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Introduction

By the classical result of Hopf [12], the geodesic flow on a surface of constant negative
curvature and finite area is ergodic. In the case of a compact surface the flow has sub-
sequently been shown to be Anosov [2], K [17], and Bernoulli [15]. By the work of Bowen
and Ruelle [5] any Anosov flow on a compact manifold can be represented as a special
flow over a Markov shift of finite type, with a Hélder continuous height function. Ratner
[16] showed that any such special flow which is K is also Bernoulli.

In this paper we make an explicit geometrical construction of a symbolic dynamics
for the geodesic flow on a surface of constant negative curvature and finite area. The
construction involves the geometry of the surface and the structure of its fundamental
group. The geodesic flow is shown to be a quotient of a special flow over a Markov shift,
by a continuous map which is one—one except on a set of the first category. For a compact
surface the height function is Holder.

The states for the Markov shift are generators of the fundamental group I', and the
admissible sequences are determined by the relations among the generators. If we lift
the surface to its universal covering space the unit dise D, then admissible sequences
correspond to geodesies in D which pass close to a fixed central fundamental region for
T, in a sense made precise in § 3. The height function % corresponds to the time a geodesic
takes to cross R, with a suitable convention if the geodesic is close to B but does not cut R.

The idea of our construction comes from three different sources. In [3] Artin obtained
a representation of geodesics in the Poincaré upper half plane H (these geodesics are of
course semi-circles centred on and orthogonal to the real axis) as doubly infinite sequences
of positive integers, by juxtaposing the continued fraction expansions of their endpoints;
two geodesics are then conjugate under the action of GL (2, Z) on H if and only if the
corresponding sequences are shift equivalent.

The second source is Hedlund’s paper [11]. In [14] Nielsen gave a symbolic representa-
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tion of points on S* as semi-infinite sequences of generators of the fundamental group I';
for a surface whose fundamental region R, is a symmetrical 4g-sided polygon; in [11] Hed-
lund represented geodesics in D by juxtaposing the Nielsen expansions of their endpoints,
showed geodesics are conjugate under I'; if and only if the corresponding sequences are
shift equivalent, and used this to prove ergodicity of the geodésic flow on D/T';. In [10]
he showed that Artin’s coding could be used to obtain similar results for H/SL (2, Z).

Finally in [13] Morse coded geodesics y in D as sequences of generators in I'; by an
entirely different method: he observed that to each side of the net Y, of images of sides of
R, under T; is associated a unique generator of I';, and assigned to y the sequence of
generators which label the successive sides of W, crossed by y. In order to obtain a one-one
correspondence between sequences with certain well-defined admissibility rules and geo-
desics this coding needs to be slightly modified when y passes too near to a vertex of
and this point occupies a large part of [13]. The admissibility rules which are obtained
are more or less identical with those of Hedlund.

In view of these results, and the facts about representing a general Anosov flow as a
special flow over a Markov shift, it is natural to ask whether the ideas of Morse and Hed-
lund can be combined to give a representation of the geodesic flow as a special flow over
some Markov shift whose symbols are generators of I' and where the height function
measures the time to cross the fundamental region B. This is precisely what we have done
in this paper. Adler and Flatto (private communication) have obtained similar results
in the SL (2, Z) and I; cases above.

The symbolic dynamics we use derives from the results of [6], in which the action of
the fundamental group on S is shown to be orbit equivalent to a certain Markov map
fr of finite type acting on S%; that is, x =gy, z, y €8, g€I' =ff(z) = fi(y) for some n, m =>0.
We copy Artin and Hedlund in representing geodesics in D by juxtaposing the f-expansions
of their endpoints, and then show that these sequences have a geometrical interpretation
analogous to Morse’s idea of listing successive crossings of the fundamental region R.
Finally we derive the representation of the geodesic flow on D/I" as a quotient of a special
flow over the natural extension of fr.

To understand the constructions the reader will need to be familiar with the maps
fr of [6]. In [6] we first constructed fr for groups I' whose fundamental region R could
be chosen to satisfy a certain symmetry condition (*), and then showed that any I' could
be deformed by a quasi-conformal deformation to a group I' satisfying (*). We then carried
over the definition of fr. using the boundary homeomorphism and constructed the general
fr. We shall adopt the same procedure here, so that in the main part of the work, § 1-§ 4,

we shall only be concerned with groups whose fundamental region satisfies (*).
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In § 1 we review briefly the definition and properties of fr and then determine which
sequences of generators correspond to admissible f-expansions. In §2 we describe the I
action on St in terms of sequences and show how to juxtapose sequences to represent
certain pairs of points on S1. In fact geodesics are conjugate under I' if and only if the
corresponding sequences are shift equivalent. '

In § 3 we discuss the relation of this representation to the listing of successive crossings
of R and in § 4 derive the symbolic representation of the flow. Finally in § 5 we show how
to carry these results over to the general case using quasi-conformal maps.

We shall keep to the notation of [6]. In particular, when describing arcs on S, we
always label in an anti-clockwise direction, so that PQ means the points lying between
P and @ moving anti-clockwise from P to Q. We write (PQ), [PQ], etc., to distinguish
open and closed arcs on St.

Throughout, I" is a finitely generated Fuchsian group of the first kind acting in the
unit dise D; that is, a discrete group of linear fractional transformations z>(az +b)/(cz +d),
ad —bc =1, which map D to itself and such that there are points on 8! with dense orbits.
The corresponding surface D/I" is a Riemann surface of constant negative curvature and
finite area; we are concerned with the geodesic flow on the unit tangent bundle M of D/T'.
I' has a fundamental region R in D which can be taken to be a polygon bounded by a
finite number of circular arcs orthogonal to 8. A vertex of R lying on S' is called a cusp.
D|T" is compact if and only if R has no cusps. Geodesics on D/I" are the projections of
circular arcs in D orthogonal to St.

If g€T', g(z) = (az+b)/(cz+d), then the circle |cz+d| =1 is called the isometric circle
of g, because [g'(z)| >1 inside this circle and |g’(2)| <1 outside. The isometric circle is
always a circle orthogonal to S

I suspect the idea that something like the ideas of this paper might work has occurred
to a number of people. In particular, see the remark at the end of [10]. Certainly it had to
both Adler and Moser, and I would like to thank both for the benefit of useful conversations.

§ 1. Symbolic representation of points on S1

Let us recall briefly the constructions made in [6]. As explained in the introduction,
I' is a finitely generated Fuchsian group of the first kind acting in the unit disec D. I" has
a fundamental region E which consists of a polygon with a finite number of sides {s;}/.1;
these sides extend to circular arcs Cf(s;) orthogonal to Si. Each side s, of E is identified
with another side A(s,) by an element g, =g(s;) €EI'; the set I'y={g,};1 is a symmetrical
set of generators for I'. The images of the sides {s,} under I" form a net ¥ in D. We will
say R satisfies property (*) if:
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(i) C(s) is the isometric circle of s, and

(ii) C(s) lies completely in H.

Throughout § 1-§ 4, we shall assume R satisfies (*) and moreover that R is not a triangle
and does not have elliptic vertices of order 2. (See [6].)

A typical fundamental region is shown in Fig. 1. (See also Fig. 1 of [6].)

We label the sides of R, s,, s,, ..., s, in anti-clockwise order; the vertex v, is the inter-
section of s;_; and s, (with s;=s,). C(s;) meets 8! in P;, @,,,, so that the order of points
along C(s;) is Py, vy, 0149, @iga-

f=fr: 82— 8! is defined by fr(x) =¢,(x), z€[P;P;,;). In [6] we showed that fi- has the
following properties:

(a) Except for a finite number of pairs of points z, y €S
x=gy, « yESY, g€l'wdn, m >0 such that f*(x)=f"(y).

