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Abstract 

Let ~ be a faithful normal semi-finite weight on a v o n  Neumarm algebra ~ .  For each 

normal semi-finite weight yJ on ~ ,  invariant  under the modular automorphism group Z of ~, 

there is a unique self-adjoint positive operator h, affiliated with the sub-algebra of fixed-points 

for Z, such that  ~ = ~0(h. ). Conversely, each such h determines a Z-invariant  normal semi-finite 

weight. An easy application of this non-commutative l~adon-Nikodym theorem yields the 

result that  ~ is semi-finite if and only if Z consists of inner automorphisms. 
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1. Introduction 

The classical Radon-Nikodym theorem asserts t ha t  if a measure v is absolutely  con- 

t inuous  with respect to  a measure /~ ,  then  there  is a measurable  funct ion  h such t h a t  

=# (h .  ). I t  is easy to see t ha t  the  absolute con t inu i ty  of v with respect to # is equiva lent  

to the condit ion t ha t  v can be regarded  as a normal  funct ional  on L~.  Since L ~  is the proto- 
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type of an abelian von Neumann algebra, the question therefore naturally arises whether 

one can find generalizations of the Radon-Nikodym theorem in the non-commutat ive 

ease. The most successful results in this direction are due to H. Dye [7] and I. Segal [23], 

who show that  if ~ is a faithful normal semi-finite trace on a v o n  Neumann algebra 

then for each normal positive functional yJ on ~ there is a unique (unbounded) self-adjoint 

positive operator h affiliated with ~ such tha t  y~ =qJ(h.). 
Simple counterexamples show tha t  one cannot hope for a Radon-Nikodym theorem 

with arbi trary funetionals ~ and ~. Even the weaker result tha t  ~ =~(h.  h) does not hold in 

general if one requires h to be a closed operator (the BT-theorem is the best possible result 

in tha t  direction). We shall accordingly ask the Radon-Nikodym theorem to hold only for 

pairs ~, yJ of functionals which "commute"  in a sense to be made precise below. 

In  [28, 29] M. Tomita, in his fundamental  s tudy of the relation between a yon Neumann 

algebra and its commutant ,  discovered tha t  with each full left Hilbert  algebra is associated 

a one-parameter group of automorphisms of the left yon Neumann algebra. In  particular, 

each faithful normal positive functional ~ on a yon Neumann algebra ~ gives rise to a one- 

parameter  group ~: of automorphisms of ~ ,  since ~ induces a left I-Iilbert algebra structure 

on ~ .  Using the theory of weights (semi-finite positive functionals) F. Combes showed in [2] 

that ,  conversely, each full left Hilbert  algebra arises from a faithful normal semi-finite 

weight on the left yon Neumann algebra. This fact was also discovered by  M. Tomita  in 

[29]. We shall adopt this last point of view since it allows us to regard the triple (% ~ ,  ~) 

as an analogue of a measure and its L~~ The modular automorphism group •, 

which is trivial in the commutat ive case (and when ~ is a trace), serves as the extra 

information tha t  compensate the lack of invariance (trace-structure) in ~. The weights 

yJ which are invariant  under Z, i.e. yJ(~t(x)) =yJ(x) for all ~t in Z and x in ~ + ,  are the ones 

which "commute"  with ~; and these are the functionals for which the Radon-Nikodym 

theorem holds. 

After a brief summary  in w 2 of the theory of normal semi-finite weights, their repre- 

sentations and their modular antomorphism groups we describe in w 3 the important  class 

of analytic elements for ~ in ~ .  In  particular we characterize the elements in the von 

Neumann algebra ~ of fixed-points for ~ in ~ as those elements h in ~ for which the 

funetionals ~(h.) and ~(. h) are semi-finite and equal. 

We can therefore in w 4 introduce an affine map: h~--->q~(h.) from ~+~ to the set of ~- 

invariant  normal semi-finite weights on ~ .  A little extra work shows tha t  the map can be 

extended to all self-adjoint (unbounded) positive operators affiliated with ~ .  The main 

problem in this paragraph is to show tha t  the elements in the modular automorphism group 

of a weight ~ = ~ ( h . )  have the form r 
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In  w 5 we prove the Radon-Nikodym theorem which says tha t  given a triple (% ~ ,  ~), 

each ~-invariant  normal semi-finite weight ~v on ~ is of the form ~(h. ), where h is a unique 

self-adjoint, positive operator affiliated with ~ z .  As a prerequisite for the theorem we 

establish the result tha t  if ~v satisfies the Kubo-Martin-Schwinger condition with respect 

to F, then ~v=~(h.) where h is affiliated with the center of ~ .  This is used to show tha t  if 

~v is a normal semi-finite weight on ~ with modular automorphism group ~ then the 

~-invariance of ~v implies tha t  the groups ~ and ~ commute. Conversely, if F, and ~ 

commute then ~v is ~-invariant  under fairly mild extra conditions, but not in general. Only 

as a corollary of the Radon-l~ikodym theorem do we learn tha t  ~-invariance of ~v implies 

~ - inva r i ance  of ~0 (so tha t  "eommuta t iv i ty"  is a symmetric relation). The main reason 

for solving the problems of commuting automorphism groups first (instead of collecting 

the results as corollaries of the main theorem) is tha t  we need this material  to show tha t  

two "commuting"  weights which agree on a dense subalgebra are equal. For arbi t rary 

weights this is not always true. 

Section 6 consists of applications of the Radon-Nikodym theorem to automorphism 

groups of yon Neumann algebras. We consider a triple @, ~ ,  Z) and a group G of 

automorphisms of ~ which commutes with E and leaves the center of ~ pointwise fixed. 

Then ~og  =~(h~. ) for each g in G, where h a is a self-adjoint positive non-singular operator 

affiliated with the center of ~ ;  and the map g~->hg is a homomorphism. In  some cases 

this implies tha t  ~ is G-invariant (i.e. if ~ is finite or if G is compact). We show tha t  if there 

is some G-invariant weight yJ on ~ and if y~ is also E-invariant  (so tha t  ~ =~(h.))  then 

is G-invariant under certain integrability conditions on h, though in general it need not 

be. The results are inspired by  works of N. Hugenholtz and E. Stormer on the corresponding 

problems for normal states on ~ (see [12] and [24]). We finally give a construction for 

the implementation of G as a group of unitaries on the Hilbert  space of ~. 

In  w 7 we give four more applications of the Radon-Nikodym theorem. We first show 

tha t  each normal weight on a yon Neumann algebra is the sum of normal positive func- 

tionals. As a corollary each lower semi-continuous weight on a C*-algebra is the sum of posi- 

tive functionals. We next  present a short proof of the result from [25] tha t  a yon Neumann 

algebra ~ is semi-finite if and only if there is a faithful normal semi-finite weight on 

whose modular automorphism group is implemented by a one-parameter uni tary group in 

~ .  Specializing to normal semi-finite weights on a semi-finite yon Neumann algebra ~ ,  we 

consider the problem whether yJ=~(t.t)  for some t in ~ + ,  whenever yJ~<~. We show tha t  

this is true, with a unique t, and tha t  ]lt]] ~<1, provided tha t  ~ is finite or majorized by  a 

normal semi-finite trace on ~ ;  but  tha t  it need not hold in general. Thus S. Sakai 's non- 

commutat ive Radon-l~ikodym theorem for finite weights ([22]) cannot be extended to 
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semi-finite weights. Finally we use the bijective correspondence between self-adjoint 

positive operators in ~ and normal semi-finite weights on B(~), obtained by  applying the 

Radon-Nikodym theorem to the triple (Tr, ~(~), {~}), t~) define a strong sum between 

certain pairs of self-adjoint posi t ive operators  in ~.  

2. Weights and modular automorphism groups 

For the convenience of the reader we summarize in this paragraph the basic facts about  

weights and their associated automorphism groups. Detailed information can be found in 

[1], [2] and [25]. At the same time we develop a set of notations which will be used 

throughout the paper. 

A weight on a yon Neumann algebra 7~/is a map ~ from 7~/+ (the positive par t  of 7~/) 

to [0, oo] satisfying 

~ ( ~ )  = :r for all ~ in R+ and all x in ~ + ,  

q~(x+y) =~0(x)+~(y) for all x and y in )~ . .  

I t  is called normal if there is a set {co,} of (bounded) normal positive funetionals on 

such tha t  
~(x) = sup eo~(x) for each x in ~ + .  

F. Combes has shown in [1; Lemma 1.9] tha t  the set of positive functionals eo which are 

completely majorized by  a weight ~ (i.e. there is an e > 0  such tha t  ( l+e)eo ~<~) form 

an increasing net such tha t  lim ~o(x) =el(x) for each ~c in ~/+ of lower semi-continuity (in 

norm) for T. I t  follows from [1; Lemma 4.3] tha t  if ~ is a-weakly lower semi-continuous on 

7~/- then there is a largest normal weight ~0 ~<~ (the normalization of ~); and ~0(x)=qD(x) 

for each x with ~(x)<  0% I t  is not known whether one may  have r ~=~- 

The (complex) linear span m of the set 

m+ = {xe  ~ §  ]~(x) < oo} 

is a *-algebra of ~ and there is a natural extension of ~ to a positive linear functional on 

m (again denoted by  ~). We say tha t  ~ is semi-/inite if m is (r-weakly dense in ~/.  The 

weight ~ is /aith/ul if ~(x)= 0 implies x = 0 for each x in ~/_. We shaft work almost ex- 

clusively with faithful normal semi-finite weights. However, if ~ is normal then there 

are projections p and q in ~ /  with p<~q such tha t  ~ is semi-finite on qT~lq and faithful 

on (1 -p )7~ / (1 -p ) .  Thus the restriction to faithful semi-finite weights is for most  con- 

siderations only a mat te r  of convenience. 

Let  ~0 be a faithful normal semi-finite weight on 7~/. Then ~0 determines an inner 

product on the left ideal 
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. = { x e  ~ [ ~ ( x * x )  < ~}. 

We denote by ~ the linear injection of 11 into the completed Hilbert space ~ so that  

(~(x)l~(y))=~(y*x), for all x and y in 11. Put  9~=11" f3 11. Then V(9~) is a /uU (achev~e) le/t 
Hilbert alqebra in ~,  and each full left Hilbert algebra arises in this manner. A repetition 

of the usual Gelfand-Naimark-Segal construction gives a faithful normal representation 

of ~ on ~ such that  7t(x)~(y)=~(xy) for each x in ~ and y in 11. The conjugate linear 

map in ~ that  sends ~(x) to ~(x*) extends to a closed operator S with polar decomposition 

JA�89 Here J is a conjugate linear isometry with period two, and A, the modular operator 

associated with T, is a self-adjoint, positive, non-singular operator in ~. For each complex 

one has J A ~ J = A  - ; .  The map: x~->JxJ in B(~) is a conjugate linear isomorphism of 

n ( ~ )  onto ~ ( ~ ) ' ,  so tha t  ~r is a standard representation of ~ .  Since ~v will be fixed through- 

out the paper we shall identify ~ with its image 7~(~). 

The one-parameter group of unitary transformations of B(~) given by xF->AttxA-*t 

leaves ~ invariant (as a set) and can therefore be regarded as a group Z of automorphisms 

of ~ .  This modular automorphism group will play a central r61e in the sequel. Note that  

for each at in Z we have ~(at(x))=A~t~(x) when xE11, so that  n, 9~ and 11~ are invariant 

under Z. I t  follows that  q~(at(x))=T(x) for each x in ~/~+ so that  q is Z-invariant. 

