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Abstract

Let ¢ be a faithful normal semi-finite weight on a von Neumann algebra M. For each
normal semi-finite weight ¢ on M, invariant under the modular automorphism group X of ¢,
there is a unique self-adjoint positive operator %, affiliated with the sub-algebra of fixed-points
for Z, such that v =g(h - ). Conversely, each such % determines a X-invariant normal semi-finite
weight. An easy application of this non-commutative Radon-Nikodym theorem yields the
vesult that P} is semi-finite if and only if T consists of inner automorphisms.
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1. Introduction

The classical Radon-Nikodym theorem asserts that if a measure » is absolutely con-
tinuous with respect to a measure y, then there is a measurable function 4 such that
v=pu(h-). It is easy to see that the absolute continuity of ¥ with respect to u is equivalent
to the condition that v can be regarded as a normal functional on L7’ . Since L7’ is the proto-
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type of an abelian von Neumann algebra, the question therefore naturally arises whether
one can find generalizations of the Radon-Nikodym theorem in the non-commutative
case. The most successful results in this direction are due to H. Dye [7] and I. Segal [23],
who show that if ¢ is a faithful normal semi-finite trace on a von Neumann algebra 1
then for each normal positive functional p on M there is a unique (unbounded) self-adjoint
positive operator kb affiliated with 7 such that p=g(k-).

Simple counterexamples show that one cannot hope for a Radon-Nikodym theorem
with arbitrary functionals ¢ and . Even the weaker result that ¢ =¢@(h- k) does not hold in
general if one requires % to be a closed operator (the BT-theorem is the best possible result
in that direction). We shall accordingly ask the Radon-Nikodym theorem to hold only for
pairs @, p of functionals which “commute” in a sense to be made precise below.

In [28, 29] M. Tomita, in his fundamental study of the relation between a von Neumann
algebra and its commutant, discovered that with each full left Hilbert algebra is associated
a one-parameter group of automorphisms of the left von Neumann algebra. In particular,
each faithful normal positive functional y on a von Neumann algebra 71 gives rise to a one-
parameter group 2 of automorphisms of M, since @ induces a left Hilbert algebra structure
on . Using the theory of weights (semi-finite positive functionals) . Combes showed in [2]
that, conversely, each full left Hilbert algebra arises from a faithful normal semi-finite
weight on the left von Neumann algebra. This fact was also discovered by M. Tomita in
[29]. We shall adopt this last point of view since it allows us to regard the triple (p, M, X)
as an analogue of a measure and its L®-algebra. The modular automorphism group 3,
which is trivial in the commutative case (and when ¢ is a trace), serves as the extra
information that compensate the lack of invariance (trace-structure) in ¢. The weights
@ which are invariant under X, i.e. ¢(s,(x)) =yp(z) for all o, in X and z in M., are the ones
which “commute” with ¢; and these are the functionals for which the Radon-Nikodym
theorem holds.

After a brief summary in § 2 of the theory of normal semi-finite weights, their repre-
sentations and their modular automorphism groups we describe in § 3 the important class
of analytic elements for ¥ in 7M. In particular we characterize the elements in the von
Neumann algebra M* of fixed-points for % in 71 as those elements % in 1 for which the
functionals @(k-) and ¢(-k) are semi-finite and equal,

We can therefore in § 4 introduce an affine map: hr>gp(h-) from ¥ to the set of Z-
invariant normal semi-finite weights on M. A little extra work shows that the map can be
extended to all self-adjoint (unbounded) positive operators affiliated with M*. The main
problem in this paragraph is to show that the elements in the modular automorphism group
of a weight p=q(k-) have the form o¥(-)=h¥g,(-)hH*,
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In § 5 we prove the Radon-Nikodym theorem which says that given a triple (p, M, 2),
each X-invariant normal semi-finite weight ¢ on 7 is of the form ¢(h-), where £ is a unique
self-adjoint, positive operator affiliated with M*. As a prerequisite for the theorem we
establish the result that if ¢ satisfies the Kubo-Martin-Schwinger condition with respect
to 2 then p=gp(h-) where & is affiliated with the center of M. This is used to show that if
9 is a normal semi-finite weight on M with modular automorphism group X¥ then the
Z-invariance of ¢ implies that the groups X and X¥ commute. Conversely, if £ and 2%
commute then y is X-invariant under fairly mild extra conditions, but not in general. Only
as a corollary of the Radon-Nikodym theorem do we learn that X-invariance of y implies
Z¥-invariance of @ (so that ‘“‘commutativity” is a symmetric relation). The main reason
for solving the problems of commuting automorphism groups first (instead of collecting
the results as corollaries of the main theorem) is that we need this material to show that
two “‘commuting’ weights which agree on a dense subalgebra are equal. For arbitrary
weights this is not always true.

Section 6 consists of applications of the Radon-Nikodym theorem to automorphism
groups of von Neumann algebras. We consider a triple (p, M, Z) and a group G of
automorphisms of 1 which commutes with X and leaves the center of I pointwise fixed.
Then pog=g(h,-) for each g in G, where &, is a self-adjoint positive non-singular operator
affiliated with the center of 7M; and the map gr>5%, is a homomorphism. In some cases
this implies that ¢ is G-invariant (i.e. if @ is finite or if @ is compact). We show that if there
is some G-invariant weight ¢ on 7 and if y is also X-invariant (so that p=g@(h-)) then
@ is G-invariant under certain integrability conditions on A, though in general it need not
be. The results are inspired by works of N. Hugenholtz and E. Stermer on the corresponding
problems for normal states on M (see [12] and [24]). We finally give a construction for
the implementation of G as a group of unitaries on the Hilbert space of ¢.

In § 7 we give four more applications of the Radon-Nikodym theorem. We first show
that each normal weight on & von Neumann algebra is the sum of normal positive func-
tionals. As a corollary each lower semi-continuous weight on a C*-algebra is the sum of posi-
tive functionals. We next present a short proof of the result from [25] that a von Neumann
algebra M is semi-finite if and only if there is a faithful normal semi-finite weight on
whose modular automorphism group is implemented by a one-parameter unitary group in
M. Specializing to normal semi-finite weights on a semi-finite von Neumann algebra M, we
consider the problem whether ¢ =g(¢-f) for some ¢ in 7M., whenever v <. We show that
this is true, with a unique ¢, and that ||| <1, provided that ¢ is finite or majorized by a
normal semi-finite trace on M; but that it need not hold in general. Thus S. Sakai’s non-

commutative Radon-Nikodym theorem for finite weights ([22]) cannot be extended to
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semi-finite weights. Finally we use the bijective correspondence between self-adjoint
positive operators in § and normal semi-finite weights on B(), obtained by applying the
Radon-Nikodym theorem to the triple (Tr, B(D), {¢}), to define a strong sum between

certain pairs of self-adjoint positive operators in §.

2. Weights and modular antomorphism groups

For the convenience of the reader we summarize in this paragraph the basic facts about
weights and their associated. automorphism groups. Detailed information can be found in
[1], [2] and [25]. At the same time we develop a set of notations which will be used
throughout the paper. ,

A weight on a von Neumann algebra ) is a map ¢ from M. (the positive part of )
to [0, o] satisfying

@(ax) = ag(x) for all « in R, and all z in M,
px+y) =) +ely) for all x and y in M..

It is called normal if there is a set {w,} of (bounded) normal positive functionals on M

such that
@(x) = sup w,(x) for each zin M,.

F. Combes has shown in [1; Lemma 1.9] that the set of positive functionals @ which are
completely majorized by a weight @ (i.e. there is an ¢>0 such that (1 +¢&)w <¢) form
an increasing net such that lim w(x) =g(x) for each x in M, of lower semi-continuity (in
norm) for ¢. It follows from [1; Lemma 4.3] that if ¢ is o-weakly lower semi-continuous on
M, then there is a largest normal weight ¢ <g@ (the normalization of ¢); and @y(x) =g(x)
for each x with @(x)<co. It is not known whether one may have g, +¢.

The (complex) linear span m of the set

my = €M, |gla) < o0}

is a *-algebra of 7 and there is a natural extension of ¢ to a positive linear functional on
M (again denoted by ). We say that ¢ is semi-finite if m is o-weakly dense in M. The
weight @ is faithful it p(x)=0 implies 2=0 for each z in M,. We shall work almost ex-
clusively with faithful normal semi-finite weights. However, if ¢ is normal then there
are projections p and ¢ in M with p<gq such that ¢ is semi-finite on ¢7g and faithful
on (1 —p)M(1—p). Thus the restriction to faithful semi-finite weights is for most con-
siderations only a matter of convenience. ’

Let @ be a faithful normal semi-finite weight on . Then ¢ determines an inner
product on the left ideal
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n = {x€ M|p(a*z) < c}.

We denote by 7 the linear injection of n into the completed Hilbert space §) so that
(n(x)[n(y)) =@(y*z), for all z and y in n. Put A=n*Nn. Then n() is a full (achevée) left
Hilbert algebra in §), and each full left Hilbert algebra arises in this manner. A repetition
of the usual Gelfand-Naimark-Segal construction gives a faithful normal representation
7 of M on § such that n(x)n(y) =n(ry) for each z in M and y in n. The conjugate linear
map in §) that sends 5(x) to n(z*) extends to a closed operator S with polar decomposition
JA! Here J is a conjugate linear isometry with period two, and A, the modular operator
associated with ¢, is a self-adjoint, positive, non-singular operator in §. For each complex
« one has JA%J =A% The map: z—>JaJ in B(9) is a conjugate linear isomorphism of
7i( M) onto ={ MY, so that z is a standard representation of M. Since ¢ will be fixed through-
out the paper we shall identify 1 with its image 7(7N).

The one-parameter group of unitary transformations of B(f)) given by xr>AMzA~#
leaves M invariant (as a set) and can therefore be regarded as a group X of automorphisms
of M. This modular automorphism group will play a central rdle in the sequel. Note that
for each o, in T we have %(o.(x)) =A¥j(x) when x€n, so that n, A and m are invariant
under X. It follows that @(o,(zx)) =¢(x) for each x in M, so that ¢ is Z-invariant.

