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Introduction 

By the classical result of Hopf [12], the geodesic flow on a surface of constant negative 

curvature and finite area is ergodic. In  the case of a compact surface the flow has sub- 

sequently been shown to be Anosov [2], K [17], and Bernoulli [15]. By the work of Bowen 

and Ruelle [5] any Anosov flow on a compact manifold can be represented as a special 

flow over a Markov shift of finite type, with a tI61der continuous height function. Rather 

[16] showed that  any such special flow which is K is also Bernoulli. 

In  this paper we make an explicit geometrical construction of a symbolic dynamics 

for the geodesic flow on a surface of constant negative curvature and finite area. The 

construction involves the geometry of the surface and the structure of its fundamental 

group. The geodesic flow is shown to be a quotient of a special flow over a Markov shift, 

by a continuous map which is one--one except on a set of the first category. For a compact 

surface the height function is HSldcr. 

The states for the Markov shift are generators of the fundamental group F, and the 

admissible sequences are determined by the relations among the generators. If we lift 

the surface to its universal covering space the unit disc D, then admissible sequences 

correspond to geodesics in D which pass close to a fixed central fundamental region for 

F, in a sense made precise in w 3. The height function h corresponds to the time a geodesic 

takes to cross R, with a suitable convention if the geodesic is close to R but does not cut R. 

The idea of our construction comes from three different sources. In  [3] Artin obtained 

a representation of geodesics in the Poincard upper half plane H (these geodesics are of 

course semi-circles centred on and orthogonal to the real axis) as doubly infinite sequences 

of positive integers, by juxtaposing the continued fraction expansions of their endpoints; 

two geodesics are then conjugate under the action of GL (2, Z) on H if and only if the 

corresponding sequences are shift equivalent. 

The second source is Hedlund's paper [11]. In  [14] Nielsen gave a symbolic reprcsenta- 
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tion of points on S 1 as semi-infinite sequences of generators of the fundamental  group 1~1 

for a surface whose fundamental  region R 1 is a symmetrical  4g-sided polygon; in [11] Hed- 

lund represented geodesics in D by  juxtaposing the Nielsen expansions of their endpoints, 

showed geodesics are conjugate under F 1 if and only if the corresponding sequences are 

shift equivalent, and used this to prove ergodicity of the geodesic flow on D/F 1. In  [10] 

he showed tha t  Artin's coding could be used to obtain similar results for H/SL (2, Z). 

Finally in [13] Morse coded geodesics y in D as sequences of generators in F1 by an 

entirely different method: he observed tha t  to each side of the net 741 of images of sides of 

/~1 under F 1 is associated a unique generator of F1, and assigned to y the sequence of 

generators which label the successive sides of Tll crossed by  ?. In  order to obtain a one-one 

correspondence between sequences with certain well-defined admissibility rules and geo- 

desics this coding needs to be slightly modified when 7 passes too near to a vertex of ~1 

and this point occupies a large part  of [13]. The admissibility rules which are obtained 

are more or less identical with those of Hedlund. 

In  view of these results, and the facts about representing a general Anosov flow as a 

special flow over a Markov shift, it is natural  to ask whether the ideas of Morse and Hed- 

lund can be combined to give a representation of the geodesic flow as a special flow over 

some Markov shift whose symbols are generators of I ~ and where the height function 

measures the time to cross the fundamental  region R. This is precisely what  we have done 

in this paper. Adler and Flat to (private communication) have obtained similar results 

in the SL (2, Z) and F1 cases above. 

The symbolic dynamics we use derives from the results of [6], in which the action of 

the fundamental  group on S 1 is shown to be orbit equivalent to a certain Markov map 

/ r  of finite type acting on $1; tha t  is, x =gy, x, yES  1, gEF~/~(x)  =/~(y) for some n, m~>0. 

We copy Artin and Hcdlund in representing geodesics in D by juxtaposing the/-expansions 

of their endpoints, and then show tha t  these sequences have a geometrical interpretation 

analogous to Morse's idea of listing successive crossings of the fundamental  region R. 

Finally we derive the representation of the geodesic flow on D/F as a quotient of a special 

flow over the natural  extension o f / r .  

To understand the constructions the reader will need to be familiar with the maps 

/ r  of [6]. In  [6] we first cons t ruc ted / r  for groups F whose fundamental  region R could 

be chosen to satisfy a certain symmetry  condition (*), and then showed tha t  any  F could 

be deformed by  a quasi-conformal deformation to a group F '  satisfying (*). We then carried 

over the definition of/r"  using the boundary homcomorphism and constructed the general 

/r .  We shall adopt  the same procedure here, so tha t  in the main par t  of the work, w 1-w 4, 

we shall only be concerned with groups whose fundamental  region satisfies (*). 
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In  w 1 we review briefly the definition and properties o f / r  and then determine which 

sequences of generators correspond to admissible/-expansions.  In  w 2 we describe the F 

action on S i in terms of sequences and show how to juxtapose sequences to represent 

certain pairs of points on S 1. In  fact geodesics are conjugate under F if and only if the 

corresponding sequences are shift equivalent. 

In  w 3 we discuss the relation of this representation to the listing of successive crossings 

of R and in w 4 derive the symbolic representation of the flow. Finally in w 5 we show how 

to carry these results over to the general case using quasi-conformal maps. 

We shall keep to the notation of [6]. In  particular, when describing arcs on S i, we 

always label in an anti-clockwise direction, so tha t  PQ means the points lying between 

P and Q moving anti-clockwise from P to Q. We write (PQ), [PQ], etc., to distinguish 

open and closed arcs on S i. 

Throughout, I" is a finitely generated Yuchsian group of the first kind acting in the 

unit disc D; that  is, a discrete group of linear fractional transformations z~-~-(az +b)/(cz +d), 

ad-bc = 1, which map D to itself and such tha t  there are points on S ~ with dense orbits. 

The corresponding surface D/D is a Riemann surface of constant negative curvature and 

finite area; we are concerned with the geodesic flow on the unit tangent bundle M of D/F. 

l" has a fundamental  region R in D which can be taken to be a polygon bounded by a 

finite number  of circular arcs orthogonal to S i. A vertex of R lying on S i is called a cusp. 

D/F is compact if and only if R has no cusps. Geodesics on D/F are the projections of 

circular arcs in D orthogonal to S i. 

I f  gel",  g(z)=(az+b)/(cz+d), then the circle ]cz+d[ = 1 is called the isometric circle 

of g, because [g'(z)[ >1  inside this circle and [g'(z)[ < I  outside. The isometric circle is 

always a circle orthogonal to S i. 

I suspect the idea tha t  something like the ideas of this paper  might work has occurred 

to a number  of people. In  particular, see the remark at  the end of [10]. Certainly it had to 

both Adler and Moser, and I would like to thank both for the benefit of useful conversations. 

w 1. Symbolic representation of points on S i 

Let  us recall briefly the constructions made in [6]. As explained in the introduction, 

F is a finitely generated Fuchsian group of the first kind acting in the unit disc D. F has 

a fundamental  region R which consists of a polygon with a finite number  of sides (s~}~-i; 

these sides extend to circular arcs C(s~) orthogonal to S i. Each side st of R is identified 

with another side A(s~) by an element gi=g(s~)ED; the set F0--(g~}~l is a symmetrical  

set of generators for r .  The images of the sides (s~} under F form a net ~ in D. We will 

say R satisfies property (*) if: 
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(i) C(s) is the  isometric circle of s, and  

(ii) C(s) lies complete ly  in ~ .  

Throughout w 1-w 4, we shall assume R satis/ies (*) and moreover that R is not a triangle 

and does not have elliptic vertices o/order 2. (See [6].) 

A typical  fundamenta l  region is shown in Fig. 1. (See also Fig. 1 of [6].) 

We label the  sides of R, s~, s~ . . . . .  s~ in anti-clockwise order; the  ver tex  v~ is the  inter-  

section of ss-1 and  s~ (with s o =s~). C(st) meets  S ~ in P~, Qs+l, so t h a t  the  order of points  

along C(ss) is Ps, vt, Vl+l, Qt+l- 

/ = / r :  S L + S i  is defined by / r (X)  =gs(x), xE[PsPt+l). In  [6] we showed t h a t / r  has the  

following properties:  

(a) Excep t  for a finite n u m b e r  of pairs of points  x, yES1: 

x = g y ,  x, y E S  1, gE P  ~.3n,  m>~O such tha t  /=(x)=/m(y). 

(b) / is Markov  in the following sense: 

I There  is a finite or countable  par t i t ion  of S 1 into intervals  { s}s=l such t h a t  

(Mi) / is s tr ict ly monotonic  on each Is  and extends  to  a C 2 funct ion [~ on _rt, 

(Mii)/(Ik) N I j ~ O  ~/(Ik)~_ Ij ,  Y], It, 

(Miii) ( J~0 / r ( I~)~- Ik ,  V], It, 

(Miv) I f / s  = [at, bs] then  (L(as), L(bs)}~ is finite. 

