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This paper is a sequel to the preceding paper [HSW]. This study of compact Kahler
manifolds of nonnegative bisectional curvature was inspired by the recent solution of the
Frankel conjecture by S. Mori ({M]) in a general algebraic setting, and subsequently by
Siu and Yau {[SY]) in the special context of Kahler geometry. With the case of positive
bisectional curvature out of the way, a general understanding of the case of nonnegative
bisectional curvature is naturally the next order of business. For complex surfaces, the
work of Howard and Smyth ([HS]) achieves a complete classification. In higher dimen-
sions, the main conclusion of these two papers is that the study of compact Kéahler manifolds
of nonnegative bisectional curvature can be essentially reduced to the special case where
simple connectivity and the isomorphism H* M, Z)~7 are in addition assumed (the
theorem of [HSW] and Theorem C below), and that with a mild positivity assumption
these two desirable properties would follow in any case (Theorem E below). We begin by

listing the main results; their proofs will be given in subsequent sections.

THEOREM A. Let M be an n-dimensional compact Kihler manifold with nonnegative
Ricer curvature. If the maximum rank of the Ricci tensor on M is n—k, then:

(A) WO M)y=0 for p=k-+1, ..., n (R*-Y{ M) denotes the dimension of the space of harmonic
(p, g)-forms). :

(B) RL( MY <k, and h1-O(M) =0 iff (M) is finite.

(C) If in addition the bisectional curvature is nonnegalive, then h1-°(M)=Fk.

For the next theorem, recall from [Wu2] that a covariant Hermitian tensor is quast-

positive iff it is positive definite at one point and positive semi-definite everywhere; the
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Chern class of a holomorphic line bundle is quasi-positive iff it contains a quasi-positive real
(1,1)-form. (Throughout this paper, the cohomology ring over C is identified with the
deRham cohomology ring.)

THEOREM B. 4 compact Kihler manifold M satisfying any one of the following condi-
tions is a simply connected algebraic manifold without any nonzero holomorphic g-form for
g=1:

(A) The first Chern class ¢,(M) is quasi-positive.
(B) M has nonnegative bisectional curvature and ht-°(M)=0.
(C) M has nonnegative bisectional curvature and bt (M) =1.

The fact that M is algebraic if ¢;(M) is quasi-positive is a special case of a theorem of
Riemenschneider ([R]); the fact that M is simply connected if c,(M) is quasi-positive
generalizes a theorem of Kobayashi ([K]) who assumed that ¢;(M) is positive. Theorem B
together with the theorem of [HSW1] imply that if the first Chern class of a compact Kéahler
manifold of nonnegative bisectional curvature is quasi-positive, then the manifold possesses

an Einstein-Kahler metric.

TaeorEM C. Let M, M, be simply connected compact manifolds and let M =M, x M,.
Then every Kahler metric with nonnegative bisectional curvature on M is a product of Kihler
metrics on M, and M,. In particular, M possesses a Kihler metric of nonnegative bisectional

curvature iff each of My and M, does.

The assumption of simple-connectivity in the preceding theorem is necessary because
there are many flat complex tori which are biholomorphic but not isometric to a product
of tori. This isometric splitting phenomenon is formally analogous to a theorem of Paul
Yang ([Y]) on compact Kahler manifolds of negative bisectional curvature, but the under-
lying reasons are entirely different. In fact, the proof of Theorem C touches on the can-
cellation problem for complex manifolds (cf. [Br]), but we managed to bypass this difficult
question by systematically exploiting the Kahler assumption on the metric. The proof of
Theorem C also shows that if a product of simply connected compact complex manifolds
is biholomorphic to a Hermitian symmetric space, then so is each factor. The next theorem
uses a few technical concepts: a holomorphic line bundle is quasi-positive iff its Chern
class is; an exceptional analytic set in a complex space is understood in the sense of the
well-known work of Grauert ([G]); blowing-up and blowing-down along a submanifold are

understood in the usual sense of quadratic transforms (cf. [GrH], pp. 602-608).
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THEOREM D. Let M be a simply-connected Kihler manifold of nonnegative bisectional

curvature. Then:

(A) Every quasi-positive holomorphic line bundle on M is positive.

