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w 1. Introduction 

L e t  G be  a c o n n e c t e d  semis imple  Lie  g roup  a n d  K a m a x i m a l  c o m p a c t  s u b g r o u p  of G. 

W e  shal l  show in  th is  p a p e r  t h a t  G has  a d i sc re te  series (see [4 (d), w 5]) ff a n d  o n l y  if i t  has  

a c o m p a c t  C a r t a n  s u b g r o u p  B.  L e t  Ea d e n o t e  t h e  se t  of al l  e q u i v a l e n c e  classes of i r r educ ib le  

u n i t a r y  r e p r e s e n t a t i o n s  of G, w M c h  a re  squa re - in t eg rab l e .  F o r  a n y  ~o E ~a, le t  |  d e n o t e  

t h e  cha rac te r ,  X~ t h e  in f in i t e s ima l  c h a r a c t e r  a n d  d(r t h e  f o r m a l  degree  (see [4 (d), w 3]) 

of co. T h e n  i t  is k n o w n  [4 (d), w 5] t h a t  t h e  d i s t r i b u t i o n  
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T = 7 d(co) O~ 
o e ~  d 

represents the contribution of the discrete series to the Plancherel formula of G, We  

intend to obtain explicit formulas.for d(co), O~ and T. 

Let g and b be the Lie algebras of G and B respectively. Then the character group of 

B may  be identified with a lattice L in the space of all real-valued linear functions [~ on 

( - ] )~ b. P u t  
~(g)  = 1-I <4, a> (4 E ~), 

g>0 

where ~ runs over all positive roogs of (g, b) and the scalar product is defined, as usual, by  

means of the Killing form. Let L '  denote the set of all g EL where ~(~) + 0. Then, for every 

gEL' ,  we have constructed in [4, (p)], an invariant eigendistribution (ga of ~ on G. Pu t  

q={-dim G/K and e(g)=sign~(g)  (gEL'). Our main result (Theorem 16) states tha t  the 

distributions (-1)qe(1)(ga (gEL') arc exactly the characters of the discrete series and 

= c - ' (  - 1) 4 7 ~ ( g )  O~ 
I~L"  

where c is a positive constant. 

Let  W be the Weyl group of (fl, b) and/Y the normalizer of B in G. Then Wa = JB/B 

may be regarded as a subgroup of W. Define ga (gEL') as usual (see [4 (p), w 29]) and let 

E~(g) denote the set of all co E Ed such tha t  Z~ =Za. Then(1) 

[E~(~) = [ W(g)] [ W~]-~, 

where W(g) is the set of all o E W such that  sg EL. 

Fix g E L '  and let @a.b (b E EK) denote the Fourier components of Oa (see [4 (q), w 17]). 

Then Ox.b are analytic functions and it is one of the principal steps of the proof to show 

tha t  they lie in L2(G ) (Theorem 12). This is done by  means of Lemma 67, whose proof is 

based on two key results (Lemmas 42 and 43), which are derived from a s tudy of certain 

differential equations. 

This paper is divided into four parts. After recalling some known facts about  representa- 

tions on a locally convex space, we prove Theorem 1, which seems to play an important5 

role in harmonic analysis. Then we introduce the space C(G), which is the analogue of the  

Schwartz space over R n. Theorem 2 asserts tha t  Cc~176 is dense in C(G) and Theorem 3 

allows us to reduce certain problems from G to a proper subgroup. Theorem 4 contains a 

general result which implies the convergence of certain integrals (Theorems 5 and 6) 

and thus enables us to define the mapping /-~ Fs( / E C(G)) in w 18. A distribution on G is 

called tempered if it extends to a continuous linear function on C (G). Theorem 7 gives a 

(1) As usual, [F] denotes the number of elements in a set F. 
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simple necessary and sufficient condition for an invariant eigendistribution to be tempered. 

This shows, in particular, tha t  Ox (~ EL') is tempered and Theorem 3 of [4 (q)] remains 

valid f o r / E  C(G) (Theorem 8). This permits us to prove the second conjecture of [4 (k), 

w 16] and thus complete the proof of the Plancherel formula for G/K. Theorem 9 established 

a weak estimate for a Fourier component Ob of a tempered and invariant eigendistribution 

O. This will be required in Parts  I I  and III .  

The main problem in Par t  I I  is to determine the behaviour, at  infinity, of a K-finite 

eigenfunction ] of ~, which satisfies a weak inequality of the type mentioned above. 

The principal result (Lemma 43) is that  ] lies in L~(G) if and only if it lies in C(G). This is 

proved by  induction on dim G. By making use of the differential equations, one reduces 

the problem from G to a proper subgroup M (cf. [4 (k)]). 

In  Par t  I I I ,  we apply the above results to the task of determining the eigenfunctions 

of ~ in C(G). Here Lemma 64 plays an important  role. I t  enables us to show that  such 

eigenfunctions do not exist unless rank G=rank K. As an application we obtain in w 33 

a proof of a conjecture of Selberg. 

These results are then utilized to determine all the characters of the discrete series, 

Here the fact tha t  we work in C(G), rather than Cc~(G), is decisive. First we show that  

O~ (r is tempered and there exists a ~EL' such that  X~--Xx. Let  sl, 82 ..... sr be a 

complete set of representatives for Wa\W(;~). Then we prove that  

where ct are complex numbers. Moreover, by making use of the Schur orthogonality rela- 

tions, it is possible to establish that  

E Ic,12=1. 

On the other hand, one verifies tha t  c~ are integers. This proves that  

for some i and d(co)---c-l[Wa]l~r(~)l. I t  should be noticed that  the entire discussion of 

w167 40, 41 is quite similar to Weyl's original t reatment of the same problem in the compact 

case (see [10, w 3]). The main task here is to relate the Fourier analysis on G, so far as the 

discrete series is concerned, to that  on B (see Theorem 14 and Lemma 81, together with its 

corollaries). This can be done only by operating in C(G). 

Par t  IV deals with certain inequalities which are needed for the proof of Lemma 21. 

They will also be useful later, when we come to the continuous series for G in another paper. 

Some of the results of this paper have been announced in [4 (1)]. 
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Part I. Analysis in the space C (G)  

w 2. Representations on a locally convex space 

I n  this section we recall some elementary and  well-known facts about  representat ions  

on locally convex spaces (see [2, p. 109]). 

Le t  V be a Hausdofff ,  locally convex (real or complex) vector  space and (7 a locally 

compact  topological group. A representat ion ~ of G on V is a mapping,  which assigns, t o  

every x E G, a continuous endomorphism ~(x) of V such t h a t  the following two condit ions 

hold: 

1) ~r(xy)=Tr(x)~z(y) (x, yEG) and ~z(1)=I.  

2) (x, v) ~rr(x)v is a continuous mapping  of G • V into V. 

I t  is easy to  verify t h a t  the above two conditions imply  the following [2, p. 110]. 

3) Let  G be a compact  set in G. Then for any  neighborhood U o of zero in V, we can 

choose another  neighborhood U of zero such tha t  ~z(C) U c  U o. 

Let  $ be the set of all continuous seminorms on V. Then the following immedia te  

consequence of 3) will be f requent ly  useful. 

4) Given a compact  set C in G and an element vo E $, we can choose v E $ such t h a t  

~o(~(x) v) < ~,(v) 
for all x E C and v E V. 

Conversely we have the following result. 

L TeM~A 1. Suppose ~ satisfies, in addition to 1), the/oUowing two conditions. 

2') The mapping x ~ ( x ) v  o /G  into V is continuous/or every vE V. 

3') There exists a neighborhood U o/ 1 in G with the/ollowing property. Given ~'o E $, 

we can choose ~, E $ such that 
~'o(~(u) v) <~ ~,(v) 

/or all u E U and v E V. 

Then ~ is a representation o /G  on V. 

Fix x o E G and v o E V. Then 

~(XoU) v-~(Xo) Vo = =(Xo)n(u) ( v -  re) +~(Xo) (~(u) r e -  re) 

for u E U and v E V. Hence it is clear t h a t  ~(xou ) v -~re(xe) v o as u -* 1 and v -~ v o. This proves  

our assertion. 

Now assume t h a t  V is complex and complete, G is uuimodular  and dx is a H a a r  

measure on G. ~ being a representat ion of G on V, we define, for any /ECc(G) ,  a linear 

t ransformat ion  ~(/) in V by  
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re(/)v = f l(:~) re(x) v dx  (v ~ V). 

I t  follows from 3) tha t  re(/) is continuous. Define the convolution/~eg (/, g E Co(G)) as usual, 

so tha t  

(/~e g) (x) = .t /(y ) g(y-lx) dy (x E G), 

Then re(/~e 9) =re(/)re(g). 

Let us now suppose tha t  G is a Lie group. A vector v E V is said to be differentiable 

(under g) if the mapping x-->-x(x)v of G into V is of class C% Let  V ~ denote the space of 

all differentiable vectors in V. g being the Lie algebra of G, define 

re(X)v=lim t-l(re(exp t X ) v - v )  ( tER, t # 0 )  
t-~0 

for X E g and v E V ~176 Then re(X) is a linear transformation in V ~ and X -~ re(X) is a repre- 

sentation of ~ on V ~~ Let (~ be the universal enveloping algebra of Be. Then this extends 

uniquely to a representation of (~ which we denote again by  re. 

As usual we regard elements of (~ as left-invariant differential operators on G. Define 

the anti-isomorphism p of (~ onto the algebra of right-invariant differential operators on 

G as in [4 (o), w 2]. U being any open set in G, we write 

fig; x) = l(x; e(g)), fig; x; g') = l(x; Q(g)og') (xE U; g, g' E$) 

for / E C~176 

L~,M~A 2. Let/ECc'~(G). Then :re(/) V c  V ~~ and 

~ ( x )  ~(/)  v = - ~ ( e ( x )  /) v 
/or X Eg and vE V. 

I t  is clear tha t  
~(y)re(l)v = re(j) v, 

where ~/(x) =/(y-lx). Fix X E g  and put  y t = e x p  tX (tER). Then 

/(yt-lx) - / ( x )  = - t / ' (yst-!x)ds,  

where / '  =~(X)/ .  Hence 

t - l ( : ~ ( y t )  - 1) ~ ( / )  w = - r e ( y . t )  v '  ds, 

where v' =re(/')v. The statements of the lemma are now obvious. 

Let  g-~g* be the anti-automorphism of (~ such tha t  X* = - X  (XEg). 
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COROLLARY 1. g(g)g(/)V=Xl(Q(g*)/)v for g E ~ .  

This is obvious from the lemma. 

COROLLARY 2. Let vE V ~176 and/ECc~(G). Then 

:~(/)~(g)v = =(g*/)v ( gE ~ ) .  

Define/y(x) =/(xy -1) (xEG) for a fixed yEG. Then xe(/)~(y)v=~(/~)v and from this we 

conclude, as in the proof of Lemma 2 tha t  

= ( l ) = ( X ) v  = - = ( X l ) v  ( x  ~ ) .  

Clearly this implies the required result. 

Let  lj (J > 1) be a sequence in Ccm(G). We say tha t  it is a Dirac sequence if the following 

conditions hold . / j  > 0 and 

f ljdx = 1 

and, for any neighborhood U of 1, S u p p / j c  U for all j except a finite number. Let  K be a 

compact subgroup of G. I t  is obvious tha t  there always exists a Dirac sequence/~ (?'>/1) 

such tha t  lj(kxk -1) =/j(x) (kEK, xEa).  

LEMMA 3. Let / j  (j~>l) be a Dirac sequence in CO~ Then 

lira ~ ( D  v = v 

/or every v E V. 

Fix v E [z, v E $ and e > 0. Then we can choose a neighborhood U of 1 in G such tha t  

~,(z~(x)v-v) <<.e for xE U. Now 

=(/j) v - v = f /j(:~) (:~(x) v - v) dx, 

and therefore u(Te(/j)v-v) <~e if S u p p / j c  U. This proves the lemma. 

COROLLARY 1. V ~176 iS dense in V. 

This is obvious from Lemmas 2 and 3. 

COROLLARY 2. _FiX voE V and let V o be the smallest closed subspace o/ V containing 

v o which is stable under ~(G). Then elements o/ the/orm ze(/)v o (/ECc~176 are dense in V o. 
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Let  W be the space consisting of all elements of the form g(/) v o (/E Cc~176 I t  is obvious 

tha t  W is stable under g(G). Therefore the same holds for CI(W). But  then since v 0 E CI(W) 

from Lemma 3, our assertion follows. 

Let  K be a compact subgroup of G and ~K the set of all equivalence classes of finite- 

dimensional irreducible representations of K. For any  b G ~K, define a linear transformation 

Eb in V by  

Eb v = d(b) i conj ~b(k)" ~(k) v dk (v EV). 
J ~  

Here d(b) is the degree and ~b the character of b and dlc is the normalized Haa r  measure 

of K.  Then Eb is a continuous projection. Pu t  Vb = Eb V. 

LEMMA 4. ~bEelrVb N V ~176 $8 dense in  V. 

We shall give a proof of this lemma in w 6. 

w 3. Absolute convergence of the Fourier series 

As before let $ be the set of all continuous seminorms on a complex locally convex 

space V, which we assume to be complete. Let  (vj}j~ be an indexed family of elements of V. 

We say tha t  the series 

JEY 

converges, ff the following condition holds. Define 

] E F  

for any finite subset F of J .  Then for any neighborhood V 0 of zero in V, there should exist 

a finite subset F 0 of J such tha t  8F~--SF, E Vo for any two finite subsets F1, F 2 of J containing 

F o. Since V is complete, the partial  sums 8 F then have a limit s in V. 8 is called the sum of 

the series and we write 

J~Y 

Moreover, the series is said to converge absolutely ff 

< o o  
t e ~  r 

for every v E $. I t  is obvious tha t  absolute convergence implies convergence. 

Let  g be a representation of a compact Lie group K on V and define Eb (b G ~ )  as 

in w 2. Then for any vector vE V, we call Ebv the bth Fourier component of v. 



DISCRETE SERIES FOR SEMISIMPLE T,TE GROUPS. I I  9 

LEMM~ 5. Let v be a diHerentiable vector in V. Then the Fourier series 

nbv 
begK 

converges absolutely to v. 

Let ~ be the Lie algebra of K and ~ the universal enveloping algebra of ~. Since K 

is compact, we can choose a positive-deflnite quadratic form Q on ~ which is invariant under 

the adjoint representation of K. Let  X1, ..., X r be a base for ~ over R orthonormal with 

respect to Q and put  
= 1 -  (X12 +.. .  + x J )  e ~. 

Also put  ~b--d(b) conj ~b (b e EK) so that  Eb = #(ab). I t  is obvious that  ~2, regarded as a differ- 

ential operator, commutes with both left and right translations of K. Fix a unitary represen- 

tation a in the class b. Then a(~2) commutes with a(k) (keK)  and therefore, by Schur's 

lemma, a(f2)=c(b)a(1) where e(b)eC. However a(X~) (1 ~<i ~<r) are obviously skew-adjoint 

operators. Hence c(b) is real and /> 1. Therefore 

~b(k; ~2) = t r  (a(k)a(~)) = e(b) ~b(k) (kEg)  

and this shows that  ~2ab=e(b)o:b. Hence we conclude from Corollary 2 of Lemma 2 that  

Eb~r(~2)v=c(b)Ebv (b e s 

LEMMA 6. Fix ~E S. Then we can select toES such that 

~(E~v) <-< c(b)-md(b)2~o(rC(~")v ) 

/or b e EK, any integer m >~ 0 and any di//ereutlable vector v e V. 

Since K is compact, we can choose % e $ such that  

~(~(k) u) < ~0(u) 
for" k e K and u e V. Therefore 

~,(Ebu) = ~,(~(ab)u) < d(b)2%(u) 

since sup I~bl < d(b) 2. Now we have seen above that  

Ebv = c(b)-~Eb~(~2~)v (m~>0), 

ff v is differentiable. Hence our assertion follows immediately. 

LEMMA 7. ~. d(b)~c(b)-'n< 
be,~n 

i / m  is sufficiently large. 
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Assuming this for a moment ,  we shall first finish the proof of Lemma 5. I t  is obvious 

from Lemmas  6 and 7 tha t  the series 

~ E b v  
b 

converges absolutely. Let  v o denote its sum and pu t  u = v - v o. We have to show t h a t  u = 0. 

Fix hoe ~K. Since Eb, is continuous, 

Eb, Vo = ~. Eb, E~ v = E~, v 
b 

from the Schur or thogonal i ty  relations. This shows tha t  Ebu = 0  for all b E EK. 

Now fix v E $ and select vo E $ as in the proof of Lemma 6. For  a given e > 0, choose a 

neighborhood K 0 of 1 in K such tha t  v(zt(k) u - u) ~ e for k E Ko. Fix a function //> 0 in C(K) 

such tha t  / =  0 outiside K 0 and 

f /( dk = 1. k) 

Then v(u(/) u - u) < f /(k) v(~(k) u -  u) dk < ~. 

Call a function fl E C(K) K-finite, if the space spanned by  the left and right translates of 

fl under  K has finite dimension. Then by  the Pe te r -Weyl  theorem, we can choose a K-finite 

function flEC(K) such t ha t  s u p ] B - / l  < e .  Then 

and therefore 

v(~(/) u - ~(fl) u) < ~ sup v(~(k) u) < e vo(u) 
kE]K 

v ( u ( ~ ) u - u )  -<< ~(vo(u) + 1). 

On the other  hand,  ~b~-/~ = ~ - ~ b  since ab is a class function. Therefore 

Eb~(fl) u = z @ )  Eb u = O. 

Moreover, since fl is K-finite, we can choose a finite subset F of EK such tha t  

beF 

Therefore xt(fl) u = ~ Eb 7t(fl)u = 0 
bEF 

and  this shows tha t  
~(u) < ~(~o(u) + 1). 

Making e tend  to  zero, we get  v(u) = 0. Since v was an arb i t rary  element in $, this implies 

t h a t  u = 0 .  
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c (b ) -~d (b )~<2  ~ ~ (1 + q(;t)) - ~  [p(~.)r < oo, 
b e e f  A e L *  

provided m is sufficiently large. 

Therefore 

as ~-~0. 

w 5. Different/able vectors and Fourier  series in function spaces 

If  M is a different/able manifold, the spaces Cc~(M) and C~(M), taken with their 

usual topologies, are locally convex and complete. Let  us now return to the notation of 

w 2 and for any /EC~(G)  and yEq ,  define l(y)/ to be the function x~/(y- lx)  (xEG). We 

claim 1 is a representation of G on C~(G). For any compact subset ~ of G and g E (~, put  

~,o., (/) = s~p i g/I q e co'(a)) ,  

Then the seminorms ~ .g ,  taken toghether for all f~ and g, define the topology of C~(G) 

and it  is clear tha t  
�9 n .  g ( l ( y ) / )  = ~-,~.~ (/). 

Moreover, g and l(y) commute as linear transformations in C~(G). Therefore if ]1 =g/, 

,,~. g q ( y ) / - / )  = s~p I~(y) / , . - /1 I - "o  

as y-+ 1. Hence we conclude from Lemma 1 that  1 is a representation. 

LEMMA 8. Fix/EC~(G). Then / is a di//erentiable vector under 1 and l(X)/ffi - ~ ( X ) /  

/or Xeg.  

Fix X e ~ and put  Yt = exp SX (t E R). Then it would be enough to verify tha t  

lira $-l(l(y,) / - / )  = - e(X) / 
t -...'~ O 

in C~176 Fix ~ and g as above and put /x- -g / .  Then since g and ~(X) commute, we have 

,,,-,., (*- '  {~(y,) / - 1} + d ~ )  1) = ~p I r l  {z(,v,) h - h}  + 1~ l, 

w h e r e / 2 -  ~(X)/1" But  we have seen during the proof of Lemma 2 tha t  

s /l(yt-lx)--ll(X)=--t /~(y,t-lx)ds (xEG). 

sup I t - ' { l ( y , ) h - h }  + l~[ < sup I I (y.) /~- l~[,~8~o 
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w 4. Proof of Lemma 7 

I t  remains to verify Lemma 7. Let  K o be the connected component of 1 in K. Since K 

is compact, the index N = [K: Ko] is finite. Put  E = E~ and let Eo be the set of all equivalence 

classes of irreducible finite-dimensional representations of K o. If bE E and bo E Eo, we 

denote by [5:50] the number of times 5o occurs in the reduction of 5 with respect to K o. 

For  a given 50EEo, let E(5o) denote the set of all b EE  such that  [5:5o]~>1. Then it is a 

simple consequence of the Frobenius reciprocity theorem that  

Y [5: 5o] d(5) = Nd(5o), 
beE(be) 

where d(5o) is the degree of b0. Let  ~bo denote the character (on K0) of a class 50 E E0. Then 

it  is easy to see that  

where C(5o)= c(5) for any 5 E E(50). Therefore 

Y c(b)-md(5)~< Y C(5o) -m Y d ( 5 o ) ' < ~  V C(5o)-md(5o) ~. 
be~ boe~o be~(bo) bo e,~o 

Hence it would be enough to consider~ the case when K is connected. 

Fix a Cartan subgroup A of K with Lie algebra a. Then A is connected. Let  L be the 

kernel of the exponential mapping of a into A. Then L is a lattice in a. Consider the space 

of all real-valued linear functions on (-1)�89 and the lattice L* of all , IE~ such that  

ea(H~=l for HEL.  Introduce an order in ~ and put  

Q = � 8 9  
~>0 

where ~ runs over all positive roots of (3, a). For any b E E, let ~t(b) denote the highest 

weight of b with respect to a. Then the following facts are well known. ~(b)EL* and b is 

completely determined by 2(b). Moreover there exists a polynomial function p on ~ such 

tha t  d(b)=p(,~(b)) for all bEE. Finally, there exists a positive-definite quadratic form 

q on ~ such that  
c(b) = 1 +q(; t (b)+o)-q(e)  (beE).  

We can obviously choose a compact set C in ~ such that  

for ~t E ~ outside C. Let F denote the set of all b E E such that  ~(b) E C. Then F is finite since 

L*N C is finite. Let  c~, denote the complement of F in E. Then 
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For any ~ E C(K) and /E C~176 define 

f=(k) l(k)/ dk 

and let ~b(b E E~) have the same meaning as in w 3. 

COROLLA~r 1. The series 

be~x 

converges absolutely to / in C~(G). 

This is an immediate consequence of Lemmas 5 and 8. 

COROLT.ARY 2. Fix leCc~176 Then the series 

converges absolutely to I in Cc~(G). 

Fix a compact set ~ in G such that  K ~ = ~  and S u p p / c ~ .  As usual, let Cn~ 

denote the space of all functions r 6 Cc*~ whose support lies in ~.  Then Cn*~ is a closed 

subspace of C~*~ and the two topologies induced on it from C~(G) and Cc~(G) coincide. 

Therefore our assertion follows from Corollary 1. 

Let r(y)/ (yeG,/6C~(G)) denote the function x-->/(xy) (xeG). Then one proves in 

the same way that  r is a representation of G on C*~ and every/6C*~(G) is differentiable 

under r. Moreover l(g)/=~(g*)/and r(g)/=g/(gaS) in the notation of the corollaries of 

Lemma 2. Define 

f  (k-1)r(k)/dk 
Then the analogues of the two corollaries of Lemma 8 hold also for r. 

Note that  l(x) and r(y) (x, y 6 G) commute and hence 

a~e(l~efl) = (a~e/)~efl (a, fleC(K)). 

We may therefore simply write ~e/~efl. 

Define a representation g of G • G on Cr176 as follows. 

g((x, y))/=l(x)r(y)] (x, yeG, /eC*~(G)). 

Since ~((x, y)) ] - / = l(x) (r(y) ] - / )  4- (l(x)/-/), 
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it follows from Lemma 1 that  ~ is indeed a representation. I t  is obvious from Lemma 8 

and its analogue for r, that  every [ E Coo(G) is differentiable under ~. 

L ~ M A  9. Let V be either one o/the two spaces C~176 or Ccoo(G), taken with its usual 

topology. Then/or any [ E V, the series 

b~. b~ E EX 

converges absolutely to [ in V. 

If  V = Coo(G), this follows immediately from Lemma 5. The rest is proved in the same 

way as Corollary 2 of Lemma 8. 

w 6. Proof  of  L e m m a  4 

We now come to the proof of Lemma 4. Fix v6 V, yES and e>0.  Then, by Lemma 3, 

we can select [ E Ccoo(G) such that  

�9 ( ~ ( l ) v - v )  <<- ~. 

Choose a compact set ~ in G such that  K ~ = ~  and S u p p / ~ .  Put  

~(g)= flgld. ( g e c o ~ ( a ) )  

and ~F = ~ ~b 
beg 

for any finite subset F of EK. 

Supp ( / -  ~F ~-/) = ~. Therefore 

Then # is a continuous seminorm on Ccoo(G) and 

where c = sup v(~(x) v) < oo. 

Hence we conclude from Corollary 2 of Lemma 8 that  

~(~ ( l -~ *  l)v) <<- 

i f  F is sufficiently large. Therefore 

v(~(~,~./) v - v)  < ~(~(1 - ~ . / )  v) + ~(~(/) v - v) < 2~.  

Since ~(~F~-/)vE ~ Vb 0 V ~ 
b~E~ 

from Lemma 2, the assertion of Lemma 4 is now obvious. 
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w 7. Some elementary facts about 6 aad 

Let g be a reductive Lie algebra over R. Then g = r + 61 where r is the center and 

61 the derived algebra of 6- Let 0 be an automorphism of g such that  0 ~ = 1 and let ~ and 

p be the subspaces of g corresponding to the eigenvalues 1 and - 1  respectively of 0. We 

assume that  the quadratic form 

Q(X) = - t r  (ad X ad O(X)) (XEg) 

is positive-definite on 61. 

