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Introduction

Let (M, g) be an analytic Riemannian manifold and m € M a point. It is known (see
e.g. [2]) that the volume of a small geodesic ball with center m and radius r is given by a

power series expansion
Voalr) = Vo(r) (1 + Byr2 + Byrt+ ...+ By r¥ +..)

where V(r) is the volume of the Euclidean ball of the same dimension and radius. Here
the ‘““volume invariants” B,, B,, ... are analytic functions of m €M, or, more specifically,
they are scalar curvature invariants of orders 2, 4, ... respectively.

A. Gray and L. Vanhecke [4] have calculated the first three invariants B, By, By
in terms of the curvature tensor R, the Ricei tensor g, the scalar curvature v and their
covariant derivatives. In the same work the following was proved:

Let (M, g) be an analytic Riemannian manifold such that V,(r}= V(r)(1 +0(®))
for all m€M, i.e. such that B,=B,=0 identically. Then (M, g) is flat in each of the
following cases: (a) dim M <3, (b) M has non-positive or non-negative Ricci curvature,
(¢) M is conformally flat, (d) M is a product of surfaces, (¢) M is locally a product of
clagsical symmetric spaces and symmetric spaces of rank 1, (f) under some other special
conditions which we do not write down explicitly.

On the other hand, the folowing examples have been given:

(i) A 4-dimensional Riemannian manifold such that B=0and V,(r) = Vy(r) (1 +0(r%))
for all me M.

(i) A 5-dimensional homogeneous Riemanian manifold such that R==0 andV ,(r)=
Vo(r) (1+0(r%).

(iii) A direct product of non-flat homogeneous Riemannian manifolds of total dimen-
sion n="734 and such that V,(r)=V,(r)(1 +O0(3)).
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In this paper we generalize the implicite idea involved in the construction of example
(iii): besides the ordinary volume invariants B,, B,, ..., By, ... we shall define certain
polynomial functions Ay(B,), A4(B,, By), ..., Ag(Bs, ..., By), ... which behave additively
on direct products of Riemannian manifolds. Also, we have B,=B,;=...=B,,=0 if and
only if A,=A4,=...=4,,=0. We call Ay additive volume invariants of (M,g). (For
homogeneous spaces, both sets of invariants are constants.)

Then we develop a method for the construction of homogeneous Riemannian spaces
with the property V,(r)=V,y(r)(1+0@*)), k>4. After having calculated the first 6
invariants 4,, ..., 4,, on spheres, we construct a direct product of homogeneous spaces
with the property V,(r)=V,(r)(1+O0(r#)). Our main conjecture says that the same
method may work for the construction of examples with arbitrary large k.

If the above conjecture proves to be true it may throw some light upon the difficult
“volume conjecture” by A. Gray and L. Vanhecke: Assuming V,(r)= V,(r) everywhere
on (M, g), is (M, g) flat?

Acknowledgement. I am grateful to A. Gray and L. Vanhecke for making several

inmiprovements of the style and for correcting some formulas in this article.

1. Additive volumal invariants

Let x5, ,, ..., ,,... be independent variables and Qxo’, zy, ..., T, ...] the cor-
responding ring of polynomials over rational numbers. We shall write briefly x;* instead
of (z5')*. Let us define a derivation D in Q[x ', 2y, ..., Z,, ...] as follows: D(r) =0 for r€Q,
D(x5') = —2,%5 %, D(z)) ==, for i>1. We also define formally

D (In z)) = zy20°".

Then, for every k1, the kth iteration D" (In z,) €Q[zo?, 2y, ...} has the form

D® (In ) = > oty ®tye- Ty %oty €, €Q. (1)
Lt otdp=k
L33 24>0

as we see easily by the induction. The coefficients ¢;,. ,€Q are uniquely determined.
We shall call the polynomial D% (In z,) the logarithmic operator form of order k, and
we denote it by L,.
If X is a linear differential operator on a smooth manifold M, and if f is a smooth
function on M, then we can consider a non-linear differential operator LX) on M

defined by the following formula:
L(X)(= 3 en.yXPh.(XPh (2)

2
fit o +ig=k
112453, 24>0
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An informal definition of L (X) is the following: consider the arbitrary function
F(t) of one variable (of class C*) and calculate the expression d*/(dt)* (In F(¢)). Then
substituing F—f, F'—>Xf, ..., F*%'—X®f everywhere, we obtain the value of L(X) on f.