(b) f is Markov in the following sense:
There is a finite or countable partition of 8! into intervals {I,}{°; such that
(Mi) f is strictly monotonic on each I, and extends to a O? function f, on I,
(Mii) f(I) 0 1,40 =f(L)=21,, Vj, k,
(Miif) U0 (1,2 Iy, Vi, &,
(Miv) If I,=[a;, b;] then {f/(a;), fi(b,)}21 is finite.
Moreover the partition {I,} is finite if and only if D/T" is compact, or equivalently if
R has no cusps.
(c) (Ei) If there are no cusps, then 3N >0 such that

inf [(P) (@)] > >1

(Eii) A cusp of R is a periodic point for f with derivative one. There is a sub-
set K< 8!, consisting of a union of intervals I, so that if fe(x)=f""(z), n(x)=
min {n>0: f(x)€K}, x€K, is the first return map induced on K, then IN such that
infrex | () @)] >y >1.

To each point x€8! we can associate a so-called f-expansion (cf. [1]). The usual way
to do this is to write x=1gly 0y ... if f@)€L,, n=0,1,2, ... (There is a slight ambiguity
at the endpoints which we shall clarify below.) By (Mii) the rule determining which se-
quences o7, ... can occur is of finite type [8]; namely 4,7, occurs iff f(I,)> I,.

For our purposes it is better to label points using the generators I'y of I', so we replace

the partition {I;} by {[P;P;;,]1=[g.]}. The rules determining which sequences are admis-
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sible is no longer of finite type. We say a sequence e,e,...e,€I'¢ is admissible if
Uik ([eit])+=D. Let " ={ee,... €3 eey,q .- 6y is admissible Vk, IEN}. Define
7: ZT 81 by m(e ey ...)—> N2 f"([eit]). The intersection is non-empty since this is true
of all finite intersections and it contains at most one point because of the expanding condi-
tion (c). We discuss the topology of £* and continuity of 7 in § 4.

To see which sequences e;e, ... belong to X7, it is enough to find those sequences
es8, ... e, for which M™% f7"((e; ) +=D, where (¢,) =Int [e,].

To state the rules we need some more terminology. Starting at a vertex v; with the
side s; and generator g;, we get a cycle of vertices v;=w;, ..., w, and corresponding generators
gi =Py, ..., by ([9]Sec. 26 and [6] Lemma 2.4.) We say the anti-clockwise sequence Ay ' bz ... by "
is in left-hand (L) cyclic order. Similarly, starting at v,,; with side s; and generator g,
we get a cycle v,.,=2,2,, ..., 2, and generators ¢;=j;, Jp, ..., j,- We say the clockwise
sequence j1'j3! ... is in right-hand (R) cyclic order. There exist integers u, » such that
(hthzt . By Y e=(T 52" ... j71)’=1. pu and gv represent the number of sides of ¥ which
meet at the vertices v;, v,; respectively, and therefore by (*), pu=2I, qv=2k are even
(see Fig. 1). We call L cycles of lengths I—1, I, I+1, D-(deficient), H-(half), and S-(super-
fluous) L cycles respectively, and similarly for B cycles of lengths k—1, k and k+1. A
cycle of length 21 or 2k is called full. Notice that a full cycle is equal to the identity in I'.
If h=g,, write bt =g, , and h—=g, ;. If B=b, ... b,, B*=b, ... b,,;, C=¢; ... ¢, are L cycles
with ¢i'=(b;4)*, we say B and C are adjacent or consecutive L cycles; similarly if B, Bl
and C are R cycles and c¢i' = (b;341)~ we say B, C are consecutive R cycles (see Fig. 2). A
sequence By, ..., B, of consecutive L cycles, where B,, B, are H-cycles and B,, ..., B,
are D-cycles, will be called a L H-chain; such a sequence with B, a L D-cycle is a L D-chain.
Often we represent a chain symbolically by DD ... DH.

In Figs. 1 and 2 we indicate that the side s, of R is associated to ¢,€I"; by an arrow
pointing into R. We write {gi'*> for the interval [P,P,,,) (the inverse is to make subsequent

computations work properly) and write x =g;,g;, ... if f*" 1) €{g; >, n=1, 2, ....

ProrosiTron 1.1. 4 sequence e, ... e,, e;E€L'y, is admissible if and only if

(1) 9971, g €X', does not occur.
(2) No R H-cycles occur.

(3) No L S-cycles occur.

(4) No L H-chains occur.

Proof. Referring to Fig. 1, let P;=C,, P, ., =0, Q;=D,,Q;,,=D, The arcs z,0,,

21Ca, «.y 2,0, are the ares of the net M emanating from 2, and lying within the isometric
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D, Di=8, C,=H,=P,

circle C(s;) of g;; similarly the ares w, Dy, ..., w; D; are the arcs of ¥ emanating from w,
and lying within C(s;). By [6] Lemma 2.2, w, D,_; and 2z, C,_; do not intersect. w,, wy, ..., w,
is the vertex cycle starting at w, with side s; and &y, ks, ..., %, 1s the corresponding cycle of
generators. Similarly z,, 2,, ..., 2, is the vertex cycle starting at z; with side s;, with corre-
sponding generators 4y, jo, ..., jgo Wy Hys oo, wi Hypy 2114, oo, 20 Ly 254, 25 A4, ...y 2,455 and
wy By, wy By, ..., wy B, are all the arcs of # lying inside the isometric circles of 7Y, j77, s
and A, respectively. &, F and K are the endpoints of C(h$), C(jz), C((k;')~) lying inside
C(hy), C(j,), C(hy ") respectively and J is the endpoint of the arc of N through v;_; adjacent
to but outside C(h; ).
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Fig. 2(a). Consecutive L cycles

-1
br+1
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Fig. 2(b). Consecutive R cycles

(At a parabolic vertex, {=oco and we label points as H, H,_,, Hy_5, ... etc. and in
computations treat « exactly as any other integer.)

Notice that the map g, carries D, z,, w,, C, onto 4, z,, w,, B, respectively; Oy, ..., ;4
onto A4,, ..., 4, and Dy, ..., D,_; onto B,, ..., B;.

Now flicco=P1=41- H[CxCy) covers all intervals (k> except {j5 Iy, <k and
<haty. Since f(<KAT) N <k =D, we get (1). H[C,C,)) N Ga> =[4xA,.,), 1<r<k—2 and
HIC,Cry)) N G2ty =D, Moreover f([C,,0,)) N (hY =f([C ) N <k> for 1<r<k—1and h==j5".
Therefore the sequence ji'jz' ... ji ' is not admissible, but otherwise the restrictions fol-
lowing the symbols j* ... 5%, r<k—1, are the same as those following j; * alone. Rule (2)
above follows.

Similarly we have

H[CxC) N k™) =B, G),
fLDyC) 0 <he™> = [B,y ), 1<r<l-2,
(D1 0)) N <Az = @
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and

HID, O N By = (GO N By for 1<r<I-2, hehi,
f(ID 4 C)) N <Ry = FIC,C)) N <y for h=khs?, (hf)2

and
D1, C)) N(RE)™) = {(hs)™*) —[G'By).

Therefore the sequence hrhz" ... b7y is not admissible, which is rule (3).