Moreover  the  par t i t ion  {Is} is finite if and  only if D/F is compact ,  or equivalent ly  if 

R has no cusps. 

(c) (Ei) I f  there  are no cusps, then  3N > 0 such t h a t  

inf [ (x)] > r > 
x e S  1 

(Eii) A cusp of R is a periodic point  for / with der ivat ive  one. There is a sub- 

set K ~ S  1, consisting of a union of intervals  Is, so t h a t  if /K(x)=/~(X)(x), n(x)= 

rain { n > 0 : / n ( x ) E K } ,  x E K ,  is the  first  r e tu rn  m a p  induced on K,  then  3 N  such t h a t  

infxEK I > r  > 1. 
To each point  x E S  1 we can associate a so-ca l led / -expans ion  (cf. [1]). The usual w a y  

to do this is to write X=io i l i  2 ... if In(x)EI~, n = 0 ,  l ,  2 . . . . .  (There is a slight ambigu i ty  

a t  the  endpoints  which we shall clarify below.) B y  (Mii) the  rule determining which se- 

quences ioili  ~ ... can occur is of finite type  [8]; name ly  iri s occurs i f f / ( i r ) D  i~. 

For  our purposes it is be t te r  to label points  using the generators  F 0 of F, so we replace 

the  par t i t ion {it} by  {[PtPs+l] = [gs]}. The  rules determining which sequences are admis-  
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sible is no longer of finite type.  We say a sequence e1% ... enEF~ is admissible if 

[.J~=l/-r([e~l])~=O. Let  ~+ =(e1% ... er : eke +l ... e~+, is admissible Vie, leN}.  Define 

~: Z+-~S  1 by  g(ele ~ ...)-~ [') r~=l ]-r([e~l]). The intersection is non-empty  since this is t rue 

of all finite intersections and it contains at  mos t  one point  because of the  expanding condi- 

t ion (c). We discuss the topology of Z + and cont inui ty  of ~ in w 4. 

To see which sequences e1% ... belong to  Z+, it is enough to  find those sequences 

el e2... em for which [7 ~= 1/-r((er 1)) ~ O ,  where (e~) = I n t  [e~]. 

To state the rules we need some more terminology.  Start ing at a vertex v~ with the 

side s~ and generator  g~, we get  a cycle of vertices v~ = w  1 . . . . .  wp and corresponding generators 

g~ = h 1 ..... h~. ([9] Sec. 26 and [6] L e m m a  2.4.) We say the anti-clockwise sequence h~ 1 h~l ... h~ 1 

is in left-hand (15) cyclic order. Similarly, s tart ing at  v~+ 1 with side s~ and generator  g~ 

we get  a cycle v~+l=Zl, z 2 . . . . .  zq and generators g~=]l, ]2 . . . . .  jq. We say the clockwise 

sequence ]~1]~1 ... is in r ight-hand (R) cyclic order. There exist integers #, v such tha t  

(h~lh~l  ... h~X)~,= (];~]~1 ... ]~1)~ =1 .  p #  and qu represent the number  of sides of Tl which 

meet  a t  the vertices v~, v~+ 1 respectively, and therefore by  (*), p # = 2 1 ,  q v = 2 k  are even 

(see Fig. 1). We call L cycles of lengths l - 1 ,  l, l +  1, D-(defieient) , / /-(half) ,  and S-(super- 

fluous) L cycles respectively, and similarly for R cycles of lengths k - 1 ,  ]c and ]c + 1. A 

cycle of length 21 or 2/c is called full. Notice tha t  a full cycle is equal to the ident i ty  in F. 

I f  h =g~, write h+ =g~+l and h-=g~_~. I f  B = b  I . . .  b~, B 1 =b~ ... br+~, C = c  1 ... c~ are L cycles 

with c~ ~ = (br+~l)+, we say B and C are adjacent  or consecutive L cycles; similarly if B, B ~ 

and C are R cycles and c ;  1 = (b~+~) - we say B, C are consecutive R cycles (see Fig. 2). A 

sequence B~ ..... B~ of consecutive L cycles, where B~, B~ are H-cycles and B~ . . . . .  B~_~ 

are D-cycles, will be called a L H-chain;  such a sequence with B 1 a L D-cycle is a L D-chain.  

Often we represent a chain symbolically by  D D  ... D H .  

I n  Figs. 1 and 2 we indicate t h a t  the side s~ of R is associated to g~eF 0 by  an arrow 

pointing i n t o / L  We write ( g ~ }  for the  interval [P~P~+I) (the inverse is to make subsequent 

computat ions  work properly) and write x = g j ~  ... i f /~-~(x)  ~ (g~,}, n = 1, 2 . . . . .  

P ~ O P O S I T I O ~  1.1. A sequence e 1 ... %, e~EF0, is admissible i / a n d  only i /  

(1) gg-t,  g El~0, does not occur. 

(2) N o  R / / - c y c l e s  occur. 

(3) N o  L S-cycles occur. 

(4) N o  L H-chains  occur. 

Proo/.  Referring to Fig. 1, let P~=Ck,  Pi+I=C1 ,  Q~=D1, Q~+I=DI. The arcs zlC1, 

ZlC 2 . . . . .  z l C  ~ are the arcs of the net  ~ emanat ing from z 1 and lying within the isometric 
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D~. Di = Q~ C k = H 1 = P~ 

K 
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Fig. 1 

circle C(8~) of g~; s imi lar ly  the  arcs w l D  1 ..... w l D l  are  the  arcs of ~ emana t ing  f rom w 1 

and  ly ing  wi th in  C(s~). B y  [6] L e m m a  2.2, wlDz_ 1 and  zlCk_ 1 do no t  intersect ,  wl, w~ . . . . .  w v 

is t he  ve r t ex  cycle s ta r t ing  a t  w 1 wi th  side s~ and  hi, h 2 . . . . .  h v is the  corresponding cycle of 

generators .  S imi la r ly  z 1, z 2 . . . . .  zq is the  ve r t ex  cycle s t a r t ing  a t  z 1 wi th  side s~, wi th  corre- 

sponding  genera tors  ix, ?'2 . . . . .  ?'q. wlH1 ..... wlH~; zlL1 ..... ZlLk; z~Ao, z~A1 ... . .  z~Ak; and  

w2Bo, w2B 1 ..... w~B z are  all  the  arcs of T / l y i n g  inside the  isometr ic  circles of h~ 1, ?'~1, ?'3 

and  h 2 respect ively .  G, F and  K are  the  endpoin ts  of C(h~), C(j~), C((h~l) -)  ly ing inside 

C(h2), C(?'2), C(h~ 1) respec t ive ly  and  J is t he  endpo in t  of t he  arc of ~ / t h r o u g h  v~_ 1 ad j acen t  

to  b u t  outs ide  C(h;I).  
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c~ 1 = (bV+ll) + 

Fig. 2(~a). Consecutive L e y e l e s ~  / 

(b.~+ll)_ = cll / //<b~-l> 

Fig. 2(b). Consecutive R cycles 

(At a parabolic vertex, 1 = ~ and we label points as H~,  H~_  1, Ho~_2 .. . .  etc. and in 

computat ions  t rea t  ~ exact ly as any  other  integer.) 

Notice t h a t  the m a p  g~ carries D~, z 1, Wl, Ck onto A 1, z2, w~, B x respectively; C 1 . . . . .  Ck-1 

onto A s .. . . .  Ak and  D 1 . . . . .  Dz-1 onto B 2 .. . . .  B~. 

Now ]]Evk.v,)=hl=jl. ]([CkC1) ) covers all intervals <h> except <j~l>, <hi> and 

<h~l>. Since ](<hfl>) f~ <hi> = O ,  we get (1). /([CkC~)) f3 <iffl> =[AkA~+I ), 1 <~r<~k-2 and 

[([CkCk-x)) f? <]fix> = O .  Moreover]([CkC~) ) f3 <h> =/([CkC1) ) f? <h> for 1 <<.r<~k-1 and h 4 ] ~  1. 

Therefore the sequence ]fx]~x ... ]~1 is no t  admissible, bu t  otherwise the  restrictions fol- 

lowing the symbols ]fx ... ?.~1 r ~< k -  1, are the  same as those following ]71 alone. Rule  (2) 

above follows. 

Similarly we have 
/([GkG1) ) f3 <h~-l> = [ B I G ) ,  

/([ DrC1) ) N <h~l> = [ Br+I G), 

/([D~-1~1)) n <h;~> = 

l <~ r <~ l -  2, 
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and 

and 

I([D~Ct)) tl <h> = [([CkCt)) N <h> for 1 ~< r ~< l - 2 ,  h # h ~  ~, 

[([D~_tCt) ) fl <h> = [([CkCt) ) N <h> for h # h ~  ~, (h+) -1 

l([Dz_~ Ca)) fl <(h~)-~> = <(h;)-~> - [GBz) .  