For each x and y in 9~ there is a function / continuous and bounded on the strip 

and holomorphie in the interior, such that  for each real t 

/(t) =q~((~t(x)y ) and ](t § i) =q~(y(~t(x)). 

We say that  p satisfies the Kubo-Martin-Schwinger (KMS) boundary condition with 

respect to Z. If, conversely, there is a strongly continuous one-parameter group {g~} of 

automorphism of ~ leaving ~ invariant, and such that  p satisfies the KMS boundary 

condition for each pair x and y in 9~, then gt =at  for all t. The weight ~ is a trace if and 

only if the modular operator is the identity. On the other hand a knowledge about Z 

or the various KMS boundary conditions will usually compensate the non-traeelike 

behavior of ~. 

3. Analytic vectors in yon Neumann algebras 

A function ] from a complex domain ~ into a Banach space B is called holomorphic if 

the complex function: :r is holomorphie for each (I) in B*; or, equivalently, if / 

is (complex) differentiable in norm on fl  [11; Chap. II,  w 2]. If F is a closed region in C we 
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denote by A(F,  B) the Banach space of continuous and bounded functions from F to B 

that  are holomorphie in the interior of F. 

For a yon Neumann algebra 7~ with a faithful normal semi-finite weight ~ and 

modular automorphism group E let ~/o denote the set of analytic elements of 7~, i.e. 

those elements h for which the function t~-->ct(h) has an extension (necessarily unique) 

to an analytic (entire) function ha(h) from C to 7/~. I t  is easy to verify that  for each x 

in 711 and 7 > 0 the element 

h r = 7�89189 ( -- ~t2)(~t(x) dt (*) 
J 

is analytic; with 

With ?-~c~ the elements {by) tend a-weakly to x, which shows that  71/o is a-weakly dense 

in 7~. I t  is not hard to see that  ~ 0  is a *-subalgebra of 711 such that  

a~(hk) =a~(h)a~(k) for h and k in ~0;  

a~(h)* =~(h * )  for h in T/~0; 

aa+B(h) =a~(a~(h)) for h in 7/lo. 

LI~lgM.~ 3.1. Let t~-~x(t) be a strongly continuous /unction/rom R to 7~l+. I f  x(t) is 

integrable and x = S x(t) dr, then q~(x) = ~ cf(x(t))dt. 

Proo]. For each normal functional to we have w(x)=ff eo(x(t))dt. Let {co,} be an 

increasing net of normal positive functionals with limit ~. Then {o~,(x(t))} is an increasing 

net of continuous functions with limit q~(x(t)). Consequently 

f q ( x ( t ) )  dr= limf~ot(x(t))dt = lira cot (x) = r Q.E.D. 

Applying Lemma 3.1 to the equation (*) and using the ~-invariance of ~ one has 

~(hy) = qg(x). This shows that  the Tomita algebra Go = 7 ~  f3 9~ is s-weakly dense in 7~. 

Using the s-weak lower semi-continuity of ~ one can prove that  ~(9~o) is also dense in ~. 

The following lemma is basic for our investigation. 

LI~MMA 3.2. Let H be a self-ad]oint positive non-singular operator on ~. For a vector 

in ~ and ~ > 0 the ]ollowing two conditions are equivalent: 

(i) ~ belongs to the definition domain I)(H $) o/ H$. 

(if) The /unction t~-->H~t~=~(t) can be extended ]rom R to a /unction ~(a) in 

A ( - ~ K I m  ~<0 ,  ~). 
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Proo/. (i)~(ii): If o~=t+is then Z)(H~a)=D(H-S). Assuming that  ~EO(H $) we have 

~qD(H ~) for - ~ < I m  ~<0,  and 

I1~,~11 = [tH-~II < I1(1 + H)-~II ~ II(1 +H)-O@. 

I t  follows that  the function ~ ( a ) = H ~  is bounded and continuous for - / t~<Im a < 0 .  

In  the interior of this strip we have 

D(i~(log H) H ~) = :O((log H) H -~) ~- D(H~), 

which shows that  ~(a) is holomorphic for - ~  < I m  ~ <0. 

(if) ~(i): Suppose ~(t)=H~t~ has an extension ~(a) in A ( -6 ~<Im  a~<0, ~). For each 

vector ~ in O(H $) the function ~ ( a ) = H ~  belongs to A ( -6 ~<Im  ~<0 ,  ~) as we saw 

above. We therefore have two holomorphic functions 

~->(~(~)}~) and ~->(~IH-~r 

which are equal when Im ~ =0. They then coincide in the whole strip, which shows that  the 

functional 

is bounded (by I]~(~)ll) so that  ~e/9(H~).  In particular ~E]O(H~). Q.E.D. 

PROPOSlTIO~r 3.3. (i) 9~ is a two-sided module over ~llo. 

(if) m is a two-sided module over ~o.  

(iii) 9~ 0 is a two-sided ideal o/ 711o. 

Proo/. (i) 9X and ~v//0 are both *-algebras, so it suffices to prove that  77/09~ c 9~. Since 

moreover 9~ = 11" N 1t and 1t is a left ideal, i t  is enough to show that  if h E ://10 and x Eg~ then 

hx~rt*. Now r](9/) is a full left Hilbert algebra and therefore xE11* if and only if 

r/(x) e ~(A�89 and 

By Lemma 3.2 the function ~e->A~(x) belongs to ~4( - �89 ~<Im a~<0, ~); and since hE ~ 0  

there is an analytic extension aa(h ) of the function te->~t(h ). With a = t + i s  we have 

II  (h) II = II ,o .(h)I1 = II .(h)ll 

which shows that  a~(h) is bounded on the strip {-�89 Consider now the 

function 
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Since the map: (h, ~)~-~h~ from ~ • ~ to ~ is norm continuous the above function belongs 

to ~ ( - � 8 9  ~ 0 ,  ~). On the real line its values are 

~(h) A"~(x) = A"h~(x) = A'~(hx). 

By L e m m a  3.2 this implies tha t  ~(hx)E~)(Ai) and therefore hxEll*. 

(ii) I f  h E ~ 0  and x ~ 11t then assuming, as we may,  tha t  x i>0 we have xt E 9~ and thus  

from (i) 
h x  = (hx~) x~ ~ ?I ~ = m .  

(iii) Follows immediately from (i). Q.E.D. 

L~MMA 3.4. 1] h E M  such that h m c m  and m h c m  then /or each pair x, y in 

9~ o there is an analytic/unction / which is bounded on each horizontal strip and such that 

/(t) =qD(at(h)xy*) and ](t +i) =9(xy*a~(h)). 

Proo/. Define an analytic function / by 

/(~) = ( h A - ~ ( x )  l A-~+~(y)) .  (**) 
We then calculate 

/(t) = (hA-U~(x) l A-~t+~(y) ) = (A-"at(h)~(x) ] A-'~ + l~(y) ) 

= (A~(~t(h) x)lAi~(y)) = (S~(y)]S~(adh)x)) = q~(adh) xy*); 

/(t + i) = (hA-~t+~(x) l A - ~ ( y )  ) = (Ai~(x) ] A*at(h*)~(y)) 

= (S~(at(h*)y)]S~(x)) =q~(xy*a~(h)). Q.E.D. 

L w ~ A  3.5. I / h ~  ]~1o and z~11t then the/unction [: ~->q~(aa(h)z ) is analytic, and it is 

bounded on each horizontal strip. Moreover, 

/ ( t )=?(at(h)z)  and / ( t§  

Proo/. We may  assume tha t  z = xy* with x and y in 9.1, since m is linearly spanned by  

such elements. The argument in Proposition 3.3 showed tha t  the function a~->a~(h)A~(x) 

belongs to A ( - � 8 9  ~<0 ,  ~). This function coincides with the function ~e->A~%?(hx) 

on the real line, and therefore on the whole strip. I t  follows tha t  

A~(hx) = ~ _ . # )  A~(z). 

Using this with a~(h) instead of h we get 

A~aAh)~(x) = o',~_~ (h) A~(x). 
Now we can calculate 
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](~) = ~((~ (h) xy*) = (S~(y) IS(~ (h)~(x)) -~ (Aia~ (h)~(x)l Ai~(y))  = (a~_~,~ (h) Ai ~(x) l Ai~(y)).  

I t  is clear from this expression tha t  / is analytic and tha t  it is bounded on horizontal 

strips. Moreover, 

= (At~](x) lAia~(h*)~7(y)) = (S~(a~(h*)y ) lS~(x ) )  =q~(xy*(~(h)).  Q.E.D. 

T~EOREM 3.6. For h in ~ the /ollowing conditions are equivalent: 

(i) ~t(h)-~ h /or all real t; 

(ii) hm~n~,  m h ~ m  and q~(hz)=r /or all z in in. 

Proo/. ( i )~ (ii): The constant function a:~(h)=h is analytic so tha t  h E ~0 .  Therefore h 

is a two-sided multiplier of lit by  Proposition 3.3, and for each z in m there is by  Lemma 

3.5 an analytic function / such tha t  

/(t) = qJ(at(h)z) = qJ(hz) and / ( t §  = q~(z(It(h)) = qJ(zh). 

Since / is constant on the real line, it is constant everywhere. Thus q~(hz)=q~(zh). 

(ii) ~ (i): Take x and y in 9~ 0. Then by  Lemma 3.4 there is an analytic function / such tha t  

/(t) = q~(a~(h) xy*) = ~(xy* a~(h) ) =l( t  + i). 

Since / is bounded on horizontal strips and periodic in vertical direction it must  be 

bounded. By Liouville's theorem / is constant. Thus qJ(a,(h)xy*)=q~(hxy*) for all x and y 

in 9~ 0. Pu t  k = a t ( h ) - h .  Then k satisfies the same assumptions and ~f(k~cy*)=0 for all x and 

y in ~o. Using formula (**) from the proof of Lemma 3.4 with a = 0  we get (k~(x) lA~(y)) =0 

for all x and y in 9~ 0. But  ~(9~0) and A~(9~o) are both dense in ~ and therefore k = 0 .  

Q,E.D. 

The elements satisfying Theorem 3.6 constitute the fixed-point algebra of Z, denoted by  

~ .  I t  is clearly a yon Neumann subalgebra of ~ ,  and can also be defined as the set of 

elements in ~ tha t  commute with A. In  particular, the center ~ of ~ is contained in ~ z .  

The restriction of ~ to ~ z  is a trace but  need not be semi-finite. In  fact the restriction 

is semi-finite if and only if there is a normal projection of ~ onto ~ z  leaving ~ invariant  

[3; Proposition 4.3]. For suehs t r i c t l y  semi-]inite weights the Radon-Nikodym problem 

reduces to the corresponding problem for traces by projecting m onto m N ~ z .  In  

order to t reat  the more general case we shall instead make use of the fact tha t  ~ z  consists 

of two-sided multipliers of m. 
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4. Derived weights 

Let as before V be a faithful, normal, semi-finite weight on ~ .  For each h in ~ +  

define ~(h')  on ~ +  by q~(hx)-~q~(h~xh~). 

PROPOSlTIOI~ 4.1. The ma/p h~-->cp(h.) is a/line and order.preserving ]rom ~ +  into 

the set o/E-invariant  normal semi-/inite weights on ~ .  

