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Introduction 

Let (M, g) be an analytic Riemannian manifold and m E M a point. I t  is known (see 

e.g. [2]) tha t  the volume of a small geodesic ball with center m and radius r is given by  a 

power series expansion 

Vm(r) = Vo(r ) (1 + B2r 2 + B4 ra § + Bzkr ~ § ...) 

where Vo(r ) is the volume of the Euclidean ball of the same dimension and radius. Here 

the "volume invariants" B~, B 4 ... .  arc analytic functions of m E M, or, more specifically, 

they are scalar curvature invariants of orders 2, 4, ... respectively. 

A. Gray and L. Vanhecke [4] have calculated the first three invariants Bz, B 4, B 6 

in terms of the curvature tensor R, the Rieei tensor ~, the scalar curvature T and their 

covariant derivatives. In  the same work the following was proved: 

Let  (M,g )  be an analytic Riemannian manifold such tha t  Vm(r)= Vo(r)(l+O(re))  

for all m E M ,  i.e. such tha t  B 2 = B 4 = 0  identically. Then (M, 9) is flat  in each of the 

following cases: (a) dim M ~< 3, (b) M has non-positive or non-negative Ricci curvature, 

(c) M is conformally flat, (d) M is a product  of surfaces, (e) M is locally a product of 

classical symmetric spaces and symmetric spaces of rank 1, (f) under some other special 

conditions which we do not write down explicitly. 

On the other hand, the following examples have been given: 

(i) A 4-dimensional Riemannian manifold such that  R ~: 0 and Vm(r) = Vo(r ) (1 + O(re)) 

for all m E M. 

(ii) A 5-dimensional homogeneous Riemanian manifold such tha t  R # 0  andVm(r)= 

Vo(r ) (1 + O(re)). 

(iii) A direct product of non-flat homogeneous Riemannian manifolds of total  dimen- 

sion n = 7 3 4  and such tha t  Vm(r ) = V0(r)(1 +O(rS)). 
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I n  this paper  we generalize the implieitc idea involved in the construct ion of example 

(iii): besides the ordinary  volume invar iants  B,,  B 4 ..... B,k .... we shall define certain 

polynomial  functions A~(B,), A4(B2, B4) . . . . .  A~,(B2, ..., B~,), ... which behave addit ively 

on direct  products  of R iemannian  manifolds. Also, we have B~=B4=.. .  =B2k=O if and 

only if A~=A 4 . . . . .  A~k=O. We call A2, additive volume invariant~ of (M, g). (For 

homogeneous spaces, both sets of invar iants  are constants.)  

Then we develop a method for the construct ion of homogeneous Riemannian  spaces 

with the proper ty  V,~(r)=Vo(r)(l+O(r2~)), k > 4 .  After  having  calculated the first 6 

invariants  A 2 .. . . .  A12 on spheres, we construct  a direct  product  of homogeneous spaces 

with the proper ty  Vm(r)~-Vo(r)(l+O(r18)). Our main  conjecture says tha t  the same 

method m a y  work for the construct ion of examples with arb i t rary  large k. 

If  the above conjecture proves to be t rue it m a y  throw some light upon  the difficult 

"volume conjecture" by  A. Gray  and L. Vanhecke: Assuming V,~(r)= Vo(r) everywhere 

on (M, g), is (M, g) flat? 

Acknowledgement. I am grateful to A. Gray  and L. Vanhecke for making  several 

improvements  of the style and for correcting some formulas in this article. 

l .  A d d i t i v e  v o l u m a l  i n v a r i a n t s  

Let  xff 1, x 1 .. . . .  x n .... be independent  variables and Q[x~ 1, x 1 . . . . .  X n . . . .  ] the cor- 

responding ring of polynomials over rat ional  numbers.  We shall write briefly Xo -k instead 

of (Xol) k. Let  us define a derivat ion D in Q[x01, xx . . . .  , x n .... ] as follows: D(r) = 0 for r E Q, 

D(x~ 1) =-XxXo 2, D(x~)=Xf+x for i>~ 1. We also define formally 

D (ln x0) ~- XlXo 1. 

Then, for every k ~  1, the kth i teration D (k) (ln x0)EQ[x01, x 1 . . . .  ] has the form 

D (~) (ln Xo) = ~. -z e~,...tt xt,. . ,  xi, x0 , c~,...~, E q.  (1) 
t l + . . . + | l - k  

~1~|2/>.../>t/>0 

as we see easily by  the induction. The coefficients c~,...~EQ are uniquely determined.  

We shall call the polynomial  D ~k~ (In x0) the logarithmic operator ]orm o/order k, and  

we denote  it by  Lk. 

I f  X is a linear differential operator  on a smooth  manifold M, and  if / is a smooth  

funct ion on M, then we can consider a non-linear differential operator  Lk(X ) on M 

defined by  the following formula:  

L~,(X) (l) = S c,,...,,(X "')/)... (X (*')/) / -t. (2) 
| t  +...+|~--k 

tl>~tt~...~>tl>O 
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An informal definition of Lk(X ) is the following: consider the arbi trary function 

F(t) of one variable (of class C ~176 and calculate the expression dk/(dt) ~ (In F(t)). Then 

substituing F ~ / ,  F'-+X] ..... F ( k ) ~ X  (k)/ everywhere, we obtain the value of Lk(X ) o n / .  

Let  N be another smooth manifold, g a smooth function on N, and Y a linear 

differential operator on N. We shall consider the product manifold M • N with the 

projections Pl: M • N-+M, p~: M • N-+N. The function (/opl) (gop2) on M • N will be 

denoted briefly by  117, and the linear differential operator * * Pl X +P2 Y on M • N will be 

denoted briefly by  X + Y. Now, we have the basic 

PROPOSITION 1.1. I /  M, N, ], g, X,  Y have the previous meaning, then 

Lk(X+ Y)(/g) =Lk(X)( / )+Lk(Y)(g) ,  k = l ,  2 . . . . .  (3) 

Proo]. Let first M = N = R ,  X=d/d t .  Then for any smooth real function f we get 

from (1) and (2) 

L d d k (ln D 
k(~t) (T)= (dt)k 

and hence 

Now, i t  suffices to compare the Leibniz' rule 

(dt) k ([~) = ~ d' ] .  t-o (dr) t (dr)k_ ~ on R 

and the binomial formula 

(X + y)(k)(/g)= k (k.l (Xr on M x N 
~=0 \~ I 

to obtain the general formula (3). 