Therefore the sequence h f l h ~  1 ... h[-+11 is not  admissible, which is rule (3). 

The only restrictions following h~ 1 ... h j  1, r < l ,  are the same as those following h~ -1 

alone. Following hs 1 ... h[-lh, where h=~hi-11, are the same restrictions as after h alone. 
- -1  ~ - -1  After  h f  I ... hi (hi+l) is the same restriction as after k - l ( h + l )  -1, where k -1 is the  

element preceding (h{+l) -1 in  the L order. Thus (h~+x) - t  is no t  the first element in a L 

H-cycle; also if (h~t) - t  is the first element of a L D-cycle which ends in s -t ,  followed by  

(t+)-x where s - t t  -1 are in L order, then (t+)-t is no t  the first element of a L H-cycle. 

Repet i t ion of this a rgument  gives rule (4), and we have examined all the possibilities 

for finite sequences e t ... %. Y~+ therefore consists of all sequences ele 2 ... in which each 

finite block satisfies (1)-(4) above. 

The map ~: E +-+S t is of course not  bijeetive. More precisely x E S t has two representa- 

tions in Y,+ whenever ]k(x)E{P~}~=t for some k~>0. P~ can be wri t ten either as D D D  .... 

an infinite string of consecutive R D-cycles, or as H D D  .... an infinite string of consecutive 

L cycles. 

Convention.  I n  order to keep t rack of what  is happening we shall in future adopt  the 

following rule: 

Whenever  x E S  t has two symbolic  expressions  in  Y~+, we write x = e t e  2 ... where ere 2 ... 

is  the expression [or x ending in  L cycles. 

This is equivalent  to a t taching P~ to the interval (P~P~+t) ra ther  than  (P~_IP~). 

Also notice ~a (e )=]z ( e ) ,  e E E  +, provided e does no t  end in an infinite string of R 

D-cycles, where a is the left shift on ~+. 

R e m a r k  1.2. I n  the ease where R is a symmetr ic  4g-sided polygon, our rules are identical 

with those of [13] p. 77 and closely related to those in [11] p. 791. 

w 2. Representation of geodesics in D 

We would now like to represent a geodesic y in D by  taking the / -expans ions  of its 

endpoints  P ,  Q, say P = e l e  2 .... Q=/1 /2  ... and writing y . . . .  /2/ le le2 .. . .  Unfortunate ly ,  

the sequence so obtained m a y  not  be admissible according to the rules of w 1. There are 
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two problems: (i) Is  the reversed sequence .../~/1 always admissible? And if so: (fi) When 

is . . . / J le le~ ... admissible? The answer to (i) is no. I t  is perhaps more natural  to consider 

the inverse sequence .../~1/~1. This is however still in general inadmissible. To circumvent 

this difficulty we use the following trick: 

[ - e x p a n s i o n s .  RecM1 tha t  in defining / we made an arbi trary choice t h a t / I  ceded+l)=g~. 

We could equally well have taken/I(Q~ 1Q~]=g~; let us call this map [. [ obviously has 

exactly the same properties a s / ,  and the admissibility rules are obtained by  interchanging 

' R '  and 'L '  in Proposition 1.1 above. 

L E M M A  2.1.  L e t  e 1 e 2 ... be a n  a d m i s s i b l e  s e q u e n c e / o r / .  T h e n  the inverse  s equence . . ,  e~l  e~l  

i s  a d m i s s i b l e / o r  ], a n d  vice versa.  

P r o o / .  This follows easily from the remarks above, since an R cycle in ele ~ ... becomes 

an L cycle in ... e~le~l; and consecutive R cycles become consecutive L cycles. 

Let  P, Q E S 1 and let P = e le 2 . . . .  Q =/1/3.-. be the / -  and/-expansions of P, Q respectively. 

We shall call the directed geodesic ? joining Q to P admissible if Q-1. p . . . .  / ~ 1 / ~ l e l e 2  ... 

is admissible, and we shall also write ? = . . . / ~ l / 1 - 1 e l e 2  . . . .  Below in w 3 we shall see tha t  

admissible geodesics pass 'close' in a certain sense to the fundamental  region R. This will 

deal with problem (ii) above. 

Let  Z be the space of doubly infinite admissible sequences (i.e. all finite blocks satisfy- 

ing (1)-(4) of Proposition 1.1) with left shift map a. 

To proceed we need to know something about  the action of I~0 (the set of generators 

of F) on S 1 in terms of the symbolic representation of w 1. 

PROrOSITION 2.2. L e t  x = e l e  2 ... EZ +, gEF 0. T h e n  

(1) g ( x ) = g e l e  2 ... whenever  ge le  2 ... e Z  + a n d  

(2) g ( x ) = e ~ e  a ... i /  g = e ;  I. 

P r o o / .  We refer again to Fig. 1 with g = h 1. 

(1) Suppose gele  2 . . .  is admissible. Then 

(a) gele  ~ ... does not begin with a R H-cycle. 

(b) ge le  2 ... does not begin with a L H-chain. 

(C) el:~g -1. 

Observe tha t  ge le  2 ... begins with a R H-cycle iff x = e l e  2 . . .  E [ H 2 H 1 ) ;  gele  2 ... begins 

with a L H-chain iff x E [C 1 D1). Therefore (a), (b), (c) together imply x ~ [H 2 Dz). 

Since x ~ C(g),  the isometric circle o f  g, g ( x ) E  C(g -1) N $ 1 =  (g)  U [BoBI) (cf. [9] Sec. 11). 
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But g(x) ~ [B 0 B1) since X ~ [H 2/tl). Therefore g(x) E (g~, so/(g(x)) =g-l (g(x)  ) = x = e 1 e~ ... and 

g(x) =ge le  2 .... 

(2) Suppose g = e ~  1. Then x E ( g  -1) and so/(x)  =g(x)  and g(x)=e2e  a .... 

I t  is possible to derive rules for the action of F 0 on Z + in general. As this is not neces- 

sary for our development and the details become rather  involved, we state without proof: 

PROPOSITIO~ 2.3. Suppose  x E S  1, and  g E F .  Let  x =ele  ~ .... g(x) =/1/2 ... be the / -expan-  

sions o / x ,  g(x). Then  3s, t > 0  so that gele 2 ... et=/1/~ .../8 in  F and et+r =/s+,  r > 0 .  

Of course we have already proved the second par t  of this s ta tement  in [6], see property 

(a) o f / r  in w 1. 

This proposition is of interest because it enables us to prove the analogue of the results 

of Hedlund and Artin mentioned in the Introduction, tha t  admissible geodesics are con- 

jugate under F iff the corresponding sequences are shift equivalent. The proof is an easy 

consequence of Proposition 2.3: 

PROPOSITIO~ 2.4. Let  (P ,Q) ,  (R,  S ) E S l x S  1 be such that Q-1. p ,  R-1. SEy~. Then  

3 g E F  with g P =  R,  g Q = S  i/ /  3 n E S  with a ' (Q-~.P)=S-I .  R .  

Proo/. Let P = e l e  2 .... Q=/1/2  ... be t h e / -  and ]-expansions of P, Q respectively. We 

have . . . /~ l / ; l e l e  ~ ... EZ. By Proposition 2.2, 

e~l(P) = e2e a ... and e;l(Q) =e;1/1/~ .... 

Hence (~(Q-I.p) = (e~lQ)-l. (e~lp) .  

Conversely, suppose P, Q E S 1 and g E F are such tha t  Q-1. p ,  (gQ)-l. (gp)E Z .  By Proposi- 

tion 2.3, we have 

P = e~ . . .  e n e n +  1 . . .  and gP = U 1 . . .  U m e n +  1 . . .  

where g e  I . . .  e n = u 1 . . .  u m .  

Similarly, Q =/1 ---/~/~+1 .... gQ =v l  ... vq/~+i ... and g/x . . . / ~= v  I ... vq. 

Thus u I ... Umen 1 ... e;  1 =v  1 . . .  V q / p  1 . . .  /~1 and so 

Q-~.P . . . .  / p : l / p  1 . . . / l i e  I . . .  e n e n +  1 . . .  a n d  (gQ)-~. (gP) . . . .  / p l l v q l  . . .  v l l U l  . . .  U m e n +  1 . . .  

are shift conjugate. 