Let G be a connected Lie group with Lie algebra 6 and K the analytic subgroup of 

G corresponding to 3. We assume that: 

1) K is compact, 

2) The mapping (k, X) -+k exp X (kEK, XEO) defines an analytic diffeomorphism of 

K x p onto G. 

Let  log denote the inverse of the exponential mapping from p to exp p. Suppose we 

have a Euclidean norm on p such that  II/ l[ = IlXlI < k e K ,  x e ~ )  a n d  

(X,  (adZ)~Y) = ((adZ)~X, Y) (X, Y, ZEO) 

for the corresponding scalar product. Then it is easy to see that  cv = cN p and Pl = [~, P] = 

pN 61 are mutually orthogonal (under this norm). Pu t  

= Ilxl l  

for x = k e x p X  (kEK, XEp) and extend 0 to an automorphism of G (see [4(o), w 16]). 

Then it is obvious that  
a(x)=a(O(x))=a(x -1) (xEG). 

If I CI (CEc~) is an arbitrary Euclidean norm on c~ and we define 

IIC+XH 2 = l v I 2 - t r ( a d X a d 0 ( X ) )  (CEc~,XEO1) 

then all the above conditions are fulfilled. 

LEI~MA 10. (7(xy)<~(~(x)+(~(y) /or x, yEG. 

We may obviously assume that  x = e x p  X, y = e x p  Y (X, YEO). Then if xy=]c exp Z 

(kEK, ZEp), it is clear that  

exp 2Z =O(xy)-lxy =exp Y. exp 2X.exp Y. 
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Now define Z(0 e p by  

exp 2Z(t) = e x p  tY-exp 2X-exp ~Y (tER). 

Then Z(t) is an analytic function of t and it  follows by  differentiating with respect to t 

tha t  (see [5(a), p. 95]) 

{ ( 1 - e x p  (--2 ad Z(t)))/2 ad Z(t)}Z'(t) = ~(1 +exp  (--2 ad Z(O)) Y, 

where Z'(t) = dZ(t)/dt. Therefore 

<z(t), z'(t)> = <z(0, Y>. 

Now suppose z(t)=o for some teR. Then 

I =exp t Y.exp 2X.exp tY 

and therefore X = - t Y .  But then Z = (I - t )  Y and so 

Ilzll < II YII + lit rll = II YII + IlXll 

which is equivalent to the assertion of the lemma. Hence we may assume that  Z( t )~  0 

for every t ER. Then [IZ(t)[I is analytic in t and 

<z(0, z'(0> = Ilz(OlldllZ(oll/~. 

This shows that IIz(oll~llZ(t)ll/dt =<z(0, Y> 

and hence I~llz(t)ll/dtl < II YII 
But then by integrating we get 

IIz( , ) l l -  IIz(0)ll < II YII. 

However Z(O) = X  and Z(1) =Z. Therefore 

llzll ~< llXll + II YII 
and this proves the lemma. 

Pu t  ~1 = ~ + c = ~ + r and let K 1 be the analytic subgroup of G corresponding to ~1 De- 

fine the function E on G corresponding to K 1 as in [4(q), w 16]. Then by  [4 (q), Lemma 31] 

E is everywhere positive. 

LEMMA 11. There exists a number r >~O such that 

fo~(xf (1 a (x) )  - r  ~ .  
+ dx < 
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Let G o and C~ be the analytic subgoups of G corresponding to g0 = ~ § Pl and c~ respec- 

tively. Then since .~(yc)=7~(y) and 

a(yc) ~>max (a(y), a(c)) (yeG o, ceG~), 

it is clear that  the above integral is majorized by 

fc0(1 § dc (1 § dy, 

where dc and dy are the Haar measures on C, and G o respectively. Now it is clear that  

f ( ( 1  + a(c)) -r~2 d~ < oo 

if r is sufficiently large. Hence it would be enough to consider the case when c~ = {0}. 

Then we can obviously replace (7 by G/Z a where Za is the center of G. So we may assume 

that  G is semisimple. Define a, Z, ct +, A and A + as in [4 (q), w 21] and let dh denote the 

Haar measure of A. Then it follows from [4 (d), Lemma 38] that  

fa~(x)~ (1 + a(x)) -~ dx=c  1 f~+D(h)_~(n)' (1 +a(h)) -~ dh, 

where cl is a positive number and 

D(exp H ) =  l-[ (e~(H)--e-'~(m) "~ (Hea+), 
~e2l 

m~ being the multiplicity of ~. Pu t  Q = �89 ~ ~ m~. Then we know from [4 (j), Theorem:3] 

that  we can choose positive numbers c~ and d such that  

~ ( h )  ~< c 2 e -Q~176 h) (1 + a(h))  a (h e A + ) .  

Therefore, since it is clear that  

D(h) <~ e ~(l~ h) (h E A+), 
we conclude that  

if r is sufficiently large. This proves Lemma 11. 

Remark. Suppose c~={0}. Then one proves in the same way that  (I +a)~'~ELp(G) 

for p > 2  and rER. 

2 -- 662900 Acta mathematica. 116. Imprim($ lo 10 juin 1966. 



18 HARISH- CHA_NDRA 

w 8. Proof of Theorem 1 

We keep to  the nota t ion of w 7 and define (~ as in w 2. Le t  ~ be the center of (~ and 

the subalgebra of (~ generated by  (1, ~c)- The following theorem will play an  impor tan t  

role in the harmonic  analysis on G. 

THEOREM l. (1) Le~ V be a complex vector space of finite dimension and f a C ~ function 

from G to V such that the fun~tions z/(z E ~ )  span a finite-dimensional space. Fix a neigh- 

borhood U of i in G and let J be the space o/all/unctions ~ECcoo(G) such that Supp a c  U 

and a(lcxSr -1) =a(x) (kEK, xEG). Then there exists an element aEJ such that f ~ = f .  

We regard / as an element of C~176 | V and extend the representat ion r of w 5 on this 

space by  making G act  tr ivially on V. Then, as we have seen in w 5, every element 

tECOO(G) | V is dffferentiable under  r and r(g)r162 (gE(~). Let  11 be the set of all u E ~  

such tha t  u/=O. Then 11 is a left ideal in ~ of finite codimension. Let  W be the smallest 

closed subspace of C~176 | V con ta in ing / ,  which is stable under  r(G). Then it is obvious 

tha t  W contains Wo=r(~)f. We claim tha t  W=CI(W0) .  For  otherwise, by  the Hahn-  

Banach  theorem, we could choose a continuous linear function fl :k 0 on W such tha t  fl = 0  

on Wo. Pu t  
F(x) =~(r(x)/)(x~a). 

Since f is differentiable under  r, it  is obious tha t  F E C~176 and 

F(x; g)-~fl(r(x)r(g)f) (gEff~). 

Therefore u l~- -0  for u E U. However  1I contains elliptic differential operators (see the proof 

of Lemma 33 of [4 (q)]) and so we conclude tha t  F is an  analyt ic  function. On the other  

hand,  
F(1; g) --~(r(g)f) = 0  (g~r 

since fl = 0 on W 0. Hence F = 0 and this implies t ha t  fl = 0 on W. This contradict ion proves 

t h a t  W = CI(W0). 

P u t  W1--r(~)f .  Then dim W 1 < oo and therefore W 1 is closed in W. Moreover one proves 

in the  same wa y  as above t h a t  r (K) /c  W 1 so tha t  W1 is stable under  r(K). Since /E  W1, 

we can choose a finite subset F of EK such tha t  f = f ~  ~y. (Here ~ has the same meaning as 

in w 6.) P u t  

(1) In my original proof of this theorem, T had to impose a mild condition on f  at infinity, in order 
to get a representation of G on a suitable Banach space containing f. I t  was noticed by H. Jacquet that 
the argument worked equally well for a representation on a locally convex space and therefore the extra 
condition could be dropped. The proof given here, which is simpler than the original version, although 
based on the same idea, was obtained during a discussion with A. Borel. 
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beF 

in the notation of w 2 (with ~z = r). We claim tha t  WF = Ep W has finite dimension. Since 

W1 is fully reducible under r(K), it is obvious tha t  the natural  representation of ~ on ~ /R  N 1I 

is semisimple. Moreover since dim ( ~ / 1 I )  < c~, it follows from [4 (a), Theorem 1, p. 195] 

tha t  
w 0  = EbWo 

b e c k  

and dim Eb W 0 < c~ for every b E ~x. On the other hand, W 0 is dense in W and therefore 

Eb W 0 is dense in Eb W. Hence Eb Wo = Eb W and this shows tha t  dim W~ < ~ .  

We have seen in w 2 tha t  there exists a Dirac sequence ~j (]>~1) with ~jEJ.  Then by 

Lemma 3 , / ~ e g j - ~ / i n  W as ]-~oo. Let  W 2 be the space of all elements in W of the form 

/ ~  (aEJ) .  Since a(/cx]c-1)=a(x) (kEK, xEG) and /EWF, it is obvious tha t  W ~ W ~ .  

Hence W~ is a vector space of finite dimension and therefore it is closed in W. Therefore 

/ =  limj_, ~ / -)e ~j E Ws and this proves the theorem. 

w 9. The space C(G) 

Fix an open set U in G and let C~ denote the space of all continuous functions / 

from U to C such tha t  
= sup < o o  

U 

for every r E R. Put 
o. (I) = o 

for /EC~176 gl, gs E(~ and rER.  Let  C(U) be the subspace of those/EC~176 for which 

a,vr.g,(/) < co for all r and (gl, gs). We topologize C(U) by means of the seminorms g,v,.g. 

(gl, gsE(~, rER). In  this way C(U) becomes a locally convex Hausdofff  space which is 

easily seen to be complete. (1) 

LEM~A 12. Fix a, bEG and,/or any/unction / on U, let/' denote the/unction on aUb 

given by 
/'(x) = /(a-lxb -1) (xEaUb). 

Then / ~ / '  de/ines a topological mapp/ng o /C(U)  onto C(a Ub). 

This is an easy consequence of Lemma 10 and [4(q), Lemma 32]. 

Now let G' be a Lie group such tha t  G is the connected component of 1 in G'. Moreover 

let U be an open subset of G' which meets only a finite number  of connected components 

of G'. Then we can choose aiEG' and open sets Ut in G such tha t  U is the disjoint union 

(I) C(U) = {0} by convention, if U is empty. 
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of a~Us(l<.i<~r). For any /EC~(U), let /s denote the function on U i given by  /s(x)= 

](asx) (xE Us). Consider the space C(U) of all/ECC~ such tha t / sEC(Us)  (1 ~< i~<r) and 

let V denote the Cartesian product of C(U~) ( l< i~<r)  with the natural  topology. We 

topologize C(U) in such a way tha t  the m a p p i n g / - ~  (/1 . . . . .  /r) of C(U) onto V becomes an 

isomorphism. I t  follows from Lemma 12 tha t  the structure of C(U), as a locally convex 

space, is independent of the choice of as and Us. Moreover it is obvious tha t  the injection 

of Cc~176 into C(U) is continuous. 

By a tempered distributon T on U, we mean a continuous linear mapping of C(U) 

into C. 

Now assume tha t  G'/G is finite. Then U can be any open subset of G. 

THEOREM 2. Suppose G'/G is finite. Then Cc~176 ') is dense in C(G'). 

In  view of this theorem, we can identify tempered distributions on G' with those 

distributions which are continuous in the relative topology of Cc~(G ') as a subspace of 

C(G'). Moreover, it is obviously enough to prove this theorem in case G' = (7. This requires 

some preparation which will be undertaken in the next  few sections. 

w 10. The left- and right-regular representations on C(G) 

Let $ denote the set of all continuous seminorms on C(G). For a n y / E  C(G) and yEG, 

define l(y)/and r(y)/as in w 5. 

LEMMA 13. l(y)/ and r(y)/ are in C(G). Moreover/or a given compact set ~ in G and 

E $, we can choose v' E $ such that 

v(l(y) /) +v(r(y) ]) <~ v'(/) 
/or yE~  and/E C(G). 

Pu t  r(y)/=/~ and fix g,g'E@. Then 

t X t y--1 /~(a ; ; g) = / ( a  ; xy; g ) 

for x, yEG. We can choose linearly independent elements g~ (1 ~<i <p)  in (~ and analytic 

g~-l= ~ as(y)gs (yEG). 

Then /y(g"~ x; g) = ~ a,(y) /(g'; xy; gs). 
S 

I f  we apply a similar argument to l(y)/and take into account  Lemma 10 and [4 (q), Lemma 

32], our assertions follow immediately. 

functions as on G such tha t  
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LEMMA 14. F i x  s>~O and put  

,,,(1) = sup ( l+o ' ) 'E - : ' - [ / I  ( l ee (G) ) .  

T h e n / o r  any e > O, we can choose a neighborhood U o / 1  in G and an element ~' E $ such that 

7,~(1~, -1)  < ~/  (I) 

/or yE U a n d / E  C(G). Moreover, ~' does not depend on e. 

Introduce a norm in g and fix a base X 1 ..... Xn for g over R. Then we can choose 

c o > 0 such that  
m a x l c ,  l<%[  5 e,X,l 

for c, eR (I <.i<~n). Now let le C(G) and Xeg. Then it is clear that 

I: ](x exp X )  - ](x) = [(x exp tX; X )  dt (x e G) 

and therefore 

exp x)  - / ( ~  r< co I x l  7.Jl I t(~ , I I(~ exp tx; x,)l dr. 

But then it is obvious that  we can choose c > 0 such that  

~'~(/o:~ox-/)<elXl Y , , ,(x,/)  

for IX[ ~< 1 (X e g) a n d / e  C(G). Clearly this implies the assertion of the lemma. 

C o R 0 L L A R u 1. F i x  ~ e $ and e > O. Then we can choose a neighborhood U o/1 in G a n g  

v' e S such that 
v(l(y) / -  /) +v(r(y) / -  ]) <~ ev'(/) 

/or y e U and / e C(G). Moreover, v' is independent o /e .  

We use the notation of the proof of Lemma 13. Then 

/~(g'~ x; g) - / ( g ' ;  x; g) = 7. (a,(y) - 1)/(g'; xy; g~) + {/(g'~ xy; g) - / ( g ' ;  x; g)} 

Put  D=Q(g' )og and Dt=~(g ' )og  ,. Then D and D~ define continuous endomorphisms of 

C(G) and the above relation may be written as 

D(r(y) / - / )  = ~ (a,(y) - 1) r (y )D, /+  (r(y) - 1) 1)]. 

Therefore it is obvious from Lemmas 13 and 14 that, for a given s>~0, we can choose a 

neighborhood U of 1 in G and an element v' E $ (independent of ~) such that  
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n(D(r(y)!- /))  < ~'(/) 

for y E U and /E(C(G). Since a similar argument  holds for/(y),  our assertion follows. 

COROLLARY 2. Both 1 and r define representations o/G on C(G). 

This is obvious from Lemmas i and 13 and Corollary 1 above. 

Lv.•MA 15. Every element/E C(G) is a di//erentiable vector under both 1 and r. More- 

over, r (X) /=X/  and l ( X ) / = - e ( X ) /  /or XEg. 

F i x / E  C(G), YEg and put  

Ct = t - l ( r ( y t ) / - / )  - Y/  (tER, t:~0), 

where Yt-= exp t Y. Then it follows from I ~ m m a  8 tha t  if D is any  differential operator on 

G and ~ any compact subset of G, then 

sup I Dr ~ o 
f~ 

as t ~ 0 .  Fix g, g'E ~ and a number  m >~ O. Then it follows in particular tha t  for any eom- 

paet  f2, 
sup I r x; g) l~  (~)-1( 1 q- O*(Z)) m'-> 0 
xEt~ 

as t-~0. 

On the other hand (see the proof of Lemma 2), 

I: r = {/(~y.; Y )  - l (x;  r)}  ds. 

fo Hence ~t (g'~ x; g) = ~ a~(yts) [' (xyts; g~ Y)ds - / ' ( x ;  g Y), 

w h e r e / '  =Q(g ' ) / and  a~, g~ (1 ~<i ~<p) have the same meaning as in the proof of Lemma 13. 

Fix a compact  neighborhood U = U -1 of 1 in G. Then we can choose a number  c such tha t  

1 +a(y)~<c, l a~(y)] ~< c (1 ~<i ~<p) and .~(xy)<c~(x) for y E U and xEG. Fix (~ > 0  such tha t  

ytEU for ]t[~<8. Then 

I r ~; g) l ~ (x) -1 (1 + ~(~))m 

< cm+2~, sup I/ '  (X~; gi r )  l E (xu)-l( 1 +, r (xu) )  m + I/'(x; gr)  l E (X) -1 (1 -Jr (T(X)) rn 
i u~U 

for It] ~<8. Now fix s > 0 .  S ince / 'E  C(G), we can choose a compact set f~o in G such tha t  
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If(x; 9~ Y) [ ~(x) - l (  1 +a(x))  a ~< 

outside ~0 for  O<~i<~p. (Here go=g.) P u t  ~ = ~ o U .  Then ~ is compac t  and  i t  is clear t h a t  

[r x; g) [.~(x)-1(1 +a(x)) m <~ (p+l)cm+~s 

if x ~  and  [t] ~<~. Therefore,  in view of our  earlier result,  we can now conclude t h a t  

Ct-+0 in C(G) as t-+ 0. This shows t h a t  / is differentiable under  r and  r (Y) /=  Y/. The  proof  

for I is similar. 

Define ~ (b ~ ~ )  as in w 5. 

L E P T A  16 . .For  any ]~ C(G), the series 

b~, bt fi 8~  

converges absolutely to ] in C(G). 

This is p roved  in the  same w a y  as L e m m a  9. 

and 

/or xeG. 

w 11. Spher ica l  func t ions  

Le t  ~t = (/xl, #2) be a (continuous) double representa t ion  (1) of K on a (complex) vec tor  

space V of finite dimension. Then b y  a/~-spherical  funct ion we mean  a funct ion r f rom G 

to V such t h a t  
r162 (ks, k~eK; xeO). 

Fix  a norm on V. 

L E ~ M A  17. For any two elements g, g'qq~, we can choose a /inite number o/g~E~ 

(1 < i <<.p) with the ]ollowing l~'operty. I] r ks any C ~ ~t.spherical /unction, then 

< Y 

Let  a be a max ima l  abelian subspace of p. In t roduce  an order in the  space of real 

l inear functions a on a and,  for any  such a, let g~ denote the  subspace of those X E ~ for  

which [H, X]  =-~(H)X for H E a .  Le t  Z be the  set  of all posi t ive roots of (g, a) and  ( ~ ,  ..., ~z) 

the  set  of simple roots in Z. P u t  

~>0 

Then  9 = ~ + a + ~ t  and  (~ = ~ 9 ~  where(2) ~ = ~ ( ~ c ) ,  9~=~(ac)  and  ~ = ~ ( n c ) .  

(1) This means that V is a left K-module under/x 1 and a right K-module under/~. Moreover, the 
operations of K on the left, commute with those on the right. 

(2) We use here the notation of [4 (m), p. 280]. 
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Fix an integer d ~ 0  such that  g, g ' E ~  (see [4 (o), w 2] for the notation). Then we can 

choose a base B for ~ such that  every element bEB has the form b=~u~ where ~E~,  

uE~ ,  ~E~ and 

~ a = e x p (  ~ mt~t( loga))~ ( a E A = e x p a ) ,  
1 ~ 1  

m t being nonnegative integers. Then 

r = Z ab(k) b, g'~ = Y ab' (k) b (k ~ K), 
b e B  b e B  

where ab and ab' are continuous functions on K. 

Now since any two norms on V are equivalent, we may assume that  IFz(kl)Vl~(k2)[ = 

Iv] for kl, k~EK and vE V. Pu t  A+=exp  a + where a + is the set of those points H E a  where 

a(H)~>0 for aE~,. Then G=KA+K. Put  

c = sup max (I ab(]r J, ] ao' (/~) I)" 
k e K  b e B  

Then if x =/c1 h/c 2 (/Q,/Q E K; h EA+), i t  is clear that 

I r ~; g')l < I r h; g'~') I < ~ ~: Ir h; b')I. 
b , b ' e B  

Now b = z b u ~  (beB) as above. Let  us denote the representation of ~c corresponding to 

F~ again b y / ~  ( i - 1 ,  2). For any endomorphism T of V, define 

I T = s u p l T v  (veV) 
Iv ~<1 

as usual and put  c 1 = sup I~al(;gb)]. 
beB 

Then Ir h; b')I = ]Fz(~b)r u~ v~a-' b')] ~< cz ]r u~ ,~ b')] 

since ~(log h)/> 0 (1 ~< i ~< l). Hence 

b .b 'eB  

Now let g~ (1 ~]<p)  be a base for the subspace of ~ spanned by (UbVu b') ~ (b, b' EB, keK) .  

Then it  is clear tha t  we can choose a number c~ >~ 0 with the following property. If  

b,b' EB, kEK and 
(u~v~b') ~= ~ Y,g~ (r~EC), 

l ~ J 4 p  

then 17~ l ~< c~. This shows that  



DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS. I I  25  

for x~G where ca=c2c~c~. Since our hypotheses are symmetrical  with respect to left and 

right, the assertion of the lemma is now obvious. 

w 12. Application to Cy(G) 

For any finite subset F of ~K, define aF as in w 6 and let Cp(G) denote the subspace 

of all elements in C(G) of the form ap r  :r (/E C(G)). I t  is clear that  an element /E C(G) lies 

in CF(G) if and only if O:F-)e/~O:F=/. Hence Cp(G) is closed in C(G). 

Put Vm.g(l) = sup (1 +.)-r~-,lgl l, 
~,~(1) -- sup (1 + a)m:~-' I Q(g)ll 

for re>o, g~r  and I~r  and let &={~'m.,; m~>O, g~(~} and &={~,,,;  re>O, g~r  

L E ~ . ~  18. Let F be a finite subset ol ~K. Then each ol the three sets ol seminorms 

$~, $~ and $ de]ine the same topology on CF(G). 

Consider C(K • K) as a Banach space with the norm 

[/1= sup I[(kl, k~) I ( /eC(Kxg))  kl,ksEK 

and let ffl(k)/and/ff~(k) (leEK) respectively denote the functions 

(lcl, k2)-"'/(k-lkl, k2) and (kl, k2)-->/(kl, k2k -1) (kl, k2eK). 

Then ff = (fix, if2) is a double representation of K on C (K • K). Let  CF be the subspace of 

all /E C(K • K) such tha t  

[ = fKgF(]r / dk = f xy(k)/ffz(lc)dk. 

Then C F is a finite-dimensional space invariant under ft. We denote the restriction of ff 

on Cp by  fir. 

For any/ECp(G) ,  define the ffp-sphericaI function/* from G to C~ as follows. I f  xEG, 
/*(x) is the function 

(kl, k~)~l( l~l-~xk~-~ ) (Ir lr 
in C~. I t  is clear tha t  

I I*(g,~ ~; g~)l = sup I I(g,~,; k, ~ - ' ;  g#) l  
kl, k8 eK 

for gl, g ~ ( ~  and xEG. Therefore if we apply Lemma 17 with V=CF, Lemma 18 follows 

immediately. 
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w 13. Densi ty of  Cc ~ ( G )  ha C ( G )  

Now we come to the proof of Theorem 2. We have to show tha t  Cc~176 is dense in 

C(G). Fix a finite subset $' of EK. In  view of Lemma 16, it would be enough to verify the 

following result. 

LEMMA 19. Cc~176 CF(G) is dense in CF(G). 

For  any  t > 0, let Gt denote the open set consisting of all x E G with a(x)<t .  Also let 

St denote the characteristic function of Gt. Fix a > 0 and an element a E Cc~176 such tha t  

a(ksxk2) =a(x) (kl, k2GK; xEG) and 

aa(x)dx= 1. 

Pu t  ut = (1 - St) * a = 1 - S t*  a, 

where the star  denotes convolution on G as usual. I t  is clear thas ut E Cc~(G). 

LEMMA 20. We have 

and 

/or gE@. 

I t  is clear tha t  

ut(x)--{~ i / a (x )<~t -a ,  
i l  ,~(x) >1 t + a, 

] us(x; g)[ < ( 1  ~(~; g) l d~ (~ e G) 
J a  

[* 
ut(x) = J a, (1 - St(xy-1)) ~(y) dy 

and if we fix y E G~, it follows from Lemma 10 tha t  

{Olifa(x)>~t+a, 
St(xY-I) = if a(x) < t - a. 

This gives the first s tatement  of the lemma. Now fix g E (~. Since g is left-invariant, we have 

gut = (1--St)-)~got. 

ut(x; 9) = f ( 1  - St(xy-1)) ~(y; g) {~y Therefore 

and this implies the desired inequality. 
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Now fix /6  Cy(G) and put  

/t = (1 -u t )  / = (~t-~ ~) /. 

Since ~r and ~t are both invariant under left and right translations of K, it is obvious that  

/tECO~ CF(G). We now claim that  ] t ~ / i n  CF(G) as t ~ +  oo. Fix gE(~. Then 

g ( / - / t )  = g(u~/) = 7 g," ut. g,/ ,  
l~<t~p 

where g~, g / a r e  suitable elements in (~. Moreover, 

/(x) -/~(x) = u~(x) /(x) = / ( z )  
if a(x)~t+a and 

(1 +~(x))m~(x) -11/(x; e) l < (i +t)-l~+,.~(/) 

for a(x)~>t and m~>0 in the notation of w 12. Hence 

(1 +a(x))'n~(x)-Zl/(x; g) --jr(X; g) l ~< (1 + t)-~m+z.a (/) 

for a(x) >/t+a. Now suppose a(x) <t+a. By Lemma 20, /(x)-/t(x) =0 if a(x) <~t--a. So 

let us assume that  t - a  <a(x) < t  +a.  Then if t >a ,  we conclude from Lemma 20 that  

(1 + a(x)) m ~ (x)-Z i/(x; 9) -/t(x; g) I ~< ~ c,(1 + a(x)) z :~ (x) -~ I/(x; g,)I 

< 7 c,(1 + t -  a) -~ ~'m+~.~,(/), 
| 

c~ = Sa [ a(y; g/)] dy (1 < i <p) .  where 

This shows that  vm.g(/-/t)"+0 as t-+ + ~ and therefore by Lemma 18, / t  converges to / 

in CF(G). This proves Lemma 19 and therefore also Theorem 2. 

w 14. An inequality 

Let  ~=0(~) be a Cartan subalgebra of ~ and m and ~1I the centralizers of ~N p in g 

and G respectively. Let  M denote the connected component of 1 in J l .  