The only restrictions following ki ... h;t, r<I, are the same as those following ;'
alone. Following A3 ... b7 'h, where h=h;}, are the same restrictions as after % alone.

After hi'...h7Y(h1)"! is the same restriction as after k—(h;;1)~, where k1 is the
element preceding (%;,1)! in the L order. Thus (A1)~ is not the first element in a L
H.cycle; also if (h;;1)~! is the first element of a L D-cycle which ends in 572, followed by
(£+)-1 where s~1¢~1 are in L order, then (¢+)~1 is not the first element of a L H-cycle.

Repetition of this argument gives rule (4), and we have examined all the possibilities
for finite sequences ¢, ... ¢,. &' therefore consists of all sequences e ¢, ... in which each
finite block satisfies (1)-(4) above.

The map 7: X" — S is of course not bijective. More precisely = € St has two representa-
tions in X" whenever ff(x)€{P }i., for some k>0. P; can be written either as DDD ...,
an infinite string of consecutive R D-cycles, or as HDD ..., an infinite string of consecutive

L cycles.

Convention. In order to keep track of what is happening we shall in future adopt the

following rule:

Whenever €8 has two symbolic expressions in L¥, we write x=e,¢, ... where e,e, ...
is the expression for x ending in L cycles.

This is equivalent to attaching P, to the interval (P, P,,,) rather than (P;_;P;).

Also notice mo(e) =fn(e), e€EX*, provided e does not end in an infinite string of B
D-cycles, where ¢ is the left shift on X7.

Remark 1.2. In the case where R is a symmetric 4g-sided polygon, our rules are identical
with those of [13] p. 77 and closely related to those in [11] p. 791.

§ 2. Representation of geodesics in D

We would now like to represent a geodesic y in D by taking the f-expansions of its
endpoints P, @, say P=e,¢, ..., @=f,f, ... and writing y=... f,f,e, ¢, .... Unfortunately,

the sequence so obtained may not be admissible according to the rules of § 1. There are
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two problems: (i) Is the reversed sequence ... f,f, always admissible? And if so: (ii) When
18 ... fof1€1€, ... admissible? The answer to (i) is no. It is perhaps more natural to consider
the inverse sequence ... fa*fi*. This is however still in general inadmissible. To circumvent

this difficulty we use the following trick:

f-expansions. Recall that in defining f we made an arbitrary choice that fleeirin =9
We could equally well have taken f|w, ,01=¢:; let us call this map f. f obviously has
exactly the same properties as f, and the admissibility rules are obtained by interchanging

‘R’ and ‘L’ in Proposition 1.1 above.

LEMMA 2.1. Let ey e, ... be an admissible sequence for f. Then the inverse sequence ... e eg*

1s admissible for f, and vice versa.

Proof. This follows easily from the remarks above, since an R cycle in ¢, ¢, ... becomes
an L cycle in .., e5 Yer'; and consecutive R cycles become consecutive L cycles.

Let P,Q€S'and let P=e¢ ¢, ..., =f,f, ... be the f- and f-expansions of P, @ respectively.
We shall call the directed geodesic y joining @ to P admissible if @-1. P=... fa'fi'e e, ...
is admissible, and we shall also write y=... fa i 161 €y .... Below in § 3 we shall see that
admissible geodesics pass ‘close’ in a certain sense to the fundamental region R. This will
deal with problem (ii) above.

Let X be the space of doubly infinite admissible sequences (i.e. all finite blocks satisfy-
ing (1)-(4) of Proposition 1.1) with left shift map o.

To proceed we need to know something about the action of I'y (the set of generators

of I') on 8* in terms of the symbolic representation of § 1.

ProPOSITION 2.2. Let 2 =¢,¢, ... EXT, g€T,. Then

(1) g(x)=ge e, ... whenever ge,e, ... EX* and
(2) g(x)=ezey ... if g=ei™.

Proof. We refer again to Fig. 1 with g =h,.
(1) Suppose ge, e, ... is admissible. Then

(a) ge,e, ... does not begin with a B H-cycle.
(b) ge, e, ... does not begin with a L H-chain.

(c) ey==g71.
Observe that ge, e, ... begins with a R H-cycle iff x=e,e, ... €[H,H,); ge,e, ... begins
with a I, H-chain iff x €[C, D). Therefore (a), (b), (¢) together imply z¢[H,D)).
Since x ¢ C(g), the isometric circle of g, g(x) €C(g~1) N Sr={g> U [B,B,) (cf. [9] Sec. 11).
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But g(x) ¢[ B, B,) since z ¢[H, H,). Therefore g(z) €{g>, 50 f(g(x)) =g~1g(x)) =2 =e e, ... and
g(x) =ge e, ....

(2) Suppose g=ei’. Then 2€{g~1> and so f(z)=g(z) and g(x) =e,e; ...

It is possible to derive rules for the action of 'y on X7 in general. As this is not neces-

sary for our development and the details become rather involved, we state without proof:

ProrosiTioN 2.3. Suppose €S, and g€, Let x =e ¢, ..., g(x) =f, [, ... be the f-expan-
sions of x, g(x). Then Is,t>0 so that ge,e, ... e,=fify ... fsin I and e, , =f; ., r>0.

Of course we have already proved the second part of this statement in [6], see property
(a) of frin § 1.

This proposition is of interest because it enables us to prove the analogue of the results
of Hedlund and Artin mentioned in the Introduction, that admissible geodesics are con-
jugate under I' iff the corresponding sequences are shift equivalent. The proof is an easy

consequence of Proposition 2.3:

ProrosiTioN 2.4. Let (P,Q), (R, S)ESt xS be such that Q"'P, R™'S€X. Then
g€l with gP =R, g@—==8 iff An€S with 6™(Q *P)=8"'R.

Proof. Let P=e,e, ..., Q=/,f, ... be the f- and f-expansions of P, @ respectively. We
have ... f'fi'e,e, ... €Z. By Proposition 2.2,

et {(P) =eye5... and er Q) =ei'fifs ...

Hence o(Q 1 P)=(ei" @) (e1'P).
Conversely, suppose P, Q€8 and g €T are such that Q™I P, (9Q) ! (¢P) €X. By Proposi-

tion 2.3, we have

P=e¢ ..e0,4.. and gP=wu, .. uye, ;..

where ge, ... e, =u; ... Uy,

Similarly, @ =f; ... fufpsr -0 9@ =01 ... Vyfpyz ... and gfy ... fo=2; ... v,
Thus %, ... Upen " ... 61 =] ... v,fp " ... fr* and so

QP = flif;t o fitey i eplyig . and  (gQ)THGP) = .. foi10gt o 0T Uy o Uy oo

are shift conjugate.

This result is sufficient to show that the geodesic flow on D/I is ergodic, by the method
used by Hedlund in [11]. Notice that the restriction to admissible geodesics with @ *P€X
corresponds to the restriction in [3] that the endpoints of geodesics lie in (—1, 0) and

{0, o). For a discussion of the relevant measures, see Remark 4.4 below.
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We shall instead follow the method of Morse to obtain a representation of the geodesic
flow itself.
8. 3 Crossings of the fundamental region R

We now want to investigate in detail the relationship between the symbolic expansion
y=...fz'fi'e,e, ... of an admissible geodesic and the order in which y cuts successive sides
of the net N. Recall that each side of R is labelled by a unique element g €I';. This label
can be translated by an element of I' to assign a unique element of I'; to each (oriented)
side of . The idea that y should cut successively sides ..., fz*, fi', €;, €, ... may unfor-

tunately fail when y passes too close to vertices in Y. What we shall show is

THEOREM 3.1. For any e€X, with corresponding directed geodesic <, there is a dis-
tinguished copy R(y) of B such that

(1) y N R(y)=+=0
2) y 0 B+0=R(y)=R

(8) ¥ cuts in succession R(y), 6-1R(ay), ... where 6~"=e¢, ... e, for e= ... fy fi'e e, ....