For each x and y in U there is a function f continuous and bounded on the strip

{x€C|0<Im o<1}
and holomorphic in the interior, such that for each real ¢
fO) = plox)y) and  f(t+1) = p(yo(x))-

We say that ¢ satisfies the Kubo-Martin-Schwinger (KMS) boundary condition with
respect to X. If, conversely, there is a strongly continuous one-parameter group {g,} of
automorphism of M leaving ¢ invariant, and such that ¢ satisfies the KMS boundary
condition for each pair x and y in ¥, then g,=o; for all ¢£. The weight ¢ is a trace if and
only if the modular operator is the identity. On the other hand a knowledge about =
or the various KMS boundary conditions will usually compensate the non-tracelike
behavior of ¢.

3. Analytic vectors in von Neumann algebras

A function f from a complex domain Q into a Banach space B'is called holomorphic if
the complex function: a+>®(f(x)) is holomorphic for each @ in B*; or, equivalently, if f
is (complex) differentiable in norm on Q [11; Chap. II, § 2]. If F is a closed region in C we
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denote by A(F, B) the Banach space of continuous and bounded functions from F to B
that are holomorphic in the interior of F.

For a von Neumann algebra M with a faithful normal semi-finite weight ¢ and
modular antomorphism group T let M, denote the set of analyﬁ'c elements of M, ie.
those elements & for which the function #~>¢y(h) has an extension (necessarily unique)
to an analytic (entire) function o,(k) from € to M. It is easy to verify that for each z
in M and y>0 the element

h, = 'yi’ﬂ_*J'exp (— ytz)dt(x) dt *)
is analytic; with

0ully) =yt f oxp (—y(t— @)?) 04 (2) dt.

With p— oo the elements {, } tend o-weakly to , which shows that T, is o-weakly dense
in M. It is not hard to see that M, is a *-subalgebra of 71 such that

o (k) =0, (k)o (k) for b and k in M,;
G (h)* =a3z(h*) for h in M,
Oyt p(h) = ay(ogh)) for hin M,
LemMa 3.1. Let t—>x(t) be a strongly continuous function from R to My. If x(t) 1s

integrable and x = { x(t)dt, then g(z)={ p(x(t))dt.

Proof. For each normal functional w we have w(z)={ w(x(t))dt. Let {w,} be an
increasing net of normal positive functionals with limit . Then {w(x(t))} is an increasing

net of continuous functions with limit ¢(x(f)). Consequently

f @l () dt = lim f w;(z(t)) dt =lim w,(x) = (). Q.E.D.

Applying Lemma 3.1 to the equation (*) and using the 2-invariance of ¢ one has
@(h,)=g@(x). This shows that the Tomita algebra UAp= M, Y is ¢-weakly dense in M.
Using the o-weak lower semi-continuity of ¢ one can prove that #(%(,) is also dense in §.

The following lemma is basic for our investigation.

LeMMA 3.2. Let H be a self-adjoint positive non-singular operator on §. For a vector &
in  and 6>0 the following two conditions are equivalent:

(i) & belongs to the definition domain D(H?®) of H?.
(i) The function tr—>HYE=E(E) can be exiended from R to a function &(a) in
A(—0<Im «<0, H).



THE RADON-NIKODYM THEOREM FOR VON NEUMANN ALGEBRAS 59

Proof. (i)=(ii): If a=t+1is then D(H*)=D(H °). Assuming that &€ D(H?’) we have
EeEDH™) for —6<Im a<0, and

[ Eg]| = || H&] < || L+ H) &) < [| 1+ H) %]

It follows that the function &(x)=H™¢ is bounded and continuous for —d<Im a<0.

In the interior of this strip we have
Dlia(log H)H™) = D((log H)H~*)= D(H?),

which shows that &(«) is holomorphic for —d <Im «<0.
(i) = (i): Suppose &(f)=H"¢ has an extension &(x) in A(—0<Im «<0, §). For each
vector { in D(H?) the function {(x)=H* belongs to A(—d<Im a<0, ) as we saw

above. We therefore have two holomorphic functions
w>(E@|0) and o> (E|H %)

which are equal when Im «=0. They then coincide in the whole strip, which shows that the
functional

L (€| H =)
is bounded (by ||&(x)||) so that §€D(H™). In particular £€D(H?). Q.E.D.

ProrosiTion 3.3. (i) U ¢s a two-sided module over M,
(ii) m 28 a two-sided module over M.

(i) A, is @ two-sided ideal of ;.

Proof. (i) A and M, are both *-algebras, so it suffices to prove that MyA <U. Since
moreover Y =nu*N 1 and n is a left ideal, it is enough to show that if A€ M, and x €Y then
hx€n*. Now @) is a full left Hilbert algebra and therefore z€n* if and only if
7(z) € D(A?), and

|Atn()]| = || Sn(@)]|* = [[n(@")|* =@ laz®).

By Lemma 3.2 the function ar>A"y(z) belongs to A4(— 4 <Im a<0, $); and since 1€ M,
there is an analytic extension ,(k) of the function tr>o(h). With e=t+is we have

loa®)l| = lloroos(®)|| = [lo:s(®)|

which shows that o,(h) is bounded on the strip {—4<Im «<0}. Consider now the

function
o> Gy (h) A%y ().
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Since the map: (h, &)+>h& from M x § to §) is norm continuous the above function belongs
to A(—3<Im <0, ). On the real line its values are

o.(h) A¥y(z) = Atthn(x) = An(hz).

By Lemma 3.2 this implies that n(ha) € D(A?) and therefore hxen*.
(i) If h€ M, and z€m then assuming, as we may, that >0 we have x*€ ¥ and thus

§ .
rom (i) e — () €05 —

(iii) Follows immediately from (i). Q.E.D.

LEmMMA 3.4. If h€ M such that km<m and mhcm then for each pair x, y in
A, there is an analytic function f which is bounded on each horizontal strip and such that

&) =plodh)zy*) and [(t+1) =play*oh)).
Proof. Define an analytic function f by

Ha) = (RA™*n() IA"““n(y)) **)
We then calculate

(£) = (RA-"ty(2) | A=y (y)) = (A~Yo (h)n(x) | A~ 1 n(y))
= (Aln(o (k) x) | Ady(y)) = (Sn(y) | Sn(o (k) x)) = plo(h)xy*);

f(t+19) = (RA-" (@) | A=y (y)) = (Ady(x)| Aoy (h*)7(y))
= (Sn(o(h*)y)| Sn(x)) = play*o k). Q.E.D.
LeMMA 3.5. If h€ M, and z€m then the function f: ar>p(o,(h)z) is analytic, and it is
bounded on each horizontal strip. Moreover,
f(t) = plodh)z) and f(t+13) =p(zo,(R)).

Proof. We may assume that z=xy* with « and y in 9, since m is linearly spanned by
such elements. The argument in Proposition 3.3 showed that the function a>a,(k) A™5(x)
belongs to A(—3<Im «<0, ). This function coincides with the function ou—>yAi“77(hx)
on the real line, and therefore on the whole strip. It follows that

Aly(ha) = o_y5(h) Aly(x).
Using this with ¢,(k) instead of & we get

Alo, () n(x) = 0,_i2 (h) Aty ().
Now we can calculate
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fa) = pla, (R)zy*) = (Sn(y) | So, (B)n(x)) = (Ato, (B)n(@) | Atn(y)) =(0a—usz(h) At n(z)| Aly(y)).

It is clear from this expression that f is analytic and that it is bounded on horizontal

strips. Moreover,

ft42) = (Ut+i/2(h)A§77(x) IA*W(?/)) = (Ady(x) ]Ut—ilz(h*)A%ﬂ(y))
= (Aty(x) | Ao (2*)n(y)) = (Sn(oyh*)y) | Sn(x)) = plzy*eh)). Q.E.D.

THEOREM 3.6. For h in M the following conditions are equivalent:

i) ohy=h for all real &;
(i) Amem, mhsm and p(hz) = @(zk) for all z in m.

Proof. (i) = (ii): The constant function o,(h)=h is analytic so that € M,. Therefore &
is a two-sided multiplier of m by Proposition 3.3, and for each z in m there is by Lemma
3.5 an analytic function f such that

f(t) = ployh)2) = p(hz) and f(t+1) = @(zoy(h)) = @(zh).

Since f is constant on the real line, it is constant everywhere. Thus @(hz)=(zh).
(ii) = (i): Take z and y in ;. Then by Lemma 3.4 there is an analytic function f such that

(&) = ploh)2y*) = p(zy* 0 (k) =f(E +1).

Since f is bounded on horizontal strips and periodic in vertical direction it must be
bounded. By Liouville’s theorem f is constant. Thus ¢(o.(h)zy*) =@(hay*) for all x and y
in ;. Put k=o0,(h) —h. Then k satisfies the same assumptions and ¢(kxy*) =0 for all x and
y in . Using formula (**) from the proof of Lemma 3.4 with «=0 we get (kn(¥)| An(y)) =0
for all  and y in U, But 5(,) and An(,) are both dense in § and therefore £=0.
Q.E.D.

The elements satisfying Theorem 3.6 constitute the fixed-point algebra of 2, denoted by
ME. Tt is clearly a von Neumann subalgebra of 71, and can also be defined as the set of
elements in N that commute with A. In particular, the center Z of M is contained in MmE,

The restriction of ¢ to 7> is a trace but need not be semi-finite. In fact the restriction
is semi-finite if and only if there is a normal projection of 1 onto E leaving @ invariant
[3; Proposition 4.3). For such strictly semi-finite weights the Radon-Nikodym problem
reduces to the corresponding problem for traces by projecting m onto mn M= In
order to treat the more general case we shall instead make use of the fact that M= consists

of two-sided multipliers of m.
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4. Derived weights

Let as before ¢ be a faithful, normal, semi-finite weight on M. For each h in mz
define p(h-) on M. by @(hz)=qp(hizh?).