(B) Ewvery holomorphic line bundle on M defined by a nonzero effective divisor is positive.
(C) M cannot be blown-down along a submanifold.

(D) If H¥M,Z)=7 and dim M =3, then M has no exceptional nonsingular hyper-

surfaces.

Conditions (A)-(C) above are usually false and in general quite elusive; it is therefore
remarkable that they should hold for an identifiable sub-collection of complex manifolds.
We conjecture that compact Kahler manifolds of nonnegative bisectional curvature
{(simply-connected or not) are minimal in the sense that if M is such a manifold and 7: M —
M’ is a holomorphic map into a compact complex manifold M’ such that 7 is biholomorphic
outside an analytic subset of M, then 7 is globally biholomorphic on M.

Because of Theorem C and the theorem of [HSW], it is of interest to determine which
of the compact Kéhler manifolds of nonnegative bisectional curvature satisfy z,(M)=1
and H3M, Z)=Z. The following is a general eriterion in terms of the positivity of a certain
exterior power of the holomorphic tangent bundle. A*TM (the kth exterior power of the
holomorphic tangent bundle T M) is said to be quasi-positive iff its curvature (with respect
to the metric induced by the Kéhler metric) is everywhere nonnegative and positive at a
point. In greater detail, let R, w be the curvature tensor of the Kahler metric and let
{e1, ovs €, Tl ooy o e,+ be an orthonormal basis of the tangent space M, at m € M; then the
quasi-positivity of A*TM means that for all m€ M, for all x€ M, and for all orthonormal
bases {e;, Je;} of M, >i1 (R, Jr>>0, and that there exists an m€M at which
strict inequality holds whenever x==0 (cf. [KW] and [S] for more details). With this defini-
tion, T M being quasi-positive means exactly that M has quasi-positive bisectional curvature,
i.e., all bisectional curvatures are nonnegative everywhere and are all positive at a point
(cf. [GrY).

TreorEeM E. Let M be a compact Kdhler manifold with nonnegative bisectional curva-
ture and suppose
AN*TM  is quasi-positive if dim M =2m,
{ N"YT M is quasi-positive if dim M = 2m +1.

Then M is simply connected and H*(M, Z)=7Z.

Simple examples, e.g., P,,€ x P,,C and P, C x P,,,, 0, show that the theorem is optimal

with respect to the positivity assumption. The proof of the theorem itself is nothing more
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than a refinement of the arguments of M. Berger, Bishop, Goldberg and Kobayashi ((BG],
[GK).

As mentioned earlier, the theorem of [HSW] and Theorem C above together suggest a
more detailed study of compact Kéhler manifolds M of nonnegative bisectional curvature
which further satisfy 7,(M)=1 and H*M, Z)=~Z. For these manifolds, the results of [M]
and [SY] point to the strong possibility that the free part of Hy(M, Z) should be integral
multiples of a rational curve in M. To be more precise, this would be the case if one could
show that, under the above assumptions, every energy minimizing map from the Riemann
sphere into M is either holomorphic or anti-holomorphic (see Proposition 1 of [SY]). As-
suming this for the moment, then the method of [SY] would prove a more general state-
ment: a compact Kdhler manifold of quasi-positive bisectional curvature is biholomorphic to
complex projective space; such a result would seem inaccessible to purely algebraic methods.
Returning to those M with sz,(M)=1 and H2%M, Z)~Z, one conjectures (with a bit of
wishful thinking to be sure) that they are all biholomorphie to irreducible Hermitian sym-
metric spaces; furthermore, the rank of the symmetric space should be related to the least
integer k such that A*TM is quasi-positive. In connection with the latter, note the discus-
sion at the beginning of Section 4 below. A more modest conjecture is that these manifolds
are at least rational algebraic manifolds.

This paper has many points of contact with [Wu2]. The author would like to thank
S. Kobayashi, 0. Riemenschneider and J. A. Wolf for supplying the needed technical

information.