Fix compatible orders on the spaces of real-valued linear functions on ~N p and 

~N p + ( - 1)�89 ~ and let P be the set of all positive roots of (g, ~). Let  PM be the subset of 

those roots in P which vanish identically on ~ N p and P+ the complement of PM in P. Put  

~EP+ 
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in the notation of (4 (n), w 4]. Then 11~ is a nilpotent subalgebra of g and ~/normalizes 

n~. Put 
d(m) = I det (Ad (m)),~]~ (m E M) 

and let N~ denote the analytic subgroup of G corresponding to n~. 

Extend ~ N p to a maximal abelian subspace a of p and introduce an order on the dual 

of a which is compatible with that  chosen above on the dual of ~ N p. Let  g = ~ + a + 11 be the 

corresponding Iwasawa decomposition. Then l inch.  Put  

p(H) = �89 t r  (ad H)n (H E a) 

and define a + and A+=exp  a + as usual (see [4 (q), w 21]). Then by [4 (j), Theorem 3], we 

can choose a number d >~ 0 such that  

sup (1 + a(h)) -d e q(l~ h)~(h) < r162 
h e A +  

Let ~M denote the function on M corresponding to ~ if we replace (G, K) by (M, KN M). 

LEMMA 21. Let dn denote the Haar measure o/N~ and ]ix r >r' >10. Then we can choose 

a number c > 0 such that 

g(m) f N (1 + a ( m n )  ) -(r + s d) 7~ (ran) dn <~ c(1 + a(m))  -r" .~M(m) 

/or m E M .  Moreover, there exists a number c0>~1 such that 

l + a ( m )  <~co(l +a(mn)) (mEM,  nEN~). 

I t  is clear that  for a fixed(1) m E M ,  dnm=d(m)Sdn. Therefore since mn=nm.m,  we 

get the following result immediately. 

COROLLARY. In  the above notation, we also have 

d ( m ) - l f  (1 + a(nm))-(r+Sd)~'(nm)dn <c(1 + ~(m)) -r" ~M(m) 

/or m E M .  

We shall give a proof of Lemma 21 in w 44. 

(1) yX =xyx-1 (x, yEG) as usual. 
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w 15. The mapping of C(G)  intoC(l~) 

Let us keep to the above notation. Then MN K has finite index in ~/N K and therefore 

~I/M is finite. Hence the space C(M) is well defined (see w 9). Let ~ be a compact subset 

of G. Then it follows from Lemma 10, [4 (q), Lemma 32] and w 14 that, for any /E  C(G), 

the integrals 

ftr ]/(xn)'dn, fN I/(nx)'dn 
converge uniformly for x E ~ (see also Corollary 2 of Lemma 90). Put 

uI(m)=d(m)~/(mn)dn=d(m-1) ~/(nm)dn (mEM), 

and(1) ~)~--~(lnc). It  is easy to verify (see [4 (q), w 10]) that there exist two automorphisms 

/~ -~#' and # -~'/~ of ~ such that 

F'=d-lFod,'F=d/~od -1 (/z E~).  

Then it follows from what we have said above that urEC~~ and 

ui(/al; m) = d(m) f/(/al ';  mn) dn, 
d1r 

dn 

for/Zl,/z~ E ~ .  Since '/z~/E C(G), we conclude that 

ux(/~a; m; #z) = d(m) f /(/~l'; ran; '/*2) dn. 

In view of Lemma 21, the following result is now obvious. 

LEM~A 22. /~Uf is a continuous linear mapping o/ C(G) into C(M). 

Put  [(x) = f~:/(x ~) dk (x e G) 

for /E  C(G). Then if follows from Lemma 13 t h a t / ~ [  is a continuous endomorphism of 

C(G). Now define 

gr(m)=d(m) f /(mn) dn (mE37i). 

(1) We use here the no ta t ion  of [4 (m), p. 280]. 
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T ~ , O R E ~  3. /+gl is a continuous linear mapping o/C(G) into C(M). 

This is obvious from Lemma 22. 

As usual let ~ denote the center of (~ and # =~ucm the homomorphism of [4 (o), 

w 12]. Since Cc~~ is dense in C(G), we get the following result from the corollary of 

[4 (q), Lemma 14]. 

COROLLARY. Let z6~ and/6C(G). Then 

g~r = #(z)gl. 

w 16. Proof of Theorem 4 

Let I(G) be the space of all continuous functions / on G which are bi-invariant under 

K, and I+(G) the subset of all real/>~0. Pu t  Io~176 Cc~(G) and 

Io+(G) = Co(G) n I+(G). 

Let ~ be the centralizer of ~ in (~ and # a seminorm(1) on Ic~(G) satisfying the following 

two conditions. 

1) There exist elements ql ..... q, e ~  such that  

2) I f /1 , /2  are two elements in Ic~(G) such that/1>~/2>~0, then #(/1)>~#(/~). 

For any r 6 I+(G), put  
/z(r = sup #(/), 

where / runs over all functions in I+(G)N Ic~(G) such that  r Fix a number r>~0 as in 

Lemma 11. 

THEOREM 4. Under the above conditions 

~(E(1 +a)-') < o o .  

Fix ~6I+(G)N Ic~(G). Then ~e/6Ic~176 for /6Ic+(G) and 

(1) Here we take the space Ic~(G) without topology. 
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since q,(~-~/)=qt(/~ ~)-~/~q, ~ =q,a-~/, the convolution being abelian in the present case 

(see [5 (a), Theorem 4.1, p. 408]). Now 

Therefore if V = Supp ~r and 

dx <~ f[ ~(y; q~)J/(y-1 x) ~ (x) dy dx. 

Cl = ~ sup I q, ~l. 
t 

F 
we get #(o~ ~/)  < Cl] /(x) ~ (yx) dy dx. 

J V• 

Since V is compact ,  we conclude from [4 (q), L e m m a  32] t ha t  there exists a number  

c2 >~ 0 such tha t  

dx 

for all /EIc+(G).  I t  follows wi thout  difficulty from condition 2) on ju t ha t  the same ine- 

qual i ty  continues to hold for / E I+(G). 
Now take / = ~ (1 + a) -r. Then  / E I + (G). Moreover we know tha t  ~ > 0 everywhere 

and  (see[5 (a), p. 399]) 

~K~ dk = ~ ~ ~ (7). (xky) (x) (y) (x, Y 

Therefore if we choose ~ EI+(G) fi Ic~(G) such t h a t  

f ~Edx= 1, 

it is obvious tha t  ar ~-~ = ~ .  Then 

(o: ~/)  (x) = fa(y) ~ (y-1 x) (1 + a(y -1 x)) -r @. 

NOW 1 -J- (~(y-i X) ~ (1 + a(y)) (1 + a(x)) 

f rom Lemma 10. Hence ( ~ e / )  (x)/> Co-1/(x) 

where c o = sup (1 + a(y)) T 
y 6 V  

and  V = Supp ~ as before. Therefore 

#(/) < co#(~ ~ /) < co c~ j'/ dx. 

Since 

we get  the assertion of the theorem. 
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w 17. Convergence of certain integrals 

We shall now derive some consequences of Theorem 4. Assume that  G is acceptable 

(see [4 (o), w 18]) and let A be a Cartan subgroup of G. We use the notation of [4 (o), w 23]. 

THEOR:EM 5. F i x  r 0,8 in w 16. Then 

I A(a) l I ~(ax*) (1 + a(aX*))-rdx * < sup 
aeA" JG* 

Let  ~ be the Lie algebra of A. Pu t  

lu(/) = sup I$'i(a) ], v(]) = f l AM(a) F1(a) l da (/E Ic ~(G)) 
aGA" J~ 

in the notation of [4 (o), Theorem 3]. Then it follows from [4 (q), Theorem 4] that  there 

exists a number c >/0 such that  

�9 (/)<cfol/l~d~ (/elo~(O)). 

Moreover, by [4 (o), Theorem 3], we can select z 1 . . . . .  z~ E ~ such that  

,u(l) ~< Z ,(z,l) (/ezo~176 

Hence it is obvious that  # satisfies the two conditions of w 16. Moreover, it follows from the 

elementary properties of an integral that  if CEI+{G) and aEA', then 

f a,r dx * = sup f J (aX*) dx *, 

where / runs over all elements in I+(G) N Ic~(G) such that  /~<r Therefore the assertion of 

Theorem 5 is now an immediate consequence of Theorem 4. 

Let  ? be a semisimple element in G and G v the centralizer of 7 in G. Then G v is uni- 

modular and therefore the factor space G = GIGs, has an invariant measure d~. Let  x - ~  

denote the projection of G on G and put  

~ = ~ = x~x -1 (x E G). 

THEOREM 6. f ~ ( ~ ) ( l + a ( ? ~ ) ) - r d s  
OlGy 

Let ~ be the centralizer of F in g. Since F is semisimple, 3 is reductive in g and 

rank 5 =rank  g. Let  ~ be a Cartan subalgebra of 3 which is fundamental in ~ (see [4 (n), 
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w 11]) and A the Cartan subgroup of G corresponding to ~. Then ?EA. As usual l e t P  and 

P~ denote the sets of positive roots of (~, ~) and ($, ~) respectively andPr the complement 

of P~ in P. Put  
~ =  1-I H~ 

aeP~ 
in the notation of [4 (n), w 4]. 

LEMMA 23. (~) There exists a number c :4:0 such that 

/or all / E C~~176 

Fs(?; ~ )  = c f ciG/(?~) d~ 

We observe that  in view of [4 (o), Lemma 40], the left side has a well-defined meaning, 

Moreover, since ~ is semisimple, the orbit ~a is closed (see [1, w 10.1]) and therefore [1, w 5.1] 

the integral on the right is also well defined. 

Normalize the invariant measure dy* on Gr/A o in such a way that  dx*=d~ dy*. Let  

U be an open, connected neighborhood of 1 in A such that  det ( A d ( a ) - l ) ~ / ~ = 0  

for aEU. Put  U'=UN(~-IA'). Then an element aEU lies in U' if and only if 

det(Ad(ya) -1)~/~= 0. Moreover, we may :assume (see [4 (i), Theorem 1]) tha t  U has the 

following property. For any compact set ~ in G, there exists a compact subset C of 

such that  xUx-lN ~ = 0  (xEG) unless ~EC. 

Fix/ECc~~ and select C as above corresponding to O = S u p p  ]. Then if aE U', 

fa/(( ,a)X*,dx*=fed~G /(x(,a)Y*x-~)dy *. 

Let Gv ~ denote the connected component of 1 in Gv and Z the center of G. Then ZG~ ~ 
has finite index in G v (see [4 (h), Lemma 15]). Let /V denote this index and choose 

y~ (1 ~<i~</V) in Gv such that  
G,= U Y~ZG~ ~ 

Define gz(y)= ~ /(x~y~yy~-lx -1) (yEGr ~ 
I ~ i ~ N  

for x E G. Then it is clear tha t  

for a E U'. 

f a./((~a)X*)dx*=fcdxf(aro).gx(aY*)dY* 

Choose an open and convex neighborhood V of zero in ~ such that  exp V c U and 

la(H)] <1 for a E P  and HE V. Let  V' denote the set of all points HE V where 

(1) Cf. Langlands [6, p. 114]. 

3 - 6 6 2 9 0 0 .  Acta mathematica. 116. Imprim6 le 10 juin 1966. 
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~ s ( H ) =  1-I ~ ( H ) # 0 .  

Then exp V'~ U' and 

A(7 exp H) = $e(7) 17[ ( e'~<m/2 - $*`(7) -1 e-*`<ml~ ) As(H) 
a e r 'g/~ 

for HEV.  Here h ,  (H) = I-I (e "~'~/2 - e-*`~")/~). 
*`eP s 

Let  D denote the differential operator on ~ given by 

D=seo(r)~(v~rs)o 1-[ (e*`/2--L(7)-le-*`/2). 
*`El*ills 

As usual D O denotes the local expression of D at the origin (see [4 (f), p. 90]). 

L~MMA 24. Do=~(7) H (1--~r 

Fix q G S(~) such that  

~(q) = Do - ~ (7) 1-I (1 - ~*  ̀(7) -~) ~(~). 
*`ePg/s 

If  p is the number of roots in Ps, it is clear that  d~ and d~ On the other 

hand, it  is easy to see that  Do'*,= - D  o for any ~EP~. Therefore ~r~ divides qin S(~r (see 

[4 (f), Lemma 10]) and this shows that  q = 0. 

For any function g E Cc~*(Gr~ define 

r = A~(H)fca o)./((exp H)~*)dy * (H E V'). 

Then by [4 (n) Theorem 3], and [4 (i), Lemma 19], there exists a number c o # 0 such that  

lim Co(H; O(~rs) ) = Cog(1 ) (H G V') 
H--~0 

for every g E Uc~(Gv~ Hence it follows from Lemma 24 that  

.FI(7; ~rs) = cx fcg~(1) d~= cl N f a/ar/(7~) d~, 

where Cx = Co en(7) ~Q (7) ]-I (1 - ~*̀  (7)- x). 
*`ePol s 

This proves Lemma 23. 

Now we come to the proof of Theorem 6. Put  
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and define ~([) as in the proof of Theorem 5. By  [4 (o), Theorem 3], we can choose 

z 1 . . . . .  z~ E ~ such that  

~(1)< Y ,(~,l) (/eIo~(G)). 

This shows (see the proof of Theorem 5) that  ~u fulfills the two conditions of w 16. More- 

over, it is clear that  

where [ runs over all functions in I+(G) fl I~(G)  such that  / ~<~. Therefore Theorem 6 

follows from Theorem 4. 

w is. ~ m~ppi~gf~e~, 

We return to the notation of w 15 and define the function D~ on G as in [4 (q), Lemma 

35]. Also we recall tha t  S is the set of all continuous seminorms on C(G). 

LEMMX 25. Put  
l "  

,,~(1)= J i l l  [D~i-~e~ (lee(a)). 
Then ~ E S. 

Fix r as in Lemma 11 and put  

,,(f)=sup ]l]~.-~(l+~) ~ (leC(a)). 
Then it is clear that  

n(/) < ~'(/) j ~  (1 + o-) -r ] D~ [- �89 dx 

and therefore our assertion follows from Lemma 11 and [4 (q), Lemma 35]. 

Now assume that  G is acceptable and let A =A~ be the Cartan subgroup of G cor- 

responding to ~. Since K is compact, A has only a finite number of connected components. 

Define A'(I)  as in [4 (o), w 22]. Then the space C(A'(I)) is well defined (see w 9). For  any  

/ECr176176 define the function FtEC~176 as in [4 (o), w 22]. 

LEM~A 26. Let $(A'(I))  be the set o/ all continuous seminorms on C(A'(I)). The~ 

FfE C(A'(/)) and/or a given % E $(A'(I)), we can choose ~E $ such that 

%(~I) <~'(I) (l~oo| 
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We use induct ion on dim ~. Let  c be the center of g and first assume t ha t  ~ f3 p r c. 

Then  dim m < dim g and the induction hypothesis  is applicable to M and therefore our 

assertion follows immediate ly  from Theorem 3 and [4 (o), Lemma 52] (see also [4 (q), w 10]). 

Hence we m a y  suppose tha t  ~ fl p = cr where c0 = c f3 p as before. Le t  us assume fur ther  

t ha t  c0 # {0} and pu t  gl = ~ + [3, p]. Then  g is the direct sum of c0 and gl and G is the direct 

product  of the corresponding subgroups C o and G r Put(x) ~0=| and (~l=~(gl~)- 

Then  we may  assume, wi thout  loss of generality, t ha t  

%(g) = sup (1+  a(h)) ~ I g(h; 7u) l (g E C (A'(I))) 
h ~ A ' (1)  

for  some r>~0, 7E~0 and uE~(~lc  ) where ~l=~f~ gl. For  any  /EC(G) and cEC~, let ]c 

denote  the funct ion x ~ /(cx; ~) (x E G1) on G r P u t  AI'(I  ) = G 113 A'(I)  and let Fg (g E Cc~(G1)) 

denote  the  funct ion on AI"(I ) corresponding to  [4 (o), w 22]. Then  it  is obvious tha t  

(1 + a(ch)) r IF, (ch; ru)]  ~ (1 + a(c)) r (1 + a(h))r]Fro (h; u)] 

for cEC~, and hEAI ' ( I  ). Since dim g l < d i m  g, we can, by  induction hypothesis,  choose a 

continuous seminorm vx on C(G1) such t ha t  

(1 +a(h))  r ] F~(h; u) l ~ Vl(g) 

for gECc~176 and hEAI ' ( I  ). Then it  follows tha t  

v0(Fj) ~< sup (1 + a(c))r Vx(/c) (/E Cc~176 
c~c O 

Now pu t  v(/) = sup (1 + a(c)y Vl(/c) (/6 C (G)). 
cec 0 

Since E (cx )=E(x )  and a(cx)>~max (a(c), a(x)) (see w 7) for  cEC O and xEGll it  is easy to  

verify tha t  v E S. 

So now we may  suppose tha t  c0 =~ f3 p = {0} and therefore ~ c L P u t  

  (l)=fol/I ID~l-*dx (/EC(G)). 

Then ~1 ~ ~ by Lemma 25. Therefore since A c K in the present case, our assertion follows 

from [4 (o), Theorem 3]. This completes the proof of Lemma 26. 

Since Cc~176 is dense in C(G) (Theorem 2) and C(A'(1)) is complete, it is clear that 
that / -~ E I can be extended uniquely to a continuous mapping of C(G) into C(A'(1)). Thus, 
for every/EC(G), we get a function FIE C(A'(1)). 

(1) W e  use  here  t he  n o t a t i o n  of [4 (m), p. 280]. 
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LEMMA 27. Let /E C(G). Then 

E/(a) = eR(a) A(a) fa,/(aX" ) dx* 

in the notation o/ [4 (o), w 23]. 

(a EA') 

I t  is obvious from Theorem 5 that  the integral on the right is well defined. Now choose 

a sequence/j E Cc~176 (j >1 1) such t h a t / j  ->/ in C(G) and put C j - - / " / r  Then, in view of the 

definition of F I, it would be enough to verify that  

sAu, p [A (a)[ fG * [ Cj(a~*) [ dx* ---> O. 

But since Cj->0 in C(G), this is obvious from Theorem 5. 

Let B be another Cartan subgroup of G conjugate to A. Fix xEG such that  B = A  ~. 

Then the isomorphism a ~ a  x defines a linear bijection of C(A'(I)) on a subspace C(B'(I)) 

of C~176 We topologize C(B'(I)) so as to make this bijection a homeomorphism. I t  

is easy to verify that  this topology is independent of the choice of x. 

Now let us drop the condition that  ~ = 0(3 ) and define 

F/(a) = e~(a) A(a) ~*/(aX*) dx a (/e C (G), a e A' (I)). 

I t  follows from Theorem 5 that  this integral exists. Since ~ is conjugate to some Cartan 

subalgebra which is stable under 0, it is obvious from Lemmas 26 and 27 t h a t / - ~  F I is a 

continuous mapping of C(G) into C(A'(I)). 

LEMMA 28. Ff(~; ~ r ~ ) = c f  /(y~) d~ 
JG 

/G r 

/or ] E C(G) in the notation o/Lemma 23. 

I t  follows from Theorem 6 that  the integral on the right is well defined. The rest of 

the argument is similar to that  given above for Lemma 27. 

Let us now return to the notation of w 15. If we replace G by M, we get the corresponding 

mapping g-~ F M of C(M) into C(Ao'(I)) where Ao=A N M and Ao'(I ) =AoN A'(I). Define 

Z A =Z(A) as in [4 (q), w 12]. Then the following result is obvious from [4 (o), Lemma 52] 

(see also [4 (q), w 10]), Theorem 3 and Lemma 26. 

L ~ M A  29. For any aEZA, put 

#r.~(m) =gf(am) (mEM, /E C(G)) 
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in the notation o/Theorem 3. Then there exists a number c > 0  such that 

F~(ah)=c~Q(a)F~,. ~(h) (aeZ~,/EC(G)) 
/or hEAo'(I ). 

w 19. A criterion for an invariant eigendistribution to be tempered 

Let  O be a distribution on G. Then 0 is said to be ~-finite, if the space of all distri- 

butions of the form zO (z E ~) has finite dimension. We recall (see [4 (o), Theorem 2]) that  

an invariant and ~-finite distribution is actually a locally summable function which is 

analytic on the regular set G'. 

Define D as in [4 (o), w 28] and let At (1 ~ i  ~<r) be a complete set of Cartan subgroups 

of G, no two of which are conjugate in G. As usual put  A t' =A  t n G'. 

THEOREM 7. Let ~) be an invariant and ~-/inite distribution on G. Then @ is tempered 

i / a n d  only i] there exists a number s >10 such that 

sup (1 + a(a)) -~ [D(a)I t I O(a) l < ~o (1 ~< i ~< r). 
aeAi" 

Let  at be the Lie algebra of At. In  view of Lemma 10, we can obviously assume that  

0(at) = at. Let  us now use the notation of [4 (p), Lemma 63]. Then 

fal dx= Y et fA etme~ At'Ps.tdta (/EGc~C(G)), 

where Fr . t=F [ and et.R=en for A =At  (see [4 (o), w 22]). Now choose c~>0 such that  

ID(a) l~lO(a)l <. e(1 +a(a)y (aEAt', 1 <~i<~r). 

Since [D(a) I = IAt(a)l~ (aEAt), it is clear that  

l~<t<~r J A~ 

for l E Cc~176 Hence it follows immediately from Lemma 26, tha t  @ is tempered. 

Before proving the converse, we shall derive the following consequence of the theorem. 

COROLLARY. SU~3~308e 0 i8 tempered. Then, in the above notation, 

Off)= Y c, I ~.~,F,.,d~a (l~r 
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where (I)~(a) = O(a) .  conj As(a) (aEA/). 

F i x / E  C(G) and  choose a var iable  e lement  ~EGc~(G), which converges to  f in C(G). 

Then  
Off) = lira O(~). 

J l~<~<r d A~ 

and so our  assert ion is an  immedia te  consequence of L e m m a  26 and  the  above theorem.  

Now in order  to  prove  the  second p a r t  of Theorem 7, we need some prepara t ion .  

Define $ and  Sz as in L e m m a  18. 

LEMMA 30. Let 0 be a tempered and invariant distribution on O. Then 0 is contin- 

uous in the topology defined on C(G) by $p 

Fix  a funct ion a E Cc~176 such t h a t  S g dx= 1 and,  for  a n y  / 6  Cc~176 p u t  

/o(X) = faa(y)/(x~) dy (x E G). 

/o(Zl =2) = foa(yz1-1)/(YXZ2 zl y - l )  dy  (z 1 , z~ q O). Then  

F ix  g' ,  g~ E O. Then  i t  is clear t h a t  we can select gl . . . . .  gv E ~ such t h a t  

for  all /ECc~176 Here  ~ = S u p p  ~. Now fix m~>0. Then  b y  L e m m a  10 and  [4 (q), 

L e m m a  32], we can choose c/> 0 such t h a t  

sup I/0(g'; x; g")l "~' (x)- ' (1 + a(x)) ~ < c E sup I I(x; g,)] ~ (x) -~ (1 + a(x)) m. 

This shows tha t ,  for  a given v6S, there  exists a number c~>O and a finite set  (~1 . . . .  , ~p) 

of elements in ~1, such t h a t  

~(to)~e Y v,(l) (/~eo'~ 

On the  other  hand,  since O is tempered ,  we can choose v E $ such t h a t  

IO(/)l <,,(I) (t~oo~(a)). 

Moreover,  O(l) = 0(1o), 

since | is invar iant .  Hence  
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Z (leCkY(G)) 

and this proves our assertion. 

Now fix a Cartan subalgebra ~ =0(~) of g and let A be the corresponding Cartan 

subgroup of G. Let A 0 be the center of A and ,4 the normalizer of A in G. Put  WA =.~/Ao 

and let x-+x* denote the natural  projection of G on G*=G/A o. Then W~ is a finite group 

and a ~ and x*s (sE WA, aEA, x*EG*) are defined as usual (see [4 (o), w If/~ is any func- 

tion on A',  we denote by  fls the function a-->fi(a s-i) (aEA', s E WA). 

Put  G A = (A') ~ as usual and normalize the measures dx, da and dx* in accordance with 

Lemma 91. Fix a function ~*ECc~~ *) such tha t  o~*(x*s)=a*(x*) (x*EG*, sEWA) and 

f a* o~* dx * = 1 @ 

Then, for any  fi E Cc~176 we define/~ E Cc~176 as follows. 

/z(a~:)=o~*(x*)A(a) -1 ~ e(s)fi(a s) (aEA',  xEG). 
s e W  a 

Here e(s) has the usual meaning so tha t  A ~ = e(s) A. Then it follows from Lemma 91 tha t  

0(/~)= ~ P f l d a  ( f lEC~(A')) ,  
J A  

where (I)(a) =O(a) .conj  A(a) (aEA').  

Let  Q be the set of all roots of (g, ~). Then for each ~EQ, we have the character ~ of A 

(see [4 (o), w 18]). Let  ~ denote the function (1 _~  -1)-1 on A'  and let ~ be the ring of ana- 

lytic functions on A'  generated over C by 1 and ~ (:r I t  is obvious tha t  ~ is stable 

under WA. Moreover, one finds directly by differentiation that  

H ~ = o ~ ( H ) ~ , ( 1 - ~ )  (~EQ, HE~) .  