Throughout this section, by R we shall mean the open region bounded by the sides s;.

Statement (3) needs a little interpretation when y is a geodesic which goes through a
vertex v of N. Let Ry, ..., By, be the copies of R meeting at v, in anti-clockwise order
round v. If y passes from R, to B, we say y cuts E,, Ry, ..., By,q in order. If y coincides
with the side of # between R, and R,, we say y cuts R, Ry, ..., Biyp in order and if y
coincides with the side between R, and Ry, y cuts Ry, ..., Byyr.

The idea of Theorem 3.1 is that if y N B=0, y can be deformed by a sequence of
‘small deformations’ to a curve p such that 9 N R==@ which cuts R, 0—'R in order. This
sequence of deformations will determine R(y).

Let us make this more precise. As above, let v be a vertex of Y where copies Ry, ..., By,
of R meet, in anti-clockwise order round v. Let w,, 1 <r <2k, be the vertex of ¥ adjacent
to v, along the side between R, and R, (see Fig. 3), and let 4, be the endpoint of this
gide on St

A directed curve § will be said to pass near v if it passes from B; to R, cutting the
arcs [ow,), 1<r<k, or [ow,), 2k=r>k+1, in order, see Fig. 3. If § cuts [vw,), 1<r<kg,
let § be a curve which coincides with B everywhere except near v, where it cuts instead the

arcs (vw,), 2k=>r=k+1. ﬂ- is ‘a small deformation of 8 round v’. Ryy_r,s, 2<r<k, is called
the conjugate region to R,, Ry_,,o=Ef%?. If 8 cuts [ow,), 2k=>r>k+1, we write R, =
RI®? 2k>r>k+2 and call R, self-conjugate. We write *(8, v)=# where there is no
ambiguity.

8 — 802907 Acta mathematica 146. Imprimé le 4 Mai 1981
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Fig. 3

We shall call a curve obtained from § by a sequence of small deformations a deforma-
tion of 8. We make the same conventions about the order of regions cut by a deformed
curve p through a vertex, as for geodesics y.

Notice that the conjugate of a region S is a locally constant function of .

Lemma 3.2. If the fundamental region R constructed in [6] § 3 has four sides, then at

least eight sides meet ot a vertex.

Proof. Tt is straightforward to check all the cases in [6] to verify that B always has
more than four sides, unless the signature of I' is {1; 1; »;}. But since », >2, and the corre-
sponding R has interior angle z/2y,, we see that in this case at least eight sides meet at a

vertex.

CoROLLARY 3.3. There are no triangles formed by N. If for edges of N form a quadri-

lateral, then at least eight sides meet at a vertex.

Proof. Suppose the triangle or quadrilateral is not already a fundamental region. Then

there is a vertex v of ! on the interior of one of the sides of the region. Any other edge of
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N through v forms a smaller triangle or quadrilateral. Proceeding in this way we eventually

reach a region of minimal size which must be a copy of B.

LeMmA 3.4, In a sequence of small deformations of a geodesic v, a region 8 is associated
to at most one conjugate region S*, across a unique vertex v. Likewise S* is the conjugate of at

most one region S.

Proof. If s is a side of 8, let B{s)< S* be the arc of St interior to the circle C(s). Notice
that if 9 is obtained from y by a sequence of small deformations, and if §*=£S is obtained
by a deformation of ¥ across the vertex v of 8, and if s, s" are the sides of S meeting at v,
then y has one endpoint in B(s) — B(s’) and the other in B(s’) — B(s).

Similarly, if # is a deformation of y across a vertex w, at which meet sides ¢, ¢ of S,
with conjugate region 8* =S8, then y has its endpoints in B(t) — B(t'), B(¢') — B(?).

If u, u' are sides of § then since extensions of non-adjacent sides of § do not meet
([6] Lemma 2.2), we have B(s) N B(t) =@ unless s =t or s, t are adjacent. After interchanging

s with s’ and ¢ with ¢ if necessary, there are three cases:
Case 1. s=t, 8’ =t’. Then v=w and clearly S*=8*.

Case 2. s=t, s'=:t'. B(t')— B(t) is disjoint from B(s) — B(s'), so B(') N B(s') =D since
it contains an endpoint of y. Then #', s" are adjacent. But this means R has only three

sides, s, t’, s’, which is impossible.

Case 3. s==t, s'=£t’. Without loss of generality, we may suppose (B()—B(t'))N
(B(s) — B(s"))+D. Then s, ¢ are adjacent. In this case we also have B(¥') N B(s')==0, since
this set contains an endpoiut of y. Hence ', t’ are adjacent. Then R has four sides, s, ', ¢
and #'. Since non-adjacent sides of B do not meet, y has its endpoints in sectors of the
vertex star at v separated by one sector only, namely that containing S. But since by
Lemma 3.2 at least eight copies of R meet at v, the endpoints of ¢ do not then lie in dia-
metrically opposite sectors at v. Then y does not pass near », which is contrary to assump-
tion.

The final statement is proved by exactly the same argument.

Thus we may write 8* = 8*(y), independent of » and the deformation 7.

LemmA 3.5. Let y be a geodesic. Then y cuts a region S at most once, and if y N §==D
and S==8*, then y N 8§*=0D.

Proof. If y cut S more than once, then #:(y N38)>2. But $(y N 88)< 2, since S is
geodesically convex. (This uses the fact that the interior angles of 8 are all less than 7,

and the formula 4 =n(n—2)—> «; for the area of a geodesic polygon.)
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Suppose y passes near the vertex v of § and sides s, s’ meet at v. If y N 8*4=D then y

would have to cross the extensions C(s), C(s’) of s, s’ twice, which is impossible.

LemMMA 3.6. Let 7 be a deformation of a geodesic y. Suppose y cuts in order By, ..., R,
(with the above conventions if y passes through a vertex of N). Then y cuts in order ]:31, s 1:2"
where B, is one of R,, Rf.

Proof. This follows easily by induction on the number of small deformations. For one

deformation it is clear from the definitions.

CoROLLARY 3.7. Let y be a deformation of a geodesic y and suppose y N S==D. Then
either v N S==D or there is a unique region S, with y N §,3=@ and S = S57.

Proof. Let ..., B, R,, ... be the sequence of regions cut by y. By Lemma 3.6, S=E,
or R} for some i. If S= R, we are done. If §=R} and R,=R; theny N B,+Q. Suppose
y N 8= and there is a region T'=R,; with y n T=@, T*=8. Then T =R, for some j and
R} = R}. By Lemma 3.4, R,=R,.

LemMA 3.8. Let v, Ry, ..., Ry, be as in Fig. 3. Let o be a geodesic with endpoinis in
(Age4,), (AxAyyq), culting in order Ry, Ry, ..., By. Then there is a deformation & of « which

cuts in order By, Ry, ..., By 4.