Let N be another smooth manifold, ¢ a smooth function on N, and Y a linear
differential operator on N. We shall consider the product manifold M x N with the
projections p,;: M x N—+M, py,: M x N—N. The function (fop,)(gop,) on M x N will be
denoted briefly by fg, and the linear differential operator pf X +p> ¥ on M x N will be
denoted briefly by X + Y. Now, we have the basic

ProrosiTioN 1.1. If M, N, f, g, X, Y have the previous meaning, then
Ly(X +Y)(fg) = L(X)(f) +L(Y)(g9), k=1,2,.... (3)

Proof. Let first M =N =R, X=d/dt. Then for any smooth real function f we get

from (1) and (2)
ln h
n{g) -

n(3) 00 -1(3) 0+ 5(2) @

Now, it suffices to compare the Leibniz’ rule

d* o dt)l dr- t~
a3, 0) Gy e on

and hence

and the binomial formula

k

X+ 7o) = 3 (£) @ONr* g) omarxw
im0
to obtain the general formula (3).
We also define the reduced logarithmic operator form L, of order k by substituing
2" =1 in (1). For the reduced operator forms we have the following:

CoROLLARY 1.2. Let M, N be smooth manifolds, (@, b)€ M x N a fixed point, f, g smooth
functions on M, N respectively such that f(a) =g{b) = 1, and X, Y linear differential operators on
M, N respectively. Then

L X + ¥)anlfg) = LX) (f) + Li( T s (9)- (4)
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The proof is obvious. Let us remark that (4) has a local character: the linear differential
operators X, ¥ and the functions f, g are to be defined only in some neighborhoods of

the points a, & respectively.
We shall give an explicite form of the differential operators L,(X) for k<6 (here

X means an arbitrary linear differential operator).

ProrosiTION 1.3. We have

Lx)y=X

LX) = X® — (X )2

Ly(X) = X® —3X@X W (X W)

LX) = X® —4X® XD — 3(X@)2 412X (X D)2 — (X D)

LX) =X®-gXDXDV —10X®X@ 420X (X D)2+ 30(X )2 X 1)
— 60X (2(XW)3 4 24(X )5

LX) = X® —6X®O X1 - 15X WX 2 4+ 30X B (X D)2 —10(X®)2+120X® X @ XD
—120X @ (X3 4+ 30( X (2)3 - 270( X (2)2( X 1))2 + 360X (2( X V)4 —120(X 1))8,

We shall now recall some concepts and results from [5]. Let (M, g) be an analytic

Riemannian manifold and me€M. If (=, ..., x,) is any system of normal coordinates at m

then the Euclidean Laplacianr Am is defined by the formula

Further, the normal volume function 0 at m is defined by 0, =w(8/0x,, ..., d/éx,), where w is

a volume element of (M, g) near m (such that 0,,> 0). The definitions of [&m and 0, are in-
dependent of the choice of normal coordinates at m (here “independent’’ means in the sense

of germs). A,, is a local linear differential operator on (M, g).

Let us recall the Pizzetti’s formula [1, p. 287], expressing the mean value of an
analytic function f on the sphere Sy '(r) of radius r and with center m in the Euclidean
space R™

i =r(30) 3 (5) IF(%:) (& e

Here I' means the usual gamma-function and A¥ is the kth iteration of the Laplacian in
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R~ It is not difficult to get from here a formula for the volume &,,(r) of a small geodesic
sphere of an analytic Riemannian manifold (3, g):

0 2
a2 3 (1) — L Ao
EIT (5 + k)

(cf. Corollary 3.3 of [5]).

Here A’,% means the kth iteration of the Euclidean Laplacian A,,, The last formula

can be easily rewritten in the form

Cn(r) =So(r) (1 * ,Zl 2.kl (n+2k—2)...(n+2)n %) )

where ©y(r) is the volume of a Euclidean sphere of radius » in R* (n=dim M).
Now, if we differentiate the power-series expansion

Vm(r) = Vo('r) (1 -+ E sz(m) ,’.216) = Vo(l) (,’.n_'_ E BZk(m) T2k+n)
k=1 k=1

with respect to r, we get immediately

Spulr) =C4(7) (1 + E 2k: nt,c(m) rz") . (6)
k=1
Comparing (5) and (6) we get
AL (0,0) () = 25 - B(n+2k) (n +2k—2) ... (n+2) By, (m). 7

Let us define a global function A0 on (M, g) putting (A*8)(m)=A%(6,,) (m), m€e M.
We obtain
A¥Q = 2. k(n+2k) (n+2k—2) ... (n+2) By, (8)

In particular, the function A* is analytic.

If (M, q,), t=1,2, are two analytic Riemannian manifolds and (m,, my) €M, x M,
we can consider an adapted normal coordinate system (x;, ..., Zn,, Zny+1s - Tn+n,) defined
in a ‘“rectangular’” normal neighborhood U, x Uy, in M, x M,. With respect to these

adapted normal coordinates, we can see easily that
A(rm. mg) = A1. mt Baimy Ocmsompy = 01,m, O2,m, (9)

for the corresponding Euclidean Laplacians and normal volume functions (via the cor-

responding projections p;, p,). Moreover, 0; m,(m,) =0z,m,(ms) =1.
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Our formula (4) now implies
LAl mo) Bommo) (m,m5) = Li(Bs, ), B, ) + Li(Bo, m)m, (02,m,)- (10)
We are ready to introduce our basic concept:

Definition 1.4. Let (M, g) be an analytic Riemannian manifold. The additive volume
snvariant of order 2k is a function 4,,: M — R defined by the rule

Agm) = Ly(A ) (0,), mEM. (11)

We make the following conventions:

(a) The right-hand side of (11) will also be denoted by the symbol ﬁk(A)(G)(m).