ProrositioN 4.1. The map hr>p(h-) is affine and order-preserving from ME into

the set of X-tnvariant normal semi-finite weights on .

Proof. Tt is clear that each @(k-) is a Z-invariant normal weight on M. By Proposi-
tion 3.3 the weight g(%-) is finite on m, and therefore semi-finite.
If » and k are in 7MZ then there are elements % and » in the unit ball of ‘ME such that

Bt =uh+k)} and K =ov(h+E)

(in fact w =1lim hi(h + k +¢)~?). I @((h + k) &) < oo for some 2 in P theny = (h + k) x(k + k)t €m.
It follows from Proposition 3.3, that uyu* and vyv* belong to m; which shows that
@lha) < oo and @(kx) <oo. Moreover,

p(ha) +@lkz) = pluyu® +vyv*) = p((u*u +v*v)y) = ¢(y) = p((h +£)2)
since w*u 4-v*v is the range projection of A+k. Now
(h+EYa(h 4+ = 1i(xgn (h+k+eyt(h+k)xh+E)(h+k+e)?
< li:n (b +k+&)~22(hah + kxk) (b +k +¢)-F
= 2(w*hrehiu 4 v*kiaktv).

This shows that if g(hz)<oco and g(kz)<co then ¢((h+k)x)<oo. Thus ¢((h+k):)=
glh-) +lk-).
If A<k then k=h+A' with &’ in F; hence p(h-)<@(k-) from the preceding. Q.E.D.
For our purposes we shall also need weights which are derived from unbounded
operators. We first introduce some terminology. If h and k are self-adjoint positive
operators on § and ¢ >0 we put h, =h(1 +&h)~1. We write h <k if h, <k, for some (and hence

any) £>0. This is equivalent to the two conditions
D> D(k*) and  ||R¥E][2 < ||kiE2

for each & in D(k*). We say that a net {;} of self-adjoint positive operators increases to
the self-adjoint operator k, and write k7 h if hy /h,. Thus k; /h when £0.
Not let % be a self-adjoint, positive operator affiliated with ME. Then k€ M= for

each ¢>0. We define g(h-) as the limit of the increasing set of normal semi-finite weights

{plhe-)}
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ProrositiON 4.2. The map hi—>@(h-) is order-preserving and normal from the set of self-
adjoint positive operators affiliated with M= into the set of L-invariant normal semi-finite
wetghts on M.

Proof. Since ¢(k-) is the supremum of X-invariant normal weights it is itself
2-invariant and normal. Let ¢, be the spectral projection of % corresponding to [0, %].
The set U e, e, is contained in m by Proposition 3.3 and dense in ; and @(h-) is finite
on this set by Proposition 4.1 since ke, € M*. Thus @(k-) is semi-finite.

T <k with & and k affiliated with IM* then A, <k, and it follows from Proposition
4.1 and the definition of g(h-) that ¢(h-)<e@(k-).

Suppose now that %, 7 h with %, and h affiliated with %. Then from the above the
net {@(h;-)} increases to a normal weight p <@(%-). However, ¢ is g-weakly lower semi-
continuous and A, 7k, so that

p(hx) =lim p(h,z) < im lim (k. 2) < lim @(h;x) = p(z).
3 € $ i

Thus @(h)  @k-). QE.D.

ProrositioN 4.3. (The chain rule.) Suppose b and % are commuting self-adjoint
positive operators affiliated with ME. Put w=gp(h-). Then p(k-)=@(h-k-), where h-k denotes
the closed operator obtained from hk.

Proof. If z€n, and 6>0 then
(kd 2x*kf) = lim @A}k v kihE) < 67 lim @(h} xa*hi) = 6~ p(aa*) < oo,
using the fact that k ks < d~'h,. Thus kfx€n}. It follows that ksm, =m, and m,ks < m,.

If zem, then
p(ksz) =Yim @(hikszh}) =lim (ht 2k, hE) = y(zks).

From Theorem 3.6 we conclude that & is affiliated with the fixed-point algebra of the modu-
lar automorphism group of . Thus y(k-) is well defined.
The net {h,k;} increases to h:+k. Therefore

@k kx) = lim @k kyz) < lim p(ksx) = plkz)
&0 é
by Proposition 4.2. On the other hand
ylka)= lidm plkyx) = lim lim @(h.ks2) < @k - kx).
[ 6

Thus p(k-) =@h-k-). QE.D.
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LEMMA 4.4. Let h be an invertible positive element in M* and take x in Yy and y in A.
Then the analytic function f given by

) = (A (x) | Sh™1(y))
satisfies the boundary conditions
{t) =p(hhPofx)h=y) and  f(t+3) =@lhyh‘olx)h~").
Proof. By straightforward computations we get

1) = (RRA(0) | ShVn(y)) = (AB*A Y (2)| A=LTh ()
= (h="n(y) | S+ Aty () = p(hh"o () h="y);

f(t+1) = (RHA"(x) | S~ 1(y)) = (b~ hyhoy(x)) = plhyh P oy x)h"). Q.E.D.

LEMMA 4.5, Let h be an invertible positive element in M= and put p=g@(h-). Then the
modular automorphism group {o¥} of vy is given by of (x) =h"c(x)h=".
Proof. By Proposition 3.3 we have

my,=htmh3*cm and m= h=ihimhihtcm,,.

Thus m,=m and Y, =3 If z and y are elements of A let {x,} be a sequence in A, such
that #(z,)—>n(z) and Sy(z,)~>Sn(z), i.e. n(xy)>n(x*). Then from Lemma 4.4 we have a se-
quence {f,} of analytic functions such that '

Fo(8) = @k Vo (@) hty) = ((h-yh'h) [n(o (h)),
fa(t +3) =@(hyh o (z,) h=) = (n(o (@) | nh—"y*h*h)).

From these expressions it follows that {f,} converges uniformly on the lines {Im x=0}
and {Im o=1}, since 7(z)r>7(04(2)) and 7(z)r>n(h~""2h") are both unitary transformations
in §. By the Phragmen-Lindelof theorem the functions converge uniformly on the
strip to a function f in 4(0<Im x<1) such that

Ht) = plihito @) hty) and  f(t+i) = plhyh¥o, @) hY).

Thus v satisfies the KMS condition with respect to the group {A*c,(-)A=*}. From the
unicity of the modular automorphism group it follows that of(-)=hA%¢,(-)A~".. Q.E.D.

THEOREM 4.6. Let h be a self-adjoint positive operator affiliated with M= and put
p=@lh-). Then the modular automorphism group {o¥} of v is given by of (x)=h"a(x)h=".
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Proof. Let e, denote the spectral projection of h corresponding to [n-1, »]. Then
(e, - ) = @(he,-) by Proposition 4.3. Restricting to the von Neumann algebra e, e, we see
that g(e,-) is faithful normal and semi-finite with modular automorphism group X (since
aie,) =e,). By Lemma 4.5 we get af(x) =(he,) o) (he,) " =h o ()b~ for z in e, Me,.
Now p is faithful only on [A] M[R], where [h] means the range projection of h; hence its
modular group is only well-defined on this von Neumann algebra. But o¥(-) =h%s,(- )b~
on Ue, Me,, which is o-weakly dense in [h] M[k]. Therefore of(-)=h*o,(-)2 % on
[R1'M[k]. Q.E.D.

CoROLLARY 4.7. If h is a self-adjoint posilive operator affiliated with the center Z
of M then the weight @(h-) satisfies the KMS condition with respect to X.

5. Radon-Nikodym derivatives

Let as before ¢ be a faithful normal semi-finite weight on M. In this paragraph we
characterize the weights which can be written in the form ¢(k-).

Lrmyma 5.1. If pis a Z-invariant normal semi-finite weight then its support is contained

in M=, If, moreover, y satisfies the KMS condition with respect to X then its support is in Z.

Proof. The orthogonal complement of the support of y is the largest projection p such
that p(p)=0. If p is Z-invariant then y(o(p)) =0; hence o(p) <p. It follows that p € M=,
If, moreover, y satisfies the KMS condition with respect to X then for z in 2[,,, there is an
analytic function f such that

(&) = plofxp) pa*) = (o (x)px*),
(¢ +1) = p(pr*o(xp)) = p(pz*o,(x)p) = 0;

since xp and px* belong to A, by Proposition 3.3. It follows that f=0; hence xpz*EpMp
for all z in A, and p€Z. Q.E.D.

LemuA 5.2. Let w be a Z-invariant normal semi-finite weight on M. If there exists a
weakly dense *-subalgebra B in m, invariant under X, such that o =y on B then p<g, and
v 18 faithful. If, moreover, y satisfies the KMS condition with respect to X then g =yp.

Proof. If « and y are in B then ¢(z -y) and y(z - y) are two normal functionals on M

which agree on B, since B is an algebra. Therefore g(x - y) =yp(z - y).
5— 732904 Acta mathematica 130, Imprimé le 30 Janvier 1973,
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Since B is a dense *-algebra there is an increasing net {u,} in B, such that u; 1. Put

hy= n‘*feXp (— %) oy (wa) dt.
Since B is invariant under X we have

Plou;)zo () =plou,) xo(«;))

for all s and ¢ and each z in . It follows from Lemma 3.1, by the polarization identity,
that (p(h}_ xhl) :W(hl xhl).
Each %, is an analytic element with

Oulby) =z fexp (— (= 2)*) 0y (uy) dit.

For each vector & in § the function f;: t+>||oy(1 —u,)&|| is continuous, and the net
{fs} decreases pointwise to 0. By Dini’s theorem f;0 uniformly on compact sets. It
follows that

11— o (Ba)) &) = “(1 —n‘%fexp (= (t— @)®) oy (uz) dt) 5”
=“n‘*fexp(—(t—oc)z)o't(l—ul)fdt‘l :
<o [lexp (= 0=l o1~ &l
=n"texp (Im oc)zfexp — (t—Re )? ||, (1 —uy) &|| dt\0,

so that {o,(h;)} converges strongly (and bounded) to 1> for every a. In particular %, 1.
Take now 2 in m.. Using the ¢-weak lower semi-continuity of ¢ and the analyticity of
h; we get

p(x) < lim y(h oh,;) =lim @k, 2h;) =1lim ([n(x*k;)”z =lim [| 8B 5 Sn(act) |2
 =lim ||[JAR, A Ty(@)||2 = Lm |[o_ya(h,) Jn(at)||?