Proof. Let xy=v, 2, =wy, ,, ...; Yo="1, ¥ =Wy, Y2, ... be the vertices of N along [vA4,),
[v4,) and suppose « cuts [04;) on [,x,,,) and [v4;) on [y,Y,.,). Let I be any edge of }
through u € {z,}}, other than 4,v4, , or A,vA4,,. ! has an endpoint L in (4, 4,), otherwise
I, AyvA;,, and 4,vA,, would form a triangle. Let z be the vertex of ¥] adjacent to u on
[«L). Let m be a side of N distinet from I through z. We can suppose 7 has one endpoint
in (LAy), for otherwise I, m, A,vd4,, and 4,v4, ., form a quadrilateral. In this case pick
mi==m, ] through z (possible since >8 sides meet at 2). Then either m!, m, v4, form a
triangle, which is impossible, or m! has an endpoint in (LA,). The other endpoint of m?
lies in (A4,L), otherwise m!, | and v4, form a triangle.

Then either o N I €[uz), or m! cuts « twice or touches «, both of which are impossible.
So « N1€fuz).

We now see « passes near x,. For by the above, « cuts every side of } through z,
between z, and the adjacent vertex of ¥ in the direction of (4,4,). Deforming round z,
we see repeating the argument & passes near x,_,, etc.

Similarly « can be deformed round y,, y,_;, .... Let & be the curve obtained by deform-
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ing successively round «,, ..., %, ¥4 ..., ¥;- Then & passes near ¥,=v, and deforming round
v we get the required result.
Let W ={P€S": P is the endpoint of a geodesic in Y through a vertex of R}.

ProPOSITION 3.9. Suppose y =Q 'PEX. Then y can always be deformed to a curvey*
which cuts R, y~1R in succession, unless possibly PEW or QEW. In this case either y is a
side of N and cuts R, 6-1R in succession or y is not a side of N and there are geodesics y'=
Q' ~P' €X arbitrarily close to y, with P', Q' ¢ W.

Proof. We refer throughout to Fig. 1. Without loss of generality we may assume
P€[C,0,). This means 0-1=g; ! gi* R is the copy of R adjacent to R along s,.

If @ lies outside all the circles C(s;_,), C(s;_4), C(8;), C(8444) it is clear that y N R=FD,
and that either v N (s;)==Q, or ¥ N (5;41]F+D. ((s;_1]1= (v;,_,;].) In the first case y cuts in
succession R, 0—1R. Otherwise P€[C, D,). If P€(C, D,), we are in the situation of Lemma
3.8 relative to v;, so y can be deformed to cut R, o-1R in order.

If P=C, then y’=Q P! where P1€(C, D,) is admissible. If Q€(C,, D,] then Q"'P¢X.

Suppose Q€E(L,L, ;] 1<r<k—1. Then the f-expansion of @ begins with an L cycle
of length &k —r. Since @ 'P€Z, P begins with an R cycle of length at most r—1, so that
PE[C;Cy_yyy). This means y lies outside the circle L,v,,, (.4, 50 y N R<=D, and y cuts
o~ 1R after R.

Suppose QE(H, 1 H,], 1<s<l—2, or Q€(KH,_ ;] and s=I—1. The f-expansion of @
begins with an R cycle 4,. If 4, is followed by consecutive R cycles A4,, ..., 4, of lengths
D, ..., D, H respectively then 4, has length I —s—1, otherwise 4, has length [ —s. There-
fore since Q" 'P€X, if P begins with an L cycle B;, and B, is followed by consecutive L
cycles By, ..., B, of lengths D, ..., D, H then B, has length at most s —1; otherwise B, has
length at most s. This means that PE[D,_ ().

Now if y N R+ the result is obvious. Otherwise unless P=D,_;or @=H, or y is a
side of N, we are in the situation of Lemma 3.8, with @, P in the diametrically opposite
sectors (H,, H,), (D,_;D,_,,;) at v. Applying Lemma 3.8 we get the required deformation.
If P=D,  or Q=H, and P'€(D, ,C,), @ €(H,, H,) theny’=Q 'P'€Z.If yisasideof U
y cuts R, c-1R in order.

If QeC(8,_,) —(H, K], either y already cuts R, c—'R or y has endpoints in the dia-
metrically opposite sectors (D, H;], [H, D;) at v; and so can be deformed as required, or if
P=H, or Q=H, replace by P'€(H, D,), @' €(D,H)).

Finally if Q€(H,K] the f-expansion of @ begins with a sequence of consecutive R
cycles of lengths D, ..., D, H beginning with g;-%. Hence P does not begin with an L chain
DD ... DH, i.e. P¢[C) D,). But then either y cuts R, c-1R; or y has endpoints in the dia-
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metrically opposite segments (H,H,_;), (D; D,) and we apply Lemma 3.8; or y is not a side
of N and there are curves y’ close to o with endpoints in (H,H,_,), (D, D,); ory=H;'D,
and y cuts R, 671R.

Now let y =Q 'P€EX and suppose we can find a deformation y* with y* N R=+D. By
Corollary 3.7 either y N RO or there is a unique region B, with y N B, <@ and R=ERj.
If y N R40 set R(y)=R; otherwise set R(y)=R,. It is clear from Lemma 3.4 that E(y) is
independent of the deformation y*.

Suppose y =@~ 'P€X with no deformation y* with * N E==0, and that p is not a geo-
desic in . By Proposition 3.9 we see there are geodesics ' = @' 1P’ €X arbitrarily close to
v, with y™* N R=. We observed above that for any region S, 8* is a locally constant func-
tion of S. Therefore we may define R(y)=R(y’) for ' close to y.

If y€X is a side of N, set R(y)= R. By Proposition 3.9, y cuts R, ¢~ in succession.
In this case oy is also a side of 1 and so R(oy) = R. Thus y cuts R(y), 0-1E(oy) in succession.

Suppose y €2 is not a side of Y and let »* be a deformation which cuts R, c—1R in
succession. By Lemma 3.6 there are regions R,, R, so that v cuts B,, R, in succession and
R=R,; or R{?, 6-1R=R, or R;™. R(y)= R, by definition.

Now gy* cuts R. If oy N B+D, R(oy)=R. Then y cuts R(y), 6-2R(oy) in succession.

Otherwise oy N B=@ but o9* N R+D and oy NoR,+D. Thus R=-¢R, and so R=
o(R3?). Since ¢ is an automorphism, o(R3?)=(aRy)*“”, and thus oy NoR,+D and
(0R,)*“Y = R, which implies R(oy)=0R,. Thus y cuts E(y), 6-LR(oy) in succession.

Finally suppose y €X is not a side of 7 and is close to a curve y’ which cuts R(y’),

o6~ 1R(oy") in order. Taking 9’ sufficiently close to y we have R(y) = R(y’) and R(oy’) = R(oy’).
Moreover we may assume 9’ cuts R(y’), 6-1R(oy’) and so y cuts R(p), o-*R(oy).

Now applying Proposition 3.9 to o1y, we may find a deformation of ¢~y which cuts
R, IR in succession, and hence a deformation of v which cuts oR, R in succession. Ap-
plying similar reasoning to the above, we see y cuts 0 R(c-1y), R(y) in succession. A simple
inductive argument and repeated application of Lemma 3.5 completes the proof of Theo-
rem 3.1.

It is obvious that, for any y €2, there is a unique g €X with gR(y) = R. We shall need

a converse to this:

ProposITION 3.10. Let y be any geodesic with y N B+=Q. Then there exists a unique
g €T so that gy €2 and R(gy)=gR.