{b) For a given Riemannian manifold M, the corresponding invariant 4,, will also
be written as A%, and similarly for B,,.

(¢) For a homogeneous Riemanian manifold M the invariants A% are constant

functions. The corresponding constants will be denoted by Aq (M) (k=1,2, ...).

THEOREM 1.5. For each k=1, 2, ... there exists a countable set {P, ,} of polynomials,
P, €Q[ty, ..., &] for n=1,2, ..., with the following property: for each analytic Riemannian
manifold (M, g) of dimension n we have

A’Z"c = Pn.k(Béu: Bil'!’ ceey B)Zl{C

where BY, ..., BY -are the ordinary volume invariants of (M, g). In particular, the functions
AY. are analytic.
Further, we have A¥ —... =A% =0 iff BY=BY—...= B}, =0.

Finally, if (M, q,), t=1,2, are two analytic Riemannian manifolds, then
A¥r M= AMrop, + Adltop,, k=1,2,..., (12)
where py: M, x M,~ M, are projections.

Proof. From Definition 1.4 and (2) we get

A =LA O)= 3 .4 (A"D)...(A%) (13)

where ¢, ; are uniquely determined rational constants. The first assertion now follows
from (8).
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The second assertion follows from the fact that in (1) we always have the coefficient

¢,=1 at the term zx5’. It means that we can rewrite (13) in the form
Ay =N0—q, ,(AB, A20, ..., A10) (14)

where g,_4(ty, ..., t._;) is a polynomial over Q.
Finally, (12) is nothing but the global form of (10).

CorOLLARY 1.6. If (M,,9;) are homogeneous, then
Ag (M x My) = Age M) + Ay(M,), k=1,2, ...
CoROLLARY 1.7. There exist polynomials Q.(¢y, ..., t;) such that
Ag = A0 —Q ,(Ay, ..., Ay ), k=1,2, ... (15)
Proof. Tt follows immediately by the induction from (14).

ProrosiTiON 1.8. The first 6 polynomials Q,._, are given by the following formulas:

Qo =0
Q1(A2) = (A2)2
Qz(Az, A4) = 3A4A2 + (A2)3

Qu(Ay, Ay, Ag) = 4Ag Ay +3(A,)2 +64,(A,)2+(4,)

Qu(Ayg, o Ag) =5Ag Ay +1046(A)* + 104 A, +15(A)2 Ay +104,(A4,)3 + (4,)°

Qs(Ay, .., Ayg) = 64,0 Ay + 154, A, +15A4(A,)2 +10(Ag)? +604, A, Ay +2044(A,)°
F15(A,)8 +45(A,)2(A,)2 +154,(A,)8 +(4,)°.

Proof. Using the formulas of Proposition 1.3 we get the expression for A2k=Lk(A)(0)
{(k=1, ..., 6) in the form (14). Then we proceed step by step to rewrite (14) in the form (15).

According to Theorem 1.5, the invariant 4, is a polynomial in B,, ..., By, for
each k. On the other hand, the formulas (8) and (15) show that B, is a polynomial in
A,, ..., Ay, Because A, are additive on direct products in the sense of (12), each in-
variant B3"™ is a polynomial in B, B3, i=1, ..,k It is easy to get an explicit

formula: at a fixed point (m,, m,;) €M, x M, we can use (9) and hence

Aro=3 (’”) (A26,) (A5-76,).
a=0 \q
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Substituing from (8) we get
(n+2)(n+4)...(n+ 2p) B

=2 (m+2)...(m+2¢) (n—m+2)...(n—m+ 2p— 2q) (B3 op,) (Bi_2,9P5)

q=0
where m =dim M,, n=dim (M, x M,).

If we define a formal power series

BY(m Z2"(n+2) . (n+2p) B¥(m)-s®, n=dim M, m€M,

=0
then we obtain easily the (slightly modified) product formula by A. Gray:
B = (BYfiop,) (B*opy).

This result was obtained in [3] by a different method (using the Laplace transformation).
Using the power series BY we can get a new formula for the additive volume

invariants:

ProrosiTioN 1.9. Let BY have a non-zero convergence radius n at a point m€M.
Then, in a neighborhood of s =0 we have

&

Agi(m)
!

In BY(m)= 20 1

Proof. Put h(s) = B¥(m) for s€(—7, ). We can see from (8) that A(s) = ‘,’,°.0((A"0)m/k!)s"
and hence A¥(6), =h®(0) for k=0, 1, ....
According to (13) and the proof of Proposition 1.1
A (m) = L (D) 6) (m) = 3 ¢1,..4(A" O)... (A40),,

d d*(In b
= z Cirgy h(h)(o). ”h(’t)(O) = Lk (?i;)o(h) = ((d?)" ) §=0

Now, because h(s) is analytic in a neighborhood of s=0, and 4(0) =1, then In A(s) is also
analytic in a neighborhood of s=0. Q.E.D.

2. The invariants A4,, for some homogeneous spaces

Our basic problem now is to construct Riemannian manifolds satisfying A4,=

A,=...=A,,=0 for possibly large k. Here is the main idea: we find out a finite collec-
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tion {My, ..., M,} of homogeneous spaces such that

(i) all values A4,,(M,), i=1, ..., k; j=1, ..., 1 are rational numbers,
(i) for each i=1, ..., k, the invariant 4,, is negative for some M, and it is positive for

some M.