We also define the reduced logarithmic operator /orm Lk o/order k by substituing 

Xo 1= 1 in (1). For the reduced operator forms we have the following: 

COROLLARY 1.2. Let M, N be smooth mani/olds, ( a, b) E M • N a fixed point,/ ,  g smooth 

/unctions on M, N respectively such that/(a) = g(b) = 1, and X,  Y linear diHerential operators on 

M, N respectively. Then 

L~(x + Y)(o.b)(/g) = Lk(x)a (/) +Lk(Y)b (g). (4) 
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The proof is obvious. Let  us remark tha t  (4) has a local character:  the linear differential 

operators X, Y and the  f u n c t i o n s / ,  g are to be defined only in some neighborhoods of 

the  points  a, b respectively. 

We shall give an explicite form of the differential operators L~(X) for k~<6 (here 

X means an  a rb i t ra ry  linear differential operator).  

PROPOSITIO~ 1.3. W e  have 

L I ( x )  = x 

L~CX)  = x (2~ - (X~l~) ~ 

L ~ ( x )  = x ~3~ - 3 x ~ ) x  ~11 +2(x~1))  3 

L4(X)  = X c4) - 4X~3)X ~1) - 3(X(~)) ~ + 12X(2)(X(1)) ~ - 6(X(1)) 4 

L s ( X  ) = X(6~ _ 6X(4~X(,i _ iox~8~X(~ + 20X,~(X~l>) 9- + 30(X,~)~X~l~ 

- 60X(~)(X(~))a + 24(X(~)) ~ 

L~(X) = X (~ - 6X~a)X (~) - 15X(a)X ~2) + 30X(a~(X~)) ~ - 10(X(a)) ~ + 1 2 0 X ( a ) X ( ~ X  (n 

- 120X(a)(X(~)) a + 30(X(~)) a -  270(X(~))~ (X(~))~ + 360X~2~(X(1)) ~ - 120(X(1))% 

We shall now recall some concepts and results f rom [5]. Let  (M, g) be an analyt ic  

Riemannian  manifold and m E M .  If  (x 1 . . . .  , x,) is any  system of normal  coordinates at  m 

then the Eucl idean  Lap lac ian  fi~m is defined by  the formula  

Further ,  the normal  v o l u m e / u n c t i o n  0 at m is defined by  0m =w(~/~Xl . . . . .  O/~xn), where r is 

a volume element of (M, g) near m (such t h a t  0m > 0). The definitions of ~m and 0m are in- 

dependent  of the choice of normal  coordinates a t  m (here " independen t"  means in the  sense 

of germs). /~m is a local linear differential operator  on (M, g). 

Let  us recall the  Pizzet t i ' s  formula [1, p. 287], expressing the mean value of an  

analytic funct ion ] on the sphere S~-l(r) of radius r and with center m in the Eucl idean 

space Rn: 

k-o  \ 2 /  

Here I ~ means the usual gamma-func t ion  and A k is the k th  i teration of the Laplacian in 
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R n. I t  is not difficult to get from here a formula for the volume Gin(r) of a small geodesic 

sphere of an analytic Riemannian manifold (M, g): 

(cf. Corollary 3.3 of [5]). 

Here ~ means the kth iteration of the Euclidean Laplacian ~m. The last formula 

can be easily rewritten in the form 

Gin(r) Go(r) 1 + (5) 
k-12 ~. k ! (n + 2 k -  2)...(n + 2) ~ / 

where G0(r) is the volume of a Euclidean sphere of radius r in R ~ (n = dim M). 

Now, if we differentiate the power-series expansion 

Vm(r)= Vo(r) (l  + ~.lB2~(m)r2k)= Vo(1) (r '+ ~.lB2k(m)r2~+" ) 

with respect to r, we get immediately 

~ 2k + n 2k\ 
Gin(r)--Go(r) 1+ ~, Bzk(m) r }. (6) 

k-1 n l 

Comparing (5) and (6) we get 

~(Om) (m) = 2 k. k!(n + 2k)(n + 2k - 2 )  ... (n + 2) B2k(m ). (7) 

Let us define a global function &k0 on (M, g) putt ing (TXkO)(m)=TX~(Om)(m), mEM. 
We obtain 

7XkO = 2 k. ]c!(n + 2k) (n + 2k - 2) ... (n + 2) B2k. (8) 

In  particular, the function ~k0 is analytic. 

I f  (M~, g~), i = 1 ,  2, are two analytic Riemannian manifolds and (ml, m2)EM 1 x M 2 
we can consider an adapted normal coordinate system (x 1 ..... xn,, xn,+l .... , x,~+~,) defined 

in a "rectangular" normal neighborhood Urn, x U~, in M 1 x M v With respect to these 

adapted normal coordinates, we can see easily tha t  

s  . . . . .  ) = s mt -}- s  . . . .  O( . . . . .  ) = OL m, 02, m, (9) 

for the corresponding Euclidean Laplacians and normal volume functions (via the cor- 

responding projections Pl, P2). Moreover, 01.m,(ml)=02,~,(m2)= 1. 
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Our formula (4) now implies 

Z k ( h ( (  . . . . . .  )) (0( . . . . .  )) (ml, m2) = Zk(s  mz)rnl (01. m,) ~- Lk(h2.m=)m, (0a. m~). (10) 

We are ready to introduce our basic concept: 

De/inition 1.4. Let  (M, g) be an analytic Riemannian manifold. The additive volume 

invariant o /order  2k is a function A2k: M - ~ R  defined by the rule 

.a2tc(m)=Lk(~m)m(Om) , m E M .  ( l l )  

We make the following conventions: 

(a) The right-hand side of (11) will also be denoted by the symbol Lk(A)(0)(m ). 

(b) For  a given Riemannian manifold M, the corresponding invariant A,k will also 

be written as A2 M, and similarly for B2,. 

(c) For a homogeneous giemanian manifold M the invariants AM are constant 

functions. The corresponding constants will be denoted by A2k(M ) ( k = l ,  2 .... ). 