Proo/. I t  is clear that  each ~(h.) is a E-invariant normal weight on ~ .  By Proposi- 

tion 3.3 the weight ~(h. ) is finite on m, and therefore semi-finite. 

If  h and k are in ~ +  then there are elements u and v in the unit ball of ~ such that  

h~ = u(h + Ic)~' and k t = v(h + k) t 

(in fact u = lim h�89 + k + s)-�89 If  ~((h +/c) x) < c~ for some x in ~ +  then y = (h + k)�89 + k) �89 Em. 

I t  follows from Proposition 3.3, that  uyu* and vyv* belong to ~;  which shows that  

q~(hx) < ~ and ef(kx) < ~ .  Moreover, 

cf(hx) + cf( kx) = cf(uyu* + vyv*) = cf( (u*u +v'v)y)  = q~(y) = ~f( ( h + k)x) 

since u*u +v*v is the range projection of h + k. Now 

(h + k) ~x(h + k)~ = lira (h + k + ~)-�89 (h + k) x(h + k) (h + k + e) -~ 
8 

~< lim (h + k + s) -�89 2(hxh + ]r162 (h + ]c + s) -~ 
$ 

= 2(u*h~xh~u + v*k~xk~v). 

This shows that  if cp(hx) < c~ and q~(kx) < ~ then r + k) x) < ~ .  Thus ~0((h + k)-) = 

~(h.) +~(~.). 
If  h~</c then lr  with h' in ~+~; hence ~(h.)~<T(k-) from the preceding. Q.E.D. 

For our purposes we shall also need weights which are derived from unbounded 

operators. We first introduce some terminology. If  h and /c are seff-adjoint positive 

operators on ~ and e > 0 we put h~ = h(1 + eh) -1. We write h ~/c if h~ ~< k~ for some (and hence 

any) s >0. This is equivalent to the two conditions 

]0(ht)=~0(k t) and [[h�89 < IIk  [l  

for each ~ in ~(k�89 We say that  a net {h~} of self-adjoint positive operators increases to 

the self-adjoint operator h, and write h~Ah if h~Zh~. Thus h~/~h when s ~ 0 .  

Not let h be a self-adjoint, positive operator affiliated with ~ z .  Then h~ ~ ~ '  for 

each e >0.  We define ~(h. ) as the limit of the increasing set of normal semi-finite weights 

{~(h~-)}. 
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Paoros~Tm~ 4.2. The map h~-->~(h. ) is order-preserving and normal/rom the se$ o/sel/- 

ad]oint positive operators a//iliated with ~ into the set o/ ]E-invariant normal semi-/inite 

weights on 71l. 

Proo/. Since ~(h.) is the supremum of Z-invariant normal weights it is itself 

Z-invariant and normal. Let  e~ be the spectral projection of h corresponding to [0, n]. 

The set U e~me~ is contained in m by Proposition 3.3 and dense in ~/; and ~(h. ) is finite 

on this set by Proposition 4.1 since h e ~  ~l  ~. Thus ~(h. ) is semi-finite. 

If h ~</c with h and k affiliated with ~/~ then he--<ke and it follows from Proposition 

4.1 and the definition of ~(h-) tha t  ~(h.)~<~(k.). 

Suppose now that  h~s h with h~ and h affiliated with ~/~. Then from the above the 

net {~(h~.)} increases to a normal weight V <~(h.  ), However, ~ is ~-we~kly lower semi- 

continuous and h~e/z he so that  

~(hx)  = lira q~(h~x) <~ lira lim qg(h~x) <<, lira q~(h~x) = y~(x). 
e a ~ 

Thus q~(h,)s qo(h. ). Q.E.D. 

PROPOSITION 4.3. (The chain rule.) Suppose h and k are commuting sel[-ad]oint 

positive operators a//iliated with ~r~. Put v 2 =~(h. ). Then ~f(k. ) =~(h. k. ), where h. k denotes 

the closed operator obtained/rom hlc. 

Proo/. If x En~ and (~ >0  then 

8 

using the fact that  h,k~ <~ cS-lhe. Thus k~ x E ~ .  I t  follows that  k~m~ "-m v and m~k~ ~ m v. 

If z E mr then 
~(k~z) = lira q;(h~k#zh~) = lim q~(h~ zlc~h~) = ~(zko). 

8 

From Theorem 3.6 we conclude that  k is affiliated with the fixed-point algebra of the modu- 

lar automorphism group of ~f. Thus y)(k. ) is well defined. 

The net {heka} increases to h,/~. Therefore 

~(h.kx) = lim ~(hsk~x) <~ lim ~o(]c~x) = ~(kx) 

by Proposition 4.2. On the other hand 

~p(kx) = lira ~p(kox) = lira lira ~(h~k~x) <~ q~(h. kx). 

Thus ~(k.)=~0(h.k.) .  Q.E.D. 
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L ~ A  4.4. Let h be an invertible positive element in ~tl r~ and take x in 9/0 and y in 9/. 

Then the analyt ic/unct ion / given by 

/(~r = (ht'+aAt~+~(x) iSh- t~(y ) )  

satis/ies the boundary conditions 

](t)=~(hhUat(x)h-~ty) and ](t+i)=q~(hyh"at(x)h-'t) .  

Proo]. By straightforward computations we get 

fit) = (h~t+~A ~t+rq(x) l Sh-U~(y) ) = (&h ~t+aA "~(x) i A-~Jh-U~(y) ) 

= (h-'t~(y) lSh't+~AU~(x)) = 9(hh't(~t(x)h-'ty); 

](t + i) = (h "A %l(x) l Sh-~t+X~(y) ) = 9(h-~thyh %~t(x) ) = q~(hyh ~t at(x)h-"). Q.E.D. 

LEMMA 4.5. Let h be an invertible positive element in ~ x  and put  ~=q~(h.). Then the 

modular automorphism group {art} o/~o is given by (~vt (x)=h"(rt(x)h -u.  

Proo/. By Proposition 3.3 we have 

m r = h - t m h - t c  m and m = h-~himhih -~C m~,. 

Thus m v = m  and 9/v =9/. If  x and y are elements of 9 / le t  {xn) be a sequence in 9/o such 

that  ~(Xn)'+~(x) and S~l(x,~)-+S~(x), i.e. ~(x*)-+~(x*). Then from Lemma 4.4 we have a se- 

quence {/n} of analytic functions such that  

/,~(t) = q~(hh'tat(x,~) h LUy) = (~(h-UyMth ) I v(at(x *) ) ), 

/ . i f+ i )  =qJ(hyh ~ta,(x.) h -~) = (V(at(x.) ) l ~(h-"y*h "h ) ). 

From these expressions it follows that  {/n} converges uniformly on the lines {Im ~ = 0} 

and {Ira a = l } ,  since ~(z)e+~/(at(z)) and ~(z)v-->~(h-itzh u) are both unitary transformations 

in ~, By the Phragmen-LindelSf theorem the functions converge uniformly on the 

strip to a function / in ~4(0~<Im a~<l) such that  

/(t) = q~(hh~tat(x ) h-'ty) and /(t +i)  = q~(hyhUat(x) h-U). 

Thus ~o satisfies the K_MS condition with respect to the group {h~tqt(.)h-U }. From the 

unicity of the modular automorphism group it follows that  a~(.)=Mtat(.)h:-~t. Q.E.D. 

THEOR]~M 4.6. Let h be a sel/.ad]oint positive operator a//iliated with ~ and put  

yJ=qJ(h.). Then the modular automorphism group {a~} o/~o is given by a~(x)=hU(rt(x)h -it. 
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Proo/. Let  e~ denote the spectral projection of h corresponding to [n -1, n]. Then 

~p(en" ) = q~(hen" ) by Proposition 4.3. Restricting to the yon Neumann algebra e~TI~e n we see 

that  ~(en') is faithful normal and semi-finite with modular automorphism group Z (since 

~t(e~) =e~). By Lemma 4.5 we get a~(x)=(he~)~tat(x)(he~)-U=h~t(~t(x)h-U for x in e~ ~ e  n. 

Now ~p is faithful only on [hi ~l[h], where [h] means the range projection of h; hence its 

modular group is only well-defined on this yon Neumann algebra. But  aT(" )=h~tat( �9 )h -i~ 

on U en~en,  which is a-weakly dense in [h] ~[h] .  Therefore a~(.)=h~tat(.)h-~ on 

[hi ~[h] .  Q.E.D. 

COROLLARY 4.7. I /  h is a sel/-adjoint positive operator a//iliated with the center 

o~ ~ then the weight cf(h.) satis/ies the KMS condition with respect to Y. 

5. Radon-Nikodym derivatives 

Let as before ~ be a faithful normal semi-finite weight on ~ .  In this paragraph we 

characterize the weights which can be written in the form ~v(h" ). 

LEMMA 5.1.1/~fl is a Z-invariant normal semi-finite weight then its support is contained 

in ~ .  I/ ,  moreover, ~v satisfies the KMS condition with respect to Y~ then its support is in ~. 

Proo/. The orthogonal complement of the support of yJ is the largest projection p such 

that  ~0(p)=0, If ~ is Z-invariant then ~0(a~(p))=0; hence a~(p)~<p. I t  follows that  p E ~ z .  

If, moreover, y~ satisfies the KMS condition with respect to Y, then for x in 9~v there is an 

analytic function / such that  

/(t)  = ~(a~(xp)px*)  = ~(a~(x)px*) ,  

/ ( t  + i)  = ~v(px*at(xp)  ) = W(px*at (x )  p )  = 0; 

since xp and px* belong to 9X~ by Proposition 3.3. I t  follows t h a t / = 0 ;  hence xpx*EpTllp 

for all x in ~v and pEE .  Q.E.D. 

LE~MA 5.2. Let y~ be a Z-invariant normal semi-]inite weight on ~ .  I] there exists a 

weakly dense *-subalgebra B in 1~, invariant under Y~, such that q~ =v 2 on B then y ) ~ ,  and 

is/aith/ul. I/,  moreover, y~ satis/ies the KMS condition with respect to ~ then q~ =~fl. 

Proo/. If x and y are in B then cp(x. y) and ~(x. y) are two normal functionals on 

which agree on B, since B is an algebra. Therefore ~(x.  y)=yJ(x, y). 

5 - -  732904 Acta math~nativa 130. I m p r i m 6  le 30 J a n v i e r  1973, 
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Since B is a dense *.algebra there is an increasing net {u~} in B+ such that  u~/z 1. Pu t  

= = - � 8 9  ( - d~. 

Since B is invariant under E we have 

for all s and t and each x in ~l. I t  follows from Lemma 3.1, by the polarization identity, 

tha t  cy(h~xh~)=F(hzxh~). 

Each h~ is an analytic element with 

For each vector ~ in ~ the function /~: t~-->llat(1-u~)~]] is continuous, and the net  

{/~} decreases pointwise to 0. By  Dini's theorem 1 ~ 0  uniformly on compact sets. I t  

follows that  

< =- fl exp ( - ( t -  a)~)] Hat(1 - u~) ~]] dt 

= ~-~ exp (Ira ~)~fexp - (t-- Re ~)~ Ila,(1- u~) ~11 d r \ 0 ,  

so that  (a~(h~)} converges strongly (and bounded) to 1 for every ~. In  particular h~71 .  