A family {M,, ..., M} of spaces with the properties (i), (ii) will be said to be k-splitting
{or simply splitting).
Consider a direct product M =M x M3* x ... x M. We have

1
Ay(M)= 121 n Ay(My), i=1,...,k.

Thus, in order to satisfy the identities Ay(M)=...=4,,(M)=0 we have to solve a system

of equations with rational coefficients
1
2 xAy(M)=0, i=1,...,k, (16)
j=1

in positive integers x,, ..., x;.

Now, what does it mean ‘“‘to solve” our system? Whereas the examples given in [4]
were very concrete, we shall prefer rather theoretical constructions, i.e., pure existence
theorems. The reason is obvious: the numerical calculation of the coefficients A4,,(M,)
gets always very tiresome for a large k, and the complete list of the invariants A,, is not
known even for the simplest non-flat homogeneous spaces (e.g. for the sphere 82). On
the other hand, to get the information contained in our conditions (i), (ii) is much easier.
The problem how to solve the system (16) with such a minimum information will be dis-
cussed in the next section. Here we shall add one more remark:

Even if 1>k, our system (16) with only ! unknowns may turn out ‘“‘too rigid”.
To make it more flexible, we have to consider together with each space M, the class of
all homothetic spaces. In this way, we bild into our system of equations new parameters

which can be arbitrary positive rational numbers. In fact, we have

ProrosiTION 2.1. Let (M, g) be an aralytic Riemannian manifold and A>0 a real
number. Let M(A) denote the manifold (M, g*), where g =Ai-1g. Then ANP =}¥ A%, for each
k=12, ...

Proof. It is obvious that the geodesic ball of radius 7 in the space M(A) coincides with

the geodesic ball of radius V2 in (M, g). Also, we have the relation w*=1"""w between

the corresponding volume elements (n=dim M). Hence we obtain for the corresponding
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volumes: V,(r)=1""? Vm(rl/i). Using the ordinary volume expansions, we get
Vo(1)r™(1+3 Bhr®™) = A2 V(1) (VAr)* (L +3 By,r®3¥)

and hence Bj,— B,;-A’ for each j. Now, due to (8) and (13), we can write

A= Pn,k(BZ’ ooy Bor) = Z &y By, ... Bzf,
itth=k
W2t 2> 0

where the coefficients ay, , depend only on n=dim M. Hence the proposition follows.
Let R, p, 7 denote the Riemann curvature tensor, the Ricci tensor and the scalar
curvature respectively. ||| will denote the lengtht of a tensor in the corresponding

tangent space of (M, g).

ProrosiTIiON 2.2. For any analytic Riemannian manifold (M, g) we have

T

T 1
3’

A= =3, dg= (= 3Rl + sl 188).

In particular, if M is homogeneous, then A,=(1/45)(—3| R|[2+8|lo]|?).

Proof. Let us consider the ordinary volume expansion V (r) = V(r)(1 + Byr® + B,r* +...).
Following [2] or [4], we have

R T U S
B~ —Gmr2y BT s80mimi s 3|| RI? + 8[|e]|* + 57 — 18A7),

where n=dim M. Now, using (8), (15) and Proposition 1.3 we obtain easily

Ay=A9=2(n+2)B,= —g,
2
< 1
A,= 826~ (4)° =8(n+4) (n+2) By~ = 1 (~ 3| BI]* + 8l]|* ~ 18A9),
For M homogeneous we have 7 —const., and Ar=0. Q.E.D.

It is an interesting observation to see that 4, is essentially obtained from B, by the
removal of the term 572 which does not behave additively on direct products. Exactly in
the same way we can calculate an additive invariant of order 6 from the known
coefficient Bg. For homogeneous spaces this calculation has been done in [4, §7]. (In

fact, the additive invariant of order 6 presented there is equal to 3:5-7-9-4,.)
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The explicit formula for the next invariant B is not known in general (with the
exception of dimension #n=2) and we have no formula for 4, as well. It seems that such
general formulas for 4, A4,y ... etc. would be very complicated (even for the homo-
geneous spaces) and of little use for our purposes. Thus, our next question is for what
special kind of homogeneous spaces we can calculate the higher order invariants with
a minimum effort. Our first choice will be the symmetric spaces of rank 1. In this case, there
are explicit formulas for the volume of a geodesic ball (or equivalently, of a geodesic
sphere) containing only elementary functions. Thus the ordinary volume invariants
B,, are known, and each 4,, is given as a polynomial in the variables B, ..., B,,. The only
obstacle is the growing complexity of these polynomials for the higher orders.

We shall now summarize the explicit formulas for the geodesic spheres in the sym-
metric spaces of rank 1. The corresponding formulas for the geodesic balls are obtained
by the integration. With respect to Proposition 2.1, it suffices to choose one representant

in each homothety class.