Section 1

This section supplies the proofs of Theorems A and B. We shall assume the preliminary
material in Section 1 of [HSW].

Proof of Theorem A. 1f the Ricci tensor of M has maximum rank n-—#%, then the
universal covering of M is holomorphically isometric to M’ x ¢! with <k, where M’ is a
compact Kahler manifold whose Ricei tensor has maximum rank » —k. Consider the finite
covering M*—M guaranteed by the Cheeger—Gromoll theorem such that M* is diffeo-
morphic to My x 7", where T" is an l-dimensional complex torus and My is a compact
Kéhler manifold whose universal covering is M’. Since M has a finite fundamental group,
dim HYM*, R) =dim HY(T", R)=2I<2k. Both M* and M being oriented, Hodge theory
implies that dim HYM, B)=dim HY(M*, R)<2k. Hence AV (M)=14dim HY{(M, R)<kEk.
Moreover, with the same notation, A'%(M) =0« dim H{(M, R) =0« dim HY(M* R) =0«

[ =0 the universal covering of M is the compact manifold M’; this is equivalent to the
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finiteness of 7;(M). Thus part (B) is proved. If in addition the bisectional curvature is non-
negative, then the theorem of [HSW] implies that =Fk. The preceding inequalities then
become equalities and (C) immediately follows. To prove part (A), i.e., the assertion
concerning h” (M), simply note that it is a consequence of Corollary 3 of [KW] together
with the remark in [Wu2} that it suffices to have the positivity of » —k eigenvalues at one

point if all the eigenvalues of the Ricci tensor are everywhere nonnegative. Q.E.D.

Proof of Theorem B. We first recall a weak form of the Atiyah—Singer fixed point
theorem ([AS], (4.6)): If M is a compact complex manifold and @ is a finite group of (holo-
morphic) automorphisms acting on 3, then for each g€@, there is a cohomology class
6, of M such that

2 (— 1) trace (g| H{(M, 0)) =6,[M°), D
b
where O denotes the structure sheaf of M and M? denotes the fixed point set of g in M.

We have the following simple consequence.

LeMmA 1. Let M be a compact complex manifold without any nonzero holomorphic
g-forms for g =1, and let G be a finite group of automorphisms of M. Then every element of G

has a fixed point.

Proof. Indeed, since H'(M, O) is the space of all holomorphic j-forms, the left side of
(1) reduces to 1 by hypothesis. Thus M? is never empty for each g €G. (Note: this argument
is basically not different from the one using the Hirzebruch proportionality principle, of.
e.g. [K], Lemma 1.) Q.E.D.

We now prove part (A) of Theorem B. Let ¢ €¢,(M) be a quasi-positive real (1,1)-
form. By Yau’s solution of Calabi’s conjecture ([Ya]), there is a Kahler metric H on M
whose Ricei form is ¢, Thus H has quasi-positive Ricei curvature. By Theorem A, h¢-9(M) =0
for g1, and 7, (M) is finite. The finite group st,(M) then acts as a group of automorphisms
on the compact universal covering manifold M’ of M. Relative to the pull-back of H to
M’, M’ also has quasi-positive Ricei curvature. Thus aiso 2%%(M")=0 for ¢>1 and by
Lemma 1, each element of 7;(M) must have a fixed point in M. This is possible only if
(M) reduces to the identity, i.e., M is itself simply connected. Finally it was already
pointed out that M is algebraic because of Riemenschneider’s theorem ([R]; see also the
remark at the end of [Wu2)).

To prove part (B), let A:9(M)=0 and let the bisectional curvature of M be non-
negative. Since the first Betti number is zero, Corollary 1 of [HSW] shows that M is simply
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connected; now the theorem of [HSW] shows that M is algebraic and is without nonzero
holomorphic g-forms for g1 (part (B) of that theorem).