This shows tha t  ~ is also stable under the differential operators in | 

Fix a connected component A + of A'. Since K is compact, A'  has only a finite number  

of connected components (see [4 (e), Lemma 9]) and so, in order to complete.the proof of 

Theorem 7, it would be enough to show tha t  there exist numbers c, m>~0 such tha t  

[(I)(a)I < c(1 +a(a)) m (aEA+). 

Put  ~1 = ~ N ~, ~s = ~ N p, AI = A N K, A1 ~ =exp  ~1 and A s = e x p  ~s. Then A~ ~ is the connected 

component of 1 in A r For any aEA, let a~ denote the component of a in A~ ( i=l ,  2) so 

tha t  a = ala ~. Let ~s' be the set of all H E ~s such tha t  ~(H) =~ 0 for any root a of (g, ~) which 
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is not identically zero on ~ .  Then ~z' has only a finite number of connected components. 

Fix a connected component ~2 + of ~ '  such that  A + meets A~A2 +. (Here A2+=exp ~+.) 

I t  would be sufficient to prove the required inequality for a E A ++ = A + N (A 1 A z+). 

Fix an element b exp H o (bEA~, HoElh +) in A ++ and let 3 denote the centralizer of 

bA1 ~ in g. Let  Qa be the set of all roots of (3, ~)- Then every root in Qa is real (see [4 (n), 

w and ~(H0)#0 for ~EQ~. 

Let ~ and ~2 be the spaces of real linear functions on (-1)�89 +~2 and ~2 respectively. 

Introduce compatible orders in ~ and ~2 such that  an element 2 fi ~z is positive whenever 

2(Ho) >0. Let  P be the set of all positive roots of (g, ~) under this order and put  Pa = P  N Q~. 

We may use this order for the definition of A and tq (see [4 (o), w 19]). Then 

zX-I = ~ - ~ ,  

where ~ =I-Lee~]~ E ~ .  

Fix a compact set C = C -1 in G such that  Supp ~* ~ C*. 

LEMMA 31. For any gE(~, we can select u~E@(~r and ~]~E~ (1 <~i <~p) such that 

I/t~(aZ;g)l<~l~(a)[ -~ 5 5 Irl~(a)flS(a;u,)I 
l~ i<~p  s e W  A 

00 t /or flECc (A ), aEA' and xEC. 

Assuming this lemma, we shall first finish the proof of Theorem 7. By Lemma 10 and 

[4 (q), Lemma 32], we can choose c ~> 1 such that  

~(y~) <.c~(y), 1 +a(y  ~) ~< c(1 +a(y)) (xEC, yEG). 

Since C = C -1, this implies that  

[/~ (aZ; g) l ~ (a*) -1 (1 + a(aZ)) a 

"<< c~+11/~(aX; g) l ~ (a) -1(1 + a(a ) )  m 

<cm+ll~(a)l-l~(a)-l(l+a(a))m Y. Y [~],(a)flS(a;u,)l 
l<<J<~p s e W  A 

for flECc~176 aEA ++, xEC and m>~O. Put  A~ Wa. If fl ECc~(A~ it is dear  tha t  

S u p p / a t  (A++)v. Hence 

s u p  lift (X; g) l E (•)--1 (1 ~- O'(X)) m 
X E G  

< c  m+l sup I~Q(a)E(a)l-l(l+a(a)) m ~ ~ l~7,(a)flS(a;u,)l, 
aEA++ l~<i~<p s e W  A 

for fl E Cc~(A ~ and m ~ 0. 



42 ~'A~H-CI~'ANDR~A. 

I t  is clear tha t  A++c bAlOAg+. Extend ~ to a maximal abelian subspace a of p and 

define an order on the dual of a, which is compatible with the one chosen on ~ .  I t  is clear 

tha t  
I ~0 (a)[ ~ (a) = ~ (az) e ~176 a,) (a E A).  

Since a~EA~ + for aEA ++, it follows easily from [4 (j), Lemma 36] tha t  

]~,(a)]~(a) >~ 1 

for aEA ++. Therefore since }~ is stable under W~, we obtain the following result from 

Lemma 30. 

LEMMA 32. We can choose m>~O, u~E~ and uiE~(~c) (1 ~<i~<p) such that 

] f~fl~Pdal<~ ~'l<,<v aEA,sup(l +a(a))ml't(a)fl(a;u')] 

/or fl E C/~176 

Moreover, we have the following lemma. 

LEMMA 33. Let aEQ. Then 

[~(a)~(loga2) [ < 1+  ]~(loga2) [ (aEA'). 

Since Ic,-c2] >1 ][c,] -]c~[ ], for two complex numbers Cl, C2, it is clear that  

[ ~ ,  (a )a ( log  a2) [ < [ a ( log  a,)]] 1 - e -'a~ a,)]-~. 

On the other hand, t(1 - e-t) -1 = t +  $(e t -  1) -1 

and t(e * -  1) -1 ~< 1 (t >1 0). 

Hence ]* [ [1-e -~1- '~<1+[$[  (tER) 

and this implies our assertion. 

Fix a non-empty, open and connected subset U of bA1 ~ such that  UA2 meets A ++ 

and ~ (~EP) never takes the value 1 on U unless aEP~. Clearly this is possible. Then 

UA~+cA++cbAI~ where A'(R) is defined as in [4 (o), w 19]. Also we know 

that  (I) extends to an analytic function on A'(R) (see [4 (o), Lemma 31] and [4 (p), Lemma 

64]). For (~EC~(U) and 7ECc~(~2+), define the function ~ •  in C/~ ++) by 

(~• as) (aEA). 

Let da~ denote the Haar  measure on A~ and dH the Euclidean measure on ~2. We normalize 

them in such a way that  



D I S C R E T E  S E R I E S  F O R  S E M I S I M P L E  L I E  G R O U P S .  I I  43 

da = da l dH 
for a = a x exp H G A. Pu t  

(H) = JAr, (I)(al exp H) ~(al) da 1 (H 6 ~2 +). 

Then it  is clear tha t  f,a( ~ • ~)" dPda = fl~,+dPa~dH. 

Now fix ~ E Cc~176 and put  V = Supp ~. Then V is a compact subset of U. Let  Qz be 

the set of all imaginary roots (see [4 (n), w 4]) of (g, ~). Then if ~EQt, it  follows from the 

definition of U, that  ~?~ remains bounded on V. Let  P' denote the complement of Pz = P  N Qx 

i n P .  Pu t  
q ( H ) =  ]-I a ( H )  (He~2). 

~e P '  

Then q is a polynomial function on ~2, which is not identically zero, and we conclude easily 

from Lemmas 32 and 33 that  there exists an integer m ~> 0 such that  the distribution 

on ~2 + is tempered. 

On the  other hand, since bAI~ and (I) is analytic on A'(R),  we conclude 

from [4 (e), Theorem 2], [4 (p), Lemma 64], and the ~-finiteness of (9, tha t  

dP(bax ex-p H)= ~. ~t(al) ~. p~l(H)e ;9(H) (ax eAx ~ H G~2+), 
l<~i<~N l<<.l<~n 

where ~ (1 ~<i ~hr) are distinct characters of Ax ~ 2 s (1 < i  ~<n) distinct linear functions and 

Ptj polynomial functions on ~ .  

L E ~ M A 34. Fix ~ (1 <~ j <~ n). Then p~j = 0 (1 ~< i ~< N) urdess (1) ~2j(H) ~< 0 /o r  all H e ~2 § . 

For otherwise suppose that  ~2 j (H)>0  for some H E ~  +. Then it follows from [4 (p), 

Lemma 15] that  
/a 

P~t j ~t(al)~(b-lax)dal =0. 
l<~t<~N d AI 

Since this holds for every OeCc~176 we conclude f rom [4 (h), Lemma 20] that  Pt j=  

0 (1 ~<i ~<N). 
I t  is now obvious from Lemma 34 that  we can choose numbers c, m >~0 such that  

I t (a ) [  ~<c(l+a(a)) s (aeA++) 

and this proves Theorem 7. 

(x) ~Re denotes the real part of a complex number c. 
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We have still to prove Lemma 31. Pu t  q=[g,  ~] and for any xEG, define the linear 

mapping Fx of ( ~ |  into (~ as in [4 (o), w 2]. Then if aEA', Fa defines a bijection of 

~(qc)| onto (~ (see [4 (o), Lemma 10]). Let ~a denote the inverse of this mapping. 

L~M~A 35. 

such that 

Fix gE~. Then we can choose q~E~(q~), u i E ~ ( ~ )  and ~ E ~  (l~<i~<p) 

~,~(g)= ~ ~(a)(q~| (aEA').  

We use the notation of [4 (o), w 2] and put  d x = L x - R x  (XEgc). Then dx is a deriva- 

tion of (~. Define X~ (~EQ) as in [4 (n), w 4]. Then 

(~(X~)=~(a)-lL:r - Rz~ = - ( 1 - ~ ( a ) - l ) L : ~ + d x ~  (aEA) 

and therefore ~(a)(ra(X,)= ( L z - ~ ( a ) d z ~ )  (aEA'). 

This shows that  

( - 1 )r ~1 (a) ... v]~ (a) F~ (X~, X~, ... X~ | u) = (Lx~ ' - ~ (a) d x J  ... (Lx~ ' - ~]~, (a) dx~) u 

for aEA', uE |  and ~1 ..... ~rEQ. The assertion of the lemma now follows by an easy 

induction on the degree of g. 

For any / E C~(G), pu t / (x : a )  =/(a ~) (x E G, a E A). 

COROLLARY. Let/EC~176 Then 

in the above notation. 

/(a~;g~) = ~ ~?t(a)](x;q~:a;ui) (xEG, aEA')  
l ~ t ~ p  

This is obvious from [4 (o), Lemma 4]. 

We are now ready to prove Lemma 31. Let  gl . . . .  , gN be a base for the vector space 

over (3 spanned by g~ (x E G). Then 

g x-1 = ~ C t' (X) gt (X E G), 
l~<i~<N 

where c~' are analyti functions on G. Hence 

/(aX;g) = ~ ci'(x)/(a~;g~ x) (xEG, aEA) 
l~l~N 

for /EC~(G). Therefore it follows from the corollary of Lemma 35, that  we can choose 

analytic functions c~ on G and q~E| u~E~(~c), ~ E ~  (1 <~i<~p) such that  
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/(aX;g) = ~ c~(x)~(a)/(x;qt:a;u~) (xEG, aEA') 

for any /eC| Put  ~(x)--~*(x*) and ~(x)=ci(x)~(x; qi) (xeG). Then it is clear that  

/~(a~;g) = ~ ~(x)~i(a) ~ e(s)fl~(a;u, oA -~) (xeC, aeA') 
14i~<p s e W  A 

for fleC~~176 Let u-+'u denote the automorphism of |162 such that  ' I t=H-o (H  ) 

(HeO~). Then since A-l=~q-lfl, it is clear tha t  

uoA-1 = ~ - l ' u o v  (u e | 

as a differential operator on A'. Therefore since R is stable under both ~(Oc) and W~, 

Lemma 31 follows immediately from the compactness of C. 

w 20. Proof of Theorem 8 

Now suppose rank G=rank K and fix a Cartan subgroup B of G such that  B c K .  

Define L and 0h (~ EL) as in [4 (q), w 8]. Then it follows from Theorem 7 and [4 (p), Lemma 

52] tha t  Oh is tempered. Similarly we conclude from [4 (p), w 29] that  

1--.-~ I ~(~)e.,(l)} ( leC(~)) 

is a continuous mapping of C(G) into C. Therefore 

!-+ .,~L..~(~.) e.~ (1) (1 e C (a)) 
is a tempered distribution. 

Now we use the notation of [4 (q), w 14]. I t  follows from [4 (q), Lemma 27 and Cor. 1 

of Lemma 57] that  T A is a tempered distribution on C(-4a). Define 

tgh) = Pgh; ~0) (h~I~) 

for ]EC(G). Then it follows from w 18 that  ] :+r  is a continuous mapping of C(G) into 

C(~a) and therefore 
1 --,'- TA(r ( le C(G)) 

is a tempered distribution on G. Hence we obtain the following result from [4 (q), Theorem3]. 

THEORE~ 8. Let ]E C(G). Then 

el(:) = ( -  ~)" ~ ( ; t )  e~(t) + 2: T,(r 

in the notation o] [4 (q), Theorem 3]. 
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Let  Y(G) denote the subspace of all ! E C(G) which are invariant  under left and right 

translations of K. I t  follows from Lemma 19 tha t  Ic~(G) = y(G) N Cc~(G) is dense in Y(G). 

Moreover if we take into account Lemma 18 and [4 (j), Theorem 3 and Lemma 36], i t  

follows without difficulty tha t  the space Y(G), including its topology, is the same as I(G) 

of [4(~), w 12]. 

COROLLARY. Let !EY(G). Then, i / q  is not compact, 

c/(1)= ~ T,(~r.,). 
2~t~<r 

This is an immediate consequence of [4 (q), Theorem 6]. 

w 21. Proof of an earlier conjecture 

We now drop the assumption tha t  rank G = r a n k  K. Let  a be a maximal  abelian 

subspace of p. Define A, N, 1t and a as in [4 (q), w 16] and fix a Haa r  measure dn on N. Pu t  

= e ~ac~a)f/(an)dn (a EA) r 

for /E Y(G). Then we know from Theorem 3 tha t  ] ~ (I)f is a continuous mapping of Y(G) 

into C(A). 

L ~ M A  36. Let / be an element in y(G) such that (I)I=0. Then/=0. 

We shall prove this by  induction on dim G. However we first verify the following result. 

LEMMA 37. It is suHicisnt to show that, under the conditions ol Lemma 36, / (1)=0.  

Fix an element ~ E Ic~(G) and consider ]o = a * / .  Then 

/o = ~q a(x) ICx) / dz e 3 (G) 

from the results of w 10. Let  da denote the Haa r  measure on A. Then we can assume tha t  

dx=e~a(l~a)d]cdadn (x=kan, kEK, aEK, hEN) 
and therefore 

! , ( y ) =  fao:(x-1)!(xy)dx= fe~~176 (yEO). 

Hence it  follows without difficulty tha t  
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l "  
(I)Io(a0)= J Ar (aoEA) 

and so we conclude tha t  = 0  

Since this holds for every ~r it is obvious t h a t / = 0 .  

We shall now undertake some preparation for the proof of Lemma 36. Let  B=O(B) 

be a Cartan subgroup of G and b its Lie algebra. For any / E C(G), define F I corresponding 

to B as in w 18. Let  111 be the centralizer of b N p in ~ and M the analytic subgroup of G 

corresponding to ~ .  Define the differential operator ~r on B as in [4, (o), w 22]. 

LEMMA 38. The statements o] [4 (o), Lemma 52] remain true/or/E C(G). Moreover, i] 

b is ]undamental in g, there exists a positive number c such that 

el(l) = ( - 1 ) ~ F s ( 1 ;  ~) 

/or /E C(G). Here q = �89 G / K - r a n k  G § rank K). 

The first par t  follows from Theorem 3, its corollary and Lemma 29. The second is a 

consequence of [4 (o), w 22], [4 (i), p. 759] and [4 (n), Lemmas 17 and 18]. 

Since a is maximal abelian in p, we can choose k E K  such tha t  (b N p)~c a. Hence we 

may  assume tha t  ~ fl p ~ a. Put  111--m N 1t, ~V 1 -~M N N, K 1 ---M fl K and 

al(H) - - t r  ( adH) , ,  (HEa). 

For any / E Y(G), define u s as in Lemma 22 (for ~ = 5). Then it is clear tha t  u s is bi-invariant 

under K 1 and therefore usE Y(M }. The following lemma is a simple consequence of the 

definition of up 

LEMMA 39. The Haar measure dn 1 on iV 1 can be so normalized that 

(I)i(a) = e~'a~ us(an1) dn 1 (a EA) 
J 1r 

/or / ~ 3(G). 

Now we come to the proof of Lemma 36. We may  obviously assume tha t  G is not 

compact. Fix /E J(G) such tha t  (I)i=0 and first suppose tha t  11t ~= g. Then the induction 

hypothesis is applicable to M and therefore we conclude from Lemma 39 tha t  u I = 0. But  

then $ ' r=0  from Lemma 29. 

In  view of Lemma 37, it would be sufficient to verify tha t / (1 )  =0.  We now use the 

notation of the proof of Lemma 26. Le t /1  be the restriction of / on G 1. I f  ep 4 {0}, our 

induction hypothesis is applicable to G 1 and therefore/(1)--/1(1) =0.  So we may  assume 
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tha t  r = {0}. Choose I~ so tha t  it is fundamental  in g. I f  rank g > rank ~, it is clear tha t  

5 N p =k {0}. Therefore since c~ = {0}, it follows tha t  m =k g. But  as we have seen above, this 

implies tha t  F I = 0  and therefore again 1(1)=0 from Lemma 38. 

So we may  now suppose tha t  rank ~ = rank g. Then 5 N p r r if 5 is not fundamental  

in ~, and therefore F I = 0 .  Hence it follows immediately from the corollary of Theorem 8 

tha t  1(1)=0. This completes the proof of Lemma 36. 

In  [4 (k), w 16] the proof of the Plancherel formula for G/K was reduced to two con. 

jectures. The first of these has been verified by Gindikin and Karpelevi5 [3] (see also 

[5 (b), w 3]) while Lemma 36 proves the second. Hence in particular, [4 (k), Corollary 2, 

p. 611] holds for a l l / 6y (G) .  

w 22. Proof of Lemma 40 (first part) 

We return to the notation of w 18 except tha t  we write B =A~. Let  dh denote the Haar  

measure on B. Fix a finite subset F of EK and define :OF as in w 12. PutFC(G)=~F~-C(G).  

I t  is obvious tha t  pC(G) consists exactly of those 16 C(G) for which ~F~-/=].  

L]~MMA 40. Given ro >~O and u6~(~c), we can choose r >~O and a/ini te  set o I element8 

gl, ..., g~ in ~ such that 

lor all 16 FC (G). 

First suppose ~ N p = {0}. Then B c K and 

/ I  F,(h; u) I sup I Fs(h; u)I, dh 
h e  B" 

provided the total  measure of B is 1. Let  CB denote the characteristic function of GB = (B') G. 

Then it follows from [4 (o), Lemma 41 and Theorem 3] and Lemma 25 tha t  there exist 

elements z 1 ..... % 6 ~ such tha t  

sup I ,/Ir (lee(G)). 
h ~ B "  l ~ i ~ p  J G  

Now suppose g 6 FC (G). Then g = ~F ~e g and therefore 

where I:r162 = s u p  I~FI and g l ( x ) = l l g ( k z ) l d k o  
3K 
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Therefore 

from [4 (q), Theorem 5], where c is a positive number  independent of g. Hence 

sup IF,(h;~)l<~ E /l~,[l~d~ ([e~c(a)) 
h ~ B" l~ t~p  j 

and this implies our assertion in this case. 

Now, in order to prove the lemma in general, we use induction on dim G. Let  us keep 

to the notation of the proof of Lemma 26 and first assume tha t  c~ 4= {0}. We can obviously 

suppose tha t  u =yu  1 where y e ~  and u t e~(~t~ ). For [e  C(G) and c e C~, let [~ denote the 

function on G 1 given by  
[c(X) = (1 "~-0"(C))ro[(r ~ )  ( x e G 1 ) .  

Then [cE C(G1). Moreover, since K c G 1 ,  it is obvious tha t  [cEFC(G1)if [EFC(G). Finally 

(1 +~(ch)y' I F,(ch; u) l < (1 +~(h)y' I F,o(h; u~) I 

for c e C~ and h EBI '=  B'N G 1. Therefore our assertion follows immediately by  applying 

the induction hypothesis to G 1 and observing tha t  

max ((~(c), a(x)) <~a(cx) (cEC~, xEG1). 

So we may  now suppose tha t  c~ = {0} and ~ n p 4 = {0}. Then the induction hypothesis 

is applicable to M. 

w 23. Proof of Lemma 40 (second part) 

Let  dm denote the Haar  measure on M. Define L.~M, Uf (rE C(G)) and Zv as in w167 14, 15 

and Lemma 29 respectively. For bEZB and [E C(G), put  

[b(x) = dk (x e G). 

Since ZBc  K, it is obvious tha t  if ]eFC(G), the same holds for [b. 

LEMMA 41. Fix  r >~O and ~e|162 Then we can choose v 1 ..... v v in • such that 

[or [eFC(G) and bEZ~. 

4- -662900 .  Acta mathematica. 116. Imprlm6 le 1O juin 1966. 
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Put Ns=N ~ in the notation of w 14. We have seen in w 15 that ~%=u,~a (gE C(G)) 
where '~ = d~ o d -I. Fix b E Z B. Then if /E p C(G), it is obvious that/' = '~/b is also in F C(G) and 

Let  ~1, ..., ~ be a base for the subspace of (~ spanned by ,~k (kEK). Then 

l ~ i ~ p  

where ai are continuous functions on K. Pu t  

a n d  ~ = ] ~ , l ~  c , .  

where l~ = ~ l .  

c ,  = m a x  s u p  l a, I 
t 

Then it is clear tha t  

On the other hand, it is clear tha t  

By  Lemma 21, there exists a number  co>~ 1 such tha t  

l+a(m)<~co(l+a(mn)) (mEM, nEN~). 
Put  c a = co r %. Then 

f l  ~Ufa [ '~'M( 1 ~_ (~)r dm <~ c a f/o(x)e-q("(x))EM(~(x))(1 + a(x)) ~ dx 

in the notation of w 42, where 

/o(~) = 
l~<t~p ,./K x K 

But  we know from the corollary of Lemma 84 that  

f ee  -~(~'(x~))E~(/~(xk)) E(x) (x G). dk E 

Hence it is clear tha t  
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f l :u ra l~ t (1  +(T)'dm<"-ca~ f l  ~',1 I.~, (1 + o')~dx 

and this implies the assertion of the lemma. 

We can now finish the proof of Lemma 40. Let  F 1 be the set of all irreducible classes 

of K l = K f l  M, which occur in the reduction, with respect to K 1, of some element of F.  

I t  is clear from Lemma 22 tha t  ufEv, C(M) if/fiFC(G). Since the induction hypothesis is 

applicable to M, we can choose $1, ..i, ~q in | and r~>0 such tha t  

f,, '~ 

for geF, C(M). (Here Bo=BN M and -Fg M is  defined as in Lemma 29.) Therefore the re- 

quired result follows immediately from Lemmas 29 and 41. 

w 24. Proof of Theorem 9 

Let @ be an invariant and ~-finite distribution on G. Fix b E EK and let Ob denote the 

corresponding Fourier component of 0 (see [4 (q), w 17]). Then we know from [4 (q), 

Lemma 33] that  | is an analytic function on G. 

THEOREM 9. Suppose @ is tempered. Then we can choose e, m>~O such that 

Io~(x) l < c~(x) (1 +~(x))  m (x ~ G). 

I t  follows from Theorem 1 tha t  we can choose fl'qCc~176 such tha t  Ob=| '. 

Put  fl(x)=fl'(x-1). Then 
Oh(l) = O~(l~fl) (1~0o~(r 

On the other hand, from Theorem 7 and its corollary, we can choose numbers %, s ~>0 

such tha t  

le(e)l<% (l+a(a))~]F~.,(a)]d, a (geOrge(G)) �9 

Therefore from Lemma 40, there exist elements v x . . . .  , v~E@ and m~>O such tha t  

I@b(g,I = ]@(g')[<~ ,<~<, f J v,g'[~ (l +d,'ndx<~d(b)~ f l v ,  gl~.( 1 +d)  ~dx. 

Here g' = ~b ee g and we have made use of the fact that 

Oh(g) = O(g ~ ~b) = O(~b ~- g) 
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which follows from the invarianee of O. Therefore if we put  ~ = v~ 8, we get 

le~(l) l=leb(l 

Now put  ~ = Supp ~ and c 1 = d(b) ~ ~ sup I~, [. 
t 

Then I Ob(l)l <c , f  (1 + , ( y ) ) ~  foil(-) I ~ (-y) (1 + <,))~d,. 

But  we can choose (see [4 (q), Lemma 32]) c 2/> 0 such tha t  

~(xy)<~c2.~.(x) (xeG,  y e ~ ) .  

c = c 1 c~ f a  (1 + a(y))~dy < Then 

I oh(/) I < cfolll .=. (1 + ,,)~'d~ and 

for ] E Co~(G). The assertion of Theorem 9 is now obvious. 

COROLLARY, Let/s Then 

Oh(t) = foObl,tx. 

Let  ~ be a variable element in Cc ~ (G) which converges to / in C(G). Then 

from Lemma 11. 

w 25. Application to tempered representations 

Let ~ be a representation of G on a locally convex space ~.  We say tha t  an element 

r E ~ is K-finite (under ~), if the space spanned by  the vectors ~(]c)r (k E K) has finite dimen- 

sion. Now suppose ~ is a Hilbert  space and ~ is unitary and irreducible. Let  ~)~ denote the 

character of ~ (see [4 (b), w 5] and [8]). We say tha t  ~ is tempered if E)~ is tempered. 

THEOREM 10. Let ~ be an irreducible unitary representation o] G on a Hilber~ space ~, 

which is tempered. Then there exists a number m >10 with the/ollowing property. For any two 

K-/inite vectors r ~p e ~, we can choose a constant e >10 such that 
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I (r :~(~) ~) I < cg (:~) (]. +,~(x))"* (~ e G). 

Let 0 denote the character of ~. Then 19 is an invariant eigendistribution of ~ on G. 