TrEOREM A ([2]). The volume of a small geodesic sphere in a symmetric space of rank
1 ¢s given by the following formulas:

(1) For the sphere 8™ with constant curvature 1:
Silr) = So(1) sin™1 (7).

(2) For the complex projective space CP"* with constant holomorphic sectional curvature
4 (dim M =2n):
Su(r) = Sy(1) 8in2"-1 (r)-cos r.

(3) For the quaternionic projective space QP™ with maximum sectional curvature 4

(dim M =4n):
Su(r) = So(1)% sind (2r) sin?™ (r).

(4) For the Cayley plane Cay P? with maximum sectional curvature 4 (dim M =16):
Splr) = S,(1)277 sin” (2r) sin® 7.

(8) For the mon-compact duals of the spaces (1)—(4), the corresponding formulas are
obtained by substituting sinh for sin and cosh for cos everywhere.
In each formula, Sy(1) denotes the volume of the unit sphere in the Euclidean space of the

corresponding dimension.

ProrosiTioN 2.3. Let S%(A) denote the sphere with the constant curvature 2>0 and
H?2(—2) the hyperbolic plane with the constant curvature —A<0. Put a,=A,(S2(1)) for
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k=1,2,.... Then we have
A S2A)) = May, Ag(HY—2)=(—Nay, k=1,2,...

In particular, the invariants Ay, Ag, Ay, ... acquire opposite values on the spaces S%(1),
H¥}(—1).

Proof. Using (1) and (5) of Theorem A and the integration, we obtain
Valr) =2Vy(1)(1 —cos ), V,(r)=2Vy1)(coshr—1)
for 8%(1) and for H?(—1) respectively. Hence we get
B, (8%(1)) =2(—1Y/(2k+2)!, Byu(HX(—1)) =2/(2k+2)!.

Consequently, we have B,,(H2(—1))=(—1)"B,,(S%1)) for i=1,2,.... Now, we can use
the method of the proof of Proposition 2.1.

ProrosiTion 2.4. All the invariants A,, are rational numbers for the spaces (1)—(4)

from Theorem A and for their non-compact duals.

Proof. It is obvious that the ordinary volume invariants B,, are always rational
numbers. The rest follows from Theorem 1.5.

From the Propositions 2.3 and 2.4 we see the following: if we take S%*(1) and H%( 1)
(or, more precisely, their rational homothety classes) for the first members of our splitting
family {M,, ..., M,}, we have “splitted” all the invariants of the form A4, . It would be
very comfortable if we could find out, for each k, a k-splitting family {M,, ..., M,}
consisting only of the symmetric spaces of rank 1. Unfortunately, such a scheme cannot

be carried out due to the following result:

TarorEM B ([4]). For all (non-flat) symmetric spaces of rank 1 and symmetric
spaces of classical type, the expression —3|| R||?+8||o]|? is positive. Consequently, the invariant

A, is positive for all these symmelric spaces.

Remark. The problem remains open for the exceptional symmetric spaces of rank

greater than one.
Thus, we have to look for a non-symmetric homogeneous space for which 4,<0.
The most simple example is given in [4]: consider the 3-dimensional matrix group

1 =z y
03= 01 =2
0 01
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naturally diffeomorphic to R¥(z, y, 2), with the invariant Riemannian metric dx?+dz2+
(dy —xdz)%. The vector fields X, = (0/ox), X, =(0/0y), X;==(8/dy) + (0/¢z) form an orthogonal
basis of the corresponding Lie algebra (Gy),. We can determine the Riemann connection

V in the standard way:
Ve, Xp =V, Xy = —34X;, Vi Xy3=-Vx X, =1}X, Vi X3=VyX,=1X,

The tensor fields R, g, v are obtained easily from here, and using Proposition 2.2 we get
A,=3}, Ay=—2<0. According to [4], we find easily 4,=26/(3-5:7-9)€Q. Thus, if we
join the group manifold Gy to our previous family {S%(1), H(—1)}, we obtain a 3-splitting
family.

The next invariant to be splitted is 4. If we want to use our group space G in any
splitting family without restriction, we have to prove the rationality of all invariants

A,y first.

ProrositioN 2.5. All invariants Ay(G,) are rational numbers. Moreover, we have
Ag(Gy) ~ —0.021455 <0.

Proof. We shall first construct explicitly the exponential map at the origin 0. The

equations of the geodesics emanating from O can be written in the form

a(t) +w(t)g()=0 u(t) = Z(t)
w(t) —u(t)g(t)=0 where { w(t) =2(t)
gi¢)=0 g(t) = y(t) — x(t)4(t)

Now, the exponential map Exp: (u, v, w)—>(x, ¥, z), defining normal coordinates at the

origin, is given by the formulas

_u-sinv+w-cos v—w

v

2,2 2
y= (?g%‘f_w —g——;) + ‘i:)—z[(wz—uz) sin (2v) —~ 2uw cos (2v) + 4uw cos v — 4w’ sin v]
—u-cosv+w-sin v+u
v

z=

(we take the limits to define our map at the origin (0, 0, 0)). The normal volume function
0 is equal to the Jacobian D(x, y, 2)/D(u, v, w). After some algebraic transformations we
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obtain

6=(u2+w2(2—2cosv—vsinv)+2(1——cosv)

ot e )

It is easy to write down the power series for 6, which has rational coefficients. Now, the
values (Ake)o, k=1,2, .., at the origin are obviously rational numbers. Hence, the
invariants A44,(G;) are also rational.