This result is sufficient to show tha t  the geodesic flow on D / F  is ergodic, by the method 

used by  Hedlund in [11]. ]Notice tha t  the restriction to admissible geodesics with Q-.1P E E 

corresponds to the restriction in [3] tha t  the endpoints of geodesics lie in ( -  1, 0) and 

(0, oo). For a discussion of the relevant measures, see Remark  4.4 below. 
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We shall instead follow the method of Morse to obtain a representat ion of the geodesic 

flow itself. 

w 3 Crossings of the fundamental region R 

We now want  to investigate in detail the  relationship between the symbolic expansion 

7 . . . .  ]~ l / s  2 ... of an admissible geodesic and the order in which 7 cuts successive sides 

of the net  7/. Recall t h a t  each side of R is labelled by  a unique element g E F 0. This label 

can be t ranslated by  an  element of F to  assign a unique element of F 0 to each (oriented) 

side of ~ .  The idea t h a t  7 should cut  successively sides .... ]~1,/s el ' e~ . . . .  m a y  unfor- 

tuna te ly  fail when 7 passes too close to  vertices in ~/. W h a t  we shall show is 

T~EOREM 3.1. For  a n y  e E Z ,  wi th  corresponding directed geodesic 7, there is  a dis- 

t inguished copy R(7)  o] R such that 

(1) 7 t3 R ( 7 ) # f D  

(2) r n ~ # o  ~R(~)=R 
(3) 7 cuts in  succession R(7) ,  ( r - lR(a?) ,  ... where (r -n = e  1 ... en /or e . . . .  / ~ l / ~ l e l e  2 . . . .  

Throughout  this section, by  R we shall mean the open region bounded by  the  sides st. 

S ta tement  (3) needs a little interpretat ion when 7 is a geodesic which goes th rough  a 

ver tex v of 7/. Le t  R 1 .. . . .  R2k be the copies of R meeting a t  v, in anti-clockwise order 

round v. I f  7 passes f rom R 1 to Rk+l we say 7 cuts R 1, R~k ... . .  Rk+l in order. I f  7 coincides 

with the side of ~ between R 1 and R2, we say 7 cuts R1, R2k ... . .  Rk+2 in order and if ? 

coincides with the side between R 1 and R~k, 7 cuts R2k ... .  , R~+I. 

The idea of Theorem 3.1 is t h a t  if 7 fi R = O ,  7 can be deformed by  a sequence of 

'small deformations '  to  a curve ~ such tha t  ~ f3 R~=O which cuts R, a - l R  in order. This 

sequence of deformations will determine R(?). 

Let  us make this more precise. As above, let v be a ver tex of 7 /where  copies R 1 .. . . .  R2~ 

o f /~  meet, in anti-clockwise order round  v. Let  Wr, 1 ~<r~<2k, be the vertex of ~ adjacent  

to v, along the side between Rr and Rr+ 1 (see l~ig. 3), and let A~ be the  endpoint  of this 

side on S 1. 

A directed curve fl will be said to pass near  v ff it passes f rom R 1 to  Rk+l cut t ing the  

arcs [vw~), 1 ~< r ~< k, or [vwr), 2k >~ r ~> k + 1, in order, see Fig. 3. I f  fl cuts [vw~), 1 < r <<. k,  

let/~ be a curve which coincides with fl everywhere except near v, where it cuts instead the 

arcs (vwT), 2k ~> r/> k + 1. ~ is ' a  small deformation of fl round v'. R2k-r+2, 2 ~< r ~< k, is called 

the conjugate region to  R ,  R2k_~+2=R *(z''). I f  fl cuts [vwr), 2 k > ~ r > ~ k + l ,  we write R ~ =  

R *(~''~, 2k>~r>~k+2 and call Rr self-conjugate. We write *(fl, v )=*  where there is no 

ambiguity.  

8 - 802907 Acta mathematica 146. I m p r i m 6  1r 4 M a i  1981 
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Ak+l 

.R2z ~ I' 

Rk+l 

~ A g  
w~ 
g~ 

7/ 
wl ~ A 2  

i 

A 1 

Fig. 3 

We shah call a curve obtained from fl by a sequence of small deformations a deforma- 

tion of ft. We make the same conventions about  the order of regions cut by  a deformed 

curve ~ through a vertex, as for geodesics y. 

Notice tha t  the conjugate of a region S is a locally constant function of ~. 

LEMMA 3.2. I /  the/undamental region R constructed in [6] w 3 has/our sides, then at 

least eight sides meet at a vertex. 

Proo/. I t  is straightforward to check all the cases in [6] to verify tha t  R always has 

more than four sides, unless the signature of F is {1; 1; vl}. But  since v1~>2, and the corre- 

sponding R has interior angle ~/2Vl, we see tha t  in this case a t  least eight sides meet  a t  a 

vertex. 

COROLLARY 3.3. There are no triangles/ormed by ~ .  I / / o r  edges o/ ~ /orm a quadri- 

lateral, then at least eight sides meet at a vertex. 

Proo/. Suppose the triangle or quadrilateral is not already a fundamental  region. Then 

there is a vertex v of T/on the interior of one of the sides of the region. Any other edge of 
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through v forms a smaller triangle or quadrilateral. Proceeding in this way we eventually 

reach a region of minimal size which must be a copy of R. 

Lw~MA 3.4. I n  a sequence o /smal l  deformations o/ a geodesic ~, a region S is associated 

to at most one conjugate region S*, across a unique vertex v. Likewise S* is the conjugate of at 

most one region S. 

Proof. I f  s is a side of S, let B ( s ) E S  1 be the arc of S 1 interior to the circle C(s). Notice 

that  if ~ is obtained from y by a sequence of small deformations, and if S * ~ S  is obtained 

by a deformation of ~ across the vertex v of S, and if s, s' are the sides of S meeting at v, 

then ~ has one endpoint in B(s) - B(s') and the other in B(s') - B(s). 

Similarly, if ~ is a deformation of ? across a vertex w, at which meet sides t, t' of S, 

with conjugate region S*'-~S, then ? has its endpoints in B ( t ) -  B(t'), B ( t ' ) -  B(t). 

If  u, u '  are sides of S then since extensions of non-adjacent sides of S do not meet 

([6] Lemma 2.2), we have B(s) n B(t) = O  unless s =t  or s, t are adjacent. After interchanging 

s wi th  s' and t with t' if necessary, there are three cases: 

Case 1. s=t ,  s' =t ' .  Then v = w  and clearly S* =S*'.  

Case 2. s=t ,  s '~ t ' .  B ( t ' ) - B ( t )  is disjoint from B ( s ) - B ( s ' ) ,  so B(t') n B ( s ' ) ~ Q  since 

it contains an endpoint of y. Then t', s' are adjacent. But this means R has only three 

sides, s, t', s', which is impossible. 

Case 3. s=4=t, s'@t'. Without loss of generality, we may suppose ( B ( t ) - B ( t ' ) ) N  

(B( s ) - JB(s ' ) )~O.  Then s, t are adjacent. In  this case we also have B(t') n B(s')~=O, since 

this set contains an endpoint of y. Hence s', t' are adjacent. Then R has four sides, s, s', t 

and t'. Since non-adjacent sides of R do not meet, y has its endpoints in sectors of the 

vertex star at  v separated by one sector only, namely that  containing S. But since by 

Lemma 3.2 at least eight copies of R meet at v, the endpoints of y do not then lie in dia- 

metrically opposite sectors at v. Then y does not pass near v, which is contrary to assump- 

tion. 

The final statement is proved by exactly the same argument. 

Thus we may write S*= S*(V), independent of v and the deformation ~. 

L~MMA 3.5. Let ~ be a geodesic. Then ~ cuts a region S at moat once, and i / y  N S ~  

and S=~S*, then 7 n S* = 0 .  

Proof. I f  y cut S more than once, then =~ (~ n ~S) > 2. But =~ (~ fi ~S) ~< 2, since S is 

geodesieally convex. (This uses the fact that  the interior angles of S are all less than •, 

and the formula A = 7 ~ ( n - 2 ) - ~  ~ for the area of a geodesic polygon.) 
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Suppose  7 passes near  the  ve r t ex  v of 2 and  sides s, s' meet  a t  v. H ~, ~ 2*~ff) t hen  7 

would have  to  cross the  extensions  C(s), C(s') of s, s' twice,  which is impossible.  

L ~ x  3.6. Let ~ be a de/ormation o~ a geodesic 7. Suppose 7 cuts in order R1 . . . .  , Ra 

(with the above conventions i] ~, passes through a vertex o/ ~). Then 7 cuts in order ~ ..... ~ ,  

where ~ is one o/R~, R~. 

Proo/. This follows easi ly  b y  induc t ion  on the  n u m b e r  of smal l  deformat ions .  F o r  one 

deformat ion  i t  is clear from the  defini t ions.  

CO~O~,LAR:r 3.7. Let ~ be a de/ormation o / a  geodesic 7 and suppose ~ (] 2 ~ .  Then 

either 7 f] S=4=~ or there is a unique region 2~ with 7 f~ S ~  and S =2".  

Proo]. Le t  .... R I, R~ . . . .  be  the  sequence of regions cut  by  7" B y  L e m m a  3.6, 2 = R~ 

R* then  N / ~ = ~ .  Suppose  or R* for some i. I f  2 = R ~  we are  done. I f  2 = R *  and  R~= ~ 7 

7 ~ ~ q ~  and  the re  is a region T ~ R ~  with  7 N T ~ ,  T* =2.  Then T=R~ for some }" and  

R* = R*. B y  L e m m a  3.4, R~ = R~. 