THEORV.M 1.5. For each k = l ,  2 .. . .  there exists a countable set {Pn.k} o/ polynomials, 

Fn.kEQ[tl  . . . . .  tk] /or n = l ,  2 . . . .  , with the/ol lowing property: /or each analytic Riemannian  

mani/old (M, g) o/ dimension n we have 

AM=pn.k(BM,  B~,  M ....  B2k) 

where B M .. . . .  B ~  are the ordinary volume invariants of (M, g). I n  particular, the/unctions 

A M are analytic. 

A M - _ A M = o i l /  B M = B M =  =BM=0.  Further, we have 2 . . . . . .  z~ ... 

Finally,  i[ (M~, qt), i = 1, 2, are two analytic Riemannian  mani/olds, then 

AMt• _ 2~ - A ~ o p t + A M ' o p 2 ,  k = l , 2  . . . . .  (12) 

where PV M1 • M 2 ~ M ~  are projections. 

Proo/. From Definition 1.4 and (2) we get 

A2~= Lk(A) (O)= Y. c,,...,,(s (13) 
|l+...+tl--k 

where c~1...t , are uniquely determined rational constants. The first assertion now follows 

from (8). 
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The second assertion follows f rom the fact  t ha t  in (1) we always have the coefficient 

ck= 1 at  the  term xkx~) -I. I t  means tha t  we can rewrite (13) in the form 

A s ,  = s  --qk-l(AO, ;X20 . . . . .  h k-10) (14) 

where qk_l(tl . . . .  , tk-1) is a polynomial  over Q. 

Finally, (12) is nothing bu t  the global form of (10). 

COROLLARY 1.6. / /  (M,, g,) are homogeneous, then 

A2k(M 1 • M2) = A2k(M1) + A~,(M2), k = 1, 2 . . . . .  

COROLLARY 1.7. There exist polynomials Q~(t 1 . . . .  , tk) such that 

Ask = A k O - Q k _ I ( A  s . . . . .  Ask_s) , k = l ,  2 . . . . .  (15) 

Proo]. I t  follows immediately  by  the induct ion from (14). 

PROPOSITION 1.8. The /irst 6 polynomials Qk-1 are given by the /o l lowing /ormulas :  

Qo = 0 

QI(A2) ~ (As)S 

Qs(A2, A4) = 3A4A s + (As) 3 

Qa(A2, A,,  AB) = 4 A e A  s + 3(A4) s + 6A4(A2) 2 + (A2)4 

Q4(As, ..., As) = 5 A s A  ~ + 10Ae(A2) s + 10AeA 4 + 15(A4)*A2 + 10A4(As) 3 + (A,) ~ 

Qs(A2 . . . .  , A10) = 6AloA 2 + 15AsA , + 15As(A2) 2 + 10(A6) 2 +60ABAaA2 + 20Ae(As)3 

+ 15(A4) 3 + 45(A4)~ (A2) 2 + 15A4(A2) 4 + (As)% 

Proo]. Using the formulas of Proposit ion 1.3 we get  the expression for Ask =Lk(A ) (0) 

(k = 1 .. . .  ,6)  in the form (14). Then we proceed step by  step to rewrite (14) in the form (15). 

According to Theorem 1.5, the invar iant  Ask is a polynomial  in B 2 .. . .  , Bsk, for 

each k. On the other hand,  the formulas (8) and (15) show tha t  B2k is a polynomial  in 

A s .. . . .  Ask. Because Ask are addi t ive on direct  products  in the sense of (12), each in- 

B M~• is a polynomial  in M, M, B2~, Bs~, i = l ,  /c. I t  is easy to get  an explicit var iant  2~ ..., 

formula: at  a fixed point  (ml, m 2 ) E M  1 • M s we can use (9) and hence 
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Substituing from (8) we get 

(n + 2) (n + 4)... (n + 2p) ~2p~M' • M~ 

= ~ ( m + 2 ) . . . ( m + 2 q ) ( n - m + 2 ) . . . ( n - m + 2 p - 2 q ) ( B ~ q ~ o p l )  (B2v-2qM' op2)  
qffi0 

where m = dim M1, n = dim (M 1 x M2). 

If  we define a /ormal power series 

/~M(m) = ~ 2P(n+2) ... (n+2p)B~(m).s  v, n = d i m  M, mEM, 
pffi0 

then we obtain easily the (slightly modified) product/ormula by A. Gray: 

/}Y' •  = ( / ~ y ' o p l ) ( / } ~ ' ~  

This result was obtained in [3] by a different method (using the Laplace transformation). 

Using the power series /}M we can get a new formula for the additive volume 

invariants: 

PROrOSITION 1.9. Let ~M have a non-zero convergence radius 7 at a point mf iM.  

Then, in a neighborhood o / s  = 0  we have 

In ~M(m)= ~ AM(m) Sk 
~ 0  k~ �9 

Proo/. Put  h(s) = By(m) for s fi( - 7 ,  7). We can see from (8) tha t  h(s) = ~~ 

and hence ~k(O)m=h(k)(O ) for k = 0 ,  1 . . . . .  

According to (13) and the proof of Proposition 1.1 

A~(m) = Lk(s (0) (m) = ~ c,,...,,(h"O)m...(s O)z 

[ Xd , , .  dk(lnh)] 
= : c,,...,,h(")(O)...h(")(O) = Lk ~SS)otn)= I -o (ds) ~ 

Now, because h(s) is analytic in a neighborhood of s = 0, and h(0) = 1, then In h(s) is also 

analytic in a neighborhood of s = 0 .  Q.E.D. 

2. The invariants A2k for some homogeneous  spaces 

Our basic problem now is to construct Riemannian manifolds satisfying A~= 

A4 . . . . .  A~k-=O for possibly large k. Here is the main idea: we find out a finite collec- 
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tion (M 1 .... .  MI} of homogeneous spaces such tha t  

(i) all values A2~(Mj) , i = 1 . . . . .  ]C; j = 1, ..., l are rational numbers, 

(ii) for each i = 1 ..... ]C, the invariant  A~ is negative for some Ma and it is positive for 

some Mfl. 

A family (M 1, ..., Mz} of spaces with the properties (i), (ii) will be said to be ]c-splitting 

(or simply splitting). 