T a k e  now x in In+. Using the a-weak lower semi-continuity of ~ and the analyticity of 

hA we get 

~(x) ~< lira ~(hzxhz) = lira cy(hzxhz) = lim II~l(x�89 ~ = lim IIShzSv(x~)l[~ 

= lira II JAihz A-tJ~(x�89 = lim [[a_~,~(h~) J~(x~)ll = 

Thus yJ ~<~. 

Let  1 - q  denote the support of ~p and take x in rrt+ with x ~<q. Then, using the formula 

hxh <2((1 -h )x(1  - h )  +x) we h a v e  
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~(x) ~< lira q~(hzxh~) = lira ~p(h~xh~) ~< 2 lira F((1 -h~)x(1 -h~))  

< 2 lira ~((1 -hz)x(1  -hz ) )  = 2 lira H~/(x�89 -hz))H ~ 

-- 2 lira HS(1 -h~)S~(x�89 ~ = 2 lira ll(1 -a_,~(h~))~(x�89 ~ = o. 

Since q ~ j ~ z  we have qu~q=O from the above. I t  follows tha t  q = 0  so tha t  ~ is faithful. 

Assume now tha t  ~0 also satisfies the KMS condition with respect to E. We can then 

interchange the rSle of ~ and y~ in the preceding argument  to obtain ~ < ~ .  Thus ~ =F.  

Q.E.D. 

LEMM~ 5.3. I /  ~f is a Y~-invariant normal semi-finite weight on ~J~ that satisfies the 

K M S  condition with respect to E then ~ +~p is semi-finite and satis/ies the KMS condition 

with respect to F~. 

Proof. The sets ~0N m and ~ o N  my of analytic elements for X in m and my, 

respectively, are both a-weakly dense in ~ by  the remarks in the beginning of w 3. 

Therefore the set of products ( ~ 0  fl m ) ( ~ 0 n  my) is a-weakly dense in ~ .  However, this 

set is contained in both m and my by  Proposition 3.3 (ii). Thus m N my is a-weakly dense 

in 77l and c f+~  is semi-finite. Since aY-a~+Y-at- t - ~ it is immediate tha t  ~0+~ satisfies the 

KMS condition with respect to Z. Q.E.D. 

TI~EOREM 5.4. I f  ~f is a Z-invariant  normal semi-finite weight that satisfies the KMS 

condition with respect to ~ then there is a unique self-ad]oint positive operator h affiliated 

with Z such that ~ =~(h.  ). 

Proof. Since the support  q of ~0 belongs to Z and since the modular automorphism 

group of ~(q-) is the restriction of X to q)~ we may  assume that  ~ is faithful. 

Consider first the case ~o~<~. Then there is a unique element h in ~ '  with 0~<h~<l 

such tha t  F(y*x) = (h~(x)I~)(y)) for all x and y in 9~. Since ~f is E-invariant  we have 

(h~(x) I ~(Y) ) = ~f(y*x) = yJ(at(y*x) ) = (h~(at(x) ) I~](gt(y) ) ) = (hA ~t~(x) ] A ~ ( y )  ). 

Thus h commutes with A*t for all t, and h A c A h .  Now take x and y in ~o. Since 9~0c 9~c 9~ Y 

there is a function / in ~4(0~Im ~<1)  such tha t  

/(t) = yJ(at(x)y) = (h~(y) [ S A  ~t~(x) ) = (~(y) i hSA  ~t~(x) ); 

/ ( t  + i) = w ( y ~ ( x )  ) = (hA '~(x)[ @(y))., 

But ~(x) is analytic and therefore / (~  + i ) =  ( h ~ ( x )  lS~(y)) for all~c~. Using this formula 

we get 
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/ ( t )  = (hA 'Ct-') ~(x) l h-�89 ) = ( A-~hA~,~+"~(x) I J r ( y ) )  

= (hAi+U~(x) lJ~(y)) = (~(y) lJhgSA"~(x)). 

Since ~(~I0) is dense in ~ wehave JhJ=h.  As J h J ~  we conclude that  h ~ .  The two 

functionals ~o and p(h.) coincide on a dense subalgebra ~ and both satisfy the KMS 

condition with respect to Z, Therefore ~0 =q~(h.) by Lemma 5.2. 

In the general case put  ~ =~  +v 2. By Lemma 5.3 ~ is semi-finite and satisfies the KMS 

condition with respect to Z. From the first part  of the proof we have non-singular operators 

h and k in E+ such that  ~=v(h . )  and ~=v(]c.). Since ~ + ~ = ~  we have h + k = l .  From 

Proposition 4.3 we conclude that  

~ ( h - ~ k . ) = v ( k . ) = W ;  

where h-lk is a self-adjoint positive operator affiliated with Z. Q.E.D. 

THEORV,~ 5.5. Let G be a group o/automorphisms o / ~  that leaves ~ fixed (pointwise). 

Then G and ~ commute i /and only i] there is a homomorphism g~->hg o/G into the multiplica. 

rive group o] non-singular 8el/-ad]oint positive operators aHiliated with ~ such that 

q~(g( . )) = ~(ha. ). 

Proo/. For each g in (7 the weight ~0(g(.)) is faithful normal and semi-finite; and the 

elements of its modular automorphism group are of the form g-loatog. If therefore G and 

commute then ~(g(-)) satisfies the KMS condition with respect to E. By Theorem 5.4 

there is a unique non-singular self-adjoint positive operator h a affiliated with ~ such 

that  ~(g(. ))=q~(h a. ). Since G leaves ~ fixed we have 

~ ( h a g , . )  = q ( g g ' ( - ) )  = q ( h d ( - ) )  = q ( g ' ( h a  �9 )) = ~ ( h a , - h g "  ), 

so tha t  hgg, = hg. hg,. 

Conversely, assume that  a homomorphism g~->hg 

consider the group with elements a~ =g-Xoqtog. Then 

exists, and for fixed g in G 

~(a ;  (x)) = ~ ( h ;  1 as (g(x))) = ~ ( h ; l g ( x ) )  = ~(x)  

so tha t  ~ is invariant under {a~}. Let  e~ be the spectral projection of hg corresponding to 

In -1, n] and take x and y in 9~. Then g(e~x) E 9~, g(e~y) fi 9~ and h~lg(e~x) e 9~ since hge~ and 

h~len are both bounded. There is therefore a funct ion/n in A(0~<Im ~r such tha t  

/ n  (t) = ~(O'~ ( h g  1 eng(x) ) g(e~y) ) = q~(h~l e~ as (g(x) ) g(y) ) 

-~ ef(g -1 (e,,at (g(x)) g(y))) = p(%a~ (x) y); 
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/ ,  (t § i) = q~(g(e,y) at (h'~ 1 eng(x))) = (p(hg leng(y) at (g(x))) 

= qg(g-l(eng(y) (~t (g(x)))) = q)(enya~ (x)). 

When n - ~  the functions /~ converge uniformly on ( I ra  :r and {Ira a = l } .  By the 

Phragmen-LindelSf theorem there is therefore a function / in A ( 0 ~ I m  cr such tha t  

/(t) = ~(a~ (x) y) and /(t + i) = qa(ya~ (x) ). 

Thus ~ satisfies the KMS condition with respect to {a~}, and therefore a~ =a t  for allt. Q.E.D. 

COROLLARY 5.6. I /  y~ is a Z-invariant /aith/ul normal semi-finite weight on ~ then 

the modular groups Z v and Z commute. 

P R o r 0 s ~ T I 0 N 5.7. Let G be a strongly continuous one-parameter group o/automorphism8 

o/ ~ that leaves E fixed and commutes with ~,. There is then a unique non-singular sel/- 

adjoint positive operator h a/filiated with ~ such that ~(g,(. ) )=~(h s. ) /or all s. 

Proo/. By Theorem 5.5 ~0(gs(-))=~(h~.). Pu t  h = h  1. Then hs=h  ~ for every dyadic 

rational number  s. Let  en be the spectral projection of h corresponding to [n -I,  n]. Then 

for each x in 9~ the function 

sF->~( h Se~x*x) = (h ~en~(x) I ~(x) ) 

is continuous and bounded; whereas the function 

s ~-> q~(h 8 e~ x 'x)  = cp(g~(e, x ' x ) )  = (hse ~ ~ (x) ] ~ (x)) 

is lower semi-continuous, since ~ is a-weakly lower semi-continuous. We have 

((hse~ -h~e~) ~(x)I~(x)) 4 0  on a dense set and therefore for all s. Since this holds for each x 

in 9~ we conclude tha t  hse n <~hSen. But then s~->h~e~(h~e~)-len is a one-parameter group of 

positive operators with norm less than  or equal to one. The only such group is the constant 

one and therefore h~en=h~en for all s. Since enS  1 we get hs=h  ~. Q.E.D. 

LEM~A 5.8. Let y~ be a /aith/ul normal semi-finite weight on ~ with modular auto- 

morphism group Z v. I /  Z and Z v  commute then y~ is Z-invariant provided that y~ <~q~ or 

This is a special case of Theorem 6.6. 

Proo/. By Proposition 5.7 we have y~(at(. )) =~p(h ~. ) where h is affiliated with E. I f  e~ is 

the spectral projection of h corresponding to [1 § ~ [  then for x>~0 we have 

~p(e~at(x)) = ~p(h~e~x) >1 (1 +~)t~p(e~x) (*) 
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for t >~ 0. Suppose tha t  yJ ~< q~ and x Em. Then from (*) we have q~(e~x)~ (1 + s)tyJ(ee x) for all 

t > 0 .  Therefore ~v(e~x)=0, so tha t  e~x=O for all x in m. Hence e~=0 for all s > 0  which 

implies tha t  h <~ 1. 

Suppose instead tha t  ~ ~<~v and take x in mr.  Exchanging x with a_t(x) in (*) yields 

"q)(eex ) >~ (1-{-e)tg~(eex) for all t >0.  As before this implies tha t  h<~ 1. 

Similar arguments apply to show tha t  the spectral projection of h corresponding to 

[0,1 - e[ is zero. The conclusion is tha t  in both cases ~ <~F and ~v ~<~ we have h = 1. Q.E.D. 

PRO:POSITIOI~ 5.9. I /  yJ is a E.invariant normal semi-/inite weight on ~ which is 

equal to q; on a (r-weakly dense Y,.invariant *-subalgebra o/ m then ~=q;. 

Pro@ From Lemma 5.2 we know tha t  y ;<q  and tha t  ~f is faithful. Therefore q is 

Ew-invariant by  Lemma 5.8. The elements x in ~ +  such tha t  F(x)=~f(x)< co form the 

positive par t  of a hereditary *-subalgebra of ~ (since y; ~< q) which is E~-invariant and 

a-weakly dense. We can therefore use Lemma 5.2 again, interchanging q~ and yJ, to obtain 

~<yJ. Q.E.D. 

P~OI 'OSITION 5.10. Let ~ be a ]aithful normal semi-/inite weight on ~ with modular 

automorphism group E~. I[ E and E~ commute then cf +~ is semi-/inite. 

Proo/. I f  k is an analytic element for Y~ then as~(k) is analytic for E and aa(ay(k))= 

ay(a~(k)). I t  follows tha t  for each x in ~ and ~ > 0  the element 

h r = ~ z c l f f e x p  ( - y(t 2 + s~)) atoa~ (x) dt cls 

is analytic for both E and E ~. Moreover, the elements {hT} tend (r-weakly to x when 

By Proposition 5.7 we have ~f(at('))=~f(h t ' )  where h is affiliated with ~. Let  e n be 

the spectral projection of h corresponding to [0, n]. With x in i~T~, x>~0, and h7 defined as 

above we get 

= e x p  dt dt 

f f exp y)(h tenx ) dt 

< r+=-, fexp ( -  rt ntF(x) dt< ~ .  