Define E~ ( b 6 ~ )  as in w 2 and put  ~b=Eb~. Choose an orthonormal base y~ (i6J) for  

such that  every V~ lies in ~b for some b. Let  Jb be the set of all i such that  ~ 6~b. Then(~) 

[J~] -- dim ~b ~< iVd(b)' (de ~ ) ,  

where iV is a positive integer independent of b (see [4 (b), Theorem 4]). I t  follows from the 

definition of 0 tha t  

and therefore it is clear that  

Ob(x)=tr(Eb~(x)Eb) (x~G) 

for b 6 ~K. Now fix i) 0 6 ~ such that  ~bo :k {0}. Then, by Theorem 9, we can choose numbers 

c o, m>~0 such that  
leb.( )l m ( x e a ) .  

Let r and ~ be two K-finite elements in ~. For any finite subset F of EK, put  

E,= 7Eb 
beF  

and ~=Ep~. Also define gF as in w 6. We can obviously choose F so large that  bo6F 
and r ~ lie in ~F. Let  s be the space of all functions/6C2~ such that/--gF~e/~-g~. 

Then •r(G) is an algebra under convolution and it is clear that  ~ r  is stable under g(/) 

fo r /eLy(G) .  Let :~(/) denote the restriction of g(/) on ~y. Then ~ is a representation of 

i:~(G) on ~r.  We claim that  this representation is irreducible. Fix an element ~0 4 0 in 

~F. Since ~ is irreducible under z,  elements of the form g(/)Vo (/6C:r are dense in ~.  

Therefore, since 

and dim ~F<oo ,  it is clear that  ~p=z(l:F(G))Vo and this shows that  ~F is irreducible. 

Hence, by the Burnside theorem, we can choose ~, fl 6 s such that  

Therefore (r ~(x)~p) = (~,  g(&)~(x)~(fl)~p~) (x6G, i6Jb,), 

where &(y) = conj a(y-~) (y 6 G). This shows that  

(1) As usual, [F] denotes the number of elements in a set -~. 
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(~, ~(x) ~). dim ~b~ = t r  (Eb. re(&) r~(x) ~(~) Eb.) = f a • a &(y) Oh. (yxz) ~(z) dy dz, 

and  the required result now follows immediate ly  from Lemma 10 and [4 (q), Lemma 32], 

if  we observe t h a t  ~b. # {0}. 

Part II. Spherical functions and differential equations 

w 26. Two key lemmas and their first reduction 

Let  V be a (complex) Hilbert  space of finite dimension and # = (~q,/z2) a continuous 

and  un i ta ry  double representation(1) of K on V. Define cp as in w 7. 

L E ~ M A  42. Let r # 0 be a C ~ #-spherical/unction (see w 11) from G to V such that: 

l )  The space o/ /unct ions of the form zr (z E ~)  has finite dimension. 

2) There exist numbers c, r >~O such that 

Ir <eE(x)(l  +a(x)) r (x~G). 

P ,t ]l r If, = r [ dx} ' 

Then  there exists a unique integer v >10 such that 

0 < lira inf t ~12 I1r ~ lim sup t -~/e I1r < ~ ~  
t ---~- oo t - > c o  

Moreover, v >~ dim C~ and, for any e > O, we can choose to, ~ > 0 such that 

]or t o <~t 1 <~t 2 <. (1 +(~)t 1. 

F ix  a maximal  abelian subspace % of p and let A ~ = e x p  % be the corresponding 

subgroup of G. In t roduce  an  order in the space of (real) linear functions on % and let 

g = t + % + It be the corresponding Iwasawa decomposit ion of g. As usual pu t  

e(H) = �89 tr  (ad H) ,  (H e a~) 

and  let %+ be the set of all H E %  where ~(H)>~0 for every positive root  ~ of (g, %). We 

recall (see w 7) t ha t  p is a Hflbert  space with respect to  the norm IIX]] (XEO). Consider the 

set S ~ of all points H E % +  with I[HII =1  and pu t  A p + = e x p  %+. 

(x) This means that V is a left K-modulo under/u x and a right K-module under/~. Moreover, 
the operations of K on the left, commute with those on the right. 
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L E M M A 43. We keep to the notation o/Lemma 42. Then the/oUowing three conditions are 
mutually equivalent. 

I) V=0.  

2) lim etQ(mr exp t H ) = 0 / o r  HES + and hEA~ +. 
t---~+ r 

3) r | 

I t  is convenient  to prove the above two lemmas together.  We shall call v the index 

of ~. The uniqueness of u is obvious from its definition. For  the rest we use induct ion on 

dim ~. I f  p =(0},  G is compact  and all our  assertions are true tr ivially with v = 0 .  So we 

m a y  suppose tha t  dim p >~ 1. First  assume tha t  r 4= (0~. 

Fix  an  element HoEr ~ with HHol1-1 and let ~ i = ~ - p l  where p, is the or thogonal  

complement  (see w 7) of R H  o in p. Then g, is an ideal in g. Let  G 1 be the analyt ic  subgroup 

of G corresponding to  gl- Then the mapping  (t, y ) ~ e x p  tHo.y (tER, yEG1) defines an  

analytic diffeomorphism of R x G 1 onto G. Pu t  r 1 6 2  tHo.y ). Since H o lies in the 

center of g, we can, in view of condition 1) of Lemma 42, choose complex numbers  ct 

(O<~i<~m) such tha t  co=l and 
2 C' / /om-  1 r = 0 "  

O~i<~m 

Therefore it is clear t ha t  

r 2 e(-1)t~,tr (tER, yeG1), 
l~<i~<p 

where 21 . . . . .  2~ are distinct complex numbers,  

r 2 t'r (1 < i <p)  

and r are (1) CoO functions from G1 to  V. We m a y  assume tha t  r 4= 0. Then it follows (see 

[4 (j), w 15]) from condition 2) of Lemma 42 tha t  21 .. . .  ,2~ are all real. Now K =  G1 and 

dim G 1 < dim G. Therefore it is easy to see that ,  if r =t= 0, Lemmas  42 and 43 are applicable 

to  ~ij b y  induction hypothesis. Let  dy denote the H a a r  measure on G 1 and v~j the index 

of the funct ion r on G 1. Moreover we pu t  ~s = - c~ if r = 0. Now let 

= 1 + max  (2 ~" + ~j). 

We shall prove tha t  ~ is the index of r 

We m a y  obviously assume tha t  dx=dtdy. Then for T>~0, 

(1) Here we make use of the fact that the functions ]ij(t)=tle(-1)�89 ~< i~ < p, ]i> O) axe linearly 
independent over C. 
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by the  triangle inequality. Now fix i, j such that  r Then by  the definition of ~j, 

we can choose a number b~ > 0 such that  

(y) dy b~t(1 
T 

for all T ~ 0. Therefore since ~/> 1 + 2 ~ + ~j, it is clear tha t  

~m sup ~-',~ I1~11~< oo. 
2"--) 00 

On the other hand, in order to show that  

~m ~ T-,/~ ll~lIT>0, 

it would be sufficient to obtain the following result. 

L E M M A  44.  F i X  ~ > 0. ~Then 

lira ~ T-" [ I~(t:y) 12dtdy>O. 
T"-~ oo J 

a ( y ) ~ 6 t  

We may obviously assume that  ~<  1. For T~>0, let J(T) denote the interval 

T/2 <~t<~T/V-2 and G~(T) the set of all points y EG~ with a(y)~< T. If  t G J ( T ) a n d  

y E G 1 (~ T/2), it is obvious that  t 2 + a(y) 2 ~< T ~ and a(y) <~ ~t. Hence it would be enough 

to show that  
Fun inf T-" I(T) > O, 

T-~ oo 

dt where I(T)= f~,r ) ~,(,TiJr 

Let <vl, v2> (vl, v2 E V) denote the scalar product in V and put  

J J(T) J G~(~T/2) 

and It (T) = I .  (T) (1 ~< i, ~ ~< p)- Then it is clear that(~) 

I ( T ) =  Z I , ( T ) + 2 ~  Z I~(T). 

Fix  m, n (0 ~< m, n < d) and put  

(1) ~c  denotes the real pa r t  of a complex number  c. 



DISCRETE SERIES FOR SEMISIMPI,E LIE GROUPS. I I  57  

I,m.ln (T) = f :(~)dt f Gl(oTl2)e(-1)'(af-a')ttm+n (~,m(Y), ~m(Y)) dY 

for 1 ~ i, i ~P .  Then if i r i, there exists a constant a(im, in) >10 such that  

If:(r)tm+'e(-1)�89 in)(l+T) m+" (T>>.O). 

(This follows by integrating by parts and using induction on m + n.) Hence it is clear that  

I1~,11,~=~" Ir (t~>0) where 
J a  1(0 

for 1 ~k~Kp, 1 ~l<~d. Therefore if elm:t=0, Cjn*0, we get 

[I,m,jn (T)[ ~< b(im, in) (1 + T)m+n+('+'J ")'2 ~< b(im, in) (1 + T) "-1 (T >f 0), 

where b(im, in) is a positive number independent of T. Therefore it  would be enough to 

verify that  
lim inf T-" Y I, (T) > 0. 

T--~oo l~,~p 

Fix i such that  v ~ + 2 i +  1 =v  for some i. Then it would suffice to show that  

lira inf T-'I~(T) >0.  
T--~oo 

Let Q be the set of all ](0~<i ~<d) such that  v , j+2 i  + l = v -  Then if i~Q,  we have 

r~ t+2 i+  1 <v. Hence 

~ - ' f  t~at f Ir y - - I1r J I ( T )  JG,(c~T/2) 2d ~ T  v~j+2/+l ~ T  ~/ 2.-~ 0 

as T-~ oo. Put  

= =f~ d, fo y),~dy. ~b~~ Y. tJ ~j(y) and I~~ [~,~ 
ieQ (T) 1((~T/2) 

Then it would obviously be enough to prove that  

lim inf T-" I,  ~ (T) > 0. 
T--~.o0 

Now fix e(0 < 8 K 3/2) and put 
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= dt  I ( e : T )  f J ( T )  f a , ( , T )  Ir176 

Then  I (e  : T) ~< I~ ~ (T) a n d  so i t  is suff icient  to  ver i fy  t h a t  

lim inf T-'I(e:T)>O. 
T.--), Oo 

P u t  I,n~(e:T)= f :  dl fa  f"+n<r r 
(T) l(eT) 

a n d  I,n (e : T) = Imm (e : T) (m, n E Q). 

Then  I ( e : T ) =  ~ Ii(e:T)+291 ~ Imn(e :T) .  
t eQ  m, neQ w$.<n 

Moreover,  since ~ =V 0 for  ~ E Q, we can,  b y  induct ion  hypothes is ,  choose pos i t ive  numbers  

a, b such t h a t  

IIr +m)",/~ (~'>_-0, jEQ) 

a n d  II r am",i~ (j E Q) 

for T suff ic ient ly  large.  Then  

]Imn(e:T) l<b2Tm+n+l(l + eT) (~,,,,+~,,)l~ (m, nEQ). 

Hence  I(~ : T) >7 ~ ctT 21+1 (eT)~is - 2 ~ b2T m+n+x (1 + eT) (~,,~+~',~)/2, 
JeQ m,neQ m<n 

for large T,  where c t = a ~ (2 -(~+�89 - 2-(2s+1))/(2~ + 1) > 0. 

Le t  k = maxje  Q ~. Then vii - v,k = 2(k - ]) a n d  therefore  

I (e  : T) 7> T ' e ' ~  { ~ cse e(~-j) --  2 ~ b 2 e ek- 'n-  n (1 + (e T)-l)("i~+v'n'/~}. 
JeQ m,neQ 

m~.n 
This shows t h a t  

l im inf  T-~I(e:T)>~e',k{ck+ ~ csee(k-s)-2  ~ b*e2k-'n-"}, 
T--t.~ ,#eQ" m, neQ 

where Q' is the  set of all  ~ 4= k in Q. N o w  ck > 0 a n d  2 k - m - n >~ 1 since m < n. Hence  

l im inf  T-'I(e : T) > 0 

if e is suff ic ient ly  small .  This  proves  L e m m a  44. 
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I f  l = d im c~, i t  is obvious  thas  d im (r N gl) = l - 1. Hence,  b y  induc t ion  hypothes is ,  

~ j  >~ 1 - 1 whenever  r 0. Therefore  

~ = m a x ( ~ j + 2 ~ +  1)>~/= d im r 

Now we come to the  las t  asser t ion  of L e m m a  42. B y  the  t r iangle  inequal i ty ,  

{l[r162 �89 < ~ {]1r ~ -  I1r 
l ~ p  

for T 2/> T 1 >~ 0. Here  

r (exp t H  o �9 y )  = r (t : y )  = e (-~)�89 ~ $Jr ( tER,  yEGz)  

as  before.  P u t  ~ = 1 + max j  (2 ~" + v~s). Then  v = max~ us a n d  so i t  wou ld  c lear ly  be enough 

to consider  the  case when p = 1. Hence  we m a y  assume t h a t  

0~t~<d 

where  ~t is real .  Then  again,  b y  the  t r iangle  inequa l i ty ,  we have  

a n d  so i t  would  be sufficient  to  consider  the  ease when 

~b(t :y) = e ( - l ~  t~r (y). 

Then  ~, = 2 ~ + 1 + ~1 where ~i is the  index  of the  funct ion  r on O 1. 

Now suppose 0 ~< T 1 ~< T 2. Then 

II r liT= 2 -- I[ r lit, 2 = 211 (Tz: T2) + 212 (TI: T2), 

where  II(Tx:T2)= ~'t~-r ~ , . , Ir 
d 0 J (T1 - t  )~a(y) ~(T=2-t =) 

f2, ,fo a n d  12 (T1 : T2) = I r �9 
(y)=~ T2 I -  tt  

F i x  e > 0 a n d  select a small  n u m b e r  el > 0. Then,  b y  induc t ion  hypothes is ,  we can  choose 

t o >~ 1 a n d  Jl(0 < (~1 < 1) wi th  the  p r o p e r t y  t h a t  

12dy 
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if t o ~ t 1 ~< t z ~< (1 + ~1) tl. F ix  a small positive number  ~(0 < ~ < 1) and  pu t  Y = 1 - ~}. Then  

if O ~ t <~ yT  1 and  O < TI <~ T2 ~ (I + ~) T1, we have 

(T2 2 - t~) t ( T 1  ~ - t2) - t  - 1 ~< ( T z  ~ - t z)  ( T 1 2  - $a ) -1  _ 1 

= (T2 _ T1 ~) (T12 __ ~2)-1 ~ {(I + ~)2 _ I} (I - y2)-I ~ 3 ~�89 ~ ~1' 

provided ~ is sufficiently small. Moreover,  

(T1 z - t2) �89 >i 91(I - y2)~ > 91 ~ ~> to" 

if T, i> T o = &- ~ t o. Therefore if T o ~< T 1 ~< T, ~< (I + &) T 1 and 0 < t ~< y T 1, we have 

f Ir i'dy <" el(T1 ' - $2), , ,~.  
(T,S-$s)<<.a(y)*~(TiS-$ s) 

But  then since ~ = ~1 + 2 ] + 1, we conclude t h a t  

f~ r't2' dt f [~I(Y)]' dy ~ sl T~" 
(T,S-ts)<<.q(y)S<~(TsS-t s) 

On the other  hand,  we can select b > 0 such t h a t  

a,(t)[r i'dY <" b(1 + $)" 

for t~>0. Therefore if To<<.TI<~T2<~ (1 +(~)T 1, we have 

; f r $~'d$ [r t~'(l + T2)"dt<3"'bTl" t5 �89 
T, J }'T, 

(TtS-~)<~a(y)'<~(T,a-$ s) 

since I + T~ ~< 1 + (I + ~) TI ~ 3 T~. This proves that 

Ix (T I : T2) ~< T~" (3"b 8~ + e,) 

if T o ~< T I ~ T~ ~< (I + ~) TI. On the other hand, it is obvious that 

I2 (T,  : T2) ~< T~ 2~ (T2 - T~) b (1 + T , ) "  ~ 3~b T ;  ~. 

Therefore 

11 r 11 2 - II r ll ? = 2 I1(T1: + 2 I~(TI : T2) < 2(el + S"b~ �89 + S~b ~)Tl" ~< e T [ ,  

if e~ and ~ are chosen sufficiently small. This completes the proof of all the s ta tements  o f  

L e m m a  42 in case dim cr/> 1. 
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Now we come to Lemma 43. Since vDdim cry>l, condition 1) of Lemma 43 cannot be 

fulfilled in the present ease. Since it is obvious that  3) implies 2), it  would be enough to 

verify tha t  2) is never satisfied in our case. But  since O(Ho) =0, it is clear from [4 (j), w 15] 

that  2) implies that  r  giving a contradiction. This proves Lemma 43 when dim cr>~l. 

We state the following result, which has been proved above, as a lemma for future 

reference. 

L EMMA 45. Given e > O, we can choose ~ > 0 and T o > 0 such that 

I 'dtdy 

/or T o < T I  <~T~ <~(I +(~)TI . 

w 27. The differential equation for 

In  order to complete the proofs of Lemmas 42 and 43, we may now assume that  cv = {0} 

and p =~ {0}. Fix an element H 0 E S + and let 111 be the centralizer of H 0 in ~ and I the centralizer 

of 111 in av. Since a~cllt  and a~ is maximal abelian in ~, I is also the centralizer of IR 

in p. Moreover, dim 111 < dim g. 

Pu t  ~J~ = ~(111c) and let 3m denote the center of ~J~ and/gO the homomorphism (see [4 (o), 

w 12]) of 3 into 3 1 = 3 m  . Define 111=31/Xo(1/) where U is the ideal consisting of all ufi 3 

such that  u r  Then it follows from condition 1) of Lemma 42 and [4 (o), Lemma 21] 

tha t  dim 3/1I and dim 31/ltl are both finite. Let  ~-+~* denote the natural projection of 

31 on 31" =31/111. We regard 31" as a 3x-module in the usual way so that  z~* =(z~)* 

(z, ~ fi 31). Let  31"* be the vector space dual to 31". Then since 31 is abelian, 31"* is also a 

left 3x-module by duality. Pu t  V =  V| and let r denote the representation of 31 

on V defined by 

r(z) (v | ~**) = v | z~** (z ~ 31, v e v,  ~** ~ 31**)- 

Moreover, by making K act trivially on 31'*, we can regard u as a double K-module. Note 

that  r(z) (ze31) commutes with the operations of K on u 

Fix elements ~1 = 1, ~2 .. . .  , ~v in 31 such that  7h* . . . .  , ~p* is a base for 31". Let  ~h** 

(1 <~i<.p) be the dual base for ~1"*- We regard 31"* as a Hilbert space with (~1"* ..... ~v**) 

as an orthonormal base. Then u also becomes a Hi]bert space. 

Let  Z be the set of all positive roots of (g, at), Z1 the subset of those aEZ  which 

vanish identically on I and Z2 the complement of Z 1 in Z. For any a G Z, let g~ denote 

the set of all X E g such that  [H, X] = a(H) X for H E at. Pu t  
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11,= ~ g~ (i=1,2) 

and 11 = 111 + ~2. Let  M be the analytic subgroup of G corresponding to m. Then M normalizes 

1t2. Put  
d(m) = Idet (Ad (m)).,I�89 (mEi )  

and ~ ' = d - l ~ o d  for ~ E ~ r  I t  is easy to verify (see the Appendix, w tha t  ~-+~' is an 

automorphism of ~1. Now define 

r ~ r174 (meM), 
l < i < p  

where r = d(m)r ~'). 

Then it is obvious tha t  (I) is a spherical function from M to u corresponding to the double 

representation of K 1 = M N K on u which we denote by • = (Yl, Y~). 

For any ~E~I  , there exist unique complex numbers ctj such tha t  

u ~ ( ~ ) = ~ -  Z cij~jEl~l (l~<i~<p). 
l<~j~p 

LEMMA 46. Let ~ E ~I. Then 

(I)(m; ~ ) - r (~ )c l ) (m)=  ~ d(u)r u,(~)')| 

/or mEM. 

Fix ~ and define ci~ as above. Then 

~ p  t ~ C t ( Ia (m;~)=~r174  and r ~/t = A  ,,~j +u , ' ,  

where u~ = u~ (~). Therefore since 

r (m; ~) = d(m) r ~' ~,'), 
our assertion is obvious. 

Pu t  tFr ~ d(m)r174 (~E31, mEM). 
l ~ t ~ p  

Then the following corollary is merely a restatement of the above lemma. 

COaOLZARY 1. (I)(m; $)=F(~)r247162 /or mEM and ~E~I. 

Now [ lies in the center of m. Hence if H E [, we conclude from the above corollary that  

d(e-~r(H)~(m exp tH))/dt = e-~r(')qzfH(m exp tH) 

for t E t t  and m E M. Therefore the following result is now obvious. 
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COROLLAI~Y 2. (I)(m exp TH)= err(H)dp(m) + ~ e(T-t)r(H)~Fn(m exp tH)dt /or m EM, 

HE[ and T E R .  

w 28. Some estimates for ~ and W~ 

Let ~M = '~'1 be the function on M which corresponds to ~ when (G, K ) i s  replaced 

by (M, K1). 

L~MMA 47. There exist numbers co, r o >10 such that 

d(exp H) ~(exp H) ~< c o W.l(ex p H)(1 + HHI[)r* 
/or H 6 a~ +. 

We shall give a proof of this lemma in w 45. 

Put  M + =K1A~+K 1. Since K 1 lies in the kernel of the homomorphism d, the following 

corollary is obvious. 

COROLLARY. d(m)~.(m)<Co~l(m)(1 +a(m)) TM (meM+). 

Fix r>~0 as in condition 2) of Lemma 42. 

L~MMA 48. Given gl, g~E(~, we can choose a number c(gl, g~) >~0 such that 

[r X; g2)] < C(gl, g2),~(X)(1 ~-O'(X)) r (xeG) .  

In view of Lemma 17, it is enough to consider the case gl = 1. By Theorem 1, we can 

choose ~ E Cc~176 such that  r ~- a =r Then gr =~ ~e (g~) (g E ~J) and so our assertion ~ollows 

immediately from Lemma 10 and [4 (q), Lemma 32]. 

Pu t  r l=r  +r o. 

COROLLARY. For any vE ~ ,  we can choose a number c(v)>10 such that 

]~P(m; v)[ <~ c(v) ~l(m) (1 +a(m)y' (m EM+). 

This is obvious from Lemma 48 and the corollary of Lemma 47. 

For  ~EZ, define ~ as in w 27. 

LV, MMA 49. Fix gE~,  aEZ and X E ~ .  Then we can choose CliO such that 

]d(h)r O(X)g) l < c~e -~(~~ ~(h)  (1 +a(h)y '  
/or h EA~ +. 

Since r O(X)g) =e-~(l~162162 h; g), this follows from Lemmas 47 and 48. 

COROLLARY. Fix ~ E ~I and v E ~ .  Then we can choose c >~ O such that 

] ~Fr (m exp H; v)[ < ce -z`m ~1 (m) ( 1 + (~(m))r'(1 + II H H )" 
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/or HEI+=~N %+ and m E M  +. Here 

~(H) = rain ~(H). 

We know that  (see the Appendix, w 45) 

z - ~0(z)' e 0(a~) $. 

Fix ge~, u e l I  and put  f l=  -(U-#o(U)')geO(u~)~. Since ur it is clear tha t  

r =r gl). 

Define the automorphism v~v '=d- l vod  on ~ as in the Appendix, w 45. Fix v and 

as above. Then 
�9 r ~ ( ~ ; v ) =  ~ d(~)r174 

Since u~(~)~lll= ~1, v commutes with ut(~) and therefore 

Hence, in view of the remark above, we can choose g~eO(n~)(~ such that  

r v'u,(~)') =r g,) (meM). 

Since M+=K1A~+K1, our assertion now follows easily from Lemma 49. 

w 29. The function 0 

Let Q be the set of all eigenvalues of r(Ho). Then 

V = ~oV~,  

where the sum is direct and Vx is the subspace consisting of all v ~V such that  (r(H0) -~)~v = 0 

for some integer m~>O. Let  E~ denote the projection of V on V~ corresponding to the 

above sum. We divide Q into three disjoint sets Q+, QO and Q-. An element 2GQ lies in 

Q+, Q0 or Q- according as(1) ~ 2 > 0 ,  ~ 2 = 0  or ~ 2 < 0 .  Pu t  

E :~= ~ E ~ , ~ =  ~F,~ 
~eQ4- 2eQ* 

and y ~ = E~V, V ~ = E~ 

Since ~1 is abelian, r(~) (~ E ~1) commutes with the projections E~. 

(1) !Re denotes the real parg of a complex number c. 
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Pu t  Q' = Q+ U Q-and let (1) 

65 

4Co= min I~).[ .  
~eO' 

Then eo > 0. Pu t  fi(H) = rain ~(H) (H e 1) 
~eZ~ 

as before, so tha t  fl(Ho) > O. Fix a number  ~(0 < e < ~0) and an open and relatively compact  

neighborhood ~ of H 0 in 1. By  selecting them sufficiently small, we can arrange tha t  

f l (Ho) ~ 5 e and(2 )  

for H G ~ .  

LEMMA 50. 

fl(H) ~> 4 e, IF(H) - r(Ho) [ < e/2 

We can choose a number c >1 0 such that 

l e l e  c e  

[e~r(')E~ < ce ~"l (t e R) 

(t/> o 

and 

/or H ~ ~ .  

Fix 2 G Q. Then 

r (H)  E~ = {4 + (r(H) - r(Ho)) + (r(Ho) - 4)} E~ 

l e~r(H)E~ ] ~< exp { t ~  + e It I/2}letCr(~~ 

Since (r(Ho)-~)E~ is nilpotent, our assertions follow without 

and therefore 

for H E ~  and t ER. 

difficulty. 

Put  (I)~(m) =E~(I)(m), (I)~ = E ~ 1 6 2  (m eM).  