L w ~ M A  3.8. Let v, It x .... , 1 ~  be as in Fig. 3. Let ~ be a geodesic with endpoints in 

(A2kA1) , (AkAk+l) , cutting in order R~, R a ..... R~. Then there is a de/ormation 5 o / ~  which 

cuts in order ~1, R2k, ..., Rk+x. 

Proo]. Le t  xo=v , x l=wl ,  x 2 . . . .  ; Y0 = v ,  yl=wk, Y2 . . . .  be the  ver t ices  of ~ a long [vA1), 

[yAk) and  suppose  a cuts  [vA1) on [x~x~+l) and  [vAk) on [YqYq+l). Le t  l be a n y  edge of ~/ 

t h rough  u E (x~}~, o ther  t h a n  AxvAk+ 1 or AkvA2k. 1 has  an  endpo in t  L in (AIAk) , o therwise 

l, AlvAk+ 1 a n d  AkvA~k would  form a t r iangle .  Le t  z be the  ve r t ex  of ~ ad j acen t  to  u on 

[uL). Le t  m be a side of ~ / d i s t i n c t  from l th rough  z. W e  can suppose  m has  one endpo in t  

in (LAk), for otherwise l, m, AkvA2k and  AxvAk+ 1 form a quadr i la te ra l .  I n  this  case p ick  

mX4=m, [ t h rough  z (possible since >/8 sides mee t  a t  z). Then  e i ther  m x, m, vAk form a 

t r iangle ,  which is impossible,  or  m 1 has  an  endpo in t  in (LAk). The o ther  endpo in t  of m 1 

lies in (AxL), otherwise  m 1, l a n d  vA 1 form a t r iangle .  

Then  e i ther  a ~ l E [uz), or  m 1 cuts  a twice or  touches  ~, bo th  of which are  impossible .  

So ~nle[uz) .  

W e  now see a passes nea r  x~. F o r  b y  the  above,  a cuts  eve ry  side of ~ t h rough  x~ 

be tween x~ and  the  ad j acen t  ve r t ex  of ~ / i n  the  d i rec t ion  of (AxA~). Deforming  r o u n d  xz, 

we see repea t ing  the  a r g u m e n t  5 passes near  x~_ x, etc. 

S imi la r ly  g can be deformed r o u n d  yq, yq_x . . . . .  Le t  ~ be t he  curve ob ta ined  b y  deform-  
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ing successively round x~ ..... xl, Yq .. . .  , Yl. Then o2 passes near x 0 = v, and deforming round 

v we get the required result. 

Let  W=(pEsI:  P is the endpoint of a geodesic in ~/ through a vertex of R}. 

PROPOSITION 3.9. Suppose 7=Q-1.PEY~. Then 7' can always be deformed to a curvey* 

which cuts R, 7-1R in succession, unlezs possibly P E W or Q E W. In this case either 7 is a 

side o/ ~l and cuts R, (r-l R in succession or 7 is not a side o/ TI and there are geodesics 7'= 

Q,-1.p, EZ arbitrarily close to 7, with P', Q' ~ W. 

Proof. We refer throughout to Fig. 1. Without  loss of generality we may  assume 

PE[CkC1). This means a_l =g?.l g~l/~ is the copy of R adjacent to R along st. 

I f  Q lies outside all the circles C(8~_2) , C(s~_x) , C(s~), C(S,+l) it is clear tha t  7 N R~:O, 

and tha t  either 7 N (s~)~=O, or 7 N (S~_i]=~=~. ((84_1] = (Vi_lVi].) In  the first case 7 cuts in 

succession R, a - lR.  Otherwise P E [Ck D1). I f  P E (Ck D1), we are in the situation of Lemma 

3.8 relative to v~, so 7 can be deformed to cut R, a - l R  in order. 

I f  P = Ck then 7 '  = Q-1.p1 where p1 e (Ck D1) is admissible. I f  Q e (C~ Dz] then Q-1p ~ E. 

Suppose Q E (LrLr+l] 1 ~<r ~</c-1. Then the f-expansion of Q begins with an L cycle 

of l e n g t h / c - r .  Since Q-~.PEE, P begins with an R cycle of length at  most r - l ,  so tha t  

P E [Ck Ck-r+l). This means 7 lies outside the circle Lr v~+l Ck-r+l, so 7 N/~ ~ O, and 7 cuts 

a - l R  after R. 

Suppose QE(H~+IH~] , l~<s~<l-2,  or Qe(KHt_I] and s = l - 1 .  The f-expansion of Q 

begins with an R cycle A r If  A 1 is followed by  consecutive R cycles A2, ..., A~ of lengths 

D ..... D, H respectively then A~ has length 1 - s - l ,  otherwise A 1 has length l - s .  There- 

fore since Q-1P6F~, if P begins with an /5  cycle B1, and B1 is followed by consecutive L 

cycles B~ ..... B m of lengths D .. . .  , D, H then B 1 has length a t  most  s - l ;  otherwise B~ has 

length a t  most  s. This means tha t  P e [D~_~ C1). 

Now if 7 N R~=~ the result is obvious. Otherwise unless P=D~_s or Q=Hs, or 7 is a 

side of ~ ,  we are in the situation of Lemma 3.8, with Q, P in the diametrically opposite 

sectors (H~+~Hs), (Dt_sD~_~+~) at  v. Applying Lemma 3.8 we get the required deformation. 

I f  P -- D~_~ or Q = Hs, and P '  e (D~_~ C~), Q' e (Hs+ 1H~) then 7 '  = Q'-.~P' ~ E. If  7 is a side of Tl 

7 cuts R, a-~R in order. 

If Q~C(S~_~)-(H~K], either 7 already cuts R, a-~R or 7 has endpoints in the dia- 

metrically opposite sectors (D~H~], [H 1D~) at  vt and so can be deformed as required, or if 

P - H  1 or Q =H~, replace by  P ' ~  (H~ D1), Q'e (D~H~). 

Finally if Q~(H~K] the [-expansion of Q begins with a sequence of consecutive R 

cycles of lengths D .. . .  , D, H beginning with g$_~. Hence P does not begin with an L chain 

DD ... DH, i.e. P ~ [C~ D~). But  then either 7 cuts R, a-XR; or 7 has endpoints in the dia- 
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metrically opposite segments (HzHz_l) , (D 1D2) and we apply Lemma 3.8; or 7 is not a side 

of ~ / and  there are curves 7'  close to 7 with endpoints in (HlHt_l), (D1D~); or 7 =H?.ID1 

and 7 cuts R, a - tR.  

Now let 7 =Q-.~PEE and suppose we can find a deformation 7* with 7*N R # O .  By 

Corollary 3.7 either y N R # O  or there is a unique region R t with 7 fi R t #  O and R=R~. 

I f  7 fi R # O  set R @ ) ~ R ;  otherwise set R(y ) = R  t. I t  is clear from Lemma 3.4 tha t  R(y ) is 

independent of the deformation 7*" 

Suppose 7 = Q-1. PEE with no deformation Y* with Y* N R # O ,  and tha t  7 is not a geo- 

desic in ~/. By  Proposition 3.9 we see there are geodesics 7 ' =  Q'-~.P' EE arbitrarily close to 

7, with y'* fi R # ~ .  We observed above tha t  for any region S, S* is a locally constant func. 

tion of S. Therefore we may  define R@) = R(?') for 7 '  close to 7. 

I f  y E E  is a side of ~ ,  set R@) = R. By Proposition 3.9, Y cuts R, a-tit  in succession. 

In  this case a7 is also a side of ~/and so R(aT) = R. Thus y cuts R@), a-tR(aT) in succession. 

Suppose Y E E is not a side of ~ / a n d  let Y* be a deformation which cuts R, (r-lR in 

succession. By Lemma 3.6 there are regions R1, R 2 so tha t  7 cuts Rt, R~ in succession and 

o*(r) R@) = R t by definition. R = R 1 or R~ (~), ~ - IR  = R 2 or ~2 �9 

Now ay* cuts R. I f  a7 N R # O ,  R(aT)=R.  Then 7 cuts R(7), a-~R(aT) in succession. 

Otherwise a 7 n ~=o but  aT*N R=#O and a~ n a~#O. Thus R%=aR~ and so R =  

a(R~(7)). Since o is an automorphism, a(R~(7))=-((rR2) *(~ and thus a7 n a R 2 # ~  and 

(aR2) *(~r) =R, which implies R(aT)=aR 2. Thus 7 cuts R(7), a-tR(aT) in succession. 

Finally suppose 7 E Z is not a side of 7/ and is close to a curve ~' which cuts R@'), 

a- tR(a~ ') in order. Taking 7 '  sufficiently close to 7 we have R(7 ) = R(ff') and R ( ~ ' )  = R(aT'). 

Moreover we may  assume 7'  cuts R(ff'), ~-tR(~y')  and so 7 cuts R(7), a-~R(~7). 

Now applying Proposition 3.9 to a-17, we may  find a deformation of a-~7 which cuts 

R, a - l R  in succession, and hence a deformation of 7 which cuts (rR, R in succession. Ap- 

plying similar reasoning to the above, we see 7 cuts aR(a-tT),  R@) in succession. A simple 

inductive argument  and repeated application of Lemma 3.5 completes the proof of Theo- 

rem 3.1. 

I t  is obvious that ,  for any  7 EZ, there is a unique g EE with gR@)= R. We shall need 

a converse to this: 

P~o~OSITXO~ 3.10. Let 7 be any geodesic with Y n R=#g]. Then there exist~ a unique 

g E F so that g7 E ~ and R(gy) = gR. 

Proo/. Suppose gEF is such tha t  gyEZ and R(g?)=gR. I f  R(gT)=R,  then g=id. 

Otherwise, R(g~)*(~v)=R=g-~R(gT). Since g is an automorphism, g-l(R(gT)*(ar))= 

[g-iR(g7)] *(~), i.e. R *(~) =g-~R. Therefore g, if it exists, is unique. 
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If  ~ E Z  then R(~)=R and we may  take g=id .  

So suppose ?=Q-1.P~E. Without  loss of generality, we may  assume PE[C~U1). I f  

Q-1.p(~ we must  have Qe(HiLk] (see the proof of Proposition 3.9). Clearly Q~(C~L1], 

for then y N R = ~ .  

Suppose tha t  Q E(L~L~+I], 1 <~r<k- 1. Arguing as in Proposition 3.9, we see P begins 

with an R cycle of length at  least r, so Pe[Ck_T+~C~). Since r n R~=O, we must  have P e  

[Ck-r+l Ck-~), the sector at  v~+ 1 diametrically opposite (L~L~+I]. Suppose Q ~=L~+I, P ~=C~_~+~. 

Then by  Lemma 3.8 we see we can deform ? to obtain a conjugate R*(~)~=R. Pick g so tha t  

gR*= R. Now relabel the vertices so tha t  gP~ [C~C~). Then g? passes to the fight of gv~+~ 

and gP, gQ arc in diametrically opposite sectors at  gv. Moreover gv~+~ is a vertex of R, and 

since ~ f~ R* = ~ ,  g? N/~ = ~ .  This forces (with the new labelling), gv~+~ =v~, gPe(D~C1) and 

gQe(HzH~). Now as in the proof of Proposition 3.9, (gQ)-~.gPeZ. Clearly g? ~ i~ = ~ ,  so as 

in Proposition 3.9 there is a unique region R~ with R~(zr)=R and gy ~ R ~ = ~ ,  and R~= 

R(gy). Now R~(Or)=g((g-~R~)*(e)), since g is an automorphism and thus g-~R=(g-~R~) *~. 
But  g-lR = R *cry, therefore by  Lcmma 3.4, g-XR~ = R. Since R 1 = R(g?), g is as required. 

I f  either Q=L~+~ or P=Ce_,+~ we apply the same g as for nearby ? '  and use obvious 

continuity arguments. 

Now if Q =Lx, P e [C~C~) and ? fi R = ~ ,  we must  have P = C~. Then we may  take g =id.  

Finally suppose Qe(H~+~Hj, 1 <~s<~l-2, or Qe(KHt_~] and s=l -1 .  Since ? ~ R ~  

we see P ~ [Dt_~C~). Jus t  as in the proof of Proposition 3.9, this shows Q-1.p ~ .  Thus we 

may  take g =id.  

w 4. Symbolic representation of the geodesic flow 

In  this section we show tha t  the geodesic flow on T~(D/I') can be represented as a 

quotient of a special flow over ~,  ~; where the height function is the t ime taken to cross 

the region R(7 ). We keep the notation and conventions of w 1-w 3. 

I f  ? is an admissible geodesic, let h(?) be the hyperbolic length of ? N R(?). h is infinite 

if an endpoint of 7 is a cusp. h lifts to a function also denoted by  h on Z. Let  

A={(e ,  t): e e l ,  O<~t<h(e)} and let ~0~ be the special flow on A defined by  ~0~(e, t)= 

(~ne, t§ when 7 > 0  and O~t+7-Snh(e)<h(~ne) with a similar definition for 

7<0 ,  where Snh(e)= ~,~-1 haT(e). 
cO T (Notice tha t  ~0 h(a ?) diverges because an arc of ? of finite length can cut only 

finitely many  copies of R.) 

Let  yJ~ be the geodesic flow on the unit tangent  bundle M of D/F, let M be the unit  

tangent bundle of D and let ~0: ~ - + M  be projection. ~t is geodesic flow on ~ .  
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For an admissible geodesic ~, let b ( ~ ) E ~  be the unit  tangent  vector pointing along 

based at  the point where ~ enters R(~). 

Define II:  A ~ M by  

II((e, t)) -- ~t(l~b(e)), 

where g(e) is the geodesic associated to e. In  what follows we shall frequently identify e 

and ~(e). 

PROrOSI~IO~  4.1. I I  is sur]ective, I I ~ t = ~ t I I  and :H=II-~(II(e, t))=@z~-~(z~(e)) /or 

e E E (i.e. H is 1-1 except on a set o/ the/ irst  category). 

Proo/. Take u E M. Lift u to 4 E M with the property tha t  ~ has its endpoint U in R. 

I f  ~ is the geodesic through U in the direction 4, ~, N R ~ O .  

By Proposition 3.10, there is a unique gEF with gyEE and R(g~)=gR. g~ is also a 

lifting of u, and g7 N R ( g T ) ~ .  Let  3 be the hyperbolic distance along g7 from the point V 

where g~ enters R(gT) to gU. Since U E/~, gU E gR = R(g?). Then 0 ~<3 <h(g~) (or h(g~) =0), 

and gfi =v~b(g~). Also II(gT, 3) =y~(lob(g~)) =p(f~b(gy) =p(g~) =u. Therefore II  is surjeetive. 

Suppose also II(e, t )=u ,  eEE. Let  z~(e)=ft. Then u=yJtp(b(fl))=p~t(b(fl)). Thus there 

is an hEF so tha t  hg~=~tb(fl), and so h-lb(gT)=b(fl). Thus b(fl) is the unit tangent vector 

along h-lgy based at  the point where h-lg~ enters h-lR(g~). This means h-lgy=fl  and 

h-lR(g~) = R(fl), i.e. h- lgR = R(fl). According to Proposition 3.10, h-lg is unique and h = id, 

fl = g~ certainly works. Therefore I I  (e, t) = u iff 7~(e) = gy. Observe z~ is one, two or four-to-one 

depending on whether g~ has neither, one or both its endpoints in I,J~=0 a-rW. 

Suppose (e, t)E A, e . . . .  /21/~lele2 .... ~ > 0  and S~h(e)<t §  <Sn+lh(e). 
Then 

by  Theorem 3.1 (3). 

Thus 

@h(~)b(e) = a-lb(o'e) (4.1.1) 

(ps~h(e) ((~nb(e)) 

= (ps~h<e) (a~(Pn(e) b (e)) 

= ~)S~h(e) ( O'n-1 b (ae)) by (4.1.1) 

. . .  b ( ( r n e )  

(4.1.2) 

and 
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II@Je,  t)) = ~h+~_s.~(,)(pb((r~e)) 

= ~ot+~pO_snn(e)(b((rne)) 

= y)t+~p(a~b(e)) 

= y)t+~p(b(e)) 

= ~ , J e ,  t ) .  

by|(4.1.2) 

A similar computation works for ~ < 0. 

We now want to investigate the continuity of H and h. Put  on ~ the usual product 

topology and metric 

n = s u p  {m: e, lil < m } .  

P R O P O S I T I O N  4.2. ~: ~+- -S  ~ is continuous. 

Pro@ In  the no cusp case this follows easily from Property (Ei) of / in w 1, see also 

the last line of the proof below. 

Suppose C is a cusp of R. Suppose the L cycle of generators at C is h I ..... hz. Let 

H = h z  ... h 1. Then H(C)=C and H ' (C)=1.  By Lemma 2.8 of [6],~H acting on S 1 with fixed 

point C is conjugate by a M6bius transformation to 

acting on R with fixed point 0, with y > 0 .  Let J(H m) ={PES*: P = H  -m ...}. One sees easily 

J(H m) corresponds to (~(my + 1)-1, 0] for some ~ < 0. Therefore P, Q E J (H m) ~ ] P -  Q l = 

O(m -I) on S I. 

Now pick P E S  1 and suppose P corresponds to e=HT 'B1H~B2  ... EE + where H~ is 

a cycle corresponding to a parabolic vertex and B~ is a block containing no such cycles. 

Suppose given e > 0. 
ml m,~ . . .  Say 3m r so that l/mr <e. Let the length of the sequence H1 BIH2 Br_ 1 be N. Then 

d(e', e) <2-N~o~Q, anPeJ (H  m,) where Q =~(e'). Also a~, = a~ for 1 <~r<~N and ]a' I ~> 1 on 

S 1. Therefore [ P - Q I  <Ke, for some K depending only on P. 

Otherwise, 3L such that  mr<~L, Yr. Thus P(~J(H r) for any parabolic vertex, so akP 

is a bounded distance away from all the parabolic vertices for each k. Since a'(x) = 1 only 

at parabolic vertices, this means 3 2 > 1 such that  (a~)' ~>jt for all k. Choose N so that  2 -N < e. 

If  d(e', e) <2 -N then ~ k a~,=ae, k<~N and so I P - Q I  <,~-N. 
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COROLLARY 4.3. ~z: Z-+ S1x S 1 is continuous. 

Let ]~*={eEZ: neither endpoint of e on S 1 is a cusp}. 

PROPOSITION 4.4. h is continuous on ~*. In  the no cusp case, h is H5Ider on Y~. 

Proo]. We take the no cusp case first. 

Let 2 be an admissible geodesic in D with endpoints P = e ~~ Q = e 'r Suppose C1, C~ are 

disjoint geodesics which are cut within bounded arcs by 7" The hyperbolic distance between 

C 1 and C~ along 7 is a smooth function of 0, ~. Hence if 7' is a geodesic with endpoints 

P'=e  ~~ Q'=e ~', then [d -d '  I <~K(IO-O' [ + Iq~-q/]) where g depends only on C1, C 2. 

Let 2 > 1  be the expansive constant for a. Suppose d(7, Y')<2-n- Then ] 0 - 0 '  I ~2 -n, 

R(7 ) always has a vertex in common with R and so is one of a finite number of regions. 

Thus h(7 ) is the distance along 7 between a finite number of possible pairs of sides of T/. 

Provided 7 does not pass through a vertex of R(7), I h(7) -h(7')l  <--.K7 -~ for K independent 

of 7. 

Suppose 7 enters R(7 ) across a geodesic C 1 and leaves across the intersection of C~ 

and C3. h(7') for 7' near 7 is the distance along 7'  from C 1 to one of C~, C 3. Both these func- 

tion are HSlder and their values coincide at 7" Likewise, if 7 coincides with a side of ~/, 

R(7' ) is one of a finite number of regions meeting R(7 ) and we see h(7' ) is one of a finite 

number of HSlder functions all of whose values agree at 7. 

Now suppose R has cusps. Let K~ be the part of D outside small discs of (Euclidean) 

radius r round each of the cusps of R. 

The above argument shows that  h is continuous on geodesics 7 which lie completely 

inside K~. (Use continuity of the map Z-~ $1• S 1 to replace the constant expansiveness 

of a.) Now let r-+0. 

Now there is a natural topology on A as the suspension of ~ by h. 

PROPOSITION 4.3. II:  A-->M is continuous. 

Proo/. I t  is enough to see that  pb(e) varies continuously with e E E, and that  ~ptpb(7)~ 

pb((17) as t--> h(7)-. 

Now b(7 ) is the unit tangent vector to 7 based at the first intersection S of 7 with the 

continuous curve aR(7 ). Moreover R(7 ) is locally constant as a function of 7 except when 

7 is a side of ~. In  this last case, the appropriate side of R(7'), for 7' close to 7, is one of 

a finite number of continuous curves all of which pass through S. 

By Corollary 4.3, the endpoints P, Q of 7 vary continuously with eE~ and clearly 7 

varies continuously with P, Q. Hence b(7 ) is a continuous function of e EN. 
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I f  we lift the pa th  ~tpb(~) to  lptPb(~)E.~ start ing at  b(~) when t = 0 ,  then as t--+h(~)- 

the base point  of y~tpb(y) approaches the point  T where ? crosses f rom R(y) to  R(ay). 

Therefore limt-~h(r)-yJtb(~)=a-lb(a~). Hence y~tpb(~)-->p(a-lb(a~))=pb(a~) as required. 

Remark 4.4. We have no t  said anyth ing  about  measures on A and M. I n  [6] we showed 

there is an  e rgod ic / r - inva r i an t  measure fi on S 1, equivalent  to Lebesgue measure, finite 

in the  no cusp case and infinite otherwise, fi defines a unique a- invariant  measure/~ on 

which projects to  #, by  

~(zo ..... a,) =~(q(~-~(Za_,...o,))), 

where Za ....... = { e E Z :  er=ar, Jr] ~<n) and O: Z->Z+ is projection. 

Define a measure v on A by  

[, fh(e) 

Jo z .(oeteF,(e) 

where Ee = {(e, t) e E:  0 ~< t < h(e)). 

PROPOSITION 4.5. I I . v  is the natural/low invariant measure on M. 

Proo/. One verifies easily t h a t  the  measure ]e ~~ e~r dqJ on S 1 x S 1 -  diagonal is in- 

var iant  under  the  natura l  F action. Since any  geodesic in D is uniquely determined by  its 

endpoints on S 1, we can identify T 1 D, the uni t  t angen t  bundle to D, with (S 1 • S 1 -d i ag . )  • 

It.  The measure 2 =  [e~~ is invariant  under  F acting on the left and the 

geodesic flow on the right. 

Now by  Proposit ion 3.10, any  u EM has a unique lifting ~ in T 1D so tha t  the geodesic 

defined by  ~ is admissible and ~ has its endpoint  in R(7) (see Proposit ion 4.1). Let  A__ T 1 D 

be the  set of these liftings. I t  is clear tha t  2 [ a (with suitable normalisation) is the natura l  

flow invar iant  measure on M. Moreover if q: A - + S  1 • S 1 - d i a g . ,  q-~(7) has length h(7 ). 

H identifies q(A)~_ SI• S 1-diag. with E. Therefore to see I I . v  =2]A, it is enough to  

see t h a t  w =  ]d~ and/~ on E are the same. (We can safely ignore the sets 

on which H, ~ are no t  bijective since they  are null for all relevant  measures.) 

w is F invariant  and hence a invar iant  on q(A). I t  is clear t ha t  w projects to a measure 

@ equivalent  to Lebesgue on E+(=$1) ,  moreover  @ must  be shift invariant  on E +. 

Therefore ~ and fi are shift invariant  equivalent  measures on E +, and fi is ergodie for 

the  shift. I t  follows t h a t  ~ =fi (if we normalise properly), and since ~ determines w uniquely 

(just as fi determines #), we are done. 

Notice tha t  fi is the Gibbs measure corresponding to the funct ion -log l/'(x)[ on SL 
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I t  now follows from the symbolic representat ion tha t  the geodesic flow is ergodie 

(since the shift a on E is). I n  the  compact  case we can deduce the  flow is Bernoulli. One 

needs to  know the  flow is K; this is a general fact,  see for example [17]. The result  follows 

f rom Theorem 4.3 of [16], (a K-flow which is the special flow over a shift under  a l~61der 

continuous funct ion is Bernoulli). (One makes an obvious modification to deal with the  

fact  the height funct ion m a y  vanish, since 3 N such tha t  h(e)+ ... +h(o~e)>~ c >0 ,  Ve E E.) 

We hope to investigate the non-compact  case elsewhere. (The flow is known to  be 

Bernoulli in this case also, see [7].) 

w 5. Quasi-conformal deformations 

Throughout  w 1-w 4, we assumed tha t  F had a fundamenta l  region R which satisfied 

the proper ty  (*). I n  [6] we showed t h a t  if F '  is any  Fuchsian group of the  first kind, then 

there is a group F satisfying (*), such tha t  there is a quasi-conformal deformation ?': F - ~ F ' .  

We now show how to use this deformation to carry  over the results above to the  general 

c a s e .  

We first summarize the facts we need about  quasi-conformal maps. For  details, see [4]. 

(I) There is an isomorphism j: F ~ F ' ,  and a diffeomorphism ~o~: D ~ D ' =  D so t h a t  

](g) = (9/tg((9/~) -1 ,  gEF.  

(2) (o~ restricts to a homeomorphism h: SI-+S 1 so tha t  h(gx)=j(g)h(x),  x E S  1, gEP.  

h is the so-called boundary map of w~. 

(3) I f  ~ is a geodesic in D, then 7 '  = eel(7) is a so-called quasi-geodesic in D' .  There is 

a unique geodesic ~ in D '  with the  same endpoints as o)~(~), ~ is a bounded hyperbolic 

distance from co~(?) (with bound depending only on co~), [13]. 

Notice t h a t  if ~, fl are geodesics in D then ~ n f l ~ O  if and only if ~ n fi=~O. 

Let  a be a geodesic in D which is an edge of T/, and let v be a vertex of 7 / o n  a. Let  

fil . . . . .  fir be the  other  edges of ~ th rough  v. Then ~ n f i ~ O ,  1 <~ i <~r, but  these intersec- 

t ions m a y  all be distinct points. Let  a(v) = {~ fi fi,}[=l. Let  w be a vertex of 7 / ad jacen t  to 

v along a. Then if 7 is a ny  other  edge of ~ th rough  w, ~ Nf i ,=O,  i <~i~r, and so we can 

find disjoint closed intervals I~(v), I~(w) on a so tha t  a(v)_~Int I~(v), a(w)_~Int I~(w). 

More generally if {v,}~_~ are the vertices of T /a long  a in order then there are disjoint 

closed intervals {I~(v,)}~ _~o along ~ in the same order as {v,}, a(v,)_~ In t  Ia(v,). 

Let  Q(v) be the open convex hull in D' of the  set {Ia(v): ~ is an edge of T / th rough  v}. 

Now let t 1 .. . . .  t n be the sides of a copy S of R in D. Since non-adjacent  sides of S do 
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not meet, the same is true of [1 ..... i~ and thus tl, .-., tn bound a closed polygonal region 

in D'. Let Q(S)=~-  U {Q(v): v is a vertex of S} and let Q(D)= D ' -  U {Q(v): v is a vertex 

of ~}. 
If  we collapse each of the regions Q(v) to a point we obtain a net Q(~) whose sides are 

the portions of the edges 0~ outside the regions Q(v) and which is topologically identical 

with the net ~. 

Now let ~) be a geodesic in D'. We say ~) passes across Q(v) if 2 N Q(v) ~ .  Let the sides 

of T/meeting at v be t 1 ..... t2k , going in clockwise order round v. Moving clockwise round 

Q(v) one cuts successively ~1 ..... i~. Let ~) cut ~Q(v) in points P, Q. Let fl(v) be the arc of 

~Q(v) joining P to Q which cuts the smaller number of sides [~. (If both arcs cut k or k + 1 

sides choose fl to be the arc passing to the left of Q(v).) 

Now let ~ be the curve obtained from p by replacing p with [~) -Q(v)] U fl(v) in a neigh- 

bourhood of Q(v), for every vertex v. In  the collapsed net Q(~), ~ becomes a curve Q(7) 

which passes through a vertex v whenever p ~ Q(v) ~-~. 

THV.ORV,~ 5.1. Let ~ be a geodesic in D" corresponding to an admissible geodesic y in D. 

We can/ind a distinguished region Q(S(y)) such that 

(1) ~ h Q(S(y)):~O 

(2) ~ n Q(S(~)):~o ~s(~) =R 
(3) ~ cuts in succession Q(S(y)), (~-IQ(S((~)) ..... 

Proo/. The idea is obviously to imitate w 3. We define what is meant by a curve in 

Q(D) passing near a vertex of Q(~/) just as in w 3. Lemma 3.4 depends only on the topology 

of ~ and the position of the endpoints of y relative to ~; and thus carries over to Q(~) 

and ~. To prove Lemma 3.5, it is enough to see that  ~ is geodesically convex, or equivalently 

that  the interior angles of ~ are less than g. But a vertex of ~ is formed by the intersection 

of two geodesics with distinct endpoints, and therefore the angle between any adjacent 

pair of sides is less than z.  

The proofs of Lemma 3.6 and Corollary 3.7 are unchanged. Lemma 3.8 and Proposi- 

tion 3.9 again depend only on topological properties of ~ and the position of the endpoints 

of y. The rest of the proof is as in w 3. 

We shall say a permutation ~ of Z 'acts on finite blocks' if there are integers 

... < n  1 < n  2 < ... such that  g maps each interval n~ ~<r <nt+ 1 onto itself. The importance of 

this will be that  we can keep track of a 'base point '  on a sequence, by choosing the left 

endpoint of some fixed block to be the base point. If  we require permutations to preserve 

a base point, the sequence n _la), n_l(2 ) .... uniquely determines ~. 
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PROPOSIT~O~ 5.2. Suppose ..., l~, 12, la, ... are geodesics in ~l arranged so that ~ cuts 

.... Z~, 12 . . . .  in order (with the usual clockwise convention i / ~  passes through the intersection 

o] two or more Z~). Then ~ cuts in order .... l-_,(1), l" _~(2) . . . .  where x~ is a permutation o / Z  

which acts on finite blocks. 

Proo]. Define an equivalence relation on {l~} by  l~ ~ lj iff l~, lr meet  a t  a ver tex  v of Y/ 

and ~ cuts ~, ~r on ~Q(v). This is t ransi t ive since ~ cuts each Z~ exact ly  once and ~Q(v) f3 

8Q(w) = ~  if v # w .  Notice t ha t  the equivalence classes are either singletons or blocks of 

consecutive sides all associated to the same Q(v). ~2 cuts the same sides as ~ in the  same 

order except  possibly near  Q(v). I f  Ir . . . . .  Z~ is the block associated to Q(v), then  ~2 cuts in 

order 1 _~) . . . . .  Z _x(~) for some permuta t ion  at. (This means tha t  if ~r(1)=i, where 1 is 

the base point  of the sequence, ~2 cuts ~1 on the  i th  cut  af ter  the  base.) 

Suppose s is the first side of Q(S(7)) cut by  ~ and let Z~ be the geodesic extending s. 

Define s(y) = ~ _~(r). 

Tn]~OR]~M 5.3. The geodesic ~ cuts the geodesics .... s@), a-ls((rT) . . . .  in order. 

Proo/. Let  ~ cut  .... Z 1, Z~, ... in order, and let a~ cut ..., ml, m 2 . . . . .  By  definition s(7 ) = 

1-(~)_l(r) and s(ay) =~h (~r)_x(t) where lr, mt are the first sides of Q(S@)), Q(S(a7)) cut b y e ,  
/ x  
ay respectively. ~ cuts Q(S(Z)), a-iQ(S(ar)) in order, so tr+l is the  first side of a-lQ(S(aT)) 

cut by  ~. Then alr+l is the first side of Q(S(aT) ) cut by  (a~) = ~ .  Therefore aZr+ 1 = mr- Since 

cuts ..., Z~, Z~, ... in order, a~ cuts ..., aZ1, al~, ..., ~ j  =al~+~+j-t for all ] e Z. Then a~ cuts .... 

(rl-(v)_l (1), ~rl'~(r)-~(2) .... in order where a~(~)_,(r+ 1+ j_ t)occurs in the i th  place. Thus ~h (or)_~(t)= 

a/(r)_1(~+1 ). We have shown s(ay)=al (~)_x(~+x). Since ~9 c u t s  1 (r)_l(r) , ~(~.)_l(r+l) in order, we 

a r e  d o n e .  

We now want  to imitate  w 4, to represent  the geodesic flow on _31, the uni t  t angen t  

bundle to D/F, as a special flow on a space A. 

Le t  h(?) be the hyperbolic distance along ~ between s(7) and a-ls(ay). Let  A =  

{(e, t): eEE,  O<<.t<h(e)}. Let  b(7 ) be the  uni t  t angent  vector  along 2 at  the point  where 

cuts s@). Define 

II: A - + - ~ ,  II(e, t) =v~tp(e ). 

PROPOSITION 5 . 4 .  Y[ i8 sur]eetive, H~t  = % H  and @H-l ( I I (e ,  t)) =@7~-l(z(e))/or eEZ.  

Proo/. Since 2 cuts in order  s(7), ~r-ls((~7) the  method  of Proposit ion 4.1 shows tha t  

H~t  = % I I .  
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Using exaetly the same method as in Proposition 3.10 one shows that  whenever 

is a geodesic with ~ N Q ( R ) ~ ,  there exists a unique g E F with g2 ~ Z and Q(S(gs =gQ(R). 

Take u E M and let ~ be any lifting i n / ~ ,  with base point U. Let p be the geodesic 

through U in the direction of ~, and let ~ be the curve obtained by deforming round Q(v) 

for each vertex v. 

Suppose, as in Proposition 5.2, that  ~ cuts geodesics .... ll, Z2 .... in order. Then ~ cuts 

l _~(i), I _~(~), ... at points ..., M1, M~ .... say. Suppose U E [MiMe+l). Let Q(S) be the region 

between l~ and l~+l with Q(S) N ~ : 0 .  (It is not hard to see there is a unique such region, 

because the boundary between Q(S) and Q(S') is either a side Z of Q(T/) or a region Q(v), 

and there are no sides of Q(~) cutting ~ between Z~ and Z~+I. ) Applying/cEF with kS=R,  

we may assume Q(R) N ~=~). 

Now we use the analogue of Proposition 3.10 above to find gEF with gREZ and 

Q(S(gR)) =gQ(R). The first side of Q(S(g~)) cut by g~ is gli. Therefore s(gT)=~_~(~). Hence 

gU lies on g2 between the intersection with s(gy) and the next side of ~, so 

q~ =r where 0 ~<r < h(g~). 

Then II(g~, T) =u, as in Proposition 4.1. 

Finally, it is not hard to see that  Proposition 4.1 is easily modified to prove II(e, t) = u  

iff ~(e) =gR- 

The facts about the continuity of h and H now follow exactly as in w 4, and we again 

see that  in the compact case the flow is Bernoulli. 
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