I t  follows tha t  the set ~ N  :~tloNmv is (r-weakly dense in ~ ,  since hven--~x when 
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(7, n)-> 0% B y  a symmetric argument 7//o f3 ~/~ N m is a-weakly dense in ~/. Therefore 

the product of these sets form-a dense set in ~ .  But 

( ~  n ~0 n m) (~0 n ~ n m) ~ m~ n 

by Proposition 3.3. Thus ~ +~v is semi-finite. Q.E.D' 

We see from Theorem 5.5 that  if ~ is a normal semi-finite weight which is E-invariant 

then the modular automorphism group E ~ Of ~v commutes with E. If, conversely, E ~ and 

E commute then ~v is E-invariant under fairly mild extra conditions (see Proposition 6.1, 

Corollary 6.4 and Theorem 6.6). However, the fact that  ~ and E commute does not in gen- 

eral imply that  ~p is E-invariant, even though it  is sufficient to ensure/that ~ +~v is semi- 

finite (Proposition 5.i0). The point is that  the modular automorphism group of ~ +~v need 

not commute with E. 

PROPOSITIO~ 5.11: There exists a pair  qo and ~v o/ /aith/ul 'normal semi-finite weights 

with modular automorphism groups E and y~v, such that ~ and E v' commute but y~ is not 

E-invariant.  

Proo/. Let 7T~ = B(L~(R)) and take P and Q as the canonical pair in the commutation 

relations; i . e .  
P ~ ( 7 ) = 7 ~ ( r )  and Q~(7)=- i~ '@) .  

With h = exp P and k = exp Q we define two non-singular self-adjoint positive operators 

(affiliated with ~ )  such that  h ~ t ~ ( ~ ) = e ~ ( ~ )  and k~S~(7)=~@+s). Thus h~tk~S=e-~k~h it. 

Since the trace Tr is a faithful normal semi-finite weight with trivial modular auto- 

morphism group we get two faithful normal semi-finite weights by  defining ~v = T r  (h.) 

and ~ = T r  (k.). (Proposition 4.2.) The modular automorphism groups of ~v and ~ are given 

by Theorem 4.6 and we have 

a~ oat(x) = k~h ~txh-~tk - ~  = e ~ h  Uk~Sxk-~Sh-% -~s~ =:- atOa~s (X). 

Thus • and ~v commute; but  

~v(at(x)) = Tr (kh~txh -it) = e t Tr  (kx) = et~v(x), 

so that  ~v is not E,invariant. Q.E.D:  

We shall now prove our main result. 

THeOReM 5.I2. _// ~V is a E-invariant normal semi-finite weight on 7~ then there is a 

unique sel/.ad]oint positive operator h affiliated with 7~ z such that ~p =~(h.  ). 
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Proo]. Assume first tha t  y~ ~<~. There is then a unique operator h' in ~ '  with 0 ~<h' ~< 1 

such tha t  ~p(x*x)= IIh'~(x)ll ~ for each x in 9~. Since ~ is Z-invariant  we have A-'~h'A~=h' 

for all t, so tha t  h 'A~Ah ' .  Pu t  h=Jh ' J .  Then h E ~  r~ and 

= IIv( h')ll ' = II,Sh'S' ( )II" 

Thus ~(h.) and V coincide on m, and therefore ~(h. ) = v / b y  Proposition 5.9, 

In  the general ease put  ~=q9 § By Proposition 5.10 v is semi.finite; and clearly 

is Z-invariant.  By  Theorem 5.5 and Lemma 5.8 we conclude tha t  ~ is Z~-invariant. There- 

fore y~ is also ~- invar ian t .  From the first par t  of the proof we get h and ]c in ~ such 

tha t  q 0 ~ ( h . )  and ~=~(]c.).  Since ~ is faithful, h is non-singular, and since ~0+~=T we 

have h +]c = 1. By  Theorem 4.6 we have a~(x)=h~ta~(x)h-~ which shows tha t  h E ~ .  Thus 

k E ~ as well. Using the chain rule (Proposition 4.3) we finally get 

~ ( h - l ~  . ) = ~ ( k .  ) = % 

where h-lk is a self-adjoint positive operator affiliated with ~ .  Q.E.D. 

COROT.LARY 5.13. I/~fl is a Z-invariant /aith/ul normal semi-finite weight on ~ with 

modular automorphism group Z ~ then q) is ZV-invariant. 

6. Applications to automorphism groups 

Let  G be a group of automorphisms of a yon 1Neumann algebra ~ tha t  leaves the 

center ~ fixed; and let ~ be a faithful normal semi-finite weight on ~ .  In  this section 

we apply the Radon-Nikodym theorem to the problem, already touched in Lemma 5.8, 

of finding conditions under which V is G-invariant. 

From Theorem 5.5 we see tha t  a necessary condition for G-invariance of V is tha t  G 

and Z commute. I f  V is finite this condition is also sufficient by  [10; Theorem 1.1]. For  com. 

pleteness we include here a short proof of this result. 

PROPOSITION 6.1. I/q~ is a/aith/ul  normal/inite weight on ~ and G is a group el 

automorphisms o~ 711 tha~ leaves ~ fixed and commutes with Z then ~ is G.invariant. 

Proo]. By Theorem 5.5 we have ~0(g(.))=~(hg.) where hg is affiliated with E. Let  

e~ be the spectral proiection of h a corresponding to [1 §163 oo[. Then 

IIq ll/> == >I (1 + e)"  
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This implies tha t  e~=0 for all e > 0  so tha t  hg~<l. Since the map g-+h a is a homomorphism 

we have h~=l for all g in G. Q.E.D. 

An automorphism g of ~ is said to be a-weakly recurrent if for each x in ~ and 

e > 0 and each finite set {cok} of normal states there are infinitely many  n such tha t  for all k 

]e%(gn(x)-x)] <e and Icok(g-n(x)-x)] <e. 

T~EOREM 6.2. Let G be a group o/automorphisms o/ ~ that leaves ~ /ixed and com- 

mutes with •. The set G o o/elements in G under which q~ is invariant is a normal subgroup o /G 

such that the quotient group G/G o is abelian. Moreover, G o contains all a-weakly recurrent 

elements/rom G. 

Proo/. If  gv-->hg is the homomorphism of G into the multiplicative group (abelian) of 

non-singular self-adjoint positive operators affiliated with E, given by  Theorem 5.5, then 

G o consists of those elements g for which h a = 1. Therefore G o is a normal subgroup of G and 

G/G o is abelian. 

Let  g be a a-weakly recurrent element of G and let e~ be the spectral projection of 

hg corresponding to [1 -be, c~[. For x in m+ there is then a net (n~} of positive integers such 

tha t  n~-~ ~ and (g- ~ (e~x)} tend a-weakly to e~x. Since ~ is a-weakly lower semi-continuous 

this implies tha t  

qJ(e~x) <~ lira inf q~(g-n~(e~x)) = lim inf q~(h~n~e~x) <~ lira (1 + e)-'~q)(e~x) = O. 

Therefore e~ = 0  for all 8 > 0  so tha t  h a ~< 1. Since g-1 is also a-weakly recurrent we have 

h ~ l < l ;  hence geG o. Q.E.D. 

PROPOSITION 6.3. Let G be a a-weakly continuous topological group o/automorphisms 

o / ~  that leaves ~ /ixed and commutes with Z. Then with G o as in Theorem 6.2 the group G/G o 

contains no non-zero compact subgroups. 

Proo/. I f  G/G o has a non-zero compact subgroup then passing if necessary to a sub- 

group we may  assume tha t  G is generated (topologically) by  an element g such tha t  GIG o 

is compact. Then either there is a sequence (nk} of numbers tending to infinity such tha t  

gn~ ~ ~ (the identi ty automorphism) or there is a neighborhood U of ~ in G such tha t  gn ~ U for 

any n >~ 1. Choosing U symmetric we may  also assume tha t  no negative powers of g belongs 

to U. Since g generates G this implies tha t  (7 is discrete. Then G/G o is discrete and compact; 

hence finite. But  G/G o is isomorphic to (h~} which implies tha t  h a = 1. Therefore the first 

possibility must  occur. But  in tha t  case g is a-weakly recurrent since 

~o(gn~(x))-+co(x) and o~(g-n~(x))->w(x) 

for all co and x. Therefore h g = l  by  Theorem 6.2; a contradiction, Q.E.D. 
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COR~OLLARY 6.4. I] G is a a-weakly continuous compact group o/ automorphisms o] 

that leaves ~ /ixed and commutes with Z then q~ is G-invariant. 

I f  ~ is a semi-finite factor with trace ~ and  if  ~0 is a normal state of ~ which is 

invariant 'under a group G of automorphisms of 7?/then v is G,invariant (see [12] and  [24]). 

The optimal generalization of this result would be tha t  if G is a group of automorphisms of 

which leaves E fixed and commutes with E and if there exists some F~-invariant faithful 

normal semi-finite weight ~f which is G-invariant then the weight ~ is also G-invariant. This 

generalization is valid if one imposes certain integrability Conditions on the Radon- 

Nikodym derivative of ~0 with respect to ~. Otherwise it m a y  be false, as we shall see. 

The appropriate counterexample (Proposition 6.9) and a weaker version of Theorem 

6:6 have been obtained independently by  N. H. Petersen in [20]. 

P~OPOSITION 6.5. Suppose that ~f i s  a F~-invariant normal semi-/inite weight on 

and put ~ =~(h" ) with h a]]iliated with ~ z .  Then the/ollowing conditions ark equiValent: 

(i) ~(x) < ~ implies ~f(x) < ~ /or all x in ~ + ;  

(if) I] em !s the spectral projection o/ h corresponding to the interval[m, ~ [  then 

9~(he,n) < ~  /or large m; 

(iii) ~ =v21 §  with ~1 and y):r normal weights on ~ (E-invariant i/desired) such that 

Y~I is/inite and y% is ma]orized by a multiple o/q~; 

(iv) For each sequence {xn} in ~ with 0 <x~ < 1 such that qJ(xn)~O we have y~(xn)--> O. 

When the above conditions are satisfied we say tha t  F belongs to 0(~). 

Proo/. (i) ~(ii): I f  (if) does not hold then ~(%) = ~ for all m. Otherwise we would have 

F(e~) =~(he~)< ~ for some m by  (i). Therefore with m = 2  n we can find x~ in e~me~ such 

tha t  0 ~< xn ~< 1 and ~(x~) ~> 1. Pu t  x = E 2-nq~(xn)-lXn . Then x E ~ +  and F(x) < c~; but 

w(x~) = ~(hx~) >~ 2~(~), 
so tha t  ~(x)=  ~ ,  a contradiction. 

(if) ~ (iii): Pu t  ~l(x) =q)(he,nX) and ~ ( x )  =~(h(1 -e,n)X). Since ~(h%) < ~ the functional 

~ is finite; and since h(1-era) ~<m we have %0 ~<mq~. 

(iii) z (iv): I f  ?(Xn)-~0 then eo~(Xn)-->O for each normal functional ~o~ majorized by  ~. 