~ (e = (o)
Thus p <g.

Let 1 —q‘ denote the support of p and take 2 in n, with x <q. Then, using the formula
hah <2((1 —h)x(1 —h) +x) we have
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@(x) <lm h,xh,) =Lm p(h,oh,) < 2 Hm (1 —h,)2(1 —h,))
<21im (1 —hy)a(l ~hy)) =2 lim |[5(2t(l —h,))|[2
=21lim ]]S(l —h;)Sy(a)]|2 =2 lim [|(1 —0_iya(b))n@h)||? =0.

Since g€ M* we have qu;q=0 from the above. It follows that ¢g=0 so that v is faithful.

Assume now that ¢ also satisfies the KMS condition with respect to 2. We can then
interchange the role of ¢ and ¢ in the preceding argument to obtain ¢ <y. Thus ¢ =1p.
Q.E.D.

Lemma 5.3. If p is a Z-invariant normal semi-finite weight on M that satisfies the
KMS condition with respect to 2 then ¢+ is semi-finite and satisfies the KMS condition
with respect to 2.

Proof. The sets M,Nm and ,Nm, of analytic elements for X in m and mt,,
respectively, are both o-weakly dense in 1 by the remarks in the beginning of §3.
Therefore the set of products (M, N m) (M, N m,) is o-weakly dense in 1. However, this
set is contained in both m and m, by Proposition 3.3 (ii). Thus mn n,, is o-weakly dense
in M and @ +v is semi-finite. Since ¢f =o{*¥ =0, it is immediate that ¢ -+ satisfies the
KMS condition with respect to 2. Q.E.D.

THEOREM 5.4. If p is a Z-invariant normal semi-finite weight that satisfies the KMS
condition with respect to X then there is a unique self-adjoint positive operator h affiliated
with Z such that y=gp(h-).

Proof. Since the support g of y belongs to Z and since the modular automorphism
group of @(g-) is the restriction of X to qm we may assume that y is faithful.

Consider first the case g <g. Then there is a unique element A in 71’ with 0<<A<1
such that p(y*x) = (hn(x)|n(y)) for all z and y in . Since p is X-invariant we have

() |9() = p(5*2) =p(05*D) = (o) | n(oy)) = (A n(z)| Atn(y).

Thus » commutes with A* for all ¢, and hA< Ah. Now take z and y in . Since Y, =A<,
there is a function f in A(0<Im «<1) such that

f(t) = plod2)y) = (ly) | SA ' (x)) = (ly) | RSA r(x));
f(+1) = p(you(x)) = (A () | Sy(y))-

But 7(z) is analytic and therefore f(x-1%)=(RA™5(x)| Sy(y)) for all . Using this formula

we get
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f(t) = (AP p(2) | A-#n(y)) = (A—RANH () | Ty (y))
= (RA () | In(y)) = (n(y) | JRISA ().

Since #7(,) is dense in § we have JhJ =h. As JhJ € N we conclude that A€ Z. The two
functionals ¢ and ¢(k-) coincide on a dense subalgebra U and both satisfy the KMS
condition with respect to X. Therefore y =¢(k-) by Lemma 5.2.

In the general case put =@ +y. By Lemma 5.3 7 is semi-finite and satisfies the KMS
condition with respect to 2. From the first part of the proof we have non-singular operators
h and k in Z, such that ¢ =7(k-) and y=7(k-). Since ¢ +y=7 we have A+k=1. From
Proposition 4.3 we conclude that

o7k ) =1(k)=1y;

where A~k is a self-adjoint positive operator affiliated with Z. Q.E.D.

TrEOREM 5.5. Let G be o group of automorphisms of N that leaves Z fized (pointwise).
Then G and X commute if and only if there is a homomorphism gr—>h, of G into the multiplica-
tive group of non-singular self-adjoint positive operators affiliated with Z such that
lg(-)) =oplhy*).

Proof. For each g in @ the weight ¢(g(-)) is faithful normal and semi-finite; and the
elements of its modular automorphism group are of the form g-log,0g. If therefore G and
2, commute then gp{g(-)) satisfies the KMS condition with respect to . By Theorem 5.4
there is a unique non-singular self-adjoint positive operator h, affiliated with Z such
that @(g(-))=@(h,"). Since G leaves Z fixed we have

Plhgg) = @lgg'(-)) = @lhyg'(-)) = (g’ (ky - )) = @(hg - Py ),
so that kg, =h,-h,.
Conversely, assume that a homomorphism gi>h, exists, and for fixed g in @
consider the group with elements ¢; =g—log,0g9. Then

(ot (z) = p(hg 04 (9(x)) = (k3 9(x)) = ()

so that @ is invariant under {0}}. Let e, be the spectral projection of %, corresponding to
[n~1, n] and take x and y in . Then g(e,x) €N, g(e,y) €N and h;1g(e,z) €N since ke, and
h;'e, are both bounded. There is therefore a function f, in A4(0<Im «<1) such that
fn(®) = @loy(h; " €,9(2)) gle,y)) = @ (g™ er 03 (g(x)) g(¥))
=@(g7" (20:(9(2)) 9(¥))) = P(e, 0 () ¥);
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fa+0)=@lg(e,y) o, (k7" e,9(2))) = p(h; " €,9(y) 0:(g(x)))
= (g7 (€.9(y) 0:(9(%)))) = ple,yo1 (z)).

When #n->co the functions f, converge uniformly on {Im «=0} and {Im «=1}. By the

Phragmen-Lindel6f theorem there is therefore a function f in A4(0<Im a<1) such that
&) = (ot (x)y) and f(t+i)=g(yo! (2)).
Thus ¢ satisfies the KMS condition with respect to {0} }, and therefore o; =0, for all{. Q.E.D.

COROLLARY 5.6. If p is a Z-invariant faithful normal semi-finite weight on M then
the modular groups Z¥ and X commute.

ProrosiTION 5.7. Let ¢ be a strongly continuous one-parameter group of automorphisms
of M that leaves Z fized and commutes with X. There is then a unique non-singular self-
adjoint positive operator h affiliated with Z such that (g () =@(h®:) for all s.

Proof. By Theorem 5.5 ¢(g,(-))=¢(h;). Put h=h,. Then h;=h* for every dyadic
rational number s. Let e, be the spectral projection of » corresponding to [r~*, n]. Then

for each z in 9 the function
s>@(he,x*x) = (he,m(x) |n(x))
is continuous and bounded; whereas the function

8‘—>(p(hsenx*x) = (P(gs(enx*x)) == (hsenn(x) In(x))

is lower semi-continuous, since ¢ is o-weakly lower semi-continuous. We have
((hse, —h%e,) n(x) |n(x)) <O on a dense set and therefore for all s. Since this holds for each
in 9 we conclude that ke, <h%,. But then sr>h e,(h’%,) e, is a one-parameter group of
positive operators with norm less than or equal to one. The only such group is the constant
one and therefore k. e,=h’, for all s. Since ¢,.71 we get h,=h°. Q.E.D.

LEMMA 5.8. Let y be a faithful normal semi-finite weight on M with modular auto-

morphism group X¥. If X and Z¥ commute then y is Z-invariant provided that w<g or
AR

This is a special case of Theorem 6.6.

Proof. By Proposition 5.7 we have p(a,(-)) =w(h’-) where h is affiliated with Z. If ¢, is

the spectral projection of h corresponding to [1+¢, e[ then for x>0 we have

ple;04(x)) = p(h'e,x) = (1+¢) y(e;) *)
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for t>0. Suppose that p <@ and 2€m. Then from (*) we have ¢{e,x) = (1 +¢&)’y(e.x) for all
t>0. Therefore p(e,x) =0, so that e,x=0 for all x in m. Hence ¢,=0 for all £¢>0 which
implies that A<1.
Suppose instead that ¢ <y and take z in m,. Exchanging z with ¢_,(x) in (*) yields
Ple.x) = {1 +-&)lp(e,x) for all £>0. As before this implies that < 1. ‘
Similar arguments apply to show that the spectral projection of & corresponding to
[0,1 —¢f is zero. The conclusion is that in both cases p <y and p<p we have h=1. Q.E.D.

Prorosiriox 5.9. If v is a Z-invariant normal semi-finite weight on M which is

equal to ¢ on a c-weakly dense X-invariant *-subalgebra of m then p=g.

Proof. From Lemma 5.2 we know that y<g and that v is faithful. Therefore ¢ is
2v-invariant by Lemma 5.8. The elements x in M. such that @(z)=y(zx)< oo form the
positive part of a hereditary *-subalgebra of M (since p <¢) which is 2¥-invariant and
o-weakly dense. We can therefore use Lemma 5.2 again, interchanging ¢ and v, to obtain
p<y. QE.D.

ProProsITION 5.10. Let v be a faithful normal semi-finite weight on M with modular

automorphism group Z¥. If £ and X¥ commute then @+ is semi-finite.
Proof. If k is an analytic element for X then o¥(k) is analytic for X and o,(c¥(k)) =
o¥(04(k)). It follows that for each x in I and y >0 the element

h, = yn’lffexp (— (B +5%) o,00%(x) dtds

is analytic for both X and Z¥. Moreover, the elements {h,} tend o-weakly to  when
y—> oo,

By Proposition 5.7 we have y(o,(+)) =y(h'-) where h is affiliated with Z. Let e, be
the spectral projection of % corresponding to [0, #]. With z in m,, >0, and A, defined as

above we get

p(hye,) = yn‘lff exp (— yt?) exp (— ps?) w(hte,x) dt dt
= y’}n“*ffexp (—yt?) p(hte,x) dt

<yipt fexp (— ) nPy(x) di < .