Finally to prove part (C), let M have nonnegative bisectional curvature and let
h1(M)=1. Suppose dim M =n. If n=1, then M is biholomorphic to P, by the Gauss—
Bonnet theorem and the classification of compact Riemann surfaces. The theorem is then
obvious in this case. Let now = >1. If bisectional curvature is identically zero, then so is
the curvature tensor. Thus there exist an n-dimensional complex torus 7' and a finite
covering t: T'— M (cf. [Wo], Chapter 3). Then from Hodge theory, ht-1(M) =ht}(T)=(3") >1
(binomial coefficient), a contradiction. Thus the bisectional curvature is positive some-
where, and so is the Ricci form ¢. If w is the Kéhler form of M, then ¢ A"t is every-
where nonnegative and is positive somewhere. Hence [, ¢ A@" *>0. On the other hand,
since hl-1(M) =1, the harmonic component of ¢ is equal to co for some ¢ €R. Thus [, (cw) A
" = [,y o Aw"?, which is positive. This proves ¢>0, so that ¢ is cohomologous to the
positive form cw. The first Chern class of M is therefore positive, and part (C) is now a

consequence of part (A). Q.E.D.

Section 2

This section proves Theorem C, We begin with a useful lemma.

LevwmaA 2. Let o2 M~ M, be a holomorphic map between n-dimensional compact Kdihler
manifolds M, and M, whose Kihler forms w; and w, satisfy fu, wi= [y, ws and ¢*[w,] =
[w1] ([ew;] denotes the cohomology class of w;). Then ¢ ts bikolomorphic.

Proof. Suppose ¢ is everywhere degenerate, i.e., the Jacobian determinant Jp of ¢
is everywhere zero, then ¢*wz=0 so that ¢*[wi]=0. This contradicts ¢*[ws]={wi]==0.
Thus Fp is zero at most on a hypersurface J (possibly disconnected). Since M, and M, are
both compact and ¢ is orientation preserving, a standard argument shows that ¢ must be
onto. It remains to show ¢ is injective. We may assume [y, ol = fu, @3 =1 so that [w]]
and {w?] are the fundamental cohomology classes of M, and M, respectively. Since ¢*[w3] =
[w1], the topological degree of ¢ is equal to 1. Since ¢ is orientation preserving, Sard’s
theorem plus standard algebraic topology show that for all regular values y of ¢ in M,
(i.e., VyEM, —p(J)), ¢~ {y) consists of exactly one point. (This can also be proved without
any algebraic topology by invoking Lemma 2.12 of [Wul].) Thus the restriction ¢: M, —
oY p(J)) - M,—q(J) is a biholomorphic mapping. Note that since ¢(J) is a subvariety of
M, (proper mapping theorem), p~2(p(J)) is a proper subvariety of M, so that M, —g~(p(J))

is open dense in M.
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It J is nonempty, we shall deduce a contradiction. Thus let J be a hypersurface in
M,. Observe that ¢(J) is also of pure dimension n—1 in M, because p*{w,] =[w,] implies
¢* w3 '] =[wi '] which implies that for each branch J' of J,

[ ortprro) - wire)- | oo
") J

Thus @: J->p(J) is a surjective holomorphic mapping between complex spaces of pure
dimension n—1. Let J* and ¢(J)° be the singular points of the spaces J and g(J) and let
Jy=J T —gYp(T)), pJ);=¢(J)—@(J)’. Then the restriction map gy J,—@(J), is a
holomorphic mapping between complex manifolds of dimension »—1, and is furthermore
nondegenerate somewhere because @: J—~@(J) is surjective to begin with. Let x€J; be a
point at which the Jacobian determinant of ¢4 is nonzero, and let y=gg(x). Now choose
coordinate functions {z, ..., 2, ,, w} of M, centered at z and coordinate functions
{4y, .., Up_q, v} of M, centered at y such that locally J,={w=0} and g(J);={v=0}.
Relative to these coordinate functions, let the components of gy be {f,(z, w), ..., f,_1(z, w),
g(2, w)}, where we have written 2=(z,, ..., 2, ;). Now along J (and near x), the Jacobian

determinant of {f,, ..., f,_,, g} is zero. Thus at all points of the form (2, 0), we have