Then with e~ the support  of ~o~, the sequence {e~xne~} tends strongly to zero by  [4; Chap. I,  

w Proposition 4]. But  e ~ f l  as eo~s~; hence (x~} tends strongly to zero. I f  now 

~=~+~0~o then from the above ~ (xn )~0 .  But  also y%(x~)-~0 since y% is majorized by  a 

multiple of ~. Thus ~p(x~)~0. 

(iv) ~(i): I f  ~(x) < ~ then q~(n'~x)-~O. By assumption ~p(n-~x)->O. Therefore ~f(x) < c~. 

This shows that  the  four conditions are equivalent. Q.E.D. 
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TH]~OnSM 6.6. Let cf be a/aith/ul normal semi-/inite weight on ~ and let G be a group o/ 

automorphisms o] "m which leaves ~ /ixed and commutes with ~,. I/ there exists a G-invariant 

and E-invariant normal semi-/inite weight ~p, with central support q, then q)(q.) is also 

G-invariant, provided that there is a set {p~} o/ central Projections with Ep~= 1, such that 

~f(p~.) belongs to O(~(p~')) or q~(p~.) belongs to O(F(p~')) ]or each i. 

Proo/. Restr ic t ing to  p ~ p ~  we m a y  assume t h a t  p~ = 1. F r o m  Theorem 5.5 we have  

~(g(. )) = ~(hg. ) where hg is affil iated with ~ and  f rom Theorem 5.12 ~f = F(h. ) where  h 

is affiliated with  ~ .  Since ~0 is G-invar iant  we get  

cf(h . hox ) = ~f(h~,x) = ~(h~g -~ (x) ) = q~(h �9 h~g -~ (x) ) 

= lim cf(h~h~g -~ (x)) = lira ~v(g -1 (g(h~) h~x)) 

= lim cf(h~q(h~) h~x) = lim cf(g(h~) x), 

where h~=h(l+sh) -1. Defining g (h )= l im  g(h~) and using the  uniqueness of the  Radon-  

l~ikodym der iva t ive  we conclude t h a t  g(h)=h~.h. 

Let  e~ be the  spectral  project ion of hg corresponding to [1 +e,  oo[. We wan t  to show 

t h a t  h% = 0. To fur ther  this  end, let / be a posi t ive bounded  mono tone  increasing funct ion 

on R. Then  
g'~ (/(he~)) =/(gn (he~)) =/(h~. he~) ~ /((1 + s) ~ he~) 

since h g e ~  (1 +e)e~. Thus  

q3(h/(h)) = ~v(/(h)) >Af(](hee)) =~p(gn(/(hee))) ~>y~(/((1 +e)nhee)) =~(h/((1 +e)nhe~)). (*) 

I f  ins tead we take  ] to be monotone  decreasing then  the  analogous calculations yield 

~f(h/(h)) < ~(h/((X +e)"he~)). (**) 

:Now let  ]m be the  characterist ic funct ion (increasing) for the  set  [m, ~ [ .  Then  {/m((1 +e)nhez)} 

increases to  [h]e s when n-~ ~ .  I t  follows f rom (*) t ha t  

of(him(h)) >1 ,p(he~). 

Assuming t h a t  ~ belongs to  O(~v) we have  of(him(h)) < ~ for large m, b y  Proposi t ion 6.5. 

(if), and him(h) \0  so t ha t  q)(h/m(h))',,,0. Therefore he~=O. Assuming ins tead t h a t  ~ belongs 

to O(y~) we take  ]m as the  characteris t ic  funct ion (decreasing) of the  set  ] - c~, m]. Then  

/m((1 + e)~he~) = (1 -e~) + eJA(1  + e)~h). 

Since ~ belongs to 0 (9)  and  ~ =~f(h -1. ) (h mus t  be non-singular) we see f rom Proposi t ion 
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6.5. (ii) tha t  if q~ is the spectral projection of h corresponding to [0, ~] then ~0(qs) < co for a 

small ~ >0.  For fixed m the sequence {~m((1 +e)nh)} decreases to zero and/m((1 +e)nh) <~qa 
for m ( l + e ) - n ~ 8 .  Using (**) with T(e~.) instead of q0 we get 

qD(heJm(h)) < ~(heJA(1 +e)"h)) '~  0. 

Thus hedm(h ) = 0 for all m which implies tha t  hee = O. 

Let  q be the central support  of ~. Then q is the smallest central projection for which 

(1 -q )h=O.  From the first par t  of the proof we see tha t  qe~=O for all e>0 .  Therefore 

hgq<q. Multiplying this inequality with h~ 1 we get q<~h~lq. Since these inequalities are 

valid for all g in G we conclude tha t  hgq=q, so tha t  ~(q.) is G-invariant. Q.E.D. 

COROLLARY 6.7. I /  ~ is a semi-/inite /actor and G is a group el automorphisms o/ 

which admits some G-invariant normal state then the trace on ~ is G.invariant. 

The next  result generalizes a theorem due to N. Hugenholtz and E. Stormer (see 

[12] and [24]). 

PROrOS~TXO~ 6.8. Let G be a group o/automorphisms o/a/actor ~ and suppose that 

G admits one and only one G-invariant normal state w on ~ .  I/Y~ is a strongly continuous 

one.parameter group el automorphism8 el ~ which commutes with G then either eo satisfies the 

KMS condition with respect to Z or else no non-zero normal weight on ~ satis/ies the KMS 

condition with respect to Z. 

Proo/. Since G and Z commute each state of the form coopt is G-invariant. By  the 

assumption on G this implies tha t  oJ oat = eo for all t, i.e. a~ is •-invariant. I f  ~o is a non-zero 

normal semi-finite weight on ~ which satisfies the K_MS condition with respect to Z 

then ~ is faithful since its support  belongs to ~ by  Lemma 5.1 and ~ is a factor. Therefore 

~o=~(h.) by  Theorem 5.12. Since ~o is finite it  belongs to 0(~0) and therefore the G- 

invariance of r implies the G-invariance of ~ by  Theorem 6.6. The uniqueness of the 

Radon-Nikodym derivative implies that  g(h)=h for each g in G. I f  h is not a scalar 

multiple of 1 then h(1 +h) -1 is not a scalar multiple of h. Put  k =~h(1 +h) -z for a suitable 

~ > 0  such tha t  ~v(k)=1. Then a ) '=~(k . )  is a normal state on ~ which is different from 

(o; but  co' is G-invariant since both ~0 and k are G-invariant, a contradiction. Thus h is a 

scalar multiple of 1 so tha t  eo satisfies the KMS condition with respect to Z. Q.E.D. 

I f  one drops the assumption in Corollary 6.7 tha t  the G-invariant functional is finite 

(or is O of the trace) then the trace need no longer be G-invariant, as the following 

example shows. 
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PROPOSITIO~ 6.9. There exists a /actor ~ o/ type II~o and a group G o/ auto. 

morphisms o/ ~ such that the trace on ~ is not G-invariant, but there is a G-invariant 

/aith/ul normal semi-/inite weight on ~l~. 

Proo/. Let  7/~ be a factor of type I I~  constructed in [4; pp. 130-136]. The Hflbert 

space ~ on which ~ acts consists of the square integrable functions ~(y, s) on R • Q, with 

Lebesgue measure X on R and the "counting" measure on the set Q of rational numbers in It. 

For each / in L~O(R) define 7e(/) on ~ by (zr(/)~)(y, s)=/(y)~(y,  s). For each t in ~ define 

u(t) on ~ by (u(t)~) (y, s )=~(y+t ,  s+t).  Then ~ is the yon Neumann algebra generated by  

the operators 7r(/) and u(t); and each element x in ~ has a unique representation 

- -  x x -  Y. ~(/~ ) u(t).  
t 

The algebra ~ is a semi-finite factor and the trace ~ on 77/+ is given by ~(x)=~/~(y)dy.  

Let  Q* denote the multiplicative group of non-zero rational numbers. For each r in 

Q* define v(r) on ~ by (v(r)~)(y,s)=]r]�89 sr). I t  is easily verified that  the map 

rw->v(r) is a unitary representation of Q* on ~. Let  G denote the corresponding trans- 

formation group on B(~). Then for x in ~ we have 

gr (x) = v(r) xv(r)* = ~ v(r) 7r(/~) v(r)* v(r) u(t) v(r)*. 
t 

But for ~ in ~ we have 

[v(r)~(/) v(r)*~] (r, s) = [r[~ [~(/)v(r),~] (~,r, st) 

= ]r] ~/@r)[v(r)*~] (rr, st) = / ( r r ) ~ ( r ,  s); 

[v(r) u(t)v(r)*~] (r, s) = I r/~ [u(t)v(r)*~](?r, st) 

= [ r ] �89 @r + t, sr + t) = ~(r + r-it, s + r-Xt) 

= u(r- l t )~(y ,  s). 

From these equations it follows that  G is a group of automorphisms of 7~/. The trace v is 

not G-invariant; for if x E ~ +  then 

�9 ( g r ( x ) )  = f/:(rr)dr=r-l f/:(,)dy=r-lv(x). 
Put  h =7~(/~), with/a(y) = lyl_~ Then h is a non-singular self-adjoint positive operator 

in ~ affiliated with ~ .  By Proposition 4.2 the weight q~=v(h.) is faithful normal and 

semi-finite. For each x in )~/+ we have 
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[. 
~(gr (x) ) = ~(hgr (x) ) = J /~ (~) /~o (r r) dr 

I t  follows tha t  ~ is G-invariant. Q.E.D. 

I f  in the above example we let H be the group of inner automorphisms of ~ amsmg 

from unitaries z(/) where / E L F  (R) then scalar multiples of ~ are the only normal semi- 

finite weights on ~ which are invariant  under the automorphism group G' generated by  

G and H. For if ~ '  is a G'-invariant normal semi-finite weight on ~ and of' ='~(h'. ) then 

since ~ '  is H-invariant,  and since z(L~(R)) is a maximal  abelian subalgebra of ~ we must  

have h' =~(/ ' )  for s o m e / '  in L~(R). Since, furthermore, ~ '  is G-invariant we have 

f f 
for each r in •*. I t  follows tha t  ]r I -~/'(yr -1) =/ ' ( r )  for each r in Q* and almost all ~ in R. 

Define ](y) = ]~]]'(~). Then ](ry)=/(r) for almost all r in R and all r in Q*. But  the action 

of Q* is ergodic on R with respect to Lebesgue measure; hence / is equal to a constant 

almost everywhere. I t  follows tha t  )~,(~)=~]~]-1 so tha t  ~ ' = ~ .  This shows tha t  

Proposition 6.8 need not be true without the restriction tha t  ~o be finite. For with 

?, G' and {~} instead of ~o, G and E in Proposition 6.9 we have an example where scalar 

multiples of ~ are the only G'-invariant normal semi-finite weights ou ~ ,  yet  there is a 

trace which satisfies the KMS condition with respect to the trivial group {~}. 

We recall tha t  a group G of automorphisms of a yon Neumann algebra ~ on a 

Hilbert  space ~ is said to be unitarily implemented on ~ if there is a homomorphism 

g ~ %  of G into the group of unitaries on ~ such tha t  g(x)=%xu* for each x in ~ .  (The 

representation of ~ on ~ is covariant.) Our next  theorems extend results of H. t ta lpern 

on the implementabil i ty of locally compact automorphism groups (see [9]). 

