n  M 1 and  d im M 1 = r e ( l ) ,  f rom the  hypothes i s  t h a t  re( l )  <q(1) + ... +q(u) 

we deduce ~q(1)+'"+q(u)=o. This is a cont radic t ion .  Thus m(1)=q(1)+. . .+q(u)and u<s.  

Similar ly ,  there  is a subset  {~(1), ..., a(k)} of {1 . . . . .  s} such t h a t  

p*H2(M2, R) ~ R[o~(1)] G ... | (6) 

and  such t h a t  th is  inclusion is i r r edundan t .  I n  the  same way,  we can prove  m ( 2 ) =  

q(c~(1)) + ... § W e  now claim t h a t  in fac t  {~(1) . . . . .  ~(k)} = { u §  1 . . . . .  s}, so t h a t  

p*H~(M2, It)  c R[e~u+l] ~ ... OR[cos]. (7) 

To prove  this,  suppose ~(1)E (1 . . . . .  u}; for definiteness,  let  ~ (1 )=  1. Then  

q(1) + ... +q(s)  = m(1) + m(2) = {q(1) + ... +q(u)} + {q(1) +q(~(2)) + ... §  

q(u + 1) + ... +q(s) = q(1) + q(~(2)) + ... +q(o~(k)) 

{~(2) . . . . .  ~(k)} # {~ + 1,..., ~}. 

F r o m  (4) and  (6), we conclude 

p~H'2(M1, R)Gp~H2(M2, R)_~ R[~Ol](~ ... (~R[o)s], 

which cont rad ic t s  (3). S imi la r ly  no ~(i) can belong to {1 . . . . .  u}. Therefore  {~(1) . . . . .  ~(k)}~ 

{u + 1 . . . . .  s),  which proves  (7). Compar ing  (4), (7) and  (2), (3), we obtain:  

p~H2(M~, R) = R[(o~] @ ... | 
(S) 

p~H2(M2, R) = R[(o~+l] @ ... | 

Now fix yoEM2, and  define i1: MI-~-MlxM~=-M b y  i l(x)=(x, Yo). Also le t  g ' :  M ~  

Q1 x ... xQs--->Q1 x ... xQ~ be the  na tu r a l  p ro jec t ion  (z l  . . . . .  ~ ) .  Le t  9:M1--->Q1 x ... xQu be 

the  composi te  of the  following maps:  

i 1 ~ '  
M 1 ~ M 1 x . M  2 =~ M =- Q1 x . . .  x Qs "Q1 x . . .  x Qu. 

Similar ly ,  let  ~: Q1 • "" • Qu-->M1 be the  composi te  of the  following maps:  

Q1 x .. .  x Q~ "Qx x ... x Qs ~- M-=  M 1 x M2 791 ' M1 

where j '  is defined b y  fixing qs E Qj (j = u § 1 . . . . .  s) and  let  j'(z 1 ..... zu) = (zl ..... zu, q,+l ..... qs). 

W e  claim YJg: M I ~ M 1  is a holomorphic  au tomorph i sm.  To see this,  le t  ~ be the  Ki~hler 

5 -  812901 A c t a  m a t h e m a t i c a  147. Impr im~ le 11 Decembr6 1981 



66 H. W~ 

form of some K~hler metric on M 1 and let * u P : [ s  aj[cgj], where a j E R  for all j =  

1 . . . . .  u (see (8)). Raising both  sides to the power re(l) =q(1) + ... +q(u), we get 

where c o is as in (5). Since ~ m a ) ~ 0  and since p~ is injective on cohomology, the left side is 

nonzero. This implies a j ~ 0  for each ?'. Now g2 is a positive form on M :  and  1~ 1 is a holo- 

morphic  map,  so p~ s is positive semi-definite on M. Since each e% is positive semi-definite 

on M, we deduce f rom [p~s = [ ~ j  ajo~j] t ha t  each aj>~0. Hence a~>0  V?'. I t  follows t h a t  

each ajeoj is the K~hler form of some Ki~hler metric on Qj and tha t  co =-aleo ~ + ... +aueO ~ is 

the K~hler form of some K/~hler metric on Q: •  • Q~. Observe also tha t  the  composite 

mapping  M1 ~' *M1 •  " ' ,  M :  given by  x~+(x, yo)~-->x is the ident i ty  so tha t  '* * ~1 pl  = 

H~(M1, R ) ~ H ~ ( M : ,  Z) is the identity.  I n  view of (8), i~ [o ]= i~p~[~]=[s  Combining 

these remarks we see tha t  ~*[w] = [s In  an entirely analogous manner ,  y~*[s = [col. Al- 

together,  (~0~)*[s By  L e m m a  2, ~ is biholomorphie as claimed. Consequently 

~: M:->Q1 • ... • Qu is an injective holomorphic mapping  between compact  complex mani-  

folds of the same dimension. Since ~ is automat ical ly  onto under  the circumstance, ~ is it- 

self biholomorphic. 

Wi th  the  same argument ,  one shows t h a t  Me and Qu+~ • ... • Q~ are biholomorphic.  