Then by  Corollary 2 of Lemma 41, 

f q~-(m exp T/ / )  = err(H)~-(m) + e(r-t)r(mE-UdH(m exp tH)dt  

for H E ~ and T ~> 0. Therefore if v G ~ ,  we conclude from Lemma 50 tha t  

f leI)-(mexpfH;v)l<-~ce-2~*Tl~p-(m;v)l+c e-2<T-')~o]tFH(mexptH;v)]dt. 

Pu t / ( t )  =tFR(m exp tH; v) for fixed m, H, v. Then 

(1) We define e 0 = 1, ia  case Q' is empty .  

(3) I f  T is a bounded  linear opera tor  on a B~naeh space ~ ,  I T I = supl b [<<.1 [ Tb] (b e ~),  as usual.  

5 -  662900. Acta mathematica. 116. Imprim4 le 10 juin 1966. 
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fo l e -2(~- ' '  I l(t) I dt ~< e - " . ' "  I l(t) I dt + I/(t) I dt 
T 

dO /2 

r ~< e- r,. I [(t) l dt + I](t) [ dr. 
ii 0 TI2 

On the other hand, since Wn depends linearly on H and ~ is relatively compact, we have 

the following result from the corollary of Lemma 49. 

LEMM• 51. For a given v6~j~, there exists a number c(v) >~0 such that 

[ tF~(m exp tH; v) l~< c(v) e -set E 1 (m) (1 + a(m)) r' 

/or m 6 M  +, H 6 ~  and t>~O. 

Therefore in view of the corollary of Lemma 48, we obtain the following lemma. 

LV.MMA 52. For any v69J~, we can select a number c-(v) >~0 such that 

I(I)-(m exp TH; v) l <~ c-(v)e - ' r  ~'1 (m) (1 + a(m)) r' 

/or m 6 M  +, H 6 ~  and T>~O. 

Now we come to (I)+. Again, by Corollary 2 of Lemma 46, we have 

f q~+ (m; v) = e-rr(mq~+(m exp T/-/; v) - e-tr(H)E+~'H(m exp tH; v) dr. 

F i x / / E ~ ,  mEM+ and let T tend to + ~ .  Then it is clear from Lemmas 50 and 51 and the 

corollary of Lemma 48, that  

q~+ (m; v) = - e-tr(")E+~FH(m exp tH; v)dt 

and therefore 

q)+ (m exp T/-/; v) = - f f  e -a -  T)r(m E+~FH(m exp tH; v) dr. 

In view of Lemmas 50 and 51, this gives the following result. 

LE~II~A 53. For any vE ~J~, there exists a number c+(v) >10 such that 

I dP+(m exp TH; v) l <~ c+(v)e-~r.~.,(m)(1 +a(m)) ~' 

/or m 6 M  +, H 6 ~  and T~O.  

We shall now consider (I) ~ But  first we need some preparation. 
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L EM~A 54. Let C be a compact subset o] M. Then we can choose T O >~0 such that 

m exp T H E M  +/or mEC, H E ~  and T>~ T o. 

We m a y  obviously assume tha t  K1CKI=C. Let  C 1 be the set of all hECNA~ such 

tha t  a(log h)>~0 for all g E E  1. Then C 1 is also compact  and C=K1C1Kr Now choose 

T O/> 0 such tha t  
a(log h) + 4 8 T  0 ~> 0 

for all h E C 1 and a E Z2. Then it is clear  t ha t  C 1 exp T H ~  A,+ and therefore C e x p T H ~  M + 

for T >~ T O and H E ~ .  

Now fix vE~'j~ and H E ~ .  Then we conclude from Lemmas  50, 51 and 54 tha t  the 

integral 

fo ~ e-~r(') ~ r H ( m  exp tH; v) [ dt 

converges uniformly for m E C. P u t  

|176 e - ~ r ( ~ ) ~ ( m  exp t//)  dt (m EM). 

Then it is clear t ha t  OH is a C ~r funct ion on M and  

fo OH(m; v) = q)o (m; v) + e - t r ( H ) ~ H ( m  exp tH; v) dr. 

Moreover, it follows from Corollary 2 of Lemma 46 tha t  

OH(m; v) = lim e- Tr(H) (i)0 ( m  exp TH; v). 
T-->+ r 

So, in particular,  the following result is obvious. 

LEMMA 55. OH(m exp tH)=etr(H)(~H(m ) (mEM, HER,  tER). 

We now claim tha t  OH is actual ly independent  of H.  Fix HI,  H 2 E ~  and m E M  and  

choose T O ~> 0 such tha t  m exp tHE M + for t i> T O and H E ~ .  Pu t  m 2 = m exp T~ H~ (T 2 ~> To). 

Then by  Corollary 2 of Lemma 46, 

e-r(r, uo~o (m 2 exp T 1 H1) = (I) ~ (m~) + f T, e -tr(H') E ~ ~FB,(m~ exp t HI) dr, 
dO 

and  therefore 

e -r(r'H'+T~H') (I)~ (m exp (T1H I + T2He) ) - e - r ( r '  H~) O~ exp TeH2) 

= e-ra,  H,+ r, H,)Eo ~Fx, (m exp (t 1 H 1 + T 2 H2) ) dtl 
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for T 1 ~ 0. But  it follows from Lemma 50 and the corollary of Lemma 49 that  there 

exists a number e/> 0 such that  

[ e - r a , . ,  + T. H2) E01t2H, (m s i p  (t 1 Y 1 + T 2 H2) ) ] < ce  -6(t" + T . -  r , )  

for t x i> 0 and T 2 ~> T o. Therefore by making T1, T2 tend to § ~ ,  we get 

O~,(m)= lim e-r(r'H'+r'H')(I)~247 T2H2)). 
TI, T2"-'>§ 

Since the right side is symmetrical in HI, H2, we conclude that OH,(m)=| 

Hence we may now write @ instead of 0~. 

LEMMA 56. O(mexp H)=er(H)O(m) (mEM, HE[). 

Since ~ is open in [, every HEI  can be written in the form H~-ZI<I<qt,H~ (t, ER, 

H~E~). Our assertion therefore follows from Lemma 55. 

LEMMA 57. For any vE~)~, we can choose a number c~ >~0 such that 

] e-tr(H) ~po (m exp tU; v) - O(m; v)[ < c o (v) ~1 (m) (1 + a(m))r'e -2~t 

/or m E M  +, t>~O and H E~.  

Since O(m; v ) -  e Tr(')r176 exp f e r'" ~ 
our assertion follows immediately from Lemmas 50 and 51. 

COROLLARY. For any v E~Pj~, there exists a number c( v ) >~ 0 such that 

] (I)(m exp tH; v) - ~)(m exp tH; v) l ~ c(v) El(m ) (1 § ~ e -~t 

/or m E M  +, H E~ and t >~O. 

For, 

I (I)(m exp tH; v ) -  O(m exp tH; v) l 

~< [ (I)+(m exp tg ;  v)[ § I (I)-(m exp tH; v)[ § [e ~r(g) E ~ ] ] e-tr(H)(I)~ exp tH; v) - 0(m; v)], 

and so our assertion follows immediately from Lemmas 50, 52, 53 and 57. 

L~.MMA 58. Let ]el, k2EK1, m E M  and ~E~I. Then 

~)(]r m]r = ~/1(kl) (~(m)~2(]c2), O(m; ~) = r(~) O(m). 
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Moreover, there exist numbers c2, r 2 >1 0 such that 

I O(m)] < c2~1(m)(1 +a(m)) TM (mEM).  

Fix H e ~ .  Since r(H) commutes with the operations of K on V (see w 27), the first 

assertion follows from the relation 

O(m) = lim e -tr(H) (I) ~ (m exp tH). 
t*-~+oo 

Moreover, E ~ r ( H )  and r(~) commute with each other and 

ap(m exp tH; ~) =r(~)ap(m exp tH) + ~Fr exp tH) 

from Corollary 1 of Lemma 46. Hence 

O(m; ~) = lim e -tr(H) a) ~ (m exp tH; ~) = r(~) O(m) + l i m e  -~r(n)E~162 (m exp tH). 
t-->+ oo t -->+ oo 

But from Lemma 50 and the corollary of Lemma 49, the limit on the right is zero. There- 

for $@ o .  

Now put  v = 1 and t = 0 in Lemma 57. Then we conclude from the corollary of Lemma 

48 tha t  there exists a number  c 1 >~0 such tha t  

]0(m)[ <cv~l(m)(1 +a(m)) r' (mEM+). 

On the other hand, we can obviously choose a number v o >~0 such tha t  

[~(logh)[ <Voa(h ) (~EE~, hEA~). 

Put  v = m a x  (1, %/4e). Then it is clear (see the proof of Lemma 54) tha t  m exp t H E M  + 

(mEM, H E~) provided t >~va(m). Now fix m E M  and put  to=Va(m ) and mo=m exp toll o. 

Then m 0 E M + and 
O ( m )  = e -t~176 O(m0). 

Therefore [ O(m) [ < c 1 [ e -tot(H~ ~ ~  I '~'1 (mo) (1 + a(mo)) ft. 

But  El(too) = ~x(m), a(mo) <a(m) + t o = (v + 1)a(m) and r(Ho) E ~ has only pure imaginary ei- 

genvalues. Therefore (see the proof of Lemma 50), the last s ta tement  of the lemma follows 

immediately. 

For any linear function 2 on •, let V(2) denote the subspace of all v EV such tha t  

( r (H)-~(H))Nv = 0  (HELL 

where N = dim V. Let ~ denote the sum 
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~a=0 

where 2 runs over those linear functions which take only pure imaginary values on I. 

LEMmA 59. O(m)E~ (mEM). 

Since O(m exp tH)=e*r~n~O(m) (HEft, $6R), this is obvious from the last s tatement  

of Lemma 58. 

w 30. Application of the induction hypothesis to 0 

We recall (see w 7) tha t  p is a Hflbert space under the norm [[XII (XEp). Put  a~=[ 

and let al be the orthogonal complement of as in a~. I t  is clear tha t  Z 1 is the set of all 

positive roots of (m, a~) and [ is the set of those H E  a~ where o:(H)=O (aEZ1). Hence 

a l =  [m, m]. Let cq + be the set of all H E a l  where a(H)/>0 (~EZ1). Put  A l + = e x  p a l  + and 

fix a number  /</>1 such tha t  if hlEA1 + and t~Na(hl), then h 1 exp tHEA~ + for H e ~ .  

This is possible (see the proof of Lemma 58). 

LEMMA 60. We can choose a number c' >10 such that 

I (I)(hl exp tH) -O(h  1 exp tH)[ <. c'e-ea-N~(h'))~.t(hx)(1 +a(ht)) r' 

]or hl EAi +, H E~ and t >~ Na(hl). 

Put  h 0 = h  1 exp toll where t o =Na(hl) .  Then .~.l(hl) = El(h0) and a(ho) <a(hl) +Na(hl)Hgl[ 
Since ~ is relatively compact, our assertion follows from the corollary of Lemma 57. 

Define Oj(m) 6 V by 

0 ( m ) =  ~ 0j(m)| (mEM) 
l<j<~ 

and put  0 = 0 v 

COROLLARY. Under the conditions o/Lemma 60, 

I d(hl exp tH)r 1 exp tH) -O(h 1 exp tH)] <~ c'e-6(~-N~(h'))El(hl) (1 +a(hl)) r'. 

This is obvious since ~l = 1. 

Let  t} be the orthogonal complement of H 0 in ar and b + the set of all HEI~ where 

a(H)/>0 for every a E Z  1. Let  E and E~ denote the orthogonal projections of ap on b and 

a~ (i=l,  2) respectively. Fix a number ~ > 0  and let U be the set of all HES+  such tha t  

[]EH H <~3(Ho, H), 

the scalar product being defined as in w 7. We assume tha t  (~ is so small tha t  ON< �89 
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E2Uc ~ and a(H)>~ 3s for r162 E Z2 and H E U. Clearly this is possible. Then U consists of 

all elements of the form cHo+H 1 where H1E~+ , c2+HH1H2=I and [[Hl[[~(bc (c>0), 

provided ~ is chosen sufficiently small. Therefore, in particular, (1 +~2)-�89 ~<c ~<1. For any 

T >/0, let U(T) denote the set of all elements tH with HE U and 0 ~<t~< T. 

Put  ~(H)=�89 tr  (ad H)n and ~ ( H ) = � 8 9  (ad H)n~ (HEar, i=1 ,  2) in the notation of 

w 27. Then ~=~1+~2 and we claim that  Q~(H)=~(E~H) (H~av). Since I centralizes 111= 

mfi 11, ~ = 0  on a~=I. Moreover 11t normalizes 113 and a l~[m,  11l]. Therefore ~ = 0  on fl~ 

and clearly this implies our assertion. We also note that  d(exp H) =e q'(H) (H ~ av). 

LEMMA 61. There exists a number c>~O with the/ollowing property. Suppose [[t111 [ ~ t  

(H1Eb+ , t>~O). Then 

I e~("~162 ( t r io  + 1-11)) - 0(exp (tH o +//i))[ ~< ce -'t'a e -q'("~ 

If ~ e~l ,  it is clear that  ~(E1HO = ~(H,)>10. ~Ience E1Hleal§ Moreover N IIE1HIII < 

NIIHll I <~N~t <.t/2. Therefore it follows without difficulty from the corollary of Lemma 60 

that  the left side is majorized by 

c'e-'t/~l(hl) (1 +a(hl)) ~', 

where h l = e x  p E1H 1. Therefore our assertion follows by applying [4 (j), Theorem 3] to 

'~'1 and observing that  (~(hl)= [[ExH~H ~<~t. 

As in w put 

D(h)  = YI {e ~~  h) _ e-~o~ h)}~ (h e A~), 

where m~ is the multiplicity of a. Then D(h) >~ 0 for h E A t .  Put  

Fv(T)= fl [r (T>~O), 
og h e U(T) 

where dh is the Haar measure on A. Also let us recall that  r ~ 0 and it is analytic (see 

[4 (q), Lemma 33]). 

L EMMA 62. There exists a unique integer v >10 with the/ollowing property. We can 

select numbers a, b(O < a <~ b < c~ ) such that 

aT" <-..$'v(T) <.bT ~ 

/or all T>~I. v=0  i/ and only i/  0=0. 

The uniqueness of v is obvious from its definition. So we have only to verify its 

existence. 
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Let U 0 (T) denote the subset of all H E ap of the form H = tHo + H I where 0 ~< t ~ T, 

H I E b + and ][ HI  ][ ~< ~t. Then 

U(T) = Uo(T) c U(T(1 + ~)+). 

Put F 0(T) = flogheVo<r, ] r I sD(h) dh. 

Then Fo(T(1 + (~)-�89 <~.F(T) <.Fo(T), 

where F = F u. Therefore it would be enough to prove the existence of an integer ~ ~> 0 

such tha t  
0 < lim inf T-~Fo (T) ~< lim sup T-~Fo (T) < co. 

T-.a.oo T.-.~oo 

For any  c~>0, let b+(c) denote the set of all H E b  + with ]]HI] ~<c. Then if ~p(H) = 

•(exp H) (H E a~), we have 

Fo(T)= I rd$ ~ ]eQa~'+E'H')~(tHo+H1)12DI(Hi) I] (1-e-~am+H~ 

where DI(HI)  = 1-I (e ~(H')- e-=<~a) ~= (H I Eb) 

and d H  1 is the (suitably normalized) Euclidean measure on b. Choose T O ~> 0 so large tha t  

2~(tHo+ H~)~>log 2 for ~EZ2, H~Eb+(Ot) and t ~ T  o, and put  

J ( T ) :  t r d t  [ leq('m+s=Hatfl(tHo§ Hi)l~Dl(Hx)dH1 
J ro d ~ + (at) 

for T ~> T 0. Then if q = dim n~, it is clear tha t  

2 -q J(T) <. F o (T) - F o (To) ~< J(T) (T >~ To). 

Also put  ~ooo(H) = 0(exp H) (H E a~) and 

Joo (T) :  f r d t  f [v2oo(tHo-l-Hi)l~Dl(Hl)dUl �9 
J To d~+(at) 

Then, by  the triangle inequality, we have 

[J(T)�89 Jco(T)�89 fTdt f [eOaHo+E'g'>~p(tHo + HI)-~oc(tHo + H1)12DI(H1)dHr 
J To db+(aO 

Now apply Lemma 61 and observe tha t  
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e-~O'(~')/)l (//1) < 1 (t/161~§ 

Then it follows easily tha t  

[J(T)  �89 - J . ( T )  �89 [ <~ c (T/> To), 
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where c is a fixed positive number. 

Now first suppose 0 =0.  Then V~ = 0  and therefore J~(T)=0 .  Hence J(TO <~c 2 for all 

T ~> T o and it is clear tha t  we can take v = 0. 

So let us now suppose tha t  0 + 0. Then it is obvious from Lemma 58 tha t  all the assump- 

tions of Lemma 42 are fulfilled if we replace (G, K, r by  (M, K1, 0). Since dim r e < d i m  

and Ho6~C m (] p, it follows from the induction hypothesis tha t  the index v~ of 0 (on M) 

is positive. Hence it follows from Lemma 44 and [4 (d), Lemma 38] tha t  

0 < l i m  inf T ~r  < l i m  sup T-~ccJcc(T)< oo. 
T--)~ T - ~  

Since v~/>1, it is clear tha t  similar inequalities hold if we replace Joe(T) by J(T).  Hence 

we can take ~ =v0r 

LE~MA 63. Define ~ as in Lemma 62. Then/or any e l>0 ,  we can choose T o > 0  and 

~1 > 0 such that 
TI-~{ Fv( T2) - Fv( T1) } <el 

/or To< TI< T,~<(1 + 6 1 )  T 1. 

Put  F = F v and let 0 ~< T 1 ~< T 2. Then 

F(TI)  ~< fa(T, TD ] eq(t ~/~ + ~,H1)v(tH ~ + H1 ) ]2 D1 (HI) dt dH 1, F(T2) 

where a(T1, T~) is the set of all points in ap of the form tHo+H 1 with t>~0, H165+((~t) 

and T1 ~ ~<t ~ + ][HIH~ ~< T~ ~. Therefore 

{ F ( T ~ ) -  F(T1))�89 ~< I1(T1, T2) �89 + I2(T1, T2) �89 

11 (Tx, T~) = ( [~p,r  o + H1)12D x (Hi) dt dH 1 where 
J~ (Ti, r2) 

and 

I2(T1, T2)= ( leQ(t"+s"I)v(tHo+H1)-V,(tHo+H~)[2Dl(H1)dtdHr 
J a(Tl, T2) 

I f  we apply Lemma 61 and observe, as before, tha t  e-2e'("')l)1 (//1)~< 1 for H 16 ~+, it 

follows easily tha t  
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I2(T1, T~)<~c2e -~'r' (T~>~TI>~O, 

where c2 is a fixed positive number and e ' =  (1 + ~)-�89 e/2. 

-Now first suppose 0 = 0. Then v = 0 and 11 (T 1, T2) = 0. Hence 

F( T2) - F ( T1) <. I~( T~, T~) <. c2 e -e'r' 

and the statement of Lemma 63 follows immediately. So let us assume that 0 =~ 0. Then 

v = uor >/1, as we have seen above, and therefore the required assertion is a consequence 

of Lemma 45. 

w 31. Completion of the proofs of Lemmas 42 and 43 

We shall now finish the proofs of Lemmas 42 and 43. For any open subset U of S + 

define 

~'v(T)= fao~h~v(r)lr (T~>0), 

where U(T) is the set of all elements in %+ of the form tH (0~<t~<T, HEU). Since S + is 

compact, we can choose open sets U~ in S + and integers v~>--0 (1 <~i<~q) such that  S += 

U l<~<q U~ and the statements of Lemmas 62 and 63 hold for (U~, vi) in place of (U, ~). 

Put  _Fi=Fv ~ and v=max~v e I t  is clear (see [4 (d), Lemma 38] that  

max $', (T) ~< IIr < Z F,(T), 

if the measure dh is suitably normalized. So it is obvious that  

0 < l i m  inf T -''2 II tilt<lira sup T -''~ II r 
T ---> aO T - ~  

Moreover, I1r162 ~ {F,(Tu)--F,(Tx)} (O<TI<~T2). 
l~< |~<q 

Therefore the last assertion of Lemma 42 follows immediately from Lemma 63. 

Now we come to the proof of Lemma 43. First assume that  v =0  and fix HOES+. 

Then v ,=0  (1 <~i<~q) in the above proof. We may suppose that  HoE U r Define U as in 

w 30 for H 0 and let Av(U) denote the set of all hEA d of the form h = e x p  tH (t>~O, HEU).  

We may obviously assume that  U c  U x. Then it follows from Lemma 62 that  0 = 0  and 

therefore 
[ e -~ ~(exp tH) [ <~ ce -~'t (H E U, t >~ O) 

from Lemma 61 where e' =(1 +~2)-�89 Hence it is clear (see [4 (j), Lemma 36]) that  
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sup Ir l ~2 (h)-x (1 + a(h)) ~ < co 
a E A~CV) 

for every r >~ 0. Since G = KA~+K and S + is compact, this means that  

supl r ]-= (,) - '  (1 + a(x)) r < co 
X E G  

for any r/> 0. But  then it follows easily (see the proof of Lemma 48) tha t  r E C(G) | V. 

Thus 1) implies 3) in Lemma 43. In  view of Lemma 11 and [4 (j), Theorem 3], it is obvious 

tha t  3) implies both 1) and 2). Hence it remains to prove that  2) implies 1). 

So suppose 2) holds. Fix HoeS+ and use the notation of w 30. Then it follows from 

Lemma 61 that  
lim 0(exp (tHo+H,))=O (H1Eb+). 

�9 Now fix H1EI~+ and put / ( t )  =0 (exp (trio+H,)) (tER).). We have seen in w 29 that  

| (tHo +H,))  = etr(~~174 Hi) 

and all eigenvalues of r (H0)E  0 are pure imaginary. Hence it is clear that  

f i t )= ~ pf(t)e (-1)�89 (tER), 

where 41 .. . .  , ~r are distinct real numbers and Pt are polynomial functions from C to V. 

Since/(t)-+ 0 as t-+ + co, we conclude (see [4 (j), w 15]) that  / = 0 .  Since b++ RH 0 is open 

in % and 0 is analytic (see [4 (q), Lemma 33]), it follows that  0 =0 and  therefore v =0  in 

Lemma 62. This being true for every HoeS+ , we conclude (see the proof of Lemma 42 

given above) tha t  the index of r is zero. This shows that  2) implies I) and so the proof of 

Lemma 43 is now complete. 

Part IH. Applications to harmonic analysis on G 

w 32. Lemma 64 and its consequences 

Let a=O(a) be a Cartan subalgebra of g and A the corresponding Caftan subgroup of 

G. F o r / E  C(G), define FrE C(A'(I)) as in w 18. Let J be the algebra of all invariants of 

W (g/a) in 9I = | Then we have a canonical isomorphism 7 of 3 onto J (see [4 (e), 

Lemma 19]). Moreover, since Cc~ is dense in C(G), it follows (see w 18 and [4 (o), w 22]) 

tha t  
~v~,=r(z)Ft (zE3. IEC(G)). 
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Let T be a distribution on G. We recall tha t  T is said to be a-finite, ff the space of 

distributions of the form zT (z E~) has finite dimension. In  particular, we can speak of a 

locally summable function being a-finite. 

LEM~IA 64. Let / be a ~-/inite /unction in C(G). Then F I = 0  unless aN p ={0}. 

Pu t  a l = a N  3, a2=aN p, A I = A  N K and A2=ex  p as and suppose tha t  (I~4 {0}. Fix a 

point aEA'(I) and let a=ala ~ (atEA~, i = 1 ,  2). Select an open and connected neighbor- 

hood al ~ of zero in al such tha t  

a 1 exp tI1 ~ s c A'(I). 

This is clearly possible. Put  a ~ = a l~ as and A ~ = a  1 exp a ~ 

Let  1I be the set of all u q ~ such tha t  u/= 0. Then 1I is an ideal in ~ of finite codimen- 

sion. Since 9~ is a finite module over J, it follows tha t  ~ =9~7(11) has finite codimension 

in 9~. Moreover 7(u) FI= Fur=0  (uE11) and therefore vFi=O for v E~.  Since a ~ is connected, 

we conclude from [4 (e), p. 131] tha t  

F i ( a l e x p H ) =  ~, p~(H)e ~(m (HEa~ 

where )t~ are linear functions and p~ plynomial functions on ac (1 < i  ~<r). Pu t  

g(H) = Fi(a  1 exp H) (H E as). 

Since FIE C(A'(I)), it is clear tha t  

sup Ig(H) [ (1 + IIHII) ~ < ~o 
(Is 

for any m~>0. Since a24{0}, we conclude from [4 (j), w 15] tha t  g=O. This shows tha t  

F r = 0  on alA 2 and therefore Fr(a ) =0.  

COROLLARY 1. Suppose / # 0  in the above lemma. Then rank G = r a n k  K. 

For  let us otherwise assume tha t  rank G > rank K. Choose a so tha t  it is fundamental  

in ~. Then a f3 p # {0) and therefore FI=O. But  then it follows from Lemma 38 tha t  

/(1) =0.  Now fix xEG and p u t / ~ =  r(x)/ in the notation of w 10. Then/~  is also a a-finite 

function in C(G) and/(x)  = h ( 1 ) = 0 ,  from the above proof. This shows t h a t / = 0 ,  giving a 

contradiction. 

COROLLARY 2. Suppose rank G = r a n k  K and / is a ~-/inite /unction in C(G). Then 

c/(1) = ( -  1)q ~. ~().)Oa (/) 

in the notation o/Theorem 8. 
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I t  is clear from Lemma 64 that  ts. t = 0 (2 ~<i ~< r) in Theorem 8. Hence our assertion 

is obvious. 

An element ? of G is called elliptic if it is contained in some compact Cartan sub- 

group. 