Proof. Suppose g€I' is such that gy €X and R(gy)=gR. If R(gy)=R, then g=id.
Otherwise, R(gy)*“”=R=g-1R(gy). Since ¢ is an automorphism, g=(R(gy)**’)=
[g71R(gy)T*®, i.e. R*” =g-1R. Therefore g, if it exists, is unique.
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If y€X then R(y)=R and we may take g=id.

So suppose y=Q P ¢X. Without loss of generality, we may assume P€[C,C,). If
Q@ 'P¢X we must have Q€(H,L,] (see the proof of Proposition 3.9). Clearly Q¢ (C,L,],
for then y N R=0.

Suppose that Q€(L,L,,,], 1 <r<k—1. Arguing as in Proposition 3.9, we see P begins
with an R cycle of length at least r, so PE[C,_,,;C;). Since y N R<=@, we must have P&
[Ck—r41Cr_s), the sector at v,, diametrically opposite (L,L,,]. Suppose @=<L, ;, PF=C;_, ;.
Then by Lemma 3.8 we see we can deform y to obtain a conjugate R*¥==R. Pick g so that
gR*= R. Now relabel the vertices so that gP €{C, C,). Then gy passes to the right of gv,,
and gP, g@ are in diametrically opposite sectors at gv. Moreover gv,,, is a vertex of E, and
since y N B* =0, gy N R=0. This forces (with the new labelling), gv,,, =v;, gP €(D,C,) and
gQ€(H H,). Now as in the proof of Proposition 3.9, (9Q) 'gP€X. Clearly gy N R=0, so as
in Proposition 3.9 there is a unique region R, with R’ =R and gy N R+, and B, =
R(gy). Now R{“”=g((g~LR,)*?), since ¢ is an automorphism and thus g-1R =(g-1R,)*?,
But g~'R=R*?, therefore by Lemma 3.4, g-1R, = R. Since R,=R(gy), ¢ is as required.

I either @=L, or P=C,_,,; we apply the same g as for nearby y" and use obvious
continuity arguments.

Now if @ =L,, P€[C,0,) and y N B0, we must have P =C,. Then we may take g =id.

Finally suppose Q€(H,,,H,], 1<s<l—2, or Q€(KH, ,] and s=1—1. Since y N R0
we see PE[D,_,C,). Just as in the proof of Proposition 3.9, this shows Q- 'P€X. Thus we
may take g=id.

§ 4. Symbolic representation of the geodesic flow

In this section we show that the geodesic flow on 7;(D/I") can be represented as a
quotient of a special flow over X, o; where the height function is the time taken to cross
the region E(y). We keep the notation and conventions of § 1-§ 3.

If y is an admissible geodesic, let 4(y) be the hyperbolic length of ¢ N R(y). % is infinite
if an endpoint of y is a cusp. A lifts to a function also denoted by » on X. Let
A={(e,1): e€X,0<t<h(e)} and let ¢, be the special flow on A defined by @,(e, )=
(o™, t-+T—~8,h(e)) when 7>0 and 0<t+7—S8,k(e) <h(c"e) with a similar definition for
7 <0, where S,h(e)=>5"" ho"(e).

(Notice that 3¢h(c™) diverges because an arc of y of finite length can cut only
finitely many copies of R.)

Let 9, be the geodesic flow on the unit tangent bundle M of D/T’, let M be the unit
tangent bundle of D and let p: M - M be projection. i, is geodesic flow on .
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For an admissible geodesic p, let b(y) €M be the unit tangent vector pointing along yp
based at the point where y enters R(y).
Define II: A~ M by

11 ((e, ) = py(pb(e)),

where s(e) is the geodesic associated to e. In what follows we shall frequently identify e

and n(e).

ProrositioN 4.1. II 4s surjective, Hop,=y,I1 and I Y(IL(e, t)) =tnYn(e)) for
e€X (i.e. Il is 1-1 except on a set of the first category).

Proof. Take w€M. Lift u to 4 €M with the property that % has its endpoint U in R.
If y is the geodesic through U in the direction i, y N R+=Q.

By Proposition 3.10, there is a unique g€I" with gy €X and R(gy)=gR. gi is also a
lifting of u, and gy N R(gy)==D. Let v be the hyperbolic distance along gy from the point ¥
where gy enters R(gy) to gU. Since U€ R, gU € gR = R(gy). Then 0 <7 <h(gy) (or h(gy) =0),
and gi =P, b(gy). Also IL(gy, 7) =, (pb(gy)) =pP, blgy) =p(g@) =u. Therefore I is surjective.

Suppose also Il(e, t) =u, e€X. Let s(e) =f. Then u=1y,p(B(8)) =pP(b(f)). Thus there
is an REI" so that hgdt =7,b(F), and so h~1b(gy) =b(F). Thus b(f) is the unit tangent vector
along k-lgy based at the point where h—'gy enters A~'R(gy). This means h~lgy=f and
h=1R(gy) =R(B), i.e. k1gR = R(f). According to Proposition 3.10, 21y is unique and k =id,
B =gy certainly works. Therefore I1(e, t) =u iff r(e) =gy. Observe x is one, two or four-to-one
depending on whether ¢y has neither, one or both its endpoints in J2o0™"W.

Suppose (¢, )EA, e= ... 2 fi'e ey ..., T>0 and S, h(e) <t -+7 <8, h(e).

Then

Pneyb(e) = o1b(oe) (4.1.1)
by Theorem 3.1 (3).
Thus
Ps,ne) (07D(e)) (4.1.2)
= Ps,nie) (0" Prer b(e))
= Ps, e (o™ 1b(oe)) by (4.1.1)
= ... =b(c")

and
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H(p4le, 1)) = Perr—spnter(PO(07))
= P11 PP_synier(b(a™))
=1..p(a"D(e)) by}(4.1.2)
=P D(b(e))
=1(e, 1).

A similar computation works for v <0,
We now want to investigate the continuity of II and k. Put on X the usual product
topology and metric

d((e;), (1)) =27", n=sup {m:e,=¢j, |i| <m}.
ProPosIiTION 4.2. 1: T =81 45 continuous.

Proof. In the no cusp case this follows easily from Property (Ei) of f in § 1, see also
the last line of the proof below.

Suppose ¢ is a cusp of B. Suppose the Z cycle of generators at C is Ay, ..., k,. Let
H=h,... hy. Then H(C)=C and H'(C)=1. By Lemma 2.8 of [6],4H acting on S* with fixed
point C is conjugate by a Mébius transformation to

5=y 1)

acting on R with fixed point 0, with y>0. Let J(H™)={P€S:: P=H " ...}. One sees ecasily
J(H™) corresponds to (a(my+1)7%, 0] for some a<0. Therefore P, Q€J(H™)=|P—@Q| =
O(m~1) on S

Now pick P€S* and suppose P corresponds to e=Hj* B, H3* B, ... €EX* where H; is
a cycle corresponding to a parabolic vertex and B; is a block containing no such cycles.
Suppose given ¢>0.

Say Im, so that 1/m,<e. Let the length of the sequence H" B, H3* ... B,_, be N. Then
d(e’, e) <27V =0"Q, "PE€J(H]") where Q=xn(e'). Also o} =0, for 1<r<XN and lo’| =1 on
8. Therefore |P —Q| <Kze, for some K depending only on I'.

Otherwise, AL such that m,<L, Yr. Thus P ¢J(H~) for any parabolic vertex, so ¢*P
is a bounded distance away from all the parabolic vertices for each k. Since ¢’(z) =1 only
at parabolic vertices, this means 34>1 such that (6¥)’ >4 for all £. Choose N so that 1~V <e.
If d(e’, ¢) <27 then op =0%, k<N and so |P—@| <i™V.
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COROLLARY 4.3. m: X— 81 x S is continuous.