It follows that the set YN MyNm, is o-weakly dense in PM, since h,e,~x when
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(y, n)—>co. By a symmetric argument P,N PN 1 is o-weakly dense in 7N. Therefore
the product of these sets form -a dense set in . But

(M0 My nm) (M N MO m)ycm, Nm

by Proposition 3.3. Thus ¢+ is semi-finite. Q.E.D.

We see from Theorem'5.5 that if ¢ is a normal semi-finite weight which is X-invarjant
then the modular automorphism group 2¥ of ¢ commutes with . If, conversely, Z¥ and
2 commute then y is S-invariant under fairly mild extra conditions (see Proposition 6.1,
Corollary 6.4 and Theorem 6.6). However, the fact that £v and X commute does not in gen-
eral imply that y is Z-invariant, even though it is sufficient to ensure that ¢ 4y is semi-
finite (Propdsition 5.10). The point is that the modular automorphism group of ¢+ need

not commute with .

Prorosition 5.11. There exists a pair @ and y of faithful normal semi-finite weights
with modular automorphism groups X and XY, such that T and X¥ commute but o is not

Z-invariant.

Proof. Let M =B(L*R)) and take P and @ as the canonical pair in the commutation

relations; i.e. -

PE(y) =y(y) and Qf(y) = —i€'(p).

With A=exp P and k=exp @ we define two non-singular self-adjoint positive operators
(affiliated with 7)) such that h*&(y) =™ &(y) and k*&(y) =&(y +s). Thus hik* =e— 7k h*,
Since the trace Tr is a faithful normal semi-finite weight with trivial modular auto-
morphism group we get two faithful normal semi-finite weights by defining ¢ =Tr (A-)
and ¢ ="Tr (k). (Proposition 4.2.) The modular automorphism groups of ¢ and y are given
by Theorem 4.6 and we have ‘

o¥o0(x) = kPR ah— k1 = e Rk k- h— e~ 1t = g,00Y ().
Thus 2 and XY commute; but
Y(o(x)) = Tr (kh* zh=") = ¢* Tr (kx) = e'p(z),

so that y is not T-invariant. Q.E.D:

We shall now prove our main result.

TEEOREM 5.12. If y is a Z-invariant normal semi-finite weight on ‘M then there is a
unique self-adjoint positive operator b affiliated with M= such that w=q(k-).
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Proof. Assume first that y <g. There is then a unique operator ' in M’ with 0<A’'<1
such that y(z*z) = [|A'H(x)||? for each x in A. Since y is X-invariant we have A-A'A¥=p’
for all t, so that A< AR'. Put h=Jk'J. Then h€M* and

g(hara) = n(hi)|[2 = | ShSn ()|
= | AR T Aln(x)]|? = |JA- A () ||2 = || in@)|? = p(ata).

Thus @(h-) and ¢ coincide on nt, and therefore ¢(k-)=y by Proposition 5.9.

In the general case put 7=¢+y. By Proposition 5.10 v is semi-finite; and clearly «
is X-invariant. By Theorem 5.5 and Lemma 5.8 we conclude that ¢ is Z*-invariant. There-
fore o is also X*-invariant. From the first part of the proof we get h and k in IM™ such
that g=1(h-) and p=1(k-). Since ¢ is faithful, » is non-singular, and since g-+yp=1 we
have h+k=1. By Theorem 4.6 we have ¢,(x) =h'o}(x)h—** which shows that % € M. Thus
k€ M® as well. Using the chain rule (Proposition 4.3) we finally get

P) =7(0k-) =,
where b1k is a self-adjoint positive operator affiliated with M*. Q.E.D.

CoRrOLLARY 5.13. If y is a Z-invariant faithful normal semi-finite weight on M with

modular automorphism group ZV then ¢ is Z¥-invariant.

6. Applications to automorphism groups

Let G be a group of automorphisms of a von Neumann algebra M that leaves the
center Z fixed; and let ¢ be a faithful normal semi-finite weight on 7. In this section
we apply the Radon-Nikodym theorem to the problem, already touched in Lemma 5.8,
of finding conditions under which ¢ is G-invariant.

From Theorem 5.5 we see that a necessary condition for G-invariance of ¢ is that G
and 2 commute. If ¢ is finite this condition is also sufficient by (10; Theorem 1.1]. For com-
pleteness we include here a short proof of this result.

ProrositioN 6.1, If @ is a faithful normal finite weight on M and G is a group of
automorphisms of M that leaves Z fixed and commutes with X then ¢ is G-invariant.

Proof. By Theorem 5.5 we have ¢(g(+))=@(h,-) where b, is affiliated with Z. Let
e, be the spectral projection of h, corresponding to [1+4¢, oof. Then

el = (g™ (e)) = p(hze) = (1 + &)" ples).
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This implies that e,=0 for all £>0 so that h,<1. Since the map g—h, is a homomorphism
we have h,=1 for all g in ¢. Q.E.D.

An automorphism g of M is said to be o-weakly recurrent if for each x in M and
&>0 and each finite set {w,} of normal states there are infinitely many # such that for all &

|onlg™@) —2)| <& and  |olg"()—2)| <e.

THEOREM 6.2. Let G be a group of automorphisms of ‘M that leaves Z fized and com-
mutes with 2. The set G, of elements in G under which @ is invariant is a normal subgroup of @
such that the quotient group G|G, is abelian. Moreover, G, contains all g-weakly recurrent

elements from G.

Proof. If gr>h, is the homomorphism of & into the multiplicative group (abelian) of
non-singular self-adjoint positive operators affiliated with Z, given by Theorem 5.5, then
G, consists of those elements g for which A, =1. Therefore G, is a normal subgroup of G and
GG, is abelian.

Let g be a o-weakly recurrent element of G' and let ¢, be the spectral projection of
h, corresponding to [1 +¢, oo[. For « in m, there is then a net {n,} of positive integers such
that n;— oo and {g~ " (e,x)} tend g-weakly to e,x. Since ¢ is g-weakly lower semi-continuous

this implies that
ples) < lim inf p(g~" (e 2)) = lim inf p(h; "e.x) <lim (1 + &) "™ g(e z) =0.

Therefore e, =0 for all £>0 so that k,<1. Since g~ is also g-weakly recurrent we have
h;'<1; hence g€G,. Q.E.D.

ProPOSITION 6.3. Let G be a o-weakly continuous topological group of automorphisms
of M that leaves Z fixed and commutes with . Then with Gy, as in Theorem 6.2 the group G/G,

contains no non-zero compact subgroups.

Proof. If G/G, has a non-zero compact subgroup then passing if necessary to a sub-
group we may assume that G is generated (topologically) by an element g such that G/G,
is compact. Then either there is a sequence {n,} of numbers tending to infinity such that
g™ - (the identity automorphism) or there is a neighborhood U of  in @ such that g" ¢ U for
any n=1. Choosing U symmetric we may also assume that no negative powers of ¢ belongs
to U. Since g generates @ this implies that G is discrete. Then G/@, is discrete and compact;
hence finite. But G/, is isomorphic to {h}} which implies that k,=1. Therefore the first
possibility must occur. But in that case g is g-weakly recurrent since

w(g™(x)) > o) and  w(g™"(z))—> ()

for all @ and 2. Therefore h,=1 by Theorem 6.2; a contradiction. Q.E.D.
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CorOLLARY 6.4. If G is a c-weakly continuous compact group of automorphisms of
M that leaves Z fixed and commutes with Z: then ¢ is G-invariant.

If ‘M is a semi-finite factor with trace v and if ¢ is a normal state of M which is
invariant under a group G of automorphisms of 1 then 7 is G-invariant (see [12] and [24]).
The optimal generalization of this result would be that if ¢ is a group of automorphisms of
M which leaves Z fixed and commutes with X and if there exists some X-invariant faithfal
normal senrli-finitek weight o which is G-invariant then the weight ¢ is also G-invariant. This
geﬁeralizafoioh is valid if one iniposes certain integrability conditions on the Radon-
Nikodym derivative of y with respect to p. Otherwise it may be false, as we shall see.

The appropriate counterexample (Proposition 6.9) and a weaker version of Theorem
6.6 have been obtained independently by N. H. Petersen in [20].

ProrosiTioN 6.5. Suppose that vy is o Z-invariant normal. semi-finite weight on
M and put v =g(h-) with b affiliated with M=. Then the following conditions are equivalent:

(i) @) <co implies p(x)<oo for all x in M*;
(11) If e, zs the spectral projection of h corresponding to the interval [m, oo[ then
’ (hem)<00 for large m;
(i) p=1, +ye with y, and . normal weights on M (Z-invariant if desired) such that
Wy 98 finite and ., is majorized by a multiple of ¢;
(iv) For each sequence {x,} in M with 0<x,<1 such that p(z,)~>0 we have y(z,)—>0.

When the above conditions are satisfied we say that y belongs to O(gp).

Proof. (i) =(ii): If (ii) does not hold then g(e,,) = o for all m. Otherwise we would have
yle,,) =@lhe,) <o for'some m by (i). Therefore with m =2" we can find x, in e, e, such
that 0<2,<1 and ¢(z,)>1. Put =3 2-"p(z,)1z,. Then € M, and @(r)<oo; but

so that (z)=oc, a contradiction.

(i) = (iii): Put y,(x) =g(ke, ) and y (x) =@(h(l —e,)x). Since @(he,,) < oo the functional
yy is finite; and since A(1—e,)<m we have p,<mep.

(iii) = (iv): If @(x,)—~0 then w,z,)—~0 for each normal functional w; majorized by ¢.
Then with e, the support of w;, the sequence {e;x, e} tends strongly to zero by [4' Chap. I,
§4 Proposition 4]. But ¢, /1 as w; 7¢; hence {z,} tends strongly to zero. If now
' 1/)1—}—1,000 then from the above p,(z,)—0. But also gy (z,)—>0 since p,, is majorized by a
multlple of ¢. Thus p(x,)—>0.