of *
0z *
det | ——————— [=0,
a9
0...0 20

where the row of zeros is due to the fact that de((9/0z;)(0))=>; a,;(0/ou;)(0) for i=1, ...,
n—1. Since the Jacobian determinant of @y is nonzero along J, near z, det [(8f/d2) (z, 0)]==0
for all z in a small neighborhood B of 0. Hence (6g/éw)(z, 0)=0 for all z in B. From the
well-known fact in one complex variable, we deduce the existence of an integer k, k=2, such
that for each fixed z in B, the mapping w>g(z, w) is & to 1. This implies that for some
open set W of M, containing x, p: W —J — (W) —¢(J) is a k to 1 map. This contradicts
the fact established above that ¢ is biholomorphic on a dense open subset of M. Thus J
must be empty and ¢ is biholomorphic on all of M. Q.E.D.

Proof of Theorem C. Given M =M, x M,, where dim M,>1 for a=1, 2. Suppose M
has a Kahler metric of nonnegative bisectional curvature. Since M is compact and simply
connected, M splits holomorphically and isometrically into Q; x ... x @, where each @); is

a simply connected compact Kahler manifold such that H*@;, Z)~Z for each ¢. We may
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assume that the Kéhler form w, of @, is the paositive generator of HXQ,, Z). Let m;: M —~Q,

be the natural projection; 7} w, will henceforth be abbreviated to w;. Thus
H¥M,R) = R{w,]® ... DR[wy]. (2)
Let p,: M~ M, be the natural projection for & =1, 2. Then
HYM, R) = pi{ H¥M,, R)©p; H¥(M,, R). ®3)
After re-numbering if necessary, we may assume that for an integer «, 1 <u <s,
pi HM, R) < R[w,]D ... OR[w,]. (4)

This expression may be assumed to be irredundont in the sense that if any one factor
Z[w;] (1 <j<u)is deleted from (4), the inclusion will no longer be valid. Let dim M, =m(x)
for =1, 2 and let dim @;=¢(7) for i=1, ..., 8. We claim that g(1) + ... + ¢(u) =m(1). Indeed,
let €, be the Kahler form of some Kéhler metric on M, and let pi[Q,]=71a,[w,],
where each ¢,€R. Raising both sides to the power m(1), we get

=1

2 m(l)
0+ Py ™= (Z “1[‘”1]) s

where the left inequality is due to the injectivity of pi on cohomology. At the same time,

i1 =0 for each ¢=1, ..., s, so that

u ay+...+g(w)+1
(Z aj[wj]) =0.

Thus m(1) <q(1)+...4-q(«). Suppose strict inequality holds. An elementary vector space
argument using the irredundancy of (4) shows that there exists an []€pf H*(M,, R) such
that [#]=>7"1 b;[w,] and each b;4+0. Then

j=u
[nq(1)+...+q(u)] — (z bj[wj])Q(1)+"‘+q(u) =¢ [H b}l(j)a)f(b] +0,
J

i=1

where the product [[)z{ denotes exterior product and ¢, denotes the product of binomial

coefficients:
u u—1
2940\ [ 2 904) q(1) +4¢(2)
j=1 j=1
Co= u-1 u—-2 (5)
e\ 2900 ) q(1)
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Since 7 is a form on M, and dim M, =m(1), from the hypothesis that m(1) <q(1)+... +q{u)
we deduce % F*9® =0, This is a contradiction. Thus m(1)=g(1)+...+¢(x) and u <s.
Similarly, there is a subset {«(1), ..., a(k)} of {1, ..., s} such that

p;H2(M2, R) < R[wo:(l)]® @R[wa(k)]f (6)

and such that this inclusion is irredundant. In the same way, we can prove m(2)=
g(a(1)) + ... +g(a(k)). We now claim that in fact {«(1), ..., a(k)} ={u-+1, ..., s}, so that

ps HA (M, RY< Ry 3119 ... ®R[w;]. (7)
To prove this, suppose a(1)€{1, ..., u}; for definiteness, let (1) =1. Then
q(1)+ ... +q(s) =m(1) +m(2) = {g(1) + ... +q(w)} +{g(1) +q(x(2)) + ... +q{x(k))}