Since M is holomorphical ly isometric to (Q: • ... • Q~)• (Qu+: • ... • Q~), M is also holo- 

morphieally isometric to  M :  • M~. Q.E.D. 

Section 3 

We now prove Theorem I). Since M is s imply connected by  assumption,  the theorem 

of [HSW] implies t h a t  M is holomorphieally isometric to Q: • • Qs where the nota t ion 

will be as in the proof of Theorem C in the preceding section. I n  particular, we recall 

H2(M, R) = R[c,91] Q ... 9R[eos], (2) 

Proo] o/ (A). Le t  L be a quasi-positive line bundle on M and let c:(L)=~=la,[cg,], 

a, ER. Le t  qb be a quasi-positive real (1, 1)-form representing c:(L), and suppose qP is posi- 

tive definite at  x = (Xl . . . . .  xs) E Q: • ... • Qs ~ M.  Since M is algebraic by  [HSW], so is each 

Q,. Le t  C be a curve in Q: th rough  xl; we m a y  identify C with (C, x~ .. . . .  x s ) c M .  Then 

o< f c O =  fcCl (L)=  f ca lco l=a l" (Vo lume  of C). 

This shows a 1 >0 .  Similarly a~ > 0  Vi. Thus Cl(L ) = [ ~  a,og~] and c:(L) is positive. Q.E.D. 
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Proo/ o/ (B). Let H be a hypersurfaee in M; it defines a holomorphic bundle whose 

Chern class we simply denote by  cl(H ). I t  suffices to show tha t  el(H ) contains a positive 

real (1,1)-form. Using (2) again, we write el(H ) = ~=1 a~[cos], a sER. To prove a s>0 Vi, let 

h~ be a hypersurface in Qs whose homology class [hs] is the Poincar6 dual of ~os in Ql, and let 

H s  - Q1 x ... x Q~-I x h~ x Q~+I x ... x Q~. 

Then Hs is a hypersurface in M whose homology class [Hs] is the Poincar5 dual of eo~ in M. 

From (2) we obtain 
H2,~_~(M, R) = R[HI] |  | R[H~], 

where n =d im M. Since cl(H ) is the Poincar~ dual of [HI, we also have 

[H] = ~ a~[H~]. 
S=l 

Let C be a curve in Qt passing through a smooth point xl E h~ such tha t  C has no com- 

ponent lying in hi; such a curve can be constructed by  standard procedures. Then the inter- 

section number [C] o [hl] must  be positive because the subvarieties C and h 1satisfy C (~ h I ~: @ 

(cf. [Grill, pp. 63-64). I f  we identify C with the curve (C, x~ .. . .  , xs) of M, where each x~ 

(j >~ 2) is an arbi trary but  fixed point in Q j, then for the same reason, [C] o [HI > 0. Thus 

O < [C]o[H] = [C]o[~ a~Hs] = al[C]o[hl]. 
i 

Therefore a 1 > 0. The same proof now shows aj > 0 for each j. Q.E.D. 

We wish to extract  a more general s ta tement  from the preceding proof. Consider the 

following condition on a compact complex manifold N: 

Each nonzero e//ective divisor in N de/ines a positive holomorphic line bundle in N. (9) 

Now a moment ' s  reflection shows tha t  the reasoning in the proof of (B) also proves 

LEMMA 3. I / N  is the direet product o/a/ ini te  number o/algebraic mani/oIds ~V 1 X .. .  X ~ s  

and H2(Ni, R) m R / o r  each i, then N has property (9). 

The importance of the condition (9) stems part ly  from the following theorem of Grauert  

[G]: I f  a nonsingular hypersufface N in a complex manifold M has the property (9), then N 

is an exceptional analytic set iff N has a negative normal bundle. 

Proo/ o] (D). By  assumption, Ha(M, R ) = R .  Let  N be a nonsingular hypersurface. 

First assume dim M>~4. By par t  (B), the line bundle defined by N has positive Chern 
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class. The Lefschetz hyperplane theorem (cf. [Bo]) then implies tha t  He(N, Z) ~H2(M, Z) 

Z. By Lemma 3, N has property (9). I f  N is exceptional, the above-cited theorem of Grauert  

would imply that  N has a negative normal bundle ~; this means c1(~ ) has a representative 

real (1,1)-form ~1 which is negative definite. On the other hand, ~ is a quotient bundle of 

the restriction of the holomorphic tangent bundle T M  to N. Since the bisectional curvature 

is nonnegative, TM has nonnegative curvature in the sense of Griffiths [Gr] and hence its 

quotient bundle ~ also has nonnegative curvature. Thus c1(~ ) can also be represented by  

a real (1,1)-form ~2 which is positive semi-definite. However, on an algebraic manifold 

this situation of representing the same cohomology class c1(~) by both a negative definite 

form ~1 and a positive semidefinite form ~2 is impossible: take any curve C on M, then 

Thus N is not exceptional. 