Consider a direct product M = Mr '  • M~ ~ • • M~ z. We have 

l 

A2,(M)= ~ njA2,(Mj) ,  i = l  . . . . .  ]c. 

Thus, in order to satisfy the identities A~(M) . . . . .  Ask (M ) =0  we have to solve a system 

of equations with rational coefficients 

l 

x j A ~ i ( i j ) = O ,  i = 1  . . . . .  k, (16) 
j - 1  

in positive integers xl, ..., x I. 

Now, what does it mean "to solve" our system? Whereas the examples given in [4] 

were very concrete, we shall prefer rather theoretical constructions, i.e., pure existence 

theorems. The reason is obvious: the numerical calculation of the coefficients A21(Mj) 

gets always very tiresome for a large k, and the complete list of the invariants Ask is not 

known even for the simplest non-fiat homogeneous spaces (e.g. for the sphere S~). On 

the other hand, to get the information contained in our conditions (i), (ii) is much easier. 

The problem how to solve the system (16) with such a minimum information will be dis- 

cussed in the next  section. Here we shall add one more remark: 

Even if l > k ,  our system (16) with only 1 unknowns may turn out "too rigid". 

To make it more flexible, we have to consider together with each space Mj the class of 

all homothetic spaces. In  this way, we bild into our system of equations new parameters  

which can be arbi trary positive rational numbers. In  fact, we have 

PROPOSITION 2.1. Let (M, g) be an analytic Riemannian  mani[old and ) .>0  a real 

number. Let M(2) denote the mani/old (M, g~), where gX =2-1g. Then AM(k)2k =r.~k AM2k /or each 

k = l ,  2 . . . . .  

Proo/. I t  is obvious tha t  the geodesic ball of radius r in the space M(~) coincides with 

the geodesic ball of radius rV~ in (M, g). Also, we have the relation eo~ =)/"/2(o between 

the corresponding volume elements ( n = d i m  M). Hence we obtain for the corresponding 
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volumes: V~(r)=2 -~12 Vm(r~ ). Using the ordinary  volume expansions, we get 

V0(1)rn(1 + ~  B~kr 2~) = ~t - . '2 V0(1 ) (V~r)n(1 + ~  B2kr2k2 k) 

and  hence B~j=B2j.2 j for each j. Now, due to (8) and (13), we can write 

tl+.,,+llfk 

where the coefficients ~,...~ depend only on n = d i m  M. Hence the proposit ion follows. 

Let  R, Q, ~ denote the R iemann  curvature  tensor, the Ricci tensor and the scalar 

curvature  respectively. ]] ]] will denote  the lengtht  of a tensor in the corresponding 

tangent  space of (M, g). 

PROPOSITION 2.2. For any analytic Riemannian mani/old (M, g) we have 

0 
In  particular, i/  M is homogeneous, then A s = (1/45)( - 3  [I RI[~ + 8 [Io [l~). 

Proo/. Let  us consider the ord inary  volume expansion Vm(r) = Vo(r ) (1 + B2 r ~ + Be r a +...). 

Following [2] or [4], we have 

T 1 
B2 6(n + 2) '  Be = 360(n + 2) (n + 4) ( - 31[RII 2 + 8ll~ll ~ + 5~ ~ -  laA~),  

where n = d i m  M. Now, using (8), (15) and Proposit ion 1.3 we obtain  easily 

A 2 = 7k0 = 2(n + 2) B 2 = - 3 '  

A 4  = ~ 2 0  - (A2)  2 = 8 ( n  + 4 )  ( n  + 2)  B 4 
"r ~ 1 
9 45 ( -  311Rfl~ + 811dl~- 1 8 ~ ) ,  

For  M homogeneous we have ~ = const., and AT =0 .  Q.E.D.  

I t  is an interesting observat ion to  see tha t  A 4 is essentially obtained from B a by  the 

removal  of the term 532 which does no t  behave addit ively on direct products.  Exac t ly  in 

the  same way  we can calculate an addi t ive invar iant  of order  6 f rom the known 

coefficient B e. For  homogeneous spaces this calculation has been done in [4, w 7]. ( In 

fact,  the addit ive invar iant  of order 6 presented there is equal to  3 . 5 . 7 . 9 . A e .  ) 
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The explicit formula for the next invariant B s is not known in general (with the 

exception of dimension n =2) and we have no formula for As, as well. I t  seems that such 

general formulas for As, A10 .... etc. would be very complicated (even for the homo- 

geneous spaces) and of little use for our purposes. Thus, our next question is /or  what 

special kind of homogeneous spaces we can calculate the higher order invariants with 

a minimum effort. Our first choice will be the symmetric spaces o/rank 1. In  this case, there 

are explicit formulas for the volume of a geodesic ball (or equivalently, of a geodesic 

sphere) containing only elementary functions. Thus the ordinary volume invariants 

B2, are known, and each A,~ is given as a polynomial in the variables B 2 ..... B2k. The only 

obstacle is the growing complexity of these polynomials for the higher orders. 

We shall now summarize the explicit formulas for the geodesic spheres in the sym- 

metric spaces of rank 1. The corresponding formulas for the geodesic balls are obtained 

by the integration. With respect to Proposition 2.1, it suffices to choose one representant 

in each homothety class. 

THEOREM A ([2]). The volume o/a small geodesic sphere in a symmetric space o/ rank 

1 is given by the/ollowing /ormulas: 

(1) For the sphere S n with constant curvature 1: 

~,n(r) = Go(I) sin n-1 (r). 

(2) For the complex projective .space CP n with constant holomorphic sectional curvature 

4 (dim M =2n): 

~m(r) = G0(1) sin 2n-1 (r). cos r. 

(3) For the quaternionic projective space Qpn with maximum sectional curvature 4 

(dim M = 4n): 
~m(r) = ~o(1)~ sin 3 (2r) sin 4n-a (r). 

(4) For the Cayley plane Cay p2 with maximum sectional curvature 4 (dim M = 16): 

~m(r) = 6o(1)2 -7 sin 7 (2r) sin s r. 

(5) For the non-compact duals o/ the spaces (1)-(4), the corresponding /ormulas are 

obtained by substituting sinh/or  sin and cosh/or  cos everywhere. 