Using our power series up to degree 8, we can find after routine calcula-
tions A19=3%, A20=—1 AS0—gl;, A= —1/(7-45), and hence d,=}, A;= 2%, A=
26/(3-5-7-9)~0.0275132 Ay~ —0.021455<0. Q.E.D.

Using (15), Proposition 1.3 and the proof of Proposition 2.3, we can calculate
Ag(S2(1)) = Ag(H?(—1)) = —32/(3%-52-7) <0.

Thus, the family {S?(1), H(—1), Gy} is not 4-splitting.

Now, what else should we join to our family to split the invariant 44? If we change
the metric on G, to another invariant metric, we can show easily that the new space will be
homothetic to &3. Thus the change of the metric does not help. If we change the group,

e.g., if we take the matrix group

with an invariant metric (the second most simple case) we can see easily that 4, <0 again,
but the calculation of the exponential map leads to elliptic functions. Thus, the calculation
of Ag would lead to tedious numerical calculations. The situation with the other group
spaces seems to be even worse.

Fortunately (and perhaps surprisingly) this difficulty can be taken care of by using

the simplest symmetric spaces of rank 1— the spheres.

ProPOSITION 2.6. The first 6 additive volumal invariants on the unit spheres are given
by the following formulas:

A, (8™ = —;(n-i- 1)(n+2)

A4(Sn+2) =

v:—{z‘.g(n+1)(n+2)(4n+1)



ADDITIVE VOLUME INVABIANTS OF RIEMANNIAN MANIFOLDS 219

AG(S"+2)= w (— 1602+ 15+ 1)
3.5.7
1
Ag(S") = }6(%3; 5)2(%7+ 2 (16n° — 209n% + 89n—1)
1
A,y 5y = 128 DM 2) o st 46100 — 100872 + 4840 — 1)
30.5.7.11
1
Ay (ST = W (= 20774405 — 95126n* +- 43401667° ~ 68626182

+ 3266748n + 23).

The proof is given by the following procedure: first we compare the Pizzetti-like formula
(6) with the formula &,,(r) =&(1) sin™** (r) for the (n-2)-dimensional unit sphere. Hence
we calculate the numbers A*f, and using formula (15) together with Proposition 1.8, we
can calculate our invariants step by step. The calculation of 4, and 4, is already pretty
laborious. The calculation of A4,, exceeds the capacity of a pocket calculator. ()

From our formulas we can see immediately:

PROPOSITION 2.7. Ag(S™*?) is negative for n<12 and positive for n>12. A,(S"*?)
18 positive for n<3 and negative for n>3. Hence the family {S*(1), H¥ —1), G,, S¥1),
S8(1)} is T-splitting.

Remark. In fact, we need not write 8¢ in our family to be 7-splitting. But the construc-
tion (see the next section) would not be simplified in this way and therefore we prefer write
down the “well-deserved” spheres explicitly (which may be more instructive),

Now, the following two observations are remarkable:

(a) Every invariant A4,,(8***) (k=1, ..., 6) is a polynomial in one variable » which
is formally of degree 2k but actually of degree k+1. (To make this observation, one has to
look at the calculations involved.)

(b) Look at the polynomials of degree k —1 at the very right-hand sides of our formulas.
For k>3, the leading coefficient of our polynomial has the opposite sign to the last
coefficient.

We conjecture that this may be true for the higher order invariants, too, with
possible modifications. In other words, we make

Conjecture 1. Each of the invariants Ay, (£>6) splits on a family of spheres.
For the calculation of the additive invariants in the special case 82 we can also use

a differential equation, as the next proposition shows. This direct method does not work

{*) T have used Sharp El-5008

15 — 802905 Acta mathematica 145. Imprimé le 6 Février 1981
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for 8", n>2, but it is still possible that some generalization or modification of this method

exists.

ProrosiTioN 2.8. There exists a unique real analytic function w(r) defined in a
neighborhood of r=0 and satisfying the differential equation

r(y'(r) +9R(r) +(r+yp(r) +1=0. (17)
For this function we have p®(0) =A4,,4(S¥(1)) for k=0,1,2, ....

Remark. By the successive differentiations of (17) we can calculate the additive
invariants of 82 much easier than by the standard method using (15).

Proof of the proposition. For the unit sphere 82 we have B,,=2(—1)%/(2k+2)! (see
Proposition 2.3). We obtain from (8)

aep_ 20 (BN (—1)F
A*6= @Ck+1)

Define a real analytic function on R by the formula

_ 2 (A0) 22 kl(-1y
M= 2 S T 2 @k

k=0

™.