COROLLARY 3. Suppose ? is a semisimple element o~ G which is not elliptic. Then i / /  

is a ~-finite /unction in C(G), we can conclude that 

f alar/(~ ~) d:2 = 0 

in the notation o/Lemma 28. 

Define 3 and ~ as in Theorem 6. By replacing ~ by 7~ for some y E G, we may assume 

that  0(~)=~. Let  A be the Cartan subgroup of G corresponding to ~. Then t e A .  Since r 

is not eniptic, we conclude that  A is not compact and therefore ~ N p 4 {0}. Our assertion 

now follows from Lemmas 28 and 64. 

w 33. Proof of a conjecture of Selberg 

Let / be a measurable function on G. We say that(1) / is K-finite, if the left and right 

translates o f / ,  under K, span a finite-dimensional space. 

LEMMA 65. Let / be a ]unction in C~(G)NL2(G ) which is K-finite as well as ~.finite. 

Then there exist numbers c, r ~ 0 such that 

I/(x) l < c_~(x)(1 +~(x)) r (xea). 

We shall give a proof of this lemma in w 38. 

COROLLARY 1. Let / be a/unction in L2(G ) which is both K-finite and ~finite.  Then 

i e C(G). 

We regard ~ =L2(K x K) as a Hilbert space in the usual way and define a unitary 

double representation #~ g2 ) of K on ~ as follows (cf. w 12). If u E ~  and kEK,  then 

the functions Ul=/~I(k)U and us=u/~(k ) are given by 

Ul(kl ,  ks) = Ul(lC-lk, kS) , U2(]Cl, ks) = u(]cl, ksk -1) (/el, k, EK). 

I t  follows from [4 (q), Lemma 33] that  / is analytic. For any xEG, let r denote the 

function 

(1) We  do no t  dis t inguish be tween  two measurable  funct ions  which  differ only  on a set  of measure  
zero. 
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(]r ~2) "-'>/(]r -1) (]~1' ]r 

in ~. Then it is clear that  r162 =/~l(kl)r162 (kl, ]r Let V be the subspaee of 

spanned by r for all x E G. Then V is stable under #o and dim V < c~ since / is K-finite. 

Let # denote the restriction of #o on V. Then ~ is a C ~ #-spherical function from G to V 

and it is clear from Lemma 65 that  Lemmas 42 and 43 are applicable to ~, provided / :V 0. 

Since/EL2(G), we conclude that  the index of ~ is zero and therefore t EC( G) |  V from 

Lemma 43. Obviously this implies t h a t / E  C(G). 

COROLLARY 2. Suppose/:#0 in Corollary 1. Then rank G=rank K. 

This follows immediately from Corollary 1 of Lemma 64. 

If  we combine Corollary 3 of Lemma 64 with Corollary 1 of Lemma 65, we get the 

following theorem. 

THEOREM 11. Suppose ~ is a semisimple element o/ G, which is not elliptic, and / a 

/unction in L~(G), which is both K-finite and ~-finite. Then /E  C(G) and, in the notation o/ 

Lemma 28, the integral 

f o/a l(r;) d~ 
exists and its value is zero. 

This theorem represents, essentially, a conjecture of Selberg [9, p. 70]. I understand 

that  R. P. Langlands had obtained a similar but somewhat weaker result, a few years ago. 

w 34. The behavlour of certain eigenfunelions at |n6nlty 

We now return to the notation of w 27. Extend a~ to a Caftan subalgebra a of g. 

Define ~ = ~ a ,  W =  W(g/a) and WI= W(l~/a) as usual (see [4 (p), w 12]) and, for a given 

linear function 2 on ac, put  
z~(z)=z~o(pz) (zE~) 

in the notation of [4 (p), w 12] and [4 (o), w 14]. Let llx denote the kernel of %x in ~ and put 

llla =~l#O(llx), ~lx* =~l/lllX. (Here/~o =/~r as in w 27.) Let a~ denote the natural repre- 

sentation of 31 On 31x*- 
Let r = [ W :  W1] and select elements s l=  1, s,, . . . .  , sr in W such that  W = [.Jl<~<r Wlst. 

Consider the subalgebras J and J1 of all invariants of W and W 1 respectively in ~(ae). 

Then we have the canonical isomorphisms y : ~ - ~ J  and y l :~ l -~J1  (see [4(o), w 12]) and 

=~1o/~0. We identify | with S=S(ac) as usual and denote by ~1(~ :2) (~ E~I ) the value 

at  2 of the element Yl(~)ES. 
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LEM~A 66. d i m ~ l ~ * = r  and, i/  w(2)#-O, we can choose a base (v I . . . .  ,v~) /or ~1~* 

such that 
aa(~)v~=?l($:s~l)v ~ ($E~1, l <i<r).  

Since W and W 1 are both generated by reflexions, the results of [4 (j), w 3] are applic- 

able. Therefore by  taking into account the isomorphisms 7 and 71, our assertions follow 

immediately from Lemmas 13 and 15 of [4 (j)]. 

Let/~ and V have the same meaning as in Lemma 42. 

LEM~A 67. Let ~ be a linear/unction on ac and r a C ~~ [x.spherical /unction /tom G to V. 

Suppose the /ollowing conditions are/ul/illed: 

1) rank G = rank K. 

2) 2 takes only real values on aN O+(-1)�89 ~ and w(1 )#0 .  

3) ~r162 (zE3). 
4) There exist numbers c, s >i 0 such that 

Then r E C(G) | V. 
Ir <c~(x ) ( l+a(x ) )  ~ (xEq). 

We m a y  obviously assume tha t  r =t = 0 and G is not compact so tha t  as # {0}. Then, in 

view of Lemma 43, it would be enough to verify tha t  

lira etq(m r exp tH)  = 0 

for H E S  + and hEA~ +. For any HOES+, let mm denote the centralizer of H o in 6. Suppose 

the above condition does not hold. Then we can choose H o ES + such that:  

1) For some hEA~ +, etQ(H')r exp trio) does not tend to zero as t - ~ +  c~. 

2) dim m~, is minimum possible consistent with condition 1). 

Pu t  m =InH0, In, =111 N 3+ Ira, m/N p and let I be the centralizer of m in ~. Then 

ml N p is the orthogonal complement of [ in m N p. Let  MI be the analytic subgroup of G 

corresponding to m r  We now use the notation of w167 27-30 for this particular H 0. (Note 

tha t  cs={0} in the present case since rank 6 = r a n k  3.) Define | and O(m) (mEM) as 

in w167 29, 30. We know from Lemma 66 tha t  the representation r of ~1 is semisimple. 

Moreover it is clear from condition 2) of Lemma 67 tha t  s~t takes only real values on as 

and therefore also on L Hence we conclude from Lemma 59 tha t  

O(mexp H) = O(m) (mEM, HEI). 

This implies, in particular, tha t  
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O(m exp H) = O(m) (mEM, HE1). 

Hence it follows from Lemma 61 and the definition of Ho, t ha t  0~=0. 

Fix  an element H # 0  in al +. Then if hEAl  +, we claim tha t  

etq'(~)O(h exp tH) -~ 0 

as t-~ + ~ .  P u t  H 1 = c l ( H  0 + cH), where c is a small positive number  and c 1 = IIHo + cHIl-1. 

Then H 1 E S+ and it is obvious tha t  

dim m ~  < dim m~o. 

Hence we conclude f rom definition of H o t h a t  

e ta(H')r 0 exp till) ~ 0 (h o E A~ +) 

as t -~ + oo. Define U as in w 30 and let U 0 denote the interior of U in S +. Then, by  choosing 

c sufficiently small, we can assume t h a t  H 1E Up and therefore 

lira [ e tQ(~') r exp till) - e ~ O(h exp till) ] = 0 (h E A1 +) 

from L e m m a  61. Fix  hEAl+. Since ~(H1)>0 (~EZ2), we can choose to>~0 such t h a t  

ho=h exp toH1EA~+. Hence it follows f rom what  we have seen above tha t  

et~162 exp till) ~ 0 

as t -~ + r162 Pu t  c2 = cl c. Then ~1(H1) = c2~1(H) and H 1 = cl Ho + c~H. Therefore since H o E l, 

we conclude tha t  
ete'(~)O(h exp tH) ~ 0 

and  this proves our assertion. 

Let  01 denote the  restriction of 0 on M r  I t  is clear t ha t  01 # 0 and  we conclude f rom 

Lemmas  43 and 58 tha t  01E C(M1)| g.  Bu t  then rank ml = r a n k  (ml N l) f rom Corollary 1 

of Lemma 64. 

Fix a Car tan subalgebra c of ml N L Then ~ = I  + c is a Car tan subalgcbra of m and 

therefore also of ~. Since rank  $ = r a n k  ~ and  HOE1, ~ cannot  be fundamenta l  in $. Hence 

there exists a root  ~ of ($, ~)) such that(1) H~E~)N p=~  (see [4 (g), L e m m a  33]). Let  M~ 

denote the (connected) complex adjoint  group of inc. We can choose yEM~ such tha t  

~/=ac. Then ~=/~Y is a root  of (g, a) and H~=(Hz)Y=HBEI. 

Now we know tha t  |  and by  Lemma 59 |176 (mEM).  Therefore it follows 

f rom L e m m a  66 and the  definition of r ,  t h a t  there exists an  element s E W such t h a t  

s2 = 0  on I. Bu t  then s2(H~)=0 and therefore ~r(2)=0,  cont ra ry  to our hypothesis.  This 

proves the lemma. 

(1) Here H B has the usual meaning (see [4 (n), w 4]). 
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w 35. Eigenfunetions of 3 in C(G) 

Let  us now assume that  rank G =rank  K and use the notation of w 20. Let  L'  be the 

set of all 2 eL  where ~ ( ~ ) #  0. We denote by ZA (2 eL') the corresponding homomorphism 

(see [4 (p), w 29]) of ~ into C so that  ZOA=ZA(z)O a (ze~).  Consider the space CA(G) of all 

func t ions /e  C(G) such that  z/=zA(z)/(ze3). Let  ~A denote the closure of CA(G) in L~(G) 

and ~ the smallest closed subspaee of L~(G) containing [.JAG L'~A- 

I t  is obvious from the definition of OA (see [4 (p), Theorem 3]) tha t  

OA(X -1) =conj  ~)A(X) = (--1)mO-A(X) ().eL', x e o ' ) ,  

where m=�89 (dim g - r a n k  g). Hence it follows that  

ZA(z*) =conj ZA(~(z)) = Z-A(z) (ze3), 

where z* denotes the adjoint of the differential operator z and ~/ the conjugation of g~ 
with respect to g. 

LE~MA 68. Let ] be any eigen/unction o / ~  in C(G). Then leC~(G) /or some XeL'. 

We may obviously suppose tha t  / # 0. Let  g be the homomorphism of ~ into C such 

that  z] =Z(z)/ (z e ~). We have to show that  Z =Z~ for some ~teL'. Suppose this is false. 

Fix 2 eL  and consider OA(/). Then 

z(z) OA(/) = OA(z/) = zA(z*) OA(/) = z-A(z) OA(/) (z e 3 ) .  

Since Z #X-A, we conclude that  OA(/)=0. In  view of Corollary 2 of Lemma 64, this implies 

tha t / (1)  =0.  

Now fix xeG and put  ]~=r(x)/in the notation of w 10. Then the above proof is appli- 

cable to / z  and therefore/(x) =/~(1) =0. This shows that  )t=0 and so we get a contradiction. 

Hence the lemma. 

COROLLARY. Let ~ be an element in L2(G ) which is an eigendlstribution o /~ .  Then 

t e ~ A  /or some ~eL' .  

We may again assume that  r # O. Let  1 and r respectively denote the left- and right- 

regular representations of G on L~(G) and v the usual norm on L~(G). For g, flEC(K), 
define 

* ~ * ~ = fK~ K ~(kl) ~(~) z(kl) r(k~ -1) r dkl ~k~ 

as usual. Let  E denote the space of all K-finite functions in C(K). Since E is dense in C(K) 
6--662900.  Acta mathematica. 116. Imprim6 le 10 juin 1966. 
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in the norm =supl~l (~eC(K)), it follows easily (see w that, for any e>0, we can 

choose ~,/~ E s such that 

Put ~=~er  and suppose e<v(r Then it is clear that yJ#0 and z~p=X(z)~ (zE~). 

Hence we conclude from Lemma 68 and Corollary 1 of Lemma 65 that ~ E CA(G) for some 

EL'. Therefore, in particular, Z =ZA. Since the space CA(G) depends only on ;~A (and not 

on ~), this shows that cECI(Ca(G))=~. 

w 36. The role of the distributions Ok in the harmonic analysis on G 

For any bEEK, let E)~,b (~EL') denote the corresponding Fourier component of 

O~ (see [4 (q), w 17]). 

THrOREM 12. ~a.bECa(G)/or XEL' and bEE~. 

This follows from Theorem 9 and Lemma 67 (see also the proof of Corollary 1 of 

Lemma 65). 

COROLLARY 1. CA(G) 4 {0}/or 2EL'. 

Since OA 4 0, we conclude from Lemma 9 that Oh.b# 0 for some b E EK. This implies 

our assertion. 

Fix ~oEL" and let L(~o) denote the set of all 2EL of the form 2=s2o (se W= W(~/w 
in the notation of [4 (p)]). Let Ea, denote the orthogonal projection of L~(G) on ~a~ and 

define 

(/,9)=_l~(conj/)gdx (/,geL2(G)) 

as usual. 

Let s denote the space of all K-finite functions in Cc~(G). 

COROLLARY 2. Let ~]Es and )reEL'. Then Ea~ ) and 

@~(E~~ { (~7), i / ~ C L ( -  ~o), 

otherwise, 
/or ~ EL'. 

It  is obvious that Ea~ commutes with the translations of G and therefore / =  Ea. y 

is K-finite. Hence we conclude from Corollary 1 of Lemma 65 that /E CA, (G). Therefore (see 

the proof of Lemma 68), | (2EL') unless 2EL(-2o). Now fix 2EL(--2o). Then 

conj E)A.bECa,(G) from Theorem 12 and therefore 
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O2,b(y) = (conj @a.~,y)= (conj Oa, b, Ea, y ) =  Oa, b(/) (b E ~ )  

from the corollary of Theorem 9. Therefore, since ~ and / are both K-finite, we have 

O~ (r) = X 0~,~ (7) = X %.~ (1) = % (t). 
b 

LEMMA 69. Fix 2oEL' and define c and q as in Theorem 8. Then 

( -1)  ~ Y ~(~)%(~/)=c(:qE~./) 

/or o:ECc~(G) and/E C(G). Here &(x)=conj ~(x -1) (xEG). 

Since ~ ~-/E C(G) (see w 10), the left side is defined. Fix a0, fl E/~(G) and put  g = Ea~ ft. 

Then &o ~- g = Ea~ (&o ~-fl). Now apply Corollary 2 of Lemma 64 to ~0 ~- g, taking into account 

Corollary 2 of Theorem 12 with ~ =R0~-fl. Then we get 

On the other hand, I:(G) is dense both in Cc~176 and C(G), by Lemmas 9, 16 and 19. 

Moreover, convergence in either one of these spaces implies convergence in L~(G) (se~ 

Lemma 11). Finally, if ~0 and fl are two variable elements of E(G), which converge to 0: 

and / in Cc~(G) and C(G) respectively, then it is obvious from w 10 that  ~o~efl tends to, 

~ - / i n  C(G). Therefore the statement of Lemma 69 now follows immediately. 

Define the representation r of G on C(G) as in w 10. 

COROLLARY 1. Let/E C(G). Then Ea, / is a cowtinuous /unction on G given by 

E a J ( x ) = c - l ( - 1 )  q Z vy(,~)Oa(r(x)/) (xEG). 
e L( - ~,) 

I t  is obvious that  the right side is continuous in x and the equality follows from 

Lemma 69, if we observe that  Oa(~-/)=Oa(/Oe&) (aEC~(G)), in view of the invariane~ 

of | 

Let  E denote the orthogonal projection of L,(G) on ~. 

CORO~,ARY 2. C(a, E/)= (-- 1)' ~ , ~  ~(Z)O~(a~/) /or ae6~(a) and/eC(a). 

This is obvious from Lemma 69. 

COROLLARY 3. For/EC(G), put 

l~(x)=c-~( -1Y Z ~(~)O~(r(x)/) (x~a). 
~eL 

Then /~ is a continuous/unction on G and/~ = El. 
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Put T ( / ) = c - I ( -  1)q~L~(2)Oa(/) (/eC(G)). 

We have seen in w 20 that  T is a tempered distribution. Hence it is obvious tha t /~  

is continuous. The rest follows from Corollary 2, if we take into account the fact that  

T( ~ ~e /) = T(/  ~ r162 = f /~ (x) conj a(x). dx. 

Let W(~) (~EL') be the set of all sGW such that  s~EL.  Put  (1) 

-1 Y. e(8)O   
8 �9 W(~I) 

COROLLARY 4. For any 2 EL', the distribution ( - 1) q~()~) Ok* is o/positive type. 

This is obvious from Lemma 69 since c(g, E~a)>~0 for ~GCc~(G). 

L E M M A 70. Fix b e EK. Then there exist only a finite number o/~ G L' such that O~.b 4 0 .  

Let c be the center and gl the derived algebra of g. Fix a quadratic form Q on g such 

that  1) Q is negative-definite on r 2) c and gl are mutually orthogonal under Q and 3) 

Q(X) = tr (ad X) ~ for X E gl. Then Q is negative-deflnlte on 3, positive-definite on p and it is 

invariant under G. Moreover, [ and p are orthogonal under Q. Fix bases (I71 .... , Y~) and 

(Z 1 ..... Zq) for p and ~ which are orthonormal with respect to Q and - Q  respectively and 

put 
COp = :Y1 ~ -t- . . .  -{- Yps ,  cot = - (ZI~ -t- . . .  + Z q  z) 

in (~. Then co = to~+eo~E~ 

Let 7 denote the canonical isomorphism of ~ into(a) S(b~)=~(b~) (see [4 (e), Lemma 19]) 

and 7(z:ju) (zE~, #E~)  the value of the polynomial function ?(z) at #. Put  

~ E P  

where P is the set of all positive roots of (g, b). Then (see [4 (e), p. 144]) 

is a positive-definite quadratic form on ~ and 7(o~:~)= 0, so that  

7(~: ~) = [~ l ~ -  [e [~. 

Moreover, ga(eo)=7(w:2)= 12[ ~ -  [e] ~ for ~eL' .  

(1) See t h e  f o o t - n o t e  o n  p .  3. 

(3) H e r e  t h e  n o t a t i o n  is t h e  s a m e  a s  i n  [4 (p)]. 
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Let  ~ be the subalgebra of (~ generated by (1, L) and ~K the center of ~. Then 

e o t E ~  and 

where Zb(co~) is a number >1 0 (see w 3). Therefore since L is a lattice in ~, it would be 

sufficient to prove the following lemma. 

LEMMA 71. Suppose ~ and b are two elements in L' and ~ respectively such that Oa.b 4= 0. 

Then 

I~I ~ < z b ( ~ , ) +  I~12. 

We know from Theorem 12 that  / =  Oa.b E Ca(G)= L2(G). Let r denote the right-regular 

representation of G on L2(G), V the smallest closed subspace of L2(G ) containing / which 

is invariant under r, and ~ the restriction of r on V. Since convergence in C(G) implies 

convergence in L2(G), it follows from Lemma 15 that  ] is differentiable under ~ and 

Hence 

=(~,)/=Z~(o~)/, ~(o~,)t=zb(o~,)/. 

{Iz 12- I~ [2} II/112 = (/, ~ (~) / )  = z~(~,) II/ll 2 + (/, ~ ( ~ ) / ) ,  

where II It denotes the usual norm in L z (G). But  since g is unitary and / is differentiable 

under ~, it is obvious that  

(f,~(o~)/)=- W ]l~(Y,)/]]~<o. 
l~<f~<~ 

Hence our assertion follows immediately from the fact that  [I/[I > 0. 

LEMMX 72. Let / be a K-finite/unction in C(G). Then Ea/E Ca(G) (2EL') and Ea/= 0 

/or all ~ EL' except a finite number. Hence E/E C(G) and it is both K./inite and ~-/inite. 

Since E a commutes with the translations of G, it is clear that  E a / i s  K-finite and 

therefore, by Corollary 1 of Lemma 65, it lies in Ca(G). Now select a finite subset F of 

~K such tha t /=o~e/~ea~F in the notation of w 12. Replacing F by F U F*, we may assume 

that  F = F*. (Recall that  b* is the class in EK contragradient to b.) Pu t  

/~ (x) = Ok (r(x)/) (x E G) 

for ~t E L'.  Then it is obvious that  

h (x) = 0~.~ (r(x)/), 

where | = ~ | 
bEF 
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Hence we conclude from Lemma 70 tha t / : t=O for all 2EL'  except a finite number, and 

therefore the assertions of the lemma follow from Corollaries 1 and 3 of Lemma 69. 

Define B" = B N G" as in w 19. 

L~MMA 73. _Fix 2 EL' and let 0 be a tempered and invariant distribution on G such that 

~* =g;t(z)0 (z E~). Then Ob E C~(G) /or b e ~K. Moreover, in order to show that 0 =0, it is 

su]/icient to verily either one o/the/ollowing two conditions. 

1) @(/)=0 ]or every K-finite/unction/EC-:t(a). 

2) ~)=0 pointwise(1) on B'. 

I t  follows from Theorem 9 and I~mma 67 that  O~E Cz(G) (b E E~) and therefore 

l = c o n j  ObEC-~(a) (see w 35). Then 

Oh(l) = fa] Oh(x)[*dx 

from the corollary of Theorem 9. Therefore Ob =0 under condition 1). In view of Lemma 9, 

this implies that  O =0. 

On the other hand, by Lemma 64 and the corollary of Theorem 7, 2) implies 1) and 

so the lemma is proved. 

Define W~ as in [4 (p), Theorem 3]. Then L is stable under Wa and @~:t=e(s)O~ 

(sE Wo, ,~EL'). 

L~.~IMA 74. Let 0 be an invariant eigendistribution o / ~  on G, which is tempered. Sup- 

pose there exists an element b E EK such that O~ �9 0 and | EL2(G). Then we can choose 2 eL' 

such that zO =Za(z)O (ze ~). Moreover, ]or any such 2, there exist unique complex numbers 

r (sE W(~t)) such that cts=c s (re Wa) and 

O=[Wa] -1 ~ ~(s)esOs~. 
s e w00 

The first statement follows from the corollary of Lemma 68. Now put  

~P(b)=A(b)O(b) (bEB'), 

where A has the usual meaning (see [4 (p), Theorem 3]). Then it follows from [4 (o), Lemma 

31] that  (I) extends to an analytic function on B. Moreover, we know from [4 (e), Theorem 2] 

tha t  
r(z)r = x~(z)~ (zE~), 

(1) Here  we  have  to  m a k e  use  of Theorem 2 of [4 (o)]. 
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where 7(z)E~(b~) is to be regarded as a differential operator on B. Finally it is obvious 

that  r s) =e(s)(I)(b) for sE Wa and bEB. Therefore (see [4 (f), p. 102] and [4 (p), Theorem 

3]), we can choose unique complex numbers e~ (sE W(2)) such that  ct~=c~ (rE Wa) and the 

distribution 
O' = O -  [W~] -~ ~ ~(s)c~O~ 

s E W(~) 

vanishes pointwise on B'. I t  is clear (see w 20) that  | is tempered and zO' =Z~(Z)| (z E 3).  

Therefore | =0  from Lemma 73. 

LEMMX 75. Let b0 denote the class o/ the  trivial representation o/ K. Then |176 
/or ,~ ~L'. 

l~ix ~ EL' and put  qb~ = @~.~0. Then from Theorem 9, there exist numbers c, m >~0 such 

that  
]r ~<e~(1 +a) z. 

This is the analogue of [4 (q), Lemma 43]. By making use of the corollary of [4 (q), Lemma 

47], we prove in the same way as in [4 (q), w 20] that  (I)~ =0. 

w 37. The discrete series for G 

Let  G be a locally compact unimodular group satisfying the second axiom of count- 

ability. Fix a I-Iaar measure dx on G. By a unitary representation of G, we mean a repre- 

sentation of G on a I-Iflbert space, which is unitary. Let  ~ be the set of all equivalence 

classes of irreducible unitary representations of G. 

Let  zt be an irreducible unitary representation of G on a Hilbert space ~. We say that  

is square-integrable if any one of the following two mutually equivalent conditions holds 

(see [7, p. 640]). 

(1) There exist nonzero elements ~, ~ in ~ such that  

fJ ( r  ~)l s < ~ .  dx 

(2) There exists a closed subspaee V of L~(G) stable under the right-regular repre- 

sentation r of G on Lz(G), such that  ~r is equivalent to the restriction of r on V. 

I t  is known (see [7, p. 640]) that,  if g is square-integrable, there exists a number 

d(~) >0  such that  

fol(r ~(~) ~ ) ~  II ~ II~ (r ~ z ~), 12 dx d(7~) -1  II II 2 
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where II411 ~ the norm of r in ~. We shall call d(~) the/ormal degree of z (see [4 (d), w 3]). 

I t  is obvious that  square-integrability, as well as the formal degree, are invariant under 

equivalence. We call a class eo E ~ discrete if every representation ~ 6o~ is square-integrable 

and put d(eo)=d(~). 

Let ~ denote the set of all discrete classes in E. Then E~ is called the discrete 

series of G. 

Now let us return to the case when G and K are defined as in w 7. For any w E ~, let 

@~ denote the character (see [4 (b), w 5]) and Z~ the infinitesimal character of o~ so that  

zO~ =zAz)O., (ze3). 

LrMMX 76. Let eoEE~. Then O~ is tempered and O~.bEL~(G) /or bEs 

Fix ~6C0 and let ~ be the representation space of ~. We now use the notation of w 25 

and put  
Cdx) = (v2t,~(x)yh) (x6G, iEJ). 