=>qu+ 1)+ ... +g(s) = ¢(1) + g(a(2)) + ... +g(alk))
=>{o(2), ., fl)} F={u+1, ..., s}

From (4) and (6), we conclude
PHAM,, R)Dpi HY M, R) & R[0,]@ ... OR[w,],

which contradicts (3). Similarly no «(i) can belong to {1, ..., u}. Therefore {«(1), ..., a(k)}<
{w+1, ..., s}, which proves (7). Comparing (4), (7) and (2), (3), we obtain:

piHY M, R) = R[w;]® ... ®R[w,],
(8)
p;HZ(MZ, R) = R[0,11]D ... ®Rlwy]-
Now fix y,€M,, and define i;: M~ M, x My=M by i,(x)=(x, y,). Also let #': M =
@y X X Q@ x ... x @, be the natural projection (ny, ..., 7,). Let ¢: M@ x... xQ, be

the composite of the following maps:

’

My~ My x My=M=Q, % .. X Qy —r @y X .. X Q.

Similarly, let y: Q, x ... x@,— M, be the composite of the following maps:

o’

le...XQu-—y—*QlX...XQSEMEMIXMzLMl

where j’ is defined by fixing ¢,€Q; (j=u+1, ..., s) and let §'(2,, ..., 2u) = (21, ) Zus Gup1s > Ls)-
We claim yp: M;— M, is a holomorphic automorphism. To see this, let Q be the Kihler

5—812901 Acta mathematica 147. Imprimé le 11 Decembré 1981
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form of some Kihler metric on M, and let py[Q]=>%1 a,[w,], where ¢,€R for all j=

1, ..., u {see (8)). Raising both sides to the power m(1)=g¢(1)+... +q(u), we get
PIQ" ] = [PV A ... A ML,

where ¢, is as in (5). Since Q™V <=0 and since p is injective on cohomology, the left side is
nonzero. This implies ;=0 for each j. Now Q is a positive form on M, and p, is a holo-
morphic map, so pi Q is positive semi-definite on M. Since each ), is positive semi-definite
on M, we deduce from [p{Q]=[>,a;w,] that each a;>0. Hence a,>0 Vj. It follows that
each a,w; is the Kahler form of some Kahler metric on §; and that w =a;w, +... +a,m, is
the Kahler form of some Kéhler metric on @, x ... x@Q,. Observe also that the composite
mapping M, > M, x M, 2> M, given by xr>(x, y,)—> is the identity so that i pi =
H2(M,, Ry~>H%M,,7) is the identity. In view of (8), #1[w]=1; p1[Q]=Q]. Combining
these remarks we see that ¢*[w]=[€2]. In an entirely analogous manner, *[Q]=[w]. Al-
together, (pp)*[Q]=[Q]. By Lemma 2, yp is biholomorphic as claimed. Consequently
@: M, ~>Q, x... x@, is an injective holomorphic mapping between compact complex mani-
folds of the same dimension. Since g is automatically onto under the circumstance, ¢ is it-
self biholomorphie.

With the same argument, one shows that M, and @, x ... x@, are biholomorphic.
Since M is holomorphically isometric to (@ x ... x @) X (@uiq X ... x@;), M is also holo-
morphically isometric to M, x M,. Q.E.D.