Let X*={e€X: neither endpoint of e on S is a cusp}.
ProprosITION 4.4. £ 4s continuous on X*. In the no cusp case, h is Holder on 2.

Proof. We take the no cusp case first.

Let A be an admissible geodesic in D with endpoints P =¢, @ =¢'%. Suppose C}, C, are
disjoint geodesics which are cut within bounded arcs by y. The hyperbolic distance between
C, and C; along y is a smooth function of 0, ¢. Hence if y’ is a geodesic with endpoints
P'=¢%, @ =é7, then |d—d’'| <K(|0—0'| +|p—¢|) where K depends only on C, C;.

Let 2>1 be the expansive constant for ¢. Suppose d(y, y’)<2-". Then [0 —0'| <A77,
lg—o'| <7

R(y) always has a vertex in common with R and so is one of a finite number of regions.
Thus h(y) is the distance along y between a finite number of possible pairs of sides of 7.
Provided y does not pass through a vertex of R(y), |h(y)—h(y’)| <Ky~ for K independent
of ».

Suppose y enters R(y) across a geodesic C; and leaves across the intersection of C,
and C;. k(y") for ¢’ near y is the distance along 9’ from C, to one of C,, C;. Both these func-
tion are Holder and their values coincide at o. Likewise, if ¢ coincides with a side of H,
R(y") is one of a finite number of regions meeting E(y) and we see h(y’) is one of a finite
number of Hoélder functions all of whose values agree at .

Now suppose R has cusps. Let K, be the part of D outside small discs of (Euclidean)
radius # round each of the cusps of R.

The above argument shows that h is continuous on geodesics ¢ which lie completely
inside K,. (Use continuity of the map % — 8! x 8 to replace the constant expansiveness
of ¢.) Now let r—0.

Now there is a natural topology on A as the suspension of X by 4.

Prorosition 4.3. II: A~ M is continuous.

Proof. It is enough to see that pb(e) varies continuously with e€2, and that ¢,pb(y)—
pbloy) as t—h(y)~.

Now b(y) is the unit tangent vector to y based at the first intersection S of p with the
continuous curve 8R(y). Moreover E(y) is locally constant as a function of y except when
y is a side of }. In this last case, the appropriate side of R(y’), for o’ close to y, is one of
a finite number of continuous curves all of which pass through S.

By Corollary 4.3, the endpoints P, @ of ¢ vary continuously with e€X and clearly y

varies continuously with P, Q. Hence b(y) is a continuous function of e €X.
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If we lift the path p,pb(y) to p,pb(y) €M starting at b(y) when ¢=0, then as t—h(y)-
the base point of m approaches the point 7" where y crosses from RE(y) to E(oy).
Therefore Iimt_,h(,,)~;p\tl/)(\7//) =¢~1b(0y). Hence y,pb(y)— p(c—b(oy)) =pb(oy) as required.

Remark 4.4. We have not said anything about measures on A and M. In [6] we showed
there is an ergodic fr-invariant measure g on §', equivalent to Lebesgue measure, finite
in the no cusp case and infinite otherwise. 7 defines a unique g-invariant measure g on X

which projects to u, by
M(ZaAn...an) = /‘(Q(O’_n(za._n...a”)))s

where Z,_,..q,={¢€Z: e,=a,, |r| <n} and g: Z->X" is projection.

Define a measure » on A by
h(e)
)= [ [t daute

where E,={(e, t)€ E: 0<t<h(e)}.

ProrosiTioN 4.5, Il ts the natural flow invariant measure on M.

Proof. One verifies easily that the measure | —¢'

?|-2d0dg on S* x St —diagonal is in-
variant under the natural I" action. Since any geodesic in D is uniquely determined by its
endpoints on S, we can identify 7', D, the unit tangent bundle to D, with (8! x 81 —diag.) x

R. The measure A= | —¢

?|2d0dedt is invariant under I' acting on the left and the
geodesic flow on the right.

Now by Proposition 3.10, any 4 € M has a unique lifting % in 7', D so that the geodesic
y defined by % is admissible and 4 has its endpoint in R(y) (see Proposition 4.1). Let A< T, D
be the set of these liftings. It is clear that 1|, (with suitable normalisation) is the natural
flow invariant measure on M. Moreover if g: 4—8* x 8t —diag., g~Y(y) has length A(y).

IT identifies q(4)< 8 x 8* —diag. with 3. Therefore to see Il.»=1]| 4, it is enough to

see that w= | —e¢'

?|-2d0dp| 44 and y on X are the same. (We can safely ignore the sets
on which I, @ are not bijective since they are null for all relevant measures.)
w is I' invariant and hence ¢ invariant on ¢(4). It is clear that w projects to a measure
@ equivalent to Lebesgue on X" (=S'), moreover % must be shift invariant on 2.
Therefore % and g are shift invariant equivalent measures on X, and @ is ergodic for
the shift. It follows that @ =/ (if we normalise properly), and since @ determines w uniquely
(just as @ determines u), we are done.

Notice that @ is the Gibbs measure corresponding to the function —log |f'(z)| on SL
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It now follows from the symbolic representation that the geodesic flow is ergodic
(since the shift ¢ on X is). In the compact case we can deduce the flow is Bernoulli. One
needs to know the flow is K; this is a general fact, see for example [17]. The result follows
from Theorem 4.3 of [16], (a K-flow which is the special flow over a shift under a Holder
continuous function is Bernoulli). (One makes an obvious modification to deal with the
fact the height function may vanish, since N such that k(e) +... +h(cVe) >¢ >0, Ve€X.)

We hope to investigate the non-compact case elsewhere. (The flow is known to be

Bernoulli in this case also, see [7].)

§ 5. Quasi-conformal deformations

Throughout § 1-§ 4, we assumed that I' had a fundamental region R which satisfied
the property (*). In [6] we showed that if I is any Fuchsian group of the first kind, then
there is a group I" satisfying (*), such that there is a quasi-conformal deformation j: I'=I".
We now show how to use this deformation to carry over the results above to the general
case.

We first summarize the facts we need about quasi-conformal maps. For details, see [4].

(1) There is an isomorphism j: I'~I", and a diffeomorphism w#: D—D’'=D so that
1(g) = wkg(wr), g€l

(2) w# restricts to a homeomorphism A: 8181 so that kigz) =j(g)h(x), 2€8, g€T.
k is the so-called boundary map of we.

(3) If y is a geodesic in D, then ' =w4(y) is a so-called quasi-geodesic in I, There is
a unique geodesic ¢ in D’ with the same endpoints as w#(y), § is a bounded hyperbolic

distance from w#(y) (with bound depending only on w#), [13].

Notice that if «, 8 are geodesics in D then a N f==@ if and only if &N f=+D.

Let o be a geodesic in D which is an edge of H, and let » be a vertex of ¥ on «. Let
B1s .- Br be the other edges of N through v. Then &N B;#@, 1<i<r, but these intersec-
tions may all be distinet points. Let a(v)={@ N f,}i-1. Let w be a vertex of ¥ adjacent to
v along a«. Then if p is any other edge of ¥ through w, § N3, =0, 1 <i<r, and so we can
find disjoint closed intervals I (v), I (w) on « so that a(v)<Int I, (v), e(w)<Int I (w).
More generally if {v;}2_,, are the vertices of H along « in order then there are disjoint
closed intervals {I,(v;)}?2 . along & in the same order as {v,}, «(v;) = Int I, (v;).