In each ]ormula, G0(1) denotes the volume o/the unit sphere in the Euclidean space o/the 

corresponding dimension. 

PROPOSITION 2.3. Let S2(/t) denote the sphere with the constant curvature/t>0 and 

H2(-~t) the hyperbolic plane with the constant curvature - 2 < 0 .  Put ak=A~k(S2(1)) /or 
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k = 1, 2 . . . . .  Then we have 

A2k(S2(2)) = ~ak, A2k(H2(-~I)) = ( -2 )kaz ,  k = l ,  2 . . . . .  

In  particular, the invariants A2, Ae, A10 . . . .  acquire opposite values on the spaces $2(1), 

H2( - 1). 

Proo]. Using (1) and  (5) of Theorem A and  the  integrat ion,  we ob ta in  

Vm(r) = 2V0(1)(1 - c o s  r), Vm(r ) = 2V0(1 ) (cosh r -  l) 

for $2(1) and  for H 2 ( - 1 )  respectively.  Hence  we get 

B2~($2(1)) = 2( - 1)k/(2k +2)! ,  B2k(g2( - 1)) = 2/(2k + 2)!. 

Consequently,  we have  B2~(H2(-1))=(-1)~B2~(S2(1)) for i = l ,  2 . . . . .  Now, we can use 

the  me thod  of the  proof of Proposi t ion 2.1. 

PROPOSITION 2.4. All the invariants A2~ are rational numbers/or the spaces (1)-(4) 

/rom Theorem A and/or their non-compact duals. 

Proo/. I t  is obvious t h a t  the  o rd inary  volume invar ian ts  B2~ are always ra t ional  

numbers .  The  rest  follows f rom Theorem 1.5. 

F rom the Proposi t ions 2.3 and  2.4 we see the following: if we take  $2(1) and  H 2 ( -  1) 

(or, more  precisely, their  ra t ional  h o m o t h e t y  classes) for the  first  members  of our  spl i t t ing 

family  {M 1 . . . . .  Mz}, we have  " sp l i t t ed"  all the  invar ian ts  of the form A2+4k. I t  would be 

very  comfortable  if we could find out,  for each k, a k-spli t t ing fami ly  {M 1 . . . .  , Mz} 

consisting only of the symmet r i c  spaces of r ank  1. Unfor tuna te ly ,  such a scheme cannot  

be carried out  due to  the following result: 

THEOREM B ([4]). For all (non-/lat) symmetric spaces o/ rank 1 and symmetric 

spaces o/classical type, the expression - 3 ]] R]l 2 + 8 ]]~ ]]2 is positive. Consequently, the invariant 

A a is positive /or all these symmetric spaces. 

Remark. The problem remains  open for the except ional  symmet r i c  spaces of r ank  

greater  than  one. 

Thus,  we have  to look for a non-symmet r i c  homogeneous  space for which A4<0 .  

The mos t  s imple example  is given in [4]: consider the  3-dimensional  ma t r i x  group (1 
G3= 0 1 

\ 0  0 
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natura l ly  diffeomorphic to RS(x, y, z), with the invar iant  Riemannian  metric dx s +dz  ~ + 

(dy - x d z ) L  The vector  fields X 1 = (a/ax), X s = (3/3y), X a = x(a/3y) + (3/~z) form an orthogonal  

basis of the corresponding Lie algebra (Ga) e. We can determine the Riemann  connection 

V in the s tandard  way:  

V X ,  X 2 = Vx 2  X 1 = - � 8 9  3, V x ,  X 3 = - V x  3 X 1 = ~ X  2, V x  2 X 3 = V x  8 X s = �89 X 1. 

The tensor fields R, •, ~ are obtained easily f rom here, and using Proposit ion 2.2 we get  

A ~ = ~ ,  A 4 = - 2 < 0 .  According to [4], we find easily A a = 2 6 / ( 3 . 5 . 7 . 9 ) e Q .  Thus, i/ we 

loin the group mani]old G a to our p rev ious /ami l y  {$2(1), H S ( -  1)}, we obtain a 3-splitting 

/amily.  

The next  invar iant  to be splitted is A s. I f  we wan t  to use our group space G a in any 

splitting family without  restriction, we have to prove the ra t ional i ty  of all invar iants  

A2~ first. 

PROPOSITION 2.5. Al l  invariants Ask(Ga) are rational numbers. Moreover, we have 

Aa(Ga) ~ -0 .021455 <0 .  

Proo/. We shall first construct  explicitly the exponential  map  at  the origin 0. The 

equations of the geodesics emanat ing  from 0 can be wri t ten in the form 

~(t) +w(t)g(t) = o [ u(t) = ~(t) 
~b(t) - u(t)g(t) = 0  where ] w(t)=~(t)  

~(t)=O [ g( t )=~)( t )-x( t )~( t) .  

The initial conditions are 

x(0)  = y ( 0 )  = z(0)  = 0 ,  

u ( 0 )  = u ,  g(0)  = v, w(0)  = w.  

Now, the exponential  map  Exp:  (u, v, w)~--~(x, y, z), defining normal  coordinates at  the 

origin, is given by  the formulas 

u . s i n  v + w . c o s  v - w  
X =  

V 

\{2v s +~u s + w ~ 2vv ~uw) 1. 
= + 4v ~ [(w ~ -- u s) sin (2v) -- 2uw cos (2v) + 4uw cos v - 4w s sin Y V] 

- u . c o s  v + w . s i n  v + u  
$ =  

V 

(we take the limits to define our  map  at  the origin (0, 0, 0)). The normal  volume function 

0 is equal to the Jacobian  D(x, y,  z) /D(u,  v, w). After  some algebraic t ransformat ions  we 
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obtain 

0 = (uS + w2 (2 - 2 cos v - v sin v) + 2(1 - cos v) 
V 4 V 2 

I t  is easy to write down the power series for O, which has rat ional  coefficients. Now, the 

values (~k0)o, k = l ,  2, ..., a t  the origin are obviously rat ional  numbers.  Hence, the 

invariants  A~k(Ga) are also rational. 

Using our  power series up to degree 8, we can find after routine calcula- 

tions s s 1 6 3  s s  and hence A~=~,  A , =  1 ,  A 6 =  

2 6 / ( 3 . 5 . 7 . 9 )  ~0.0275132 A s ~ -0 .021455 <0 .  Q.E.D.  