(iv) =({i): If g(x) <co then g(n—1lx)—0. By assumption yp(n—*z)—0. Therefore yp(x) <o°.
This shows that the four conditions are equivalent. Q.E.D.
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THEOREM 6.6. Let ¢ be a faithful normal semi-finite weight on N and let G be a group of
automorphisms of M which leaves Z fixed and commutes with Z. If there exists a G-invariant
and Z-invariant normal semi-finite weight v, with central support q, then @(g-) is also
G-invariant, provided that there is a set {p;} of central projections with 2p;=1, such that

P(p;-) belongs to O(p(p;-)) or @(p;) belongs to O(y(p;-)) for each i.

Proqf. Restricting to p,Mp; we may assume that p,=1. Ffom Theorem 5.5 we have
@(g(-)) =q@(h,") where h, is affiliated with Z and from Theorem 5.12 y=g(h-) where A
is affiliated with IME. Since v is G-invariant we get

Pl - hg) = p(hy@) = ylheg™ (@) = Glh - hyg™ (x))
—1im p(hyhyg™ () =lim p(g= (g(he) )
=lim @(hg*g(h.) hyz) = lim ¢(g(k.) @),

where h,=h(1 +eh)~!. Defining g(h)~=lm g(k,) and using the uniqueness of the Radon-
Nikodym derivative we conclude that g(k)=h,-A.

Let e, be the spectral projection of k, corresponding to [1+¢, oo[. We want to show
that ke, = 0. To further this end, let f be a positive bounded monotone increasing function

on R. Then
g" (f(he)) = {(g" (heo)) = f(hy - heg) = f((1 + €)™ hee)

since ke, >(14-¢)e,. Thus
(R = p(f(R)) > (f(he)) =plg"([(he, ) Zp(((L +e) he)) =p(hf(L +e)he)). ()
If instead we take f to be monotone decreasing then the analogous calculations yield
@(hf(h)) < p(hf(L +e)"he,). *)

Now let f,, be the characteristic function (increasing) for the set [m, oo[. Then {f,.((1 +¢&)"he.)}

increases to [hle, when n— oo, It follows from (*) that

@(hfm(h)) = plhe,).

Assuming that y belongs to O(p) we have @(hf,(h)) <co for large m, by Proposition 6.5.
(ii), and Af,,(h) \ O so that @(kf,(h)) 0. Therefore he,=0. Assuming instead that ¢ belongs
to O(y) we take f,, as the characteristic function (decreasing) of the set 1— oo, m]. Then

ful(L+e) hee) = (1 —e,) +ecfrl(L +6)"h).

Since ¢ belongs to O(y) and ¢ =y(h~1+) (A must be non-singular) we see from Proposition
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6.5. (ii) that if ¢, is the spectral projection of & corresponding to [0, §] then ¢(g;) < oo for a
small §>0. For fixed m the sequence {f,((1+¢&)"h)} decreases to zero and f,((1 +¢&)"h) <g,
for m(l +£)~"<4. Using (**) with @{e,-) instead of ¢ we get

Plhefu(h)) < plhe.fn((1+2)"R)) N O.

Thus ke, f,(h)=0 for all m which implies that he,=0.

Let ¢ be the central support of . Then ¢ is the smallest central projection for which
(1—¢)2=0. From the first part of the proof we see that ge,=0 for all £¢>0. Therefore
h,q<g. Multiplying this inequality with k;' we get ¢<h;'q. Since these inequalities are
valid for all g in G we conclude that h,g=g, so that ¢(g-) is G-invariant. Q.E.D.

CoRrROLLARY 6.7. If M is a semsi-finite factor and G is a group of automorphisms of
M which admits some Q-invariant normal state then the trace on M is G-invariant.

The next result generalizes a theorem due to N. Hugenholtz and E. Stermer (see
[12] and [24]).

ProrosiTioN 6.8. Let G be a group of automorphisms of a factor M and suppose that
G admits one and only one G-invariant normal state w on M. If T is a strongly continuous
one-parameter group of automorphisms of M which commutes with Q then either w satisfies the
KMS condition with respect to Z or else no non-zero normal weight on M satisfies the KMS
condition with respect to X.

Proof. Since G and X commute each state of the form wog, is G-invariant. By the
assumption on @ this implies that woao,=w for all ¢, i.e. w is T-invariant. If ¢ is a non-zero
normal semi-finite weight on I which satisfies the KMS condition with respect to X
then g is faithful since its support belongs to Z by Lemma 5.1 and M is a factor. Therefore
w=@(k-) by Theorem 5.12. Since @ is finite it belongs to O(g) and therefore the G-
invariance of o implies the G-invariance of ¢ by Theorem 6.6. The uniqueness of the
Radon-Nikodym derivative implies that g(k)=»h for each g in G. If h is not a scalar
multiple of 1 then A(1 + %)~ is not a scalar multiple of k. Put k=yh(1 +k) for a suitable
y >0 such that ¢(k)=1. Then w’=¢(k-) is a normal state on M which is different from
w; but o’ is G-invariant since both p and k are G-invariant, a contradiction. Thus A is a
scalar multiple of 1 so that w satisfies the KMS condition with respect to Z. Q.E.D.

If one drops the assumption in Corollary 6.7 that the G-invariant functional is finite
(or is O of the trace) then the trace need no longer be G-invariant, as the following

example shows.
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ProrosiTtioN 6.9. There exists a factor M of type I, and a group G of auto-
morphisms of M such that the trace on M is not G-invariant, but there is a G-invariant
faithful normal semi-finite weight on M.

Proof. Let M be a factor of type II,, constructed. in [4; pp. 130-136]. The Hilbert
space §) on which 7} acts consists of the square integrable functions £(y, s) on R x §, with
Lebesgue measure A on R and the “counting’ measure on the set @ of rational numbers in R.
For each f in L7(R) define n(f) on § by (#(f)&)(y, s)=f(y)&(y, s). For each ¢ in Q define
u(t) on O by (u(t)&)(y, s)=E&(y +t, s+t). Then M is the von Neumann algebra generated by
the operators z(f) and «(¢); and each element z in N has a unique representation

2 =3 a(ff) u(t)

The algebra M is a semi-finite factor and the trace v on M. is given by z(z) = fi(y)dy.

Let Q* denote the multiplicative group of non-zero rational numbers. For each r in
Q* define v(r) on § by (v(r)&)(y, s)=|r|&(yr, sr). It is easily verified that the map
r—>o(r) is a unitary representation of Q* on 9. Let G denote the corresponding trans-
formation group on B(). Then for « in N we have

9, (@) =v(r) xv(r)* = Z v(r) a(ff) v(r)* o(r) u(f) v(r)*.
But for £ in § we have
[o(r)m(f)o(r)* &) (y, 5) = |7 [F(f)v(r)*E1(pr, s7)
= |r|}fyr) [o(r)*EX(yr, sr) = f(yr)&(y, 5);
(o) ut)o(r)*E1(y, s) = |r[ ut)o(r)*E)(yr, s7)
7 = |r|}o(r)*E1(yr+t, sr+t) = E(y + 1Y%, s +r~%)

= u(r-1)&(y, s).

From these equations it follows that & is a group of automorphlsms of 1. The trace 7 is
not G-invariant; for if x€ M, then

(g, (7)) = ffiﬁ (yr)dy= r“ff% () dy =r""z().

Put h=n(f"), with f*(y)=|y|~2. Then & is a non-singular self-adjoint positive operator
in § affiliated with 7M. By Proposition 4.2 the weight p=1(h- ) is faithful normal and

semi-finite. For each z in M, we have
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@(g, (%)) =7(hy, (x)) = ff" () folyr) dy

[en Py = [ e =om.

It follows that ¢ is G-invariant. Q.E.D.

If in the above example we let H be the group of inner antomorphisms of M arising
from -unitaries 7(f) where f€ Ly (R) then scalar multiples of ¢ are the only normal semi-
finite weights on 7} which are invariant under the automorphism group @ generated by
G and H. For if ¢’ is a (F-invariant normal semi-finite weight on M and ¢’ =7(h’-) then
since ¢’ is H-invariant, and since n{L;*(R)) is a maximal abelian subalgebra of ! we must

have &' =z(f’) for some ' in L (R). Since, furthermore, ¢’ is G-invariant we have

f £ ) Fayr) dy = ', (@) = ¢’ (@) = f £ () dy

for each 7 in Q*. It follows that |r|=1f'(r—1)=f'(y) for each 7 in Q* and almost all  in R.
Define f(y)=|y|f (y). Then f(ry)=f(y) for almost all y in R and all r in Q*. But the action
of Q* is ergodic on R with respect to Lebesgue measure; hence f is equal to a constant §
almost everywhere. It follows that f(y)=d|y|™ so that ¢’ =dp. This shows that
Proposition 6.8 need not be true without the restriction that o be finite. For with
@, & and {1} instead of w, @ and ¥ in Proposition 6.9 we have an example where scalar
multiples of ¢ are the only ’-invariant normal semi-finite weights on TH, yet thereis a
trace which satisfies the KMS condition with respect to the trivial group {i}.

We recall that a group G of automorphisms of a von Neumann algebra 1 on a
Hilbert space §) is said to be wunitarily implemented on § if there is a homomorphism
g—u, of G into the group of unitaries on §) such that g(x) =u,2u; for each x in . (The
representation of 1 on §) is covariant.) Our next theorems extend results of H. Halpern

on the implementability of locally compact automorphism groups (see [9]).

THEOREM 6.10. Let M be a von Neumann algebra and let ¢ be a faithful normal semi-
finite weight on M with modular automorphism group X. Then each group G of aubo-
morphisms of TN that commutes with X can be unitarily implemented on the Hilbert space §) of g.