T~]~OR]~  6.10. Let ~ be a yon Neumann algebra and let q) be a ]aith]ul normal Semi- 

/inite weight on ~ with modular automorphism group ~.. Then each group G o/ auto- 

morphisms o / ~  that commutes with E can be unitarily implemented on the Hilbert apace ~ o/q). 

Proo/. As in the proof of Theorem 5.5 we have ~og =~(hg. ) where h~ is a non-singular 

positive operator affiliated with E. Since we do not assume tha t  G leaves ~ fixed we can- 

not conclude tha t  the map g~h~ is a homomorphism. Let  e n be the  spectral projection of 

h~ corresponding to [n -1, n]. Then for each x in 9~ we have g(h~�89 in 9~ and  
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Moreover, for  m > n 

II~](g(h~�89 - ~l(g(h~e,~x)) ~ = cf((e,n" en) x 'x) .  

I t  follows that  the sequence {~](g(h~�89 converges in ~ to an element which we shall 

denote by  ~l(g(h~�89 The linear operator u~ on ~/(9j) defined by 

~'~(v(x) ) = ~(g(h;  �89 ~) ) 

extends to an isometry ug of ~. Since 

cf(h~,~ x) = ~(g'g(x)) = ~(hg,g(x)) = qg(g(g-~(hg,) x)) = cp(h ,.g-~(h~,) x) 

we have hg,g = hg. g-1 (hg,). Therefore 

u~,g~l(x ) = ~](g'g(h;,~ x) ) = ~l(g' g(h; �89 g , ! (h~ ~ ) x) ) 

= ?l(g'(h~, �89 �9 g(h[ �89 x))) = ug,~l(g(h; �89 x)) = ug, Ug~l(x ), 

which shows that  gt--->ug is a homomorphism of G into the group of unitaries on @. Since 

u*V(x ) = ~(g-~ (h ~ x) ) = ,7(h~ g -~ (x) ) 

we finally have ugyu * ~(x) = ug~(yh~g -1 (x) ) = g(y) ~(x) 

so that  the representation g~->ug is a unitary implementation of G on ~. Q.E.D. 

PROPOSITIO~ 6.11. Let G be a locally compact a-weakly continuous group o/ auto- 

morphisms o] ~ which commutes with ~, and leaves ~ /ixed. Then the unitary representation 

o/ G on ~ constructed in Theorem 6.10 is strongly continuous. 

Proo/. As in Theorem 6.2 let G o denote the normal subgroup of G under which ~ is 

invariant. Then the set 

x>~0 

is closed in  G (since ~0 is a-weakly lower semi-continuous), and G 0-~ ~' fl ~ - L  Hence G0 

is closed in G. I t  follows f r o m  Prop0sition 6.3 that  G/G o is a locally compact abelian 

group with no non-zero compact subgroups. Therefore the connected component /~ of 

G/G o Containing the identi ty is isomorphic to R ~ for some n~>0 and (G/Go)/I~ is 

discrete by the structure theorem for locally compact abelian groups (see [21; Theorem 

2.4.1]). I t  suffices to prove continuity of the representation g~->ug on the inverse image H of 
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H in G (since G]H is discrete). We may  therefore assume tha t  G = H, so tha t  GIG o = R n. Choose 

elements gz .. . . .  gn in G such tha t  the corresponding images gz, ..., g~ in G/G o form a basis 

for R n, Let  v(gk(-)}=~(h~.), 1 ~<k~<n, where hk is affiliated with E. I f  e~m denotes the 

spectral projection of hk corresponding to [m -z, m], put  em= h ekm. Then em 7 1. For each g 

in G with ~ = Z 2~ gk in G/Go, define/c a =]-I h~. Then g~-> ]c aem is a continuous homomorphism 

of G into the mutliplicative group of positive invertible elements of Eel. Since the 

homomorphism g~-e, hgem is lower semi-continuous and since hg=]% for all g in G with 

y~--Z2k~k such tha t  all ~k are dyadic rational numbers (i.e. on a dense subgroup of G)we 

conclude as in the proof of Proposition 5.7 tha t  hg =7% for all g in G. 

Now take x and y in ~ and z in 9~ 0. Then 

(% e,~(x)[~((zy)*)) -~ q~(zyh; �89 emg(x)) = q~(yh; �89 e,ng(X) a-t (z)), 

using Lemma 3.5 with a-t(z) and yh~�89 instead of h and z. When g-~ t  we have 

h-o�89 uniformly, and since y and a_~(z) belongs to ~ we have cf(yg(x)(~(z))~ 

V(yx(~t(z)) as G is o-weakly continuous on ~ .  Thus %-~1 weakly on a dense set of vectors 

in ~ which proves tha t  g-+ug is weakly, hence strongly continuous. Q.E.D. 

The main virtue of the preceding result is tha t  it gives an explicit and canonical 

construction for the implementation of G. For whenever G is a separable locally compact 

group (and ~ is infinite dimensional) we can represent ~ and G on ~|  as the 

induced covariant representation; and since this space has the same dimension as ~ we 

can then pull back the covariant representation of ~ and G from ~| to ~ by  a 

spatial isomorphism between ~ on ~ | and ~ on ~. This isomorphism is, however, 

not unique. 

7. Further applications of the Radon-Nikodym theorem 

Our first application of the Radon-Nikodym theorem in this section provides a partial  

solution of the problem raised in [4; p. 52], whether each weight tha t  respects monotone 

increasing limits is the sum of normal positive functionals. For the proof we shall need 

the following result which may  have independent interest. 

PROPOSITIOI~ 7.1. For each/aith]ul normal semi./inite weight q~ on 7~l there is a se$ 

{p~} o/pairwise orthogonal projections/ram ~ with sum I such that p~ is the strong limit o/ 

an  increasing sequence from m+. In  particular each p~7~lp~ is a-finite. 

Proof. Let  (tn} be an enumeration of the rational numbers in R and for x in m+ put  
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Then {un} is an increasing sequence in m+ and converges strongly to a projection p (the 

union of the range projections of all the elements ark(X)). For each rational number  t and each 

n there is a n  m such tha t  
{ttk]k~n} c {tklk<~m}. 

Therefore at(Un)<~Um. I t  follows tha t  at(p)<~p for each rational number; hence pET~/~. 

The algebra p'mp is a-finite. For if {qj} is a set of projections in 7~/with Zqj = p  then for 

each n 
~ ( Y u ~ q s ~ .  ) = ~ ( ~ . )  < ~ .  

Thus for all but  countably many  j 's u~qju~ =0 for all n. But  o �89 u r and therefore the W n  ~t1 n ~tj~ 

number  of j 's with qj 4:0 is countable. 

Now let {p~} be a maximal  family of pairwise orthogonal projections from 7// each 

of which is the strong limit of an increasing sequence from m+. Suppose tha t  q = 1 - Z P i  ~0 .  

Then qxq@O for some x in m+ and qxqElrt+ by Proposition 3.3. From the first par t  of the 

proof there is then a non-zero projection p in 7//~ which is the strong limit of an in- 

creasing sequence from 11t+; and p<.q. This contradicts the maximali ty  of {p~). Hence 

q=0 .  Q.E.D. 

THEOREM 7.2. Each normal weight on ~ is the sum o/ normal positive/unctionals. 

Proo/. Let  ~ denote the weight and suppose that  ~0 is faithful on ( 1 - p ) ~ / ( 1 - p )  

and semi-finite on q~lq with p<~q. I f  ~0=Zo)~ on (q-p)~l+(q-p)  where each o)~ is a 

normal positive functional on (q -p )~ l (q -p )  then put  (5~=coi ( (q-p) . (q-p) )  on ~/  and 

choose a set ((oj} of normal positive functionals on ( 1 - q ) ~ / ( 1 - q )  such tha t  Eo)j(x)= c~ 

for each x in ( 1 - q ) ~ / + ( 1 - q )  different from 0. Pu t  ~S j=o) j ( ( l -q ) . (1 -q ) )  on ~ .  Then 

~0 =~] ~5~ + Z ~5~ on )v~/+. I t  follows tha t  it is enough to prove the theorem assuming tha t  

is faithful and semi-finite. 

Under this assumption there is by  Proposition 7.1 a set {p/) of projections in ~ z  

with Ep~ = 1 such tha t  each p~ is the strong limit of an increasing sequence from m+. 

We have ~0=E~(pi. ) by  Propositions 4.1 and 4.2. Hence without loss of generality we 

may  assume tha t  there is an increasing sequence (u.} in m+ such tha t  u~S 1. Let  {t~} 

be an enumeration of the rational numbers in R .  By [1; Lemmes 1:9 & 4.3] the set of 

normal positive functionals which are completely majorized by  q9 form an increasing net 

with limit ~. We Can therefore by  induction find a sequence (~%} of normal  positive 

functionals sUch tha t  (with t I = 0 )  

(Dm((~tk('))'~O)n <q9 for m<n and k<n; 

o2n(u~)+n -~ >~v(ux) for k<n. 
6 -  732904 A c t a  m a t h e m a t i c a  130. Imprim(~ le 30 Janvier  1973. 
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Put  w~=~on-~on_l (and o~ =wl). Then the weight W=Zo)~ is normal and ~ ~<~. Moreover, 

~(u~) =q~(un) for all n. Since the set of elements x in )~+ such that  yJ(x) = ~(x) < c~ is a 

hereditary subeone of ~ + ,  invariant under ~], we have W(x)=~(x) for all x in U u~ ~+u~;  

so that  ~ and ~ are equal on a a-weakly dense set in ~ + .  The construction of ~ implies that  

y(~(x)) ~<~(x) for each x in ~ +  and all rational numbers t. Since ~ is a-weakly lower semi- 

continuous on ~ +  we obtain yJ(~(x)) ~<W(x) for all real t. This of course implies that  ~ is ~]- 

invariant. Therefore W =~  by Proposition 5.9. Q.E.D. 

COROLLARY 7.3. (cf. [16; Theorem 3.1] and [1; Proposition 1.11]) Each (norm) lower 

semi-continuous weight q~ on a C*.algebra A is the sum o/positive/unctio~als on A. 

Proof. Let  B be the closure of the linear span of the set 

m = ( x e A +  I (x) < 

Then B is a hereditary C*-subalgebra of A, and the restriction ~B of ~ to B is semi-finite. Let  

and B denote the universal enveloping yon Neumann algebras of A and B, respectively. 

Then/7  is a g-weakly closed hereditary subalgebra of d ;  hence B = qXq for some projection q 

in X. By [1; Proposition 4.1] ~s has an extension to a normal semi-finite weight ~B on /7. 

We define a normal weight ~ on X+ by 

~ ( x ) ~ { ~ ( x )  if xE/7+ 

if x~B+" 

If x is an element of A+ then xEB+ ff and only if x=qxq. Hence ~ is an extension of ~. 

From Theorem 7.2 ~ has a decomposition as a sum of positive functionals, and the restric- 

tion to A of this decomposition gives a decomposition of ~. Q.E.D. 

The Radon-Nikodym theorem also gives an easy proof of the following result by the 

second author [25; Theorem 14.2]. 

TH]~ OR E~ 7.4. A yon Neumann algebra ~ is semi.finite if and only i/there exists a faith- 

ful normal semi-finite weight on ~ whose modular automorphism group is implemented by 

a strongly continuous one-parameter unitary group in ~ .  In  this case the modular group of 

any normal semi-finite weight on ~ is implemented by a one-parameter unitary group in ~ .  

Proof. If ~v~ is semi-finite then there is a faithful normal semi-finite trace ~ on ~ .  