Let @(v) be the open convex hull in D’ of the set {I,(v): « is an edge of 7 through v}.

Now let £y, ..., t, be the sides of a copy S of R in D. Since non-adjacent sides of S do
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not meet, the same is true of I, ..., #, and thus {,, ..., 7, bound a closed polygonal region
Sin D’. Let Q(8)=8— U {Q(»): v is a vertex of 8} and let @(D)=D'— U {Q(v): v is a vertex
of M}.

If we collapse each of the regions Q(v) to a point we obtain a net Q(9) whose sides are
the portions of the edges & outside the regions @(v) and which is topologically identical
with the net .

Now let 9 be a geodesic in D’. We say § passes across @(v) if N Q(v)==D. Let the sides
of N meeting at v be {,, ..., fy, going in clockwise order round ». Moving clockwise round
Q(v) one cuts successively #;, ..., ly,. Let ¥ cut 6Q(v) in points P, Q. Let B(v) be the arc of
0Q(v) joining P to @ which cuts the smaller number of sides £,. (If both arcs cut & or k+1
sides choose § to be the arc passing to the left of Q(v).)

Now let § be the curve obtained from by replacing  with [ —Q(v)]U f(v) in a neigh-
bourhood of Q(v), for every vertex v. In the collapsed net Q{H), 7 becomes a curve Q(y)
which passes through a vertex v whenever y N Q(v) Q.

TurorEM 5.1. Let § be a geodesic in D’ corresponding to an admissible geodesic y in D.
We can find a distinguished region Q(S(y)) such that

1) 7N QSk)=+D
(2) PNQSH))+D=>8y)=R

(3) ¥ cuts in succession Q(S(y)), 01Q(S(a})), ...

Proof. The idea is obviously to imitate § 3. We define what is meant by a curve in
Q(D) passing near a vertex of G(H) just as in § 3. Lemma 3.4 depends only on the topology
of N and the position of the endpoints of ¢ relative to H; and thus carries over to Q(H)
and §. To prove Lemma 3.5, it is enough to see that S is geodesically convex, or equivalently
that the interior angles of S are less than 7. But a vertex of S is formed by the intersection
of two geodesics with distinet endpoints, and therefore the angle between any adjacent
pair of sides is less than 7.

The proofs of Lemma 3.6 and Corollary 3.7 are unchanged. Lemma 3.8 and Proposi-
tion 3.9 again depend only on topological properties of N and the position of the endpoints
of y. The rest of the proof is as in § 3.

We shall say a permutation = of Z ‘acts on finite blocks’ if there are integers
. <my<my <... such that 7 maps each interval n,<r <n,,, onto itself. The importance of
this will be that we can keep track of a ‘base point’ on a sequence, by choosing the left
endpoint of some fixed block to be the base point. If we require permutations to preserve

a base point, the sequence 19y M, ... uniquely determines 7.

~Ley
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ProrosiTioN 5.2. Suppose ..., U, ly, Iy, ... are geodesics in W arranged so that ¢ cuts
vers by Uy oo im0 order (with the wsual clockwise convention if § passes through the intersection
[

3_1(2)’ .

of two or more 1,). Then ¥ cuts in order ..., 1

2y .. where 7 is a permutation of Z

which acts on finite blocks.

Proof. Define an equivalence relation on {I;} by I, ~[; iff I, I, meet at a vertex v of
and § cuts I;, I, on 8Q(v). This is transitive since § cuts each I; exactly once and 8Q(v) N
0Q(w) =9 if v==w. Notice that the equivalence classes are either singletons or blocks of
consecutive sides all associated to the same Q(v). # cuts the same sides as § in the same
order except possibly near Q(v). If I, ..., I is the block associated to Q(v), then $ cuts in

order 7” ) for some permutation sm. (This means that if (1) =3¢, where 1 is

~Agpyr o0 Vp—ligy
the base point of the sequence,  cuts I, on the sth cut after the base.)
Suppose s is the first side of Q(S(y)) cut by 7 and let I, be the geodesic extending s.

Define s(y)=] ...
TuarorEM 5.3. The geodesic 9 cuts the geodesics ..., s(y), 67 %s(o), ... in order.

Proof. Let § cuat ..., [, I, ... in order, and let 6§ cut ..., 7y, 7y, .... By definition s(y) =
where I,, 7, are the first sides of Q(S(y)), @(S(oy)) cut by 7,

{

n(V)_l ] and S(O”)}) = mn

oy~ L (b
&y respectively. 7 cuts Q(S(y)), 071Q(S(ey)) in order, so 1., is the first side of 6—1Q(S(ay))
cut by 7. Then ol,,, is the first side of Q(S(sy)) cut by (o) =59. Therefore ol,,, = #,. Since
$ cuts ..., I, Iy, ... in order, of cuts ..., aly, ol,, ..., My =011, for all j€Z. Then oy cuts ...,

O’ln(y)_l ay o’l”(v)_l @y +-1n order where ol (14147t OCCUTS IN the jth place. Thus Mty =
Gln(y)_l(r 1,- We have shown s(o) =aln(w_1 (r41y Since p cuts ln(y)_1 . ln(y)_1 (41, I Order, we
are done.

We now want to imitate § 4, to represent the geodesic flow on M, the unit tangent
bundle to D/T’, as a special flow on a space A.

Let A(p) be the hyperbolic distance along # between s(y) and o-s(oy). Let A=
{(e, t): e€X, 0<t<h(e)}. Let b(y) be the unit tangent vector along 7 at the point where
 cuts s(y). Define

I: A~ M, T, t) =P.ple).
ProPOSITION 5.4. I1 is surjective, Ilp, =y, 11 and #1111 (e, t)) = Hn—(n(e)) for e €.

Proof. Since 7 cuts in order s(y), e—%s(oy) the method of Proposition 4.1 shows that
H‘Pt :Q/)tn .
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Using exactly the same method as in Proposition 3.10 one shows that whenever $
is a geodesic with ¥ N Q(R)=D, there exists a unique g€ with gy €X and Q(S(97)) =9Q(R).

Take u€M and let % be any lifting in M, with base point U. Let $ be the geodesic
through U in the direction of 4, and let ¥ be the curve obtained by deforming round Q(v)
for each vertex v.

Suppose, as in Proposition 5.2, that $ cuts geodesics ..., [, I, ... in order. Then 7 cuts
I ... at points ..., M, M,, ... say. Suppose U €[M; M,,). Let @(S) be the region

zn—la)’ 72y
between [; and 1,,, with @(S) N $@. (It is not hard to see there is a unique such region,
because the boundary between Q(S) and Q(S') is either a side I of Q(H) or a region Q(v),
and there are no sides of Q() cutting § between I, and ,,,.) Applying k€T with kS=R,
we may assume Q(R) N 0.

Now we use the analogue of Proposition 3.10 above to find g€I" with gy €2 and
Q(S(97)) =gQ(R). The first side of Q(S(g7)) cut by g7 is gl;. Therefore s(gy)=1_

gU lies on g7 between the intersection with s(gy) and the next side of 7, so

“1gy Hence

g@ =1p.b(gy) where 0 <7 <higy).

Then 1I(g¥, ) =u, as in Proposition 4.1.

Finally, it is not hard to see that Proposition 4.1 is easily modified to prove Il(e, ) =u
iff w(e) =gy.

The facts about the continuity of # and IT now follow exactly as in § 4, and we again

see that in the compact case the flow is Bernoulli.
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