We can check directly that A(r) is a (singular) solution of the differential equation
rh"(r)+ (r+3/2)h’(r) + h(r) =0 satisfying the initial condition h(0)=1. Now, g(r)=In h(r)
is defined and real analytic in a neighborhood of r=0 and it satisfies the equation
r(p” +(¢")?) +(r +3/2)¢p’ +1=0. Then y(r) =¢'(r) satisfies (17) and we can see easily that

y(r) is a unique analytic solution of (17) defined in a neighborhood of the origin.
Finally, according to the proof of Proposition 1.9 we have 4,,(8%) =p®*(0) =yp*-1(0).
Q.E.D.

Example 2.9. Using Propositions 2.3, 2.5 and 2.6 we can check easily the 734-
dimensional example by A. Gray and L. Vanhecke: put

s =t (=2 « [ ()]

Then Ay(M)=A(M)=A4M)=0. Moreover, we see that Ay(M)<0.
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3. An existence theorem and conjectures

We shall start with an algebraic result.

Lemma 3.1. Consider the system of algebraic equations with 14 unknowns x,, ..., %,

Uy, ooey Uyps

7 7 7 7
12 Xy Uy =0y, Zx,uf=ﬂ1, 121 wtu?=0‘2, leiuf=ﬂ2:
=1 i=1 = I
(18)

7

7 7
Z z u15=‘x3, lezu?=ﬂ3, ilei u7=a4
i=1 i- -

where the constants on the right-hand sides satisfy the following conditions:

(@) $;>0, ,>0, f,>0, [;>0
(b) B1Bs—(%)*>0

BB~ (“2)3 (1 + By + %) — Ba(Bs + p)
Byt s BB~ (o)

+ (B + “2)'“3'/(/31+°‘2)-

oy

() B3> +

+ﬂ2+°‘2)2

oy fito

Then there exists a solution (x,, ;) such that x,>0 for i=1,..,7, u,>0 for j=1, .., 4,
u, <0 for k=5, 6, 7. If oy, B, are rational numbers, then we can find x,, y, to be rational

numbers, too.

Proof. Let us consider u,, ..., u,; as parameters which are subordinated to the
conditions w, >u, > ug>u, >0 > ug > ug >u,. We shall solve the system (18) with respect
to 2, ..., ¥, using the Cramer’s rule. Then we obtain z,=D,/D (k=1, ...,7) where

7
p--ITu( I @-u)>0
=1 1<i<i<?

(The second factor is equal to the well-known Vandermonde’s determinant — up to a sign.)
Further, we can find without difficulties

Dk=(_l)k H (ui_uj)‘?gc)(u)'Fk(u>a’ﬂ)9 k=1"-"7;
l<l.tl:=j)§7
where Fy = a,s§(u) —B,58”(u) + otp6{7(w) — B8t (u) + 0t 887 (w) — BsT(w) + ¢y and sf(u) (1=

1,.., 6) denotes the Ith symmetric function of the unknowns wu,, ..., u,_;, %y, ..., %;.
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Then, in order to satisfy the inequalities z,>0 for k=1, ..., 7, we must have D,>0

for k=1, ..., 7, and hence
F,>0, F,<0, F;>0, F,<0, F,<0, Fg>0, F,<0. (19)

Here we have used the fact that s§® =u, ... we_y %y, ... 4, is negative for k<4 and positive

for £>4.
Now, we put on the parameters u, the following additional conditions:

Uy tu, =0, ugtu;=0, u,=(u)3
We can rearrange each F, in the form

Fiu, «, )= Z aﬁk)(uz, g, Ug) + ()}
—e<i<2

where af® are polynomials, and we always have either a$”==0 or a{* % 0. For u, sufficiently
large with respect to u,, ug, U the expression F has the same sign as the leading coefficient
a¥ or af”. We can show easily by the direct calculation that the system of inequalities

(19) is then equivalent to the following:

— 0ty Ug Uy Ug T Bo(tgUg + Uy Ug T UgUg) — ota(ty + 15+ 1g) + B3 > 0
oty Ug g — oty +ttg) T otg >0
— oty Uy Uyt By(Uy +Ug) — 03 > 0 (20)
— Bty Uy thg -+ oty Uy + Uy g + Uy Ug) — Bottg + g +uug) T ag >0
— oty Uty T Bolthg T2z} —ot3 > 0.
Here the first inequality comes from ¥, >0, F, <0, the second from F, <0, the third from

F;>0, the fourth from F,<0, F;<0, and the last from F¢>0,
Now, we shall require the additional condition u,+us=0, and we put, for the sake of

brevity, % =1u,, v=u; Then (20) yields
(otg —Bo)uP+ Py~ otgv >0
(Brv— o) Ut tay—fov >0
(B —opv)utog—fyv >0
o, ud—og >0

(By— o) U+ a0 —atg > 0.

Putting v=(f,+ o)/ (f, + otz) >0 we get

Pubr— ()

- =f,0— oty =
Ba— % B ) Bt o
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The only free parameter is now % >0. If we denote

_Batoy — 1B — () .
71 Bt Ye B ta, ’ vs =03 — Y1 P

we have to satisfy the inequalities

Ba— V1%
V2

ut<

u2>—§§3-, u>—;’73 1)
2 2

u? >°—‘§, w>"3,
o
where y,>0, ,>0, a,>0.