The modular group of T is trivial. By Theorem 5.12 each normal semi-finite weight ~0 on 

is of the form ~(h.) where h is affiliated with ~ and by  Theorem 4.6 the modular 

group of ~ is given by a~(x) =h**xh -~ and consequently implemented by  the one-parameter 

unitary group {h u} in ~ .  
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If, conversely, ~ is a faithful normal semi-finite weight on 7fl such tha t  the modular 

group is implemented by  a one-parameter uni tary group in 7//, then by  Stone's theorem we 

have at(x) =hUxh -~t where h is a non-singular self-adjoint positive operator affiliated with 

~ .  By Proposition 4.2 the weight v =~(h -~" ) is faithful normal and semi-finite; and by 

Theorem 4.6 the modular  automorphism group of ~ is given by  

a~ (x) = h-~%(x)h  ~t = x. 

I t  follows tha t  ~ is a trace; hence ~ is semi-finite. Q.E.D. 

COI~OLLARY 7.5. (ef. [26; Corollary 3]). I / ~  is a /a i th /u l  normal semi-finite weight on 

a yon Neumann  algebra ~ o / type  I I I  then there are no non-zero normal semi-finite weights on 

~tl that satis]ies the KMS condition with respect to the group (apt}, fl ~ l .  

Proo]. Suppose, to obtain a contradiction, tha t  to was such a weight. Then f140 

since ~ is of type I I I .  Therefore to is invariant  under (at}. Thus to=~(h-)  and 

apt(x) = h~%(x) h-it  

for all x in ~ .  Pu t  ~ = ( f l - 1 ) - L  Then 

at(x) = h*~txh -i~t 

so tha t  the modular group of ~ is implemented by  a one-parameter unitary group in ~/. 

By Theorem 7.4 ~ is semi-finite; a contradiction. Q.E.D. 

We now assume tha t  ~ is semi-finite with a faithful normal semi-finite trace v. 

Then by  Theorem 5.12 each normal semi-finite weight ~ on ~ is of the form ~(h.) 

where h is affiliated with ~ .  Our next  result provides a partial extension of S. Sakai 's 

non-commutat ive Radon-Nikodym theorem [22]. 

PROPOSITIO~ 7.6. Suppose that q~ and y~ are normal semi-finite weights on a semi-finite 

yon Neumann  algebra ~ and to <~q~. I / t h e r e  is a /a i t h /u l  normal semi-finite trace ~ on 

such that ~ (and to) belongs to 0(~) then there is a unique operator t in ~ with O ~ t ~ l  

such that to=cp(t.t). 

Proo/. We may  assume that  cp is faithful. Put  T =~(h" ) and to =~(k. ). From Proposition 

4.2 we have k~<h. I f  ~ belongs to 0(~) then T(he~)< oo for large m, where em denotes the 

spectral projection of h corresponding to [m, oo]. Therefore ~(e~)~0 as em~0 so tha t  h 

and k are measurabie operators in the sense of I. Segal. Since the measurable operators on 

form an algebra with involution under strong sum and strong product [23; Corollary 5.2] 

and since the correspondence between normal semi-finite weights and self-adjoint positive 
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operators affiliated with ~ is a bijection, we see tha t  the proposition is equivalent to 

solving the operator equation/c = t .  h.  t for a positive t in ~ under the assumption tha t  

/c ~h .  For bounded h and/~ this problem was considered in [18], and the solution with un- 

bounded measurable operators is obtained in the same way. Put  a=h�89189 Then 

a~h~; hence a�89 (see for example [17]). There is then an operator x in ~ with I[xl141 

such tha t  a ~ = x . h  �89 Put  t=x*x .  Then 

h i . t . h . t . h t  = (hi . t .h i )  2 = (a~) 2 = h t . k . h t  

Since q is faithful, h is non-singular; hence t. h. t = k. To show the uniqueness of the solution 

let s be a positive operator in 7//such tha t  s .  h - s  = t .h . t .  Then  there is a partial  isometry 

u in ~ such tha t  h i . s=u .h �89  and u*u is the range projection of hi. t .  I t  follows that  

h�89189189 and since the polar decomposition is unique this implies tha t  u is 

the range projection of h�89 Hence ht .s=h�89 and since h is non-singular this implies 

tha t  s=t .  Q.E.D. 

The above result need not be true if the functional q~ does not belong to O(~) as shown 

by the following example. 

PROPOSITION 7.7. There exist two normal semi-/inite weights cf and V on the von 

N e u m a n n  algebra ~ (~)  such that V is /inite, q~ is /aith/ul and V <q~. However, there is no 

positive operator t in B(~9) such that V = qJ(t.t). 

Proo]. Let  {~n} be an orthonormal basis for ~. Denote by  h the non-singular self- 

adjoint positive operator for which h~n=n~n, and let/c denote the projection of ~ on the 

subspace spanned by  the vector V = Zn-l~n �9 Put  ~ = Tr (h.) and V = Tr (/c.). Since k ~< 1 < h 

we have V~<~v. I f  t is a positive operator in B(~) such tha t  V=~(t . t )  then k = l i m  that, 

where h~=h(1 +sh) -1. Since h~>(1 +s) -1 this gives k>~lim (1+s)-1t2; hence t2<~k. Since 

k is a minimal projection, t = A k  with 0~<~<1. But  then 

=~t2(Zn-ln(1 +en)-l~n ]Zm-l~rn) 
= ;t2En-l(1 + an) -1 >~),2E(sn2)-I =-~2~2s-1, 

a contradiction. Q.E.D. 

The following example shows that  Proposition 5.9 need not be true for arbi trary 

normal semi-finite weights. 

PROPOSITION 7.8. There exist two normal semi-/inite weights on the von N e u m a n n  

algebra ~(~)  such that q~ ~ V  and q~ r yet q ~ =V on a (~-weakly dense *-subalgebra o/ ~(~) .  
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Proo/. Let h and k be different self-adjoint extensions of the Laplacian -d2/dt 2 on 

9 =L*[ 0, 2~] such that  h<~k. For example h could be the extension corresponding to the 

boundary conditions ~(0)=$(2~) and $'(0)=~'(2g) while k corresponds to the boundary 

conditions ~(0)=~(2z)=0. Put  ~ = T r  (h.) and yJ = T r  (k.). Then ~ ~<F by Proposition 4.2, 

and F ~=~p. The set 
= {~ e ~ ( 9 ) +  I~(~) = ~(~) < ~ } 

is a hereditary cone in B(9)+. If p is the proiection on a finite dimensional subspace of 9 

with an orthonormal basis {~k} of C~-functions on [0, 2~] vanishing at the points (0, 2z} 

then 
~(p) = Tr  (hp) = E(h~l~k) = E(k~k]~k) = F(p), 

so that  p Ep. Since 1 can be obtained as the strong limit of projections p it follows that  p 

is a-weakly dense in B(9)+. Q.E.D. 

We shall finally use the Radon-Nikodym theorem to obtain information about 

unbounded operators on a Hilbert space 9.  With ~ = B(9) and Tr the usual trace on 

we have a bijection between the set of self-adjoint positive operators in 9 and normal semi- 

finite weights on B(9). For semi-finite von Neumann algebras Murray-yon Neumann 

and I. Segal have shown in [15] and [23] that  the class of measurable operators affiliated 

with the algebra form a ring. If ~ = B(9), and 9 is infinite dimensional then the only 

operators with essential dense domain are bounded, so that  the Murray-yon Neumann-Segal 

theory is not applicable (moreover, the densely defined closed operators on 9 do not 

form a ring). However, for certain pairs of self-adjoint positive operators we can define a 

strong sum: 

Let h and k be self-adjoint positive operators on 9 and put  q~=Tr(h.)  and 

yJ=Tr (k.). If q~§ is semi-finite then by Theorem 5.12 there is a unique self-adioint 

positive operator, which we denote by h +  It, such that  ~ §  ((h-~k).). I t  is clear 

from the definition that  the strong sum is associative when it is defined, i.e. if (h ~-k)~-x 

is defined then h+(k+x) i s  defined and (h+k)+x=h+(k+x) .  Furthermore hJ~k=k+h 

and ~(h+k)=~h+o,k for ~>~0, If h and k are bounded then h+k=h+k.  

LEMMA 7.9. Let (h~} be an increasing net o/positive bounded operators on 9. Then 

the /ollowing conditions are equivalent: 

(i) There exists a sel/-adjoint positive operator h in 9 such that h~f  h. 

(ii) The set ~ = { ~ E g ] l i m  (h~[~)<oo} is a dense subspace o / 9 .  

The operator h is unique and ~=O(h~). 

Proo/. (i)~(ii): As in w define h~=h(l+eh) -1 for e>O. By Lebesgue's monotone 
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convergence theorem ~e70(h�89 if and only if hm (h~l~) < ~ .  Since h~/~h~ for each i it  is 

immediate that  70= 70(hi), and therefore 70 is dense in ~. 

(ii)~(i): The inequality I]h~(~+~)ll~<2(]]h~l]2+ Hh~]] 2) shows that  70 is a vector 

space. Since {h~} is an increasing net there is a bounded operator k with 0 ~< k <~ 1 such 

that  (1 +h~)-x",,k. Suppose k~=0 for some vector $ in ~. Then for each $ in 70 

I( l )l = I( l I = I((1 + h ,?$  I (1 +h,)-~r I~ 

~< ((1 + h,)~ 1~)(1 + h,) -1 ~1~) -+ O. 

Since 70 is dense, ~=0.  Thus k is non-singular, and for each e>O we have 

(1 + h~)~ = (e + (1 + h~)-1)-17 (e + k) -1 = (k-1)~, 

so that  h , / k - l - 1 .  Q.E.D. 

P~OPOSITION 7.10. Let h and k be sel/-ad]oint positive operators in ~. Tr (h . )+  

Tr (k.) is semi-/inite i/ and only i/the o.ubspace 70 = 70(h�89 f) 70(k�89 is dense in ~; and in this 

case 70= 70((h+k)~) with 

/or each ~ in 70. 

Proo/. If Tr (h.) + Tr (k-) is semi-finite then h ~ h-~ k and k ~ h-~ k so that  70((h ~- k)t) = 

70(h t) N 70(k�89 Thus 70 is dense in ~. 

Conversely, suppose that  70 is dense in ~ and consider the increasing sequence 

{h~+k~). We have lim ((h~+ke)~]~)< oo if and only if ~E70. By Lemma 7.9 there is a 

self-adjoint positive operator x in ~ such that  h~+k~/Zx and 70(x�89 But  then 

Tr  ( (h~+ke) ' )STr  (x') by  Proposition 4.2; hence Tr  ( x . ) = T r  ( h . ) + T r  (k.) and x=h+k.  

For each ~ in 70(=70((h~-k)i)) we have 

]]h�89189 =lira ((h~+k~)~]~)=ll(hSkP#ll ~. Q.E.D. 

Instead of identifying a self-adjoint positive operator h on ~ with its normal semi- 

finite weight Tr  (h-) on B(~) one often identifies the operator with its associated closed 

positive sesquilinear form (h. [ .) in ~ (see [14; w 6.2]). The reader will have no difficulty 

in verifying that  our definition of the strong sum h~-k of two self-adjoint positive 

operators h and k gives the same result as the sum obtained by adding the two forms 

(h- [ �9 ) and (k" [ -) as prescribed in [14; w 6.2.5]. 
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