Section 3

We now prove Theorem D, Since M is simply connected by assumption, the theorem
of [HSW] implies that M is holomorphically isometric to @, x ... x @, where the notation

will be as in the proof of Theorem C in the preceding section. In particular, we recall
XM, R) = Rl 1D ... DR[wo;]). (2)

Proof of (A). Let L be a quasi-positive line bundle on M and let ¢,(L) = >i_; a,(w;],
a,€ER. Let @ be a quasi-positive real (1, 1)-form representing ¢,(L), and suppose @ is posi-
tive definite at @ =(x,, ..., #,) €Q; X ... x @, =M. Since M is algebraic by [HSW], so is each
Q;. Let C be a curve in @, through x,; we may identify C with (C, z,, ..., x)= M. Then

O<f (D=f cl(L')=f a, @, = &, - (volume of C).
c C C

This shows a,>0. Similarly a,>0 Vi. Thus ¢;(L)=[>, a,w,] and ¢,(L) is positive. Q.E.D.
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Proof of (B). Let H be a hypersurface in M; it defines a holomorphic bundle whose
Chern class we simply denote by ¢,(H). It suffices to show that ¢,(H) contains a positive
real (1,1)-form. Using (2) again, we write ¢,(H)=>}.; a,[w;], a;€R. To prove a,>0 Vi, let
h; be a hypersurface in @, whose homology class {4,] is the Poincaré dual of w, in @,, and let

H,=Q % . x@Qy_y X by XQyyy X oo % Q.

Then H, is a hypersurface in M whose homology class [H ] is the Poincaré dual of w; in M.

From (2) we obtain
Hy (M, R) ~R[H,|® ... DR{H,],
where n=dim M. Since ¢,(H) is the Poincaré dual of [H], we also have
S

[H]= > a;{H)).

i=1

Let C be a curve in @, passing through a smooth point x, €k, such that C' has no com-
ponent lying in A,; such a curve can be constructed by standard procedures. Then the inter-
section number {Clo[k,] must be positive because the subvarieties C'and k, satisfy C N A, + O
(cf. [GrH], pp. 63-64). If we identify C' with the curve (C, x,, ..., z,) of M, where each x;
(§ 2) is an arbitrary but fixed point in @;, then for the same reason, [(Jo[H]>0. Thus

0 <[Clo[H] =[C1o[3 a,H | = a,[Clofh].

Therefore a, >0. The same proof now shows a;>0 for each j. Q.E.D.

We wish to extract a more general statement from the preceding proof. Consider the

following condition on a compact complex manifold N:
Each nonzero effective divisor in N defines a positive holomorphic line bundle in N. (9)
Now a moment’s reflection shows that the reasoning in the proof of (B) also proves

Lemma 3. If N s the direct product of a finite number of algebraic manifolds Ny x ... x N
and H*N;, R) =R for each ¢, then N has property (9).

The importance of the condition (9) stems partly from the following theorem of Grauert
[G]: If a nonsingular hypersurface N in a complex manifold M has the property (9), then N

is an exceptional analytic set iff N has a negative normal bundle.

Proof of (D). By assumption, H¥M, R)=R. Let N be a nonsingular hypersurface.
First assume dim M >4. By part (B), the line bundle defined by N has positive Chern
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class. The Lefschetz hyperplane theorem (cf. [Bo]) then implies that H3(N, Z) = H(M,; Z) =
Z. By Lemma 3, N has property (9). If N is exceptional, the above-cited theorem of Grauert
would imply that N has a negative normal bundle H; this means ¢,( ) has a representative
real (1,1)-form &, which is negative definite. On the other hand, 7 is a quotient bundle of
the restriction of the holomorphic tangent bundle 7'M to N. Since the bisectional curvature
is nonnegative, T'M has nonnegative curvature in the sense of Griffiths [Gr] and hence its
quotient bundle ] also has nonnegative curvature. Thus ¢,(#) can also be represented by
a real (1,1)-form &, which is positive semi-definite. However, on an algebraic manifold
this situation of representing the same cohomology class ¢;( ) by both a negative definite

form &, and a positive semidefinite form &, is impossible: take any curve C on M, then

O<J fzzf Cl(nN)zf §,<0.
c ¢ c

If M has dimension 2, then every nonsingular hypersurface N in M is a Riemann

Thus N is not exceptional.

surface which obviously satisfies (9). Thus the preceding proof also applies. Q.E.D.

Remark. Assertion (D) of Theorem D is still expected to be valid when dim M =3,
but the preceding proof completely breaks down in this case. For instance, let M =P,(;
then any nonsingular cubic surface N in P,C contains six exceptional curves which of
course never give rise to positive line bundles on N ([GrH], p. 480 ff.). Thus there is no way

to apply the above theorem of Grauert to conclude that N is not exceptional.