I f  M has dimension 2, then every nonsingular hypersurface N in M is a R.iemann 

surface which obviously satisfies (9). Thus the preceding proof also applies. Q.E.D. 

Remark. Assertion (D) of Theorem D is still expected to be valid when dim M=3, 

but  the preceding proof completely breaks down in this case. For instance, let M=PaC; 

then any nonsingular cubic surface N in PsC contains six exceptional curves which of 

course never give rise to positive line bundles on N ([GrH], p. 480 ff.). Thus there is no way 

to apply the above theorem of Grauert  to conclude tha t  N is not exceptional. 

Proo/ o/ (C). Let E be a nonsingular divisor of M which can be blown down to a non- 

singular submanifold S of dimension k, 0 ~< k ~ dim M - 2. Then E is fibred over S with 

fibre P - P n _ r _ l  C. The normal bundle ~ of E restricted to each fibre P is just the universal 

(tautological) line bundle of P (cf. [GrH], p. 607). Write L for the homology class in P 

defined by a complex line. From the well-known facts about the universal bundle, we have 

~L c ( ~ ) =  - 1 .  On the other hand, ~ is a quotient bundle of the nonnegative holomorphie 

vector bundle TM [E and is hence nonnegative; therefore ~L c(~)>~0. Contradiction. 
Q.E.D. 

Section 4 

We finally prove Theorem E. Before giving the proof, we mention an open problem. 

Because of the theorem of Mori ([M]) we now know tha t  among all compact irreducible 

Hermit ian symmetric spaces, only complex projective spaces have a positive tangent  

bundle. However, every compact irreducible Hermit ian symmetric space S is known to be 
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simply connected, satisfies H~(S, Z ) ~  Z, and has positive A n T S  (n =d im S and T S  is the 

holomorphic tangent  bundle of S). The open problem is to determine the smallest such 

integer k in terms of the rank of S, especially when S is a complex Grassmannian. 

Proof of Theorem E. First observe tha t  for all integers k such tha t  1 <~k<~n-1 

(n = dim M), 
A ~ T M  quasi-positive ~/~+~ T M  quasi-positive. (10) 

By assumption and (10), M has a quasi-positive / ~ T M  and hence quasi-positive Ricei 

curvature. By par t  (A) of Theorem B, M is simply connected and h2'~ I f  we can 

prove hl . l (M)= 1, then H~(M, R ) ~ R .  The universal coefficient theorem for cohomology 

then implies H~(M, Z ) ~  Z. 

To show hLI (M)=I ,  it suffices to show every harmonic (1,1)-form ~ is a constant 

multiple of the K/~hler form ~. Let  dim M = 2m and let /~  T M  be quasi-positive (the case 

where dim M = 2 m  + 1 can be handled the same way). Notation and assumption as in 

( ~- ) of Section 1 in [HSW], we consider the restriction of the function F(~) to an open sub- 

set W of M where the curvature of A ~ T M  is positive, gecall  tha t  for nonnegative bisec- 

tional curvature, we always have F ( ~ ) - 0  and ~ is parallel (Lelnma 1 of [HSW]). Fix an 

x E W and it will be understood tha t  the following discussion takes place entirely in the 

tangent  space M z. We claim: tn* =~22, =. . .  =~(2,n)(e~)*. To prove ~1" =~2~*, for instance, 

if Rn,2~,>0 , then the desired equality would follow directly from F(~)=0  (see ( ~ )  of 

[HSW]). Thus assume R n , ~ ,  =0.  Let  Sx be the subset of {3, 4, ..., 2m} such that  ]~S~ iff 

Rn , z ,  >0.  Sx has at  least m elements for the reason that ,  if not, then {3 ..... 2 m } - S 1  

would contain at  least m - 1  elements which may  be assumed to be { m + 2  ..... 2m} for 

definiteness. Then by the definition of S~, 

Rll*  22* -~ Rl l*  (m+2)(m+2)* -~ ... -~ R]I* (2m)(2m)* = 0, 

and this contradicts the positivity of Am T M  at x. Similarly if S 2 is the subset of 

{3, 4 ... . .  2m} such tha t  ]ES 2 if R2~,jj,>0 , then S 2 also has at  least m elements. Since 

{3, 4 ..... 2m} contains only 2 m - 2  elements, S 1 N S~=~O; let iES  1 ~ S 2. Then Rn ,  i i ,>0  

and R2t, i~, >0.  Again it follows from Y(~)=0 tha t  these inequalities force the equalities 

~ n * = ~ *  and ~22, =~n*. Thus ~i~*=~2,~*. In  the same way, ~11,=~z, for all j = 2  ....  ,2m. 

Now let a(x) be the common value of {~n . . . . . .  ~(em)(2m)*} at  x, xE W. Then ~=ct~o on 

W, where ~o is the K/s form. Since both ~ and (o are parallel, a must  be a constant. 

With this ~, consider the globally defined parallel form (~ - a~o) on M; (~ - a~o) vanishes on 

W, so being parallel, it vanishes identically. Thus $=a~o on M. Q.E.D. 
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