O~(1) = Z f /r  ([ECc~176 Then 
d 

the series being absolutely convergent (see [4 (b), p. 243]). Moreover, r is analytic from 

[4 (q), Lemma 33]. Fix an integer m>~0 as in Lemma 7. Then 

in the notation of Lemma 6. Hence, by the Schwartz inequality, we get 

If/~,dxl<~c(b)-m,,~m/,,d(~)-' (i 6 Jb), 

where O H denotes the usual norm in L~ (G). This shows that  

]O~(/)] 4d(w)-�89 Htlm/]] ~. c(b) -m dim ~b (/ECc~176 
be~K 

But ~ c(b) -m dim ~b ~< N ~ c(b)-m d(b)~ < r 
b b 

from Lemma 7. Since v(g) = I[ ~mg ]l (g fi C(G)) 

is a continuous seminorm on C(G) (see Lemma 11), we conclude that  | is tempered .  

Moreover, (see w 25), 
0~,~ = Y 4~ (b e EK) 

| e / b  

and therefore O~.b E L 2 (G). 
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w 38.  Pro o f  o f  Lemraa 65 

As before, let r denote the right-regular representation of G on L2(G ). 

L~MMA 77. Suppose ] # 0 is a ~-/inite /unction in L~(G) such that the right translates o/], 

under K, span a ]inite-dimensional space. Let V be the smallest closed subspace o/L~(G) 

containing/, which is stable under r. Then 

v= 5 v,, 

where U, are mutually orthogonal closed subspaces o/ V, which are invariant and irreducible 

under r. 

Let g denote the restriction of r on V. For any finite subset F of E~, define E~ as in 

w 25 and put  V~ = E r  V. I t  is clear tha t  F can be so chosen tha t  / E VF. Define V ~ as in 

Lemma 4. We know from [4 (q), Lemma 33] tha t  / is analytic and therefore, by  Theorem 1, 

/=/++ze for some ~ECc~ This shows (Lemma 2) tha t  ]E V r176 Moreover, a simple argu- 

ment  (see w 8) shows tha t  W=ze(~)/is dense in V. Pinally we conclude from [4 (a), Theorem 

1] tha t  
w= ~E~W 

be~K 

and WF = E~ W has finite dimension. Since WF is dense in V~, it follows tha t  W~ = V~. 

Let  V g: {0} be any  closed subspaee of V stable under ~. We claim tha t  E~ V ~: {0}. 

For otherwise suppose E r U = {0}. Let  U' denote the orthogonal complement of U in V. 

Since ~ is unitary, U' is also stable under ~ a n d / G  V ~  U'. But  this implies tha t  V c  U' 

and therefore U = {0}, contradicting our hypothesis. 

Let  Ui (1 ~<i <p )  be a finite set of mutually orthogonal, closed, nonzero subspaces of V, 

which are stable under ~. Then since U,N VF#{0}, we conclude tha t  p~<dim V~<c~. 

Therefore the required result follows immediately by  assuming tha t  p has the largest 

possible value. 

Now we come to the proof of Lemma 65. We may  assume tha t  / #  0. Define V and Ut 

(1 ~< i < p) as in Lemma 77 and p u t / ,  = E,/ ,  where E,  is the orthogonal projection of V on U e 

I t  is obvious t h a t / ,  is ~-finite as well as K-finite. Hence by [4 (q), Lemma 33], it is analytic. 

Moreover, / = / 1 + . . .  +/p. Therefore it would be sufficient to prove Lemma 65 for each /e  

Thus we may  assume tha t  V is irreducible under ~ so tha t  ~ is square-integrable. By 

Theorem 1, there exists an element aEC~~ such t h a t / = a + + / .  Since ] is K-finite, we 

can obviously assume tha t  a is also K-finite. But  then 

l(x) = (~, :~(x)l) = (Ed~, :~(x)l ) ( xeG)  

where ~ is defined as in Lemma 69 and E is the orthogonal projection of L2(G) on V. The 

required inequality is now an immediate consequence of Theorem 10 and Lemma 76. 
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w 39. The existence of the discrete series 

Henceforward we assume, for convenience, that  G is acceptable. 

T H E O R ~  13. G has a discrete series i/ and only i/ rank G =ran k  K. 

Suppose Ea@ O. Fix co E ~d and choose b E ~s  such t ha t /=O~ .b@ 0. Then it  follows 

from Lemma 76 and Corollary 2 of Lemma 65 that  rank G =rank  K. 

Conversely suppose rank G = rank K. Fix ~ EL' and choose b E EK such that  O~.b @ 0. 

Then by Theorem 12, the function / =  O~.b satisfies the hypotheses of Lemma 77. Let  7et 

denote the restriction of r on U~ (1 ~<i <p), in the notation of Lemma 77. Then g~ is square- 

integrable and therefore Ea 4 O. 

w 40. The characters of the discrete series 

In view of Theorem 13, we shall now assume that  rank G = r a n k  K and use the 

notation of w167 36, 37. 

For any 2EL', let Ed(2) denote the set of all wE Ed such that  Z~=Z~. The following 

result is an immediate consequence of Lemmas 74 and 76. 

Lv.MMA 78. Ed = (J~L'Ed(~). Moreover, /or any mE~a(~t ) (,~EL'), there exist unique 

complex numbers cs(w) (sE W(2)) such that ct,(w)=c}w) (rE Wa) and 

Oo,=[Wa] -1 ~ ~(s)c~(o)O,,. 
s e W(Jl) 

For any co ~ E, define the analytic function (I)~ on B (see w 36) by  

r174 (beB')  

and put  

for /EC(G) as in w 18, 

on B. Then GB is open in G and (see Lemma 91) 

f ~(x)dx=(-1)m[W~]-l f AF~db 
where m = �89 dim G/B. 

Lv.~MA 79. Let / be a ~-/inite /unction in C(G). Then 

@,. (/) = ( - 1 )" [ Wa]- ~ f Fiq),o db 
JB 

F r(b) =A(b) Ja/(b~)dx (b E B')'~ 

Put  GB = (B') a and let db denote the normalized Hoar  measure 

(a ~ Cc:r 

(co e &). 
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This follows immediately from Lemmas 64 and 76 and the corollary of Theorem 7. 

L~MM.~ 80. Le$ r~ be a s~uare-inteyrable representation o/G on ~ and eo its class in ~d. 
_Fix tWO K-/inite elements r 9 e ~ and put 

f(x) = (r ~(x) 9) (x e a). 

_Fr = d(o)  -~ (~, 9) r  Then 

on B'. 

First observe that  ] E C(G) from Corollary 1 of Lemma 65 and therefore F / i s  defined. 

Now fix a E Cc~(G) and consider the operator 

~(~) ~ f ~(x) ~(x) 
dx. 

Then 0~(~)=  tr 7~(~) and the argument of [4 (d), 576] shows that  

f ad~ f ~(Y) /(Yx) dY = f a(r ~(x) ~(~) ~(x-1) 9) dx = d(~o )- l (r 9) | (~). 

Now suppose ~ E Cr Then we claim that  

f l  ~(Y)/(Y~)I dy < oo. dx 

For we can choose aoeCc~(G~) such that  a0>~lal. Then 

f lo~(Y) /(Y~)'dxdy <- f ~,(y)l/(y~)ld~dy= [W~]-I / IF~.(b)l {lA(b)l f Jl(b")ldy}db. 

Since I F~, I is bounded on B'  (Lemma 26), our assertion follows from Theorem 5. 

Therefore we conclude from Fubini's theorem that  

d(w)-1(C, 9)O~(~) = f~(y)dy f/(yX)dx 

But  it is clear that  

and 
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This shows tha t  

f F~FIdb=d(o)-l(r (~ E C~(Gs)).  

On the other hand, it is easy to verify (see [4 (o), w 20]) tha t  there exists a U ~r function 

u on G~ such tha t  

A(b)u(b~)=Fr(b)-d(eo)-~(r (bEB', xEG). 

Then if follows from the above result t ha t  

f a n d x = O  (a E C.~r (GB)) 

and therefore u =0.  This implies the assertion of the lemma. 

For any oEEe,  we define a subspace ~ of Ls(G) as follows. Fix gEo) and let U be 

the representation space of g. Then ~o is the smallest closed subspace of Ls(G) containing 

all functions / of the form 
fix) = (4, =(x)~) (zeG), 

where 4, ~0 E U. I t  is clear tha t  this definition is independent of the particular choice of 

and ~ is stable under both left and right translations of G. Pu t  C ~ ( G ) = ~  C(G). 
Then it follows from Lemma 11 tha t  C~,(G) is closed in C(G). 

THEOREM 14. Co(G) is dense in Oo and 

/or / E Co(G) and o E Ee. 
.Ff = d(r 

Choose an orthonormal base ~t ( iEJ)  for U as in w 25 so tha t  yJ~ (iEJb) is a base for 

U~ (b E ~K) and put  

Then it follows from Corollary 1 of Lemma 65 t h a t / u  E C~(G). This shows tha t  C~,(G) is 

dense in ~ .  

Let  V be the set of all / E Co(G) such tha t  

~V r = d(eo)-l/(1)O~. 

Then it is clear tha t  V is a closed subspace (1) of Co(G). Hence it would be enough to show 

tha t  V is dense in Co(G). 

(1) The topology of Cr is the one inherited from C(G). 
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Fix ]06C+(G). Then in view of Lemma 16, it would be enough to prove that  

/=a~,++]o++~b, EV for bl, b~E~g. Since Jb is a finite set for every b E ~ ,  it is clear that  

/ is a finite linear combination of/tj  (i, ? E J) and therefore / E V from Lemma 80. This proves 

the theorem. 

Remark. The above proof shows tha t / i s  (i, ?'E J) span a dense subspace of C~(G). 

Moreover, /~(1)=1 for iEJ. 
For any w E ~, let co* denote the class eontragredient to co. I t  is clear that  0~. =conj O~ 

as functions on G, and co* is discrete whenever co is discrete. 

LEMMA 81. Let o), w' be two elements in ~d. Then 

/or le C,~. (G). 

O~(])={d(W)O 1/(1) otherwise,i/eo'=w *, 

We keep to the above notation. Then it follows easily from Lemma 19 that  

e,,,(l)=~ f l l . dx=~  (eonj l,~, l) 

for any K-finite function / in C~o.(G). Now e o n j / , ~ 6 ~ ,  and if eo*:~m', we conclude from 

the Sehur orthogonality relations [4 (d), Theorem 1] that  ~ .  is orthogonal to ~ ,  and 

therefore O~(/) =0. Since K-finite functions are dense in C~, (G) by Lemma 16, we get the 

required assertion in this ease. 

Now suppose co* =w'  a n d / = c o n j / , j  (i, ]eJ). Then it follows again from the Schur 

orthogonality relations that  
O J/) = d ( ~ o ) - l / d ) .  

But we have seen above that  conj /u  (i, ]6J) span a dense subspace of C~.(G) and so the 

assertion of the lemma is now obvious. 

As before, let db denote the normalized Haar measure of B. 

COROLLARY I. 

f~(c~ gP')eb"db={ [W~ i/ otherwise. 

Fix / 6 C~(G) such tha t / (1)  + 0 (see the remark after Theorem 14) and put g =conj / .  

Then 

(g) = ( - 1)~ [ W a ] - l i $ ' g  (I),, db 
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from Lemma 79. But  Fg = ( - 1) m conj F I 

and therefore our assertion follows from Theorem 14 and Lemma 81. 

Define the number  c > 0 by  the relation (see Lemma 38) 

Fr(1; m)=  ( -  1) q c](1) (/EC(G)). 

Then c has the same value as in Theorem 8 (see [4 (q), w 15]). Fix AEL' and for any 

m E Ed(~), define cs(m) (s E W(A)) as in Lemma 78. Then 

s e w~\ w(~.) 

where the sum is over a complete system of representatives. 

COROLLARY 2. Let mEE~(~). Then 

d(m)= (-  1)qe-l~(~) ~ cs(m) 
s e w(~l) 

and 5 Ic~(m)] ~=1.  
s e w a  \ w ( ~ )  

We know from Theorem 14 tha t  

(-1)%/(1) = FI(1; ~r) = d ( m ) - l / ( 1 ) ( I ) ~ ( 1 ;  zEr) (/6 C~(G)), 

and the first relation is an immediate consequence of this fact. The second follows by 

putt ing m' =m in Corollary I above. 

Let  ~(2) (~ eL')  be the space of all tempered and invariant distributions | on G such 

tha t  zE)=)C~(z)@(ze ~). 

THEOREM 15. Fix 2eL'.  Then ( ~  (we ga(2)) /orm a base/or ~(,~) over C and 

[6d(X)] = dim %(~) = [W(~)] [Wa]-L 

Moreover, ~ ~. d(m)@~= ( -  1)qc -1 ~ ~r(s~)| 
e ~ (~) s �9 W(;t) 

where c and q have the same meaning as in Theorem 8. 

We know from Lemma 76 tha t  ~ (me Ea(2)) lie in ~:(2) and from Lemma 81 tha t  they  

are linearly independent. Now fix | e ~(2). We have to show tha t  E) is a linear combination 

of O~ (m e Ea0t)). Define analytic functions (I) and (I) o on B as follows. 

r174 (beB') 
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and O 0 = O -  5 c (~ )r  
m e ~a 0.) 

where c(w) = [Wa] -1 fscP eonj r 

Then it is clear from Corollary 1 of Lemma 81 that  r is orthogonal to qb  (w E Ed(2)) in 

L2(B). Put  
Oo = 0 - Z ~ c(o~) 0~.  

a ~ d  ( ) 

We claim tha t  Oo=0. In  view of Lemma 73, it would be enough to verify tha t  O0(/)=0 

for any K-finite func t ion /E  C-;t(G). We may  obviously assume tha t  /~= 0. Define V and 

Ui (1 <~i<~p) as in Lemma 77 and let E, denote the orthogonal projection of V on Ui. 

Pu t  It = E J  (1 ~<i ~<p). Then it follows from Corollary 1 of Lemma 65 tha t  /t E C-z(G). 

Therefore since 
0 o ( / ) =  ~. 0o( / , ) ,  

l < t < q  

it would be enough to consider the case when V is irreducible under r. 

Let  ~ denote the restriction of r on V and (o the class in Ed such tha t  xE~o*. Then 

eo E Ed($) and, as we have seen in w 38, there exists an element a E Ccr176 such tha t  

/(x) = (~, :~(x)/) = (Eo:, :~(x)/) ( xeG) .  

(Here E denotes the orthogonal projection of L~(G) on V.) This shows t h a t / E  C~,(G). On 

the other hand, it follows from Lemma 64 and the corollary of Theorem 7, tha t  

0o(/) = ( -- 1)re[We] - '  fBFr@odb. 

Therefore we conclude from Theorem 14 and the definition of (I) 0 that  O0(/)=0. 

Let  sl, s 2 ... . .  % be a complete set of representatives of Wa\W(2) in W(2). Then by  

Lemma 74, the distributions O8~ (1 ~<i ~<2) also form a base for ~(~t) and therefore 

[ w(~)]  [ w ~ ] -  1 = p = d im ~(~) = [E,~ (~)]. 

N o w p u t  O= ~ d(o~)Oo,-(-1)qc -1 ~. ~'(s2)Osz. 
m e Sd(~) s ~ W(2) 

We have to show tha t  O =0. In  view of Lemma 73, it would be enough to verify tha t  

O(/) = 0  for any K-finite function / e  C-z(G). By the argument given above, we are reduced 

to the case when /EC~,,(G) for some eoEE~(~). But  then O( / )=0  from Lemma 81 and 

Corollary 1 of Lemma 69. This completes the proof of Theorem 15. 
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w 41. Explicit determination of these characters 

Put  e(~) = sign ~r(~) for 2 eL'. 

THEOREM 16.(1) _For any 2eL',  there exists a unique element co(2)e~ such that 

| =( -1)qe(2) |  The mapping 2~eo(2) o/L '  into ~ is surjective and 

in the notation o/Theorem 15. _Finally ~o(~1) --co(2~) (21, ~eL'), i/ and only i/2x, 2~ are conju- 

gate under Wa. 

We begin by  proving the surjectivity first. Fix o~ e ~ .  Then by  Lemma 78, @o, is a 

finite linear combination of the characters of B. Introduce an order on ~ and let ~ be the 

highest element in L such tha t  

= I ( I ) ~  conj ~ db =~ O. e0 
JB 

(As before, ~a has the same meaning as in [4 (p), w 24].) Then 2eL ' .  

LEMMA 82. 0~, = (-- l)qs(~)OA. 

For the proof of this lemma, we may, by going over to a finite covering group of G, 

assume tha t  K is also acceptable (see [4 (o), w 18]). Let  P be the set of all positive roots 

of (g, b) and P0, P+ respectively the sets of all compact  and singular roots in P (see [4 (n), 

w 4]). Pu t  

~EP ocEPo OCEP. F 

Then ~, ~0, ~+ are all in L and ~ = Qo § Q+. Hence we can define two analytic functions 

A 0 and A+ as follows. 

A 0 (exp H) = l-~ ( e  u(H)/2  - -  e-a(tt)/2), A+(exp H) = 1-I (e ~(~)/2 - e -'~(H)I~) (H e 5), 
~EPo ~ P +  

so tha t  A = A 0 A+. I t  is clear tha t  

Ao(bS)=e(s)Ao(b), A+(bS)=A+(b) (beB)  
for s eWa. 

Let  db and dk denote the normalized Haar  measures on B and K respectively. Fix 

a function a e Co ~r (G) such tha t  g is invariant under right translations by  K and 

f ~(x) dx = 1. 

(x) Cf. [4 (c), p. 40] and [4(d), Theorem 4]. 
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For any flGCc~(B'), we can define/~s (see [4 (o), w 20]) by  

/~(bX)=o:(x)A(b) -1 ~ e(s)fl(b s) (xGG, bGB'). 
seWq 

Similarly define g~ e C:~(K) by 

g~(b~)=A+(b)Ao(b) -1 ~ e(s)fl(b') {keK, beB'). 
seWG 

Fix ~ e co and let U be the representation space of z.  Define Eb and Ub (b G ~ )  as usual 

and put  
Cb (x,) = tr (E~ ~(x) Eb) (x e G). 

Then Cb (k)= n(b)gb (k) (k E K), where n(b) is a nonnegative integer and gb is the character 

of b. Moreover, as we have seen in w 25, there exists an integer iV i> 1 such that  

n(b) ~< iVd(b) (b e EK). 

Put  m = �89 dim G/B, m o = �89 dim K/B and 

T ,=~gp(k )~(k )d /c ,  r~(/l~)=faf~(x)r~(x)dx (fleC,~(B')). 

Then m = m o § q and it is clear that  

dx 

since a(x]c) = a(x) (/c E K). Similarly 

Therefore if follows that  

(x -1) dx. 

Now, by [4 (e), Lemma 23], the operator T~ is summable and therefore it follows easily 

that  

O~(/~)=tr g(/~)-- ( -  1) q tr Tg= ( -  1) q 5 n(b)~ g~(]c) Zb(k)dk. 
b ~  J K  

On the other hand, E)~(/~)-~ fo~,/~dx--~(- 1)mfscl),,fldb. 

7 -  662900. Acta mathematica. 116, Imprim4 le 14 juin 1966o 
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Therefore we have obtained the following result. 

Lv.M~A 83. Put ~b(b)= Ao(b)%b(b ) (bes bEB). Then 

/or fle Q~176 B'), the series being absolutely convergent. 

Define ~ and ~ as in the proof of Lemma 5 and let ~K denote the center of ~. Then 

~E~K.  Let  u be the image of ~ in ~(bc) under the canonical isomorphism (see [4 (e), 

Lemma 19]) of ~K into ~(5c). Then it follows from [4 (e), Theorem 2] that  

u~b = c(b)~b (b EEK) 

in the notation of Lemma 6. Hence 

fflvbdb=e(b)-~ f u" fl',~bdb (flECk(B)), 

where u* is the adjoint of the differential operator u and p any positive integer. I t  follows 

from Weyl ' s  formula for Zb tha t  I~b] ~<[Wa]. Therefore 

~ n(b ) l f fl, b db l < ~V [ Wo] sup l u*" fl ' ~ c(b )-" d(b ), 
b ~ K  be~g 

and so we conclude from Lemma 7 tha t  there exists a distribution S o on B such tha t  

Pu t  S = O~ - A + S o- 

Then it follows from Lemma 83 tha t  S=O on B'. Therefore since B is compact, we can 

choose (see [4 (m), Lemma 21]) an integer p>~0 such tha t  A~S=O. This means tha t  

~r fldb=b.~ n(b) f flA'A+~bdb 

for flECk(B). Now put  f l=eonj  ~a+m- Then it is clear tha t  the left side is equal to c o. 

Moreover, we know from Weyl 's  formula that  A'A+~b is a finite linear combination of 

characters of B with coefficients in Z. Therefore, since n(b) is an integer, we conclude tha t  

c o e Z. Since c o ~= 0, this shows tha t  ] co] ~> 1. 
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On the other  hand,  let s l = l  , s 2 . . . .  , s r be a complete set of representat ives  in W(2) 

for WG\W(2). Then,  by  L e m m a  78 there exist unique complex numbers  ct such t h a t  

| ~ ~(s~)c~Os~. 
l~ i< r  

I t  is obvious t h a t  c 1 = c o and  we know f rom Corollary 2 of L e m m a  81 t h a t  

1. 

Therefore c 1 = % =  __. 1 and c t = 0  for i>~2. This shows t h a t  

O~ = Co 0~. 

B y  Theorem 15, there  exist  exac t ly  r dist inct  e lements  eel=co, e% .. . . .  cot in ~a(2). 

For  each i, we can, b y  the above proof, choose s iEW(2  ) (S l= l )  and a number  ci = + 1  

such t h a t  
| =c~| (1 < i < r ) .  

Then  it  follows f rom the linear independence of |  (Lemma 81) t h a t  Sl, s`., ..., sr form a 

complete sys tem of representa t ives  of WG\W(2). Therefore 

f rom Theorem 15 and  this shows t h a t  

d(go,) = ( - -  1) q c -1  [WG]l"~'(2)]ci~(8i2 ) (1 ~<i ~< r). 

Bu t  d(o~,)>0 and  so we conclude t ha t  c t = ( -  1)qe(s,2) and  

d(co,) = c- l[Wa] l~r(2) I. 

Hence  in par t icular  c o =c 1 = (-1)ae(2) and this proves  L e m m a  82. 

We now come to  Theorem 16. Since a class e| E s is complete ly  de termined by  its charac-  

ter  (see [4 (b), p. 250]), the uniqueness of co(2) (2 eL') is obvious.  Moreover  since | = 

e(s) | (s E We) f rom the definition of | (see [4 (p), Theorem 3]), it follows f rom the l inear 

independence of the characters,  t h a t  co(21) =o~(2`.) (21, 2, eL') if and  only if hi, 2`. are conju- 

gate  under  We. Now fix 2 EL' and let r = dim ~(2). T h e n  b y  Theorem 15, there  are exac t ly  

r dist inct  e lements  oh, o~ .̀ . . . .  , tot in s Moreover,  f rom the above proof, we can choose 

complete  set  of representa t ives  (Sl, s`. . . . . .  s~) for Wa\W(2)  such t h a t  

0~, = (-1)qe(s ,2) |  (1 <<.i<~r). 
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W e  may assume that  s 1 E Wo and therefore 

0% = ( -- 1)%(81~) 0,,~ = ( -- 1)q~(~) 0~. 

This shows that  (.O 1 = (D(~) .  We have already seen that  d(O~l) and therefore 

the proof of Theorem 16 is now complete. 

Theorem 16 shows that  

d( )oo 
m E ~  d 

and we know (see [4 (d), w 5]) that  this distribution represents the contribution of the discrete 

series to the Plancherel formula of G. 

Part IV. Some inequalities and their consequences 

w 42. Proof of the inequalities 

Let  us use the notation of w 14 and put  a~=~N p, 11~=n~, a l=aN [1It, m], ~I=~N 11l, 

nl = 11 N m and ml = [1 + al + 1tl. We denote the analytic subgroup of G corresponding to a 

subalgebra of g by the corresponding capital latin letter e.g. A~ and N correspond to 

a2 and 11 respectively. Then G = K A N  and M 1 =K1A1N 1 are the Iwasawa decompositions 

of G and M 1 respectively. For any xeG,  let z(x) and H(x) denote the unique elements 

]cEK and H E a  respectively, such that  x =k exp H . n  (hEN). Let  H~(x) denote the compo- 

nent of H(x) in a~ ( i=1,  2) so that  H(x)=Hl(x)+H2(x) .  

We fix orders in the duals of the real vector spaces a2, a and ~*=~ N p + ( - 1 ) � 8 9  N 

and assume that  they are compatible for the pairs (a, a2) and (~*, a~). Let  P denote the set 

of positive roots of (g, ~) and Z the set of positive roots of (g, a). Let/)1 and Z1 be the sets 

of those elements in P and Z respectively, whose restrictions on a2 are zero. We denote by 

P~ and Z2 the complements of P1 and Z1 in P and Z respectively. 

Pu t  Ml~=exp (mlN p) so that  G=KMI~A~N ~ (see [4 (g), Lemma 11]). Fix x e G  

and let x=kman  (bEK, mEMI~, aEA 2, hEN2). Then k, m, a, n are uniquely determined. 

Pu t  #(x) =m. Since M 1 and A~ commute, it is easy to verify that  

u(x) = ku(m), H2(x) = log a, Hl(X ) = H(m). 

Define ~ and F.,=~M as in w 14. Since 111 normalizes n2, it is clear that  t r  (ad X)n, =0  

for X E [m, m]. Therefore since 11 = n ,  + n2, we conclude that  

~(H) -- } tr (ad H)n~ (H E a,). 
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LE~*MA 84. Let di k denote the normalized Haar measure on KI. Then 

f/~