Using (15), Proposit ion 1.3 and the proof of Proposi t ion 2.3, we can calculate 

As(S~(1)) = As(H~( - 1)) = - 3 2 / ( 3  a. 52. 7) < 0. 

Thus, the/amily {Se(1), H 2 ( - 1 ) ,  Ga} is not 4-splitting. 

Now, what  else should we join to our family to split the invar iant  As? If  we change 

the metric on G a to another  invariant  metric, we can show easily t ha t  the new space will be 

homothet ic  to G a. Thus the change of the metric does not  help. If  we change the group, 

e.g., if we take the matr ix  group 

(:~ 
e z 

e - Z  

0 

with an invar iant  metric (the second most  simple case) we can see easily tha t  A 4 < 0  again, 

but  the calculation of the exponential  map  leads to  elliptic functions. Thus, the calculation 

of A 8 would lead to tedious numerical calculations. The si tuation with the other  group 

spaces seems to be even worse. 

For tuna te ly  (and perhaps surprisingly) this difficulty can be taken care of by  using 

the simplest symmetr ic  spaces of rank 1 -  the spheres. 

P R O P O S I T I O :N 2.6. The first 6 additive volumal invariants on the unit spheres are given 

by the /ollowing /ormulas: 

1 
A2(S n+~)= - 3 ( n +  1 ) ( n §  

A4(Sn+~) = 2_~ (n + 1) (n + 2) (4n + 1) 
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Ae(Sn+2) ~ 8(n+  1) (n+  2) ( _  16n~ + 15+ 1) 
3 a . 5 . 7  

16(n + I) (n + 2) (16n a _ 209n u + 8 9 n -  1) 
As(S~+~) = 33. 52. 7 

128(n+ 1) (n+  
Al~ -3~.5 .7 .11  2) (64n4+461na- lOOSn~+484n- -1)  

256(n + 1) (n + 2) ,  
AI~(Sn+2) = ~ :  ~V. 11 :-13 ( - 207744n5 - 95125n4 + 4349166nS - 6862618n2 

+ 3266748n + 23). 

The proof is given by  the following procedure: first we compare the Pizzetti-like formula 

(5) with the formula ~m(r)= G0(1) sin n+t (r) for the (n +2)-dimensional unit sphere. Hence 

we calculate the numbers Ak0, and using formula (15) together with Proposition 1.8, we 

can calculate our invariants step by  step. The calculation of A10 and AI~ is already pre t ty  

laborious. Tho calculation of Ala exceeds the capacity of a pocket calculator. (1) 

From our formulas we can see immediately: 

PROPOSITIO~ 2.7. As(8 ~+~) is negative /or n ~ 1 2  and positive /or n> 12. Ax2(S ~+2) 
is positive ]or n<<-3 and negative /or n > 3 .  Hence the [amily {Sa(1), H2( -1 ) ,  Ga, $8(1), 

815(1)} is 7-splitting. 

Remark. In  fact, we need not write S 6 in our family to be 7-splitting. But  the construc- 

tion (see the next  section) would not be simplified in this way and therefore we prefer write 

down the "well-deserved" spheres explicitly (which may  be more instructive). 

Now, the following two observations are remarkable: 

(a) Every  invariant A~k(S ~+~) ( k = l ,  ..., 6) is a polynomial in one variable n which 

is ]ormally of degree 2k but  actually of degree k + 1. (To make this observation, one has to 

look at the calculations involved.) 

(b) Look at  the polynomials of degree k - 1 at  the very right-hand sides of our formulas. 

For k~>3, the leading coefficient of our polynomial has the opposite sign to the last 

coefficient. 

We conjecture tha t  this may  be true for the higher order invariants, too, with 

possible modifications. In  other words, we make 

Conjecture 1. Each of the invariants A2k (k>6)  splits on a family of spheres. 

For the calculation of the additive invariants in the special case S 2 we can also use 

a differential equation, as the next proposition shows. This direct method does not work 

(1) I havo used Sharp E1-500S 

15- 802905 Acta raathematica 145. Imprim6 le 6 F6vrier 1981 
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for S ~, n > 2, but  it is still possible tha t  some generalization or modification of this method 

exists. 

PROPOSITION 2.8. There exists a unique real analytic /unction y~(r) de/ined in a 

neighborhood o / r  =0 and satisfying the di//erential equation 

r(~o'(r) +y~2(r)) + (r + ~)v/(r) + 1 = 0. (17) 

For this /unction we have y~(k)(0)=A2k+2(S2(1)) /or k=O, 1, 2 . . . . .  

Remark. By the successive differentiations of (17) we can calculate the additive 

invariants of S 2 much easier than  by the standard method using (15). 

Proo[ o/ the proposition. For the unit sphere S 2 we have B2k=2(-1)~/(2k+2)!  (see 

Proposition 2.3). We obtain from (8) 

2 ~ .  (k!)~ ( - 1)~ 7x~0= 
(2k+ 1)! 

Define a real analytic function on R by the formula 

oo ?~k0~ oo ,~k /-It / ~  k 
, _ ~ _ , r  k= ~ -  - . ~ . , - : ,  r k 

h ( r ) ~ . o  k! ~-o ( 2 k + l ) !  o 

We can check directly tha t  h(r) is a (singular) solution of the differential equation 

rh"(r) + (r+3/2)h'(r)+h(r)=0 satisfying the initial condition h(0)= 1. Now, ~ ( r )= ln  h(r) 

is defined and real analytic in a neighborhood of r=O and it satisfies the equation 

r(~" + (~,)2) + ( r+3 /2)~ '  + 1 =0.  Then y,(r) =~'(r)  satisfies (17) and we can see easily tha t  

~(r) is a unique analytic solution of (17) defined in a neighborhood of the origin. 

Finally, according to the proof of Proposition 1.9 we have A~,(S 2) =~(~1(0)=~(k-1)(0). 

Q.E.D. 

Example 2.9. Using Propositions 2.3, 2.5 and 2.6 we can check easily the 734- 

dimensional example by  A. Gray and L. Vanhecke: put  

13 75 

Then A~(M)=A4(M ) =A6(M ) =0. Moreover, we see tha t  As(M)<0.  