Put w=1+]og/ay| + |ps/ye| +yy; then the last four inequalities (21) are fulfilled. The
first inequality (21) is also satisfied because (1+ |ag/ay| +|vs/ve| 712 <(Bs—v1|as|)/72
is nothing but the condition (c). Also, we have u>y,; it means that u,>us. (The other
inequalities among the parameters u, are obvious from our substitutions and limit
procedures.)

The ‘“rationality part’” also follows from the construction. Q.E.D.

Now, we can prove our basic existence theorem.

THEOREM 3.2. Let M., M,, M, denote homogeneous Riemannian manifolds satisfying
A M) <0, Ag(M,)>0, Ao(My) <0 and Ay (M)EQ for all k, and i=1,2,3 (e.g., M, =G,,
M,=8%%(1), My=2S8%1)). Then there extst positive integers n,, ..., n;; and positive rational

numbers 1, ..., 74, 81, ..., 84, ¢, d such that the Riemannian space

M =[S¥ry)]™ > x [S3(r)]™ x [HA(—8)1™ X ... X [HA(—8)]™ x (My)™ x (Mp(0))™
X (My(d))™

satisfies Ao(M)=AyM)=...=A,(M)=0, i.e., the condition V,(r) =Vy(r)(1+0(r®)) at each
point mEM.

Proof. In accordance with Proposition 2.3 we put 4,,(S%1))=a, for k=1, 2, ...; hence
Ag(S2(A)) =a, A%, Ay (HY—~2))=a,(—A)*. Further, we denote Ay (M,)=b,, Ay(M,)=c,
Ay (My) =dy. Recall that a, <0, a,>0, a3>0, a,<0, a; <0, az>0 (see Proposition 2.6) and
by <0, ¢4>0, dg<O0.
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Put 8P = —b,/a, for k=1, ..., 7; then 6 >0.

Put 62 =8 —(—1)A*~5, For a large rational 1>0 we have 83 >0, 6 >0.

Put 6P =02 —(ci/a)u® 7. For a large rational ©>0 we have >0, 6 >0,
8P > (89)2/68.

Finally, put 8{° =0 — (d,/a;)»*™ '*. For a large rational » >0 we have d5” >0, 6§ >0,

O 0Y — (0§)2>0 and the condition (c) from our lemma is satisfied for
o =0, Bi=0, =08, Ba=0L, az=08, B3=06", a,=06P. (22)

We see that the conditions (a), (b) of Lemma 3.1 are also fulfilled.

Let (z, u;) be a (rational) solution of the system (18) in which the right-hand sides
are given by (22). According to our lemma, we can suppose that z,>0, u;>0, ..., u,>0,
us <0, ..., 4, <0. Then we have for k=1, ..., 7:

7
e 2, uf + by ag e A0 — 23+ o (WP 4 dy T (R =0,
i=1 .

i.e.,
4 7
21 z; Azk(Sz("t)) + 2:5 z Azk(Hz(uj)) + Ao (M) + }»_aAzk(Hz( - '12))
+u” 7A2k(M2(,u,2)) + v M Ay (M,4(v?) =0.

Now, we only have to multiply this relation by the least common multiple of all deno-
minators of our coefficients. Q.E.D.

At the end, we shall discuss the possible generalizations of our construction. Suppose
for a moment that we can construct a k-splitting family of spaces for each k& —it will be
true if our Conjecture 1 holds, for instance. Then it seems prospective to try to generalize
our algebraic procedure from Lemma 3.1, and from the proof of Theorem 3.2. To see it
closer, let us look at out lemma first. The condition (¢) seems to be rather special and
complicated. But in fact this condition is only one of the possible forms how to specify
the following requirement: the coefficient §; should be sufficiently large in comparison
with the “influence’ of the previous coefficients. Also, the condition (b) means only that
B has an analogous property. Looking at the procedure used in the proof of Theorem 3.2
(in fact, we have used the limits of auxiliary parameters) the possible directions of the

generalizations are almost clear. Hence we make:

Conjecture 2. For every k>0 there is a homogeneous space (M, g) satisfying
Ay M) =...=Ay(M)=0.
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Consider the following ‘“volume condition” in an analytic Riemannian manifold M:
the volume of a small geodesic ball is always equal to the volume of a Euclidean ball of
the same dimension and radius. We know that this volume condition is equivalent with

the vanishing of all scalar curvature invariants Bj;.

Conjecture 3. The volume condition cannot be reduced to a finite number of conditions
By,=B,=...=By,=0, in general. In other words, the volume condition is equivalent to an
infinite system of partial differential equations (with the orders growing to the infinity)
which cannot be reduced to its finite subsystem. (Cf. Conjecture (*) in [4].)

In accordance with the Conjecture 1 we can put the following, more specific conjec-

tures:

Conjecture 4. For each k>0 there is a symmetric space M and a positive integer #;

such that the homogeneous space M =M, x (Gy)™ satisfies A=A, =...= Ay =0.

Conjecture 5. For each k>0 there is a symmetric space M satisfying the condition
Volr) = Vo(r) (1 + agry + O(r*)), where a, is a positive constant.
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