Proof of (C). Let E be a nonsingular divisor of M which can be blown down to a non-
singular submanifold § of dimension &, 0<k<dim M —2. Then E is fibred over § with
fibre P=P,_,.1C. The normal bundle 7 of E restricted to each fibre P is just the universal
(tautological) line bundle of P (cf. [GrH], p. 607). Write L for the homology class in P
defined by a complex line. From the well-known facts about the universal bundle, we have
Jz ¢(M)= —1. On the other hand, # is a quotient bundle of the nonnegative holomorphic

vector bundle 7'M |, and is hence nonnegative; therefore |, ¢(#)=>0. Contradiction.
Q.E.D.

Section 4

We finally prove Theorem E. Before giving the proof, we mention an open problem.
Because of the theorem of Mori ([M]) we now know that among all compact irreducible
Hermitian symmetric spaces, only complex projective spaces have a positive tangent

bundle. However, every compact irreducible Hermitian symmetric space S is known to be
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simply connected, satisfies H3(S, Z) =7, and has positive A"TS (n=dim S and 7'S is the
holomorphic tangent bundle of 8). The open problem is to determine the smallest such

integer k in terms of the rank of 8, especially when S is a complex Grassmannian.

Proof of Theorem E. First observe that for all integers k such that 1<k<n-—1
(n=dim M),
NeTM quasi-positive = AT M quasi-positive. (10)

By assumption and (10), M has a quasi-positive A"TM and hence quasi-positive Ricei
curvature. By part (A) of Theorem B, M is simply connected and A% (M) =0. If we can
prove hAUY(M)=1, then H*(M, R)=R. The universal coefficient theorem for cohomology
then implies HX(M, Z)=Z.

To show A™1(M)=1, it suffices to show every harmonic {1,1)-form & is a constant
multiple of the Kahler form . Let dim M =2m and let A™TM be quasi-positive (the case
where dim M =2m+1 can be handled the same way). Notation and assumption as in
() of Section 1 in [HSW], we consider the restriction of the function F(£) to an open sub-
set W of M where the curvature of A™T M is positive. Recall that for nonnegative bisec-
tional curvature, we always have F(£)=0 and ¢ is parallel (Lemma 1 of [HSW]). Fix an
x€W and it will be understood that the following discussion takes place entirely in the
tangent space M, We claim: &« =& = ... =&my@ms. To prove &« =E,y0s, for instance,
if Rijxg >0, then the desired equality would follow directly from F(£)=0 (see (%) of
[HSW1]). Thus assume Ryj. .0 =0. Let S; be the subset of {3, 4, ..., 2m} such that j€8, iff
Ryje;x>0. 8; has at least m elements for the reason that, if not, then {3, ..., 2m} -8,
would contain at least m—1 elements which may be assumed to be {m-+2, ..., 2m} for
definiteness. Then by the definition of S,

Ryyrgor + Biyemsgymi e + oo + By my@mx = 0,

and this contradicts the positivity of A™TM at z. Similarly if S, is the subset of
{3,4, ...,2m} such that j€S, if Ry ;x>0, then 8, also has at least m elements. Since
{3, 4, ..., 2m} contains only 2m —2 elements, 8; N S,==D; let 1€S;, N S,. Then Ryjxjp >0
and Ryge;+>0. Again it follows from F(£)=0 that these inequalities force the equalities
E1r=E&;» and Eyps =&y« Thus &;x =&y, In the same way, &1+ =&« for all j=2, ..., 2m.

Now let a(x) be the common value of {&y+, ..., Eemy@ms} ab @, x€ W. Then £=ow on
W, where  is the Kéhler form. Since both & and w are parallel, « must be a constant.
With this o, consider the globally defined parallel form (£ —aw) on M; (£ — «w) vanishes on
W, so being parallel, it vanishes identically. Thus & =aw on M. Q.E.D.
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