ADDITIVE VOLUME INVARIANT8 OF RIEMANNIAN MANIFOLDS 221 

3.  A n  e x i s t e n c e  t h e o r e m  a n d  c o n j e c t u r e s  

W e  shal l  s t a r t  w i th  a n  a lgebra ic  resul t .  

LEMMA 3.1. Consider the system o/ algebraic equations with 14 unknowns xx ..... xT, 

UI~ ...~ UT: 

7 7 7 7 

E X i U t = g l ,  E X l U ~ = f l l ,  E X l U ~ = g 2 ,  ~ X t U t = ~ 2 ,  
i = l  t=1 t~1 i--i 

7 7 7 

i=l t~l i--1 

(is) 

where the constants on the right-hand sides satis/y the ]ollowing conditions: 

(a) fl~>O, ~ > 0 ,  fl~>O, f13>O 
(b) fll fls - (~2) s > 0 

~11 -~- 0~2 g2 •1 f12 -- (0~2) 2 /~1 -{- 6r 

+ + + 

Then there exists a solution (xl, u~) such that x t > 0  /or i = l  . . . . .  7, u j > 0  /or j = l  ..... 4, 

u k < 0  /or k=5, 6, 7. I /  ~s, flJ are rational numbers, then we can find xt, Yt to be rational 

numbers, too. 

Proo/. Let  us  cons ider  u 1 . . . . .  u 7 as p a r a m e t e r s  which  are  s u b o r d i n a t e d  to  t he  

c o n d i t i o n s  u I > u2 > us > u4 > 0 > u~ > u s > u~. W e  shal l  solve the  sys t em (18) w i th  respec t  

to  x I . . . . .  x 7 u s i n g  the  Cramer ' s  rule.  T h e n  we o b t a i n  xk = D~/D (k = 1 . . . . .  7) where  

D= - [ I  u,( ~-~ ( u , - u , ) ) > O .  

(The second fac tor  is equa l  to the  we l l -known  V a n d e r m o n d e ' s  d e t e r m i n a n t  - -  u p  to a sign.)  

F u r t h e r ,  we can  f i nd  w i t h o u t  d i f f icul t ies  

D , = ( - 1 )  ~ I-I (u~--uj)s~k)(u).Fk(u,a, fl), k = l  . . . . .  7, 

1,1~- k 

where  F~ = 9~18(k)(U) (k) (k) (k) -flxss (u) + ~ss4 (u)-fl~ss (U) + ~aS(2k)(U)--flaS(~k)(U) + :q a n d  slk)(u) (l= 

1, ..., 6) deno te s  the  l th  s y m m e t r i c  f u n c t i o n  of the  u n k n o w n s  u 1 . . . . .  uk-1, uk+l . . . .  , UT. 
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Then, in order to satisfy the inequalities x~>0 for k = l  ..... 7, we must have D , > 0  

for k = l ,  ..., 7, and hence 

F ~ > 0 ,  ~v~<0, F a > 0 ,  ~ < 0 ,  F ~ < 0 ,  F 6 > 0  , F T < 0 .  (19) 

Here we have used the fact that  s(~ ~ =u~ ... ue_~u,+~ ... u7 is negative for k ~<4 and positive 

for k>4.  

Now, we put on the parameters u, the following additional conditions: 

u~ + u7 = 0, u, + u~ = 0, ua = (u,) -a. 

We can rearrange each F~ in the form 

.Fk(u, a, 8) = ~ alk)(u~, ua, u6) . (ul) l 
-6~/~<2 

where a~ k) are polynomials, and we always have either a(~k)~0 or a(1~):~ 0. For u, su]]iciently 

large with respect to u2, ua, u 6 the expression F k has the same sign as the leading coefficient 

a(~ k) or a(~ k). We can show easily by the direct calculation that the system of inequalities 

(19) is then equivalent to the following: 

- a~ us u3 u6 + fls(u~ u s + u2 u6 + ua us) - a3(u2 + u8 + u6) + f13 > 0 

a 2 u s u 6 -  fl~(ua + ue) + aa > 0 

- a~u2u6 +fl~(u~ +ue) - as > 0 (20) 

- f l l  u2 ua u6 + a2( us ua + u2 u6 + ua u6) -f12(u2 + ua + ue) + aa > 0 

- a 2 u ~  u 3 + fl2(u~ + ua)  - a s  > O. 

Here the first inequality comes from F 1 >0,  F 7 <0, the second from F~ <0, the third from 

Fa>0,  the fourth from F4<0,  Fs<0 ,  and the last from Fe>0 .  

Now, we shall require the additional condition u 2 + u  6 =0,  and we put, for the sake of 

brevity, u = u  2, v = u  a. Then (20) yields 

(a~v - f l 2 ) u  s + f l ~ -  a~v > 0 

a~u ~ -- a s > 0 

(~- a~v) u +~v-a~ > O. 

Putting v = (fl, + ~2)/(fll + a2) > 0 we got 

~ 1 ~ 2 -  (~2) 2 > 0 .  
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The only free parameter  is now u > 0. I f  we denote 

~ + ~ ~ ~ - (~)~ 
7~ f l~+~z '  7 ~ -  f l ~ + ~  , 

we have to  satisfy the  inequalities 

7~ 

7 8  = 0~$ - -  7 1  f12, 

u 2 > _ 7~, u > --  7_._a (21) 
72 72 

where 71>0 ,  7~>0,  ~2>0.  

> - - ,  U 
~2 72 

Put u = 1 + I ~ .I~1 + I r./7~l + ~ ;  then the Iast four inequalities (21) are fulfilled. The 

first inequali ty (21) is also satisfied because (1 + I ~3/:r + JTa/7~l +Ta) 2 < (fla-T1 I~al)/Tz 

is nothing bu t  the  condit ion (c). Also, we have u>71 ;  it means t h a t  u 2 > u  a. (The other  

inequalities among the parameters  u~ are obvious from our  substi tut ions and limit 

procedures.) 

The "ra t ional i ty  pa r t "  also follows f rom the construction. Q.E.D.  

Now, we can prove our basic existence theorem. 

T ~ O a E M  3.2. Let M 1, Mz, M a denote homogeneous Riemannian mani/olds satis/ying 

A4(M1) <0 ,  As(M2)>0,  AI~(Ma) < 0  and Az~(Mt)EQ/or  all k, and i = 1 ,  2, 3 (e.g., M I = G  a, 

M~=$15(1), M a =  $6(1)). Then there exist positive integers n 1 . . . . .  nil and positive rational 

numbers r 1 .. . . .  r 4, s 1 . . . . .  s 4, c, d such that the Riemannian  space 

M = [~2(rl)]"' • ... • [$2(r4)] n' • [H2( -81)] n' • ... • [H~( -s4)]  n' • (M1) n' x (M2(c)) n'~ 

x (Ma(d)) n'' 

satis/ies A2(M ) =Aa(M) . . . . .  A14(M ) =0,  i.e., the condition Vm(r) = Vo(r) (1 + O(rle) ) at each 

~oint m ~ M.  

Proo/. I n  accordance with Proposi t ion 2.3 we pu t  A~(S*(1)) =ak for k = 1, 2 .. . .  ; hence 

A,k(SZ(X))=ak}t k, A ~ ( H * ( - X ) ) = a , ( - ] t )  ~. Further ,  we denote A2,(M1)=bk, A ~ ( M 2 ) = c , ,  

A ~ ( M s )  =d~. Recall tha t  a x <0 ,  a 2 >0 ,  a S >0 ,  a 4 <0 ,  a 5 <0 ,  ae > 0  (see Proposi t ion 2.6) and 

b ~ < 0 ,  c 4 > 0 ,  d6<O.  
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Pu t  O(kl)= - b J %  for k = l  .. . . .  7; then ~(21)>0. 

" ~ ( 2 ) ~ ^  ~ ( 2 ) > 0 .  Pu t  (~(~2)=~1)--(--1)k),2k-5. For  a large rat ional  ) .>0  we have ~2 ~), ~a 

Pu t  ~<8) -5<s> ~,k - ~ -(ck/%)/~ 2k-7. For  a large rat ional  /~>0 we have ~<~)>0, (~+)~ 

Finally, pu t  ~(4> 5 (s) = k - - ( d ~ / a k ) ~  '2~-~1.  For  a large rational v > 0  we have ~(~ 4)>0, -a~<4)~ 0, 
~(4)(~(4) _ [.~(4)~2 4 2 ~a ~ > 0  and the condit ion (c) f rom our lemma is satisfied for 

= 4), fi, = ' ) ,  f i s  = ' ) ,  = ', , = 5 , fla=(~4), ~4=~4).  (22) 

We see tha t  the conditions (a), (b) of Lemma 3.1 are also fulfilled. 

Let  (x~, u~) be a (rational) solution of the system (18) in which the r ight -hand sides 

are given by  (22). According to our lemma, we can suppose tha t  x~>0, U l > 0  ... . .  u 4 > 0  , 

u s < 0  ... . .  u7<O. Then we have for k = l  . . . . .  7: 

7 
a z ~ xz u~ + b k + %.  ~t-5( - ~t~) ~ + %#-7(juS)~ + dk y-ix(y2) k = 0, 

t - 1  

i.e., 

4 7 

Z x~ A2k(SS(u~)) + ~. xj A2k(H2(uj)) + A2~(M1) + ,~-SA2k(H2( - ;t~)) 
t -1  1-5  

+ # -  7Ask(Ms(#2)) + v-nA2k(Ms@))  = O. 

Now, we only have to mult iply this relation by  the least common multiple of all deno- 

minators  of our coefficients. Q.E.D.  

At  the end, we shall discuss the possible generalizations of our construction. Suppose 

for a moment  tha t  we can construct  a k-splitting family of spaces for each k - it will be 

true if our Conjecture 1 holds, for instance. Then it seems prospective to t ry  to generalize 

our algebraic procedure from L e m m a  3.1, and  from the proof of Theorem 3.2. To see it 

closer, let us look at  out  lemma first. The condit ion (e) seems to be ra ther  special and 

complicated. But  in fact  this condit ion is only one of the possible forms how to specify 

the following requirement:  the coefficient fla should be sufficiently large in comparison 

with the "influence" of the previous coefficients. Also, the condit ion (b) means only t h a t  

f12 has an analogous property.  Looking at  the procedure used in the proof of Theorem 3.2 

(in fact, we have used the limits of auxil iary parameters) the  possible directions of the 

generalizations are almost  clear. Hence we make: 

Conjecture 2. For  every k > 0  there is a homogeneous space (M, g) satisfying 

A s ( M  ) . . . . .  Ask(M) =0.  
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Consider the  following "vo lume cond i t ion"  in  an  ana ly t i c  R i e m a n n i a n  mani fo ld  M:  

the  volume of a small  geodesic bal l  is a lways  equal  to the  vo lume of a Euc l idean  bal l  of 

the  same d imension  and  radius .  W e  know t h a t  th is  volume condi t ion  is equ iva len t  w i th  

the  vanishing of al l  scalar  cu rva tu r e  i nva r i an t s  B ~ .  

Conjecture 3. The  volume condi t ion  canno t  be reduced  to  a f in i te  number  of condi t ions  

B 2 = B 4 . . . . .  B2k = 0, in general .  I n  o ther  words,  t he  vo lume condi t ion  is equ iva len t  to  an  

inf ini te  sys tem of pa r t i a l  d i f ferent ia l  equa t ions  (with the  orders  growing to  the  inf in i ty)  

which cannot  be reduced  to  i ts  f ini te  subsys tem.  (Cf. Conjec ture  (*) in [4].) 

I n  accordance  with  the  Conjecture  1 we can p u t  the  following, more  specific conjec- 

tures:  

Conjecture 4. F o r  each k > 0 there  is a symmet r i c  space M~ and  a posi t ive  in teger  nk 

such t h a t  the  homogeneous  space M=M'k  • (Gs) ~ satisfies A 2 = A  4 . . . . .  A2k=O. 

Conjecture 5. F o r  each k > 0 there  is a symmet r i c  space M sa t i s fy ing the  condi t ion  

Vm(r) = Vo(r) (1 + ~kr a + 0(r2~)), where ~k is a pos i t ive  cons tant .  
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