Proof. As in the proof of Theorem 5.5 we have gog=g(h,-) where &, is a non-singular
positive operator affiliated with Z. Since we do not assume that & leaves Z fixed we can-
not conclude that the map g-h, is a homomorphism. Let e, be the spectral projection of

h, corresponding to [#~1, n]. Then for each z in A we have g(h; *e,x) in 9 and
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In(g(hg * ex))||* = @(9 (kg * €, 2%)) = @len ™x) A p(z*2).

Moreover, for m >n

(g (s en2) — gzt e,2) |12 = pl(en — €,) 2*2).

It follows that the sequence {5(g(h; *e,))} converges in § to an element which we shall
denote by n(g(k;¥z)). The linear operator u, on %(¥) defined by

ug(n()) =n(g(h *2))
extends to an isometry u, of §. Since
Py o) = plg' 9(2)) = P(hy9(2)) = lg(g~ (ko) 7)) = plhg g~ (kg )
we have h,,=h, g1 (h,). Therefore

(@) =g’ 9k b 2) = nlg  glh* - g7 (h3?) 2))
=n(g(ho'* - g(h7 } 2))) = uy (g (kg * 2)) = ug ugn(),
which éhows that gr>u, is a homomorphism of & into the group of unitaries on §. Since
(@) = (g (b)) = n(hég™ @)
we finally have uyuin(e) = umlghlg ™ @) = g(y) n(a)
so that the representation gr>u, is a unita,ry' implementation of Gon . QED.

ProrosiTioxN 6.11. Let G be a locally compact o-weakly continuous group of auto-
morphisms of M which commutes with X and leaves Z fixed. Then the unitary representation
of G on § constructed in Theorem 6.10 is strongly continuous.

Proof. As in Theorem 6.2 let-G; denote the normal subgroup of G under which ¢ is
invariant. Then the set

F={geG|pog< g} =zgov{y€ Glolg) <g@)}

is closed in @ ({since ¢ is o-weakly lower semi-continuous), and Gy= Fn F1. Hence G,
is closed in G. It follows from . Proposition 6.3 that G/G, is a Iocé,lly compact . abelian
group with no non-zero compact subgroups. Therefore the connected component H of
G/G, containing the identity is'”isomorphic to R* for some »>0 and (G/GO)/ﬁ is
discrete by the structure theorem for locally compact abelian groups (see [21; Theorem

2.4.17). It suffices to prove continuity of the representation g+, on the inverse image H of
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Hin G (since G/H is discrete). We may therefore assume that G = H, so that @/G,=R". Choose
elements g,, ..., ¢, in G such that the corresponding images g, ..., §, in G/G, form a basis
for R". Let @(g,(*))=@(h:), 1<k<n, where h; is affiliated with Z. If ¢, denotes the
spectral projection of &, corresponding to [m—, m], put e,,= A ¢;,. Thene, 71. For each g
in @ with §=2X 4,3 in G/Gy, define k, =] hi*. Then g+>k,e,, is a continuous homomorphism
of @ into the mutliplicative group of positive invertible elements of Ze,. Since the
homomorphism g h,e,, is lower semi-continuous and since h,=k, for all g in @ with
§=2X A7, such that all 2, are dyadic rational numbers (i.e. on a dense subgroup of @) we
conclude as in the proof of Proposition 5.7 that h,=k, for all g in G.

Now take z and y in ¥ and z in %, Then

(genn(@) | 0((29)") = playh; teng(@)) = plyh; eng(x) o_4(2)),
using Lemma 3.5 with o_,(z) and yh; ¥e, g(x) instead of % and z. When g1 we have
h;te,~e, uniformly, and since y and o_,(2) belongs to U we have g(yg(x)o_,(z))~>
p(yxo_,(2)) as G is o-weakly continuous on . Thus u,-1 weakly on a dense set of vectors
in § which proves that g--u, is weakly, hence strongly continuous. Q.E.D.

The main virtue of the preceding result is that it gives an explicit and canonical
construction for the implementation of &. For whenever ¢ is a separable locally compact
group (and § is infinite dimensional) we can represent M and G on H®L*G) as the
induced covariant representation; and since this space has the same dimension as § we
can then pull back the covariant representation of I and G from HRLYQ) to § by a
spatial isomorphism between 71 on § ® L*G) and M on §. This isomorphism is, however,

not unique.

7. Further applications of the Radon-Nikodym theorem

Our first application of the Radon-Nikodym theorem in this section provides a partial
solution of the problem raised in [4; p. 52], whether each weight that respects monotone
increasing limits is the sum of normal positive functionals. For the proof we shall need

the following result which may have independent interest.

Prorosition 7.1. For each faithful normal semi-finite weight @ on N there is a set
{p} of pasrwise orthogonal projections from M= with sum 1 such that p, is the strong limit of

an increasing sequence from m.. In particular each p,Mp; is o-finite.

Proof. Let {t,} be an enumeration of the rational numbers in R and for  in m. put

-1 n

Uy = (n_l + i o'tk(x)) > O';k(x)u
k=1 k=1
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Then {u,} is an increasing sequence in 1. and converges strongly to a projection p (the
union of the range projections of all the elements ¢, (). For each rational number ¢ and each

n there is an m such that
{tty|e<n} < {t,|[k<m}.

Therefore o,(u,) <u#,. It follows that o,(p)<p for each rational number; hence p€ M=
The algebra pMp is o-finite. For if {g;} is a set of projections in M with Xg¢,=p then for

each n
p(Zubgud)=p(u,)< .

Thus for all but countably many j’s ulgu =0 for all n. But uiq,ul—>g,, and therefore the
number of j’s with g;=0 is countable.

Now let {p;} be a maximal family of pairwise orthogonal projections from # each
of which is the strong limit of an increasing sequence from 1t,.. Suppose that ¢g=1—2p, +0.
Then qxq =0 for some z in m, and grg€nt, by Proposition 3.3. From the first part of the
proof there is then a non-zero projection p in M= which is the strong limit of an in-
creasing sequence from m.; and p<gq. This contradicts the maximality of {p;}. Hence
¢=0. Q.E.D.

TeEOREM 7.2. Each normal weight on M is the sum of normal positive functionals.

Proof. Let ¢ denote the weight and suppose that ¢ is faithful on (1—p)M(1l —p)
and semi-finite on ¢y with p<g¢. If p=2w; on (¢—p)M,(g—p) where each w; is a
normal positive functional on (¢ —p)M(g—p) then put @;=w;((g—p): (g—p)) on M and
choose a set {w;} of normal positive functionals on (1 —g)MM (1 —¢) such that T w,(x) = oo
for each x in (1—g)M, (1 —g) different from 0. Put &,=w,((1—¢)-(1—q)) on M. Then
@=2@;+Xd; on M. It follows that it is enough to prove the theorem assuming that ¢
is faithful and semi-finite.

Under this assumption there is by Proposition 7.1 a set {p,} of projections in M=
with Xp,=1 such that each p, is the strong limit of an increasing sequence from m1..
We have ¢ =Z¢(p; ) by Propositions 4.1 and 4.2. Hence without loss of generality we
may assume that there is an increasing sequence {u,} in mt, such that w, 1. Let {t,}
be an enumeration of the rational numbers in"R. By [1; Lemmes 1.9 & 4.3] the set of
normal positive functionals which are completely majorized by ¢ form an increasing net
with limit ¢. We can theréfore‘by induction find a sequehee {a),,} of normal positive
functionals such that (with ¢, =0)

0p(04,()) S, <@ for m<n and k<n;

() +nt = @lu,)  for k<n.
6 — 732904 Acta mathematica 130. Imprimé le 30 Janvier 1973.
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Put wp=w,—w,_, (and w1 =w,). Then the weight 1p=2w;, is normal and y <¢. Moreover,
p(u,) =¢(u,) for all n. Since the set of elements x in M, such that y(z) =@(z) <coc is a
hereditary subeone of 7M., invariant under X, we have p(x) =¢(z) for all zin U %, M., u,;
50 that p and ¢ are equal on a g-weakly dense set in ... The construction of y implies that
p(ox)) <p(x) for each z in N, and all rational numbers ¢. Since y is g-weakly lower semi-
continuous on M, we obtain y(c,(x)) <y(x) for all real ¢. This of course implies that y is 2-

invariant. Therefore y =¢ by Proposition 5.9. Q.E.D.

CoROLLARY 7.3. (cf. [16; Theorem 3.1] and [1; Proposition 1.11]) Eack (rorm) lower

semi-continuous weight ¢ on a C*-algebra A is the sum of positive functionals on A.

Proof. Let B be the closure of the linear span of the set
m = {x €A, |p(x) <o}

Then Bis a hereditary C'*-subalgebra of 4, and the restriction g of g to Bis semi-finite. Let
A and B denote the universal enveloping von Neumann algebras of 4 and B, respectively.
Then Bisa o-weakly closed hereditary subalgebra of 4; hence B= gAq for some projection g
in 4. By [1; Proposition 4.1] ¢ has an extension to a normal semi-finite weight @5 on B.

We define a normal weight ¢ on 4, by

) #5(x) if z€B,
Ple) = . %

o0 if x¢B,
If z is an element of 4, then €8, if and only if x=gxq. Hence ¢ is an extension of ¢.
From Theorem 7.2 ¢ has a decomposition as a sum of positive functionals, and the restric-
tion to A of this decomposition gives a decomposition of ¢. Q.E.D.

The Radon-Nikodym theorem also gives an easy proof of the following result by the
second author [25; Theorem 14.2].

THEOREM 7.4. 4 von Neumann algebra T is semi-finite if and only if there exists a faith-
ful normal semi-finite weight on M whose modular automorphism group is implemented by
a strongly continuous one-parameter unitary group tn M. In this case the modular group of
any normal semi-finite weight on M is implemented by a one-parameter unitary group in M.

Proof. If ‘M is semi-finite then there is a faithful normal semi-finite trace v on N.
The modular group of 7 is trivial. By Theorem 5.12 each normal semi-finite weight ¢ on
M is of the form z(h:) where % is affiliated with 7 and by Theorem 4.6 the modular
group of ¢ is given by o,(x) =h"zh~* and consequently implemented by the one-parameter

unitary group {A*} in M.
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If, conversely, ¢ is a faithful normal semi-finite weight on M such that the modular
group is implemented by a one-parameter unitary group in 7, then by Stone’s theorem we
have a,(z) =h'zh—* where h is a non-singular self-adjoint positive operator affiliated with
M. By Proposition 4.2 the weight 7=@(h~1-) is faithful normal and semi-finite; and by

Theorem 4.6 the modular automorphism group of 7 is given by
of (x) = h o (x) W' = .
It follows that 7 is a trace; hence M is semi-finite. Q.E.D.

CoROLLARY 7.5. (cf. [26; Corollary 31). If @ is a faithful normal semi-finite weight on
a von Neumann algebra TN of type 111 then there are no non-zero normal semi-finite weights on
M that satisfies the KMS condition with respect to the group {4}, f=+1.

Proof. Suppose, to obtain a contradiction, that y was such a weight. Then §0
since M is of type IIL. Therefore y is invariant under {¢,}. Thus y=g¢(h-) and

o pi@) = hi'o ()b~
for all z in M. Put a=(f—1)"'. Then

o’t(x) — hlatxh—z‘ut

so that the modular group of g is implemented by a one-parameter unitary group in M.
By Theorem 7.4 M is semi-finite; a contradiction. Q.E.D.

We now assume that I is semi-finite with a faithful normal semi-finite trace 7.
Then by Theorem 5.12 each normal semi-finite weight ¢ on I is of the form z(k-)
where & is affiliated with 711. Our next result provides a partial extension of S. Sakai’s

non-commutative Radon-Nikodym theorem [22].

ProPosITION 7.6. Suppose that ¢ and ¢ are normal semi-finite weights on a semi-finite
von Neumann algebra M and p <. If there is a faithful normal semi-finite trace v on M
such that ¢ (and y) belongs to O(z) then there is a unique operator t in TN with V<t<1
such that w=q(t-1).

Proof. We may assume that ¢ is faithful. Put ¢ =t(k-) and y =7(k-). From Proposition
4.2 we have k<h. If p belongs to O(t) then 7(he,) < oo for large m, where e,, denotes the
spectral projection of & corresponding to [m, o]. Therefore z{e,)\0 as ¢, (0 so that &
and k are measurabie operators in the sense of 1. Segal. Since the measurable operators on
$ form an algebra with involution under strong sum and strong product [23; Corollary 5.2]

and since the correspondence between normal semi-finite weights and self-adjoint positive
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operators affiliated with M is a bijection, we see that the proposition is equivalent to
solving the operator equation k=#-%-¢ for a positive ¢ in M under the assumption that
k<h. For bounded A and k this problem was considered in [18], and the solution with un-
bounded measurable operators is obtained in the same way. Put a=h*-k-h*. Then
a<h?; hence at <h (see for example [17]). There is then an operator z in 1 with ||z| <1
such that at=z-ht. Put t=2*z. Then

Biot-hot-hd = (BE-£-hA)2 = (ab)? = bt k- Bi,

Since ¢ is faithful,  is non-singular; hence ¢+ -t =k. To show the uniqueness of the solution
let s be a positive operator in 1 such that s-h-s=#¢-h-t. Then there is a partial isometry
u in ‘M such that At-s=wu-kt-f, and w*u is the range projection of h*-¢. It follows that
htes-hE=w-Rhi-t-ht, and since the polar decomposition is unique this implies that u is
the range projection of A*-f. Hence h*-s=Fh*-¢, and since % is non-singular this implies
that s=t. QE.D.

The above result need not be true if the functional ¢ does not belong to O(z) as shown

by the following example.

ProPOSITION 7.7. There exist two normal semi-finite weights @ and vy on the von
Neumann algebra B(D) such that v is finite, @ is faithful and p <. However, there is no
positive operator t in B(D) such that yp=@(t-1).

Proof. Let {£,} be an orthonormal basis for §). Denote by k the non-singular self-
adjoint positive operator for which k&, =né&,, and let k denote the projection of § on the
subspace spanned by the vector n =Xn"1&,. Put ¢ =Tr (h-) and p="Tr (k-). Since k<1 <h
we have p<gp. If ¢ is a positive operator in B($) such that ¢ =g(t-) then k=1lim th,t,
where h,=h(1 +eh)~t. Since A, >(1+¢&)~" this gives k=lim (1 }s)—1t2; hence $2<k. Since

k is a minimal projection, ¢ =4k with 0 <A<1. But then
1917 = (kn|n) = 22k | ) =22(Znhé, | Zm—1E,,)
=22(Zn"n(l +en)1&,| Em1E,)
=22Zn (1 4 en) 1 = A20(en?) 7 = g%,

a contradiction. Q.E.D.
The following example shows that Proposition 5.9 need not be true for arbitrary

normal semi-finite weights.

PROPOSITION 7.8. There exist two normal semi-finite weights on-the von Neumann

algebra. B() such that o <y and ¢ =|£¢; yet '@ =y on a o-weakly dense *-subalgebra of B(D).
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Proof. Let b and k be different self-adjoint extensions of the Laplacian —d?/df? on
$ =10, 27] such that 4 <k. For example % could be the extension corresponding to the
boundary conditions £(0) =£(27z) and £'(0)=£(2x) while % corresponds to the boundary
conditions §(0) =£(27) =0. Put ¢ =Tr (k-) and p=Tr (k). Then ¢ <y by Proposition 4.2,

and ¢ +y. The set
p = {@€B(D). |gle) =plz) < oo}

is a hereditary cone in B(D).. If p is the projection on a finite dimensional subspace of £
with an orthonormal basis {&} of C*-functions on [0, 27] vanishing at the points {0, 27}

then
() = Tr (hp) = Z(h&| &) = X (k& | &) =y(p),

so that p€p. Since 1 can be obtained as the strong limit of projections p it follows that
is o-weakly dense in B(9)+. Q.E.D.

We shall finally use the Radon-Nikodym theorem to obtain information about
unbounded operators on a Hilbert space §. With 71— B(H) and Tr the usual trace on TH
we have a bijection between the set of self-adjoint positive operators in § and normal semi-
finite weights on B($)). For semi-finite von Neumann algebras Murray-von Neumann
and I. Segal have shown in [15] and [23] that the class of measurable operators affiliated
with the algebra form a ring. If M =B($), and § is infinite dimensional then the only
operators with essential dense domain are bounded, so that the Murray—von Neumann-Segal
theory is not applicable (moreover, the densely defined closed operators on § do not
form a ring). However, for certain pairs of self-adjoint positive operators we can define a
strong sum:

Let 7 and % be self-adjoint positive operators on § and put ¢p=Tr (k-) and
p=Tr (k-). If ¢ +y is semi-finite then by Theorem 5.12 there is a unique self-adjoint
positive operator, which we denote by h+k, such that p+yp=Tr ((h+lc) ). It is clear
from the definition that the strong sum is assoc1at1ve when it is defined, i.e. if (h+lc) tu
is defined then h+(k —i—x) is defined and (h+k) +w h+(k+x) Furthermore h+k=k+h
and oc(h+k)=och+odc for «>0. If 2 and %k are bounded then h+k=h+k.

Lemma 7.9. Let {h;} be an increasing net of positive bounded operators on §). Then
the following conditions are equivalent:

(i) There exists o self-adjoint positive operator b in § such that h, /' h.
(i) The set D={£€H|lim (h,&|&) <oo} is a dense subspace of §.
The operator b is unigue and D="D(h?).

Proof. (i)=-(ii): As in §4 define h,=h(1 +eh) for £>0. By Lebesgue’s monotone
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convergence theorem & € D(h?) if and only if lim (h.£|£) <oo. Since h,. /h, for each 1 it is
immediate that D=D(h?), and therefore D is dense in §.

(ii)>(i): The inequality ||Rf(&+)||2<2(||h}&|j2+ ||hiC|[?) shows that D is a vector
space. Since {h,} is an increasing net there is a bounded operator £ with 0<k<1 such
that (14A;)"1\ k. Suppose k=0 for some vector { in §. Then for each & in D

[E[D 2= EA+R)EA+hY) |2 = [(L+R)E|(L+R) ) |2
S(A+R)EIG (L +R) T ~O.
Since D is dense, { =0. Thus k is non-singular, and for each £>0 we have
A+hy)e = e+ A +2) A (e+8)7 = (B,
so that k; 7k1—-1. Q.E.D.

ProPOSITION 7.10. Let h and k be self-adjoint positive operators in §. Tr (k-)+
Tr (k-) is semi-finite if and only if the subspace D= D(h*) N D(k?) is dense in H; and in this
case D= D((h+k)) with

g2+ 1] = || (s -+ Ryr)
for each & in D.

Proof. If Tr (h-)+Tr (k-) is semi-finite then <h-+kand k<h-k so that 'D((iH.— k)<
D(#*) N D(kY). Thus D is dense in §.

Conversely, suppose that D is dense in § and consider the increasing sequence
{h.+k,}. We have lim ((h,+k,)&|&)<oco if and only if £€D. By Lemma 7.9 there is a
self-adjoint positive operator x in § such that A, +k 7 and D(xt)=D. But then
Tr ((h.+k,)-) A Tr (z-) by Proposition 4.2; hence Tr (x-)=Tr (h-)+Tr (k-) and x=h+k.
For each £ in ‘D(=D((h;l-k)’*)) we have

| RE&]|2 + || RE]| =lim (R, +&,)E|E) =|| (B +R)E||2. Q.E.D.

Instead of identifying a self-adjoint positive operator - on § with its normal semi-
finite weight Tr (k-) on B(§)) one often identifies the operator with its associated closed
positive sesquilinear form (h-|-) in § (see [14; § 6.2]). The reader will have no difficulty
in verifying that our definition of the strong sum h+k of two self-adjoint positive
operators h and k gives the same result as the sum obtained by adding the two forms
(h-|+) and (k- | -) as prescribed in [14; § 6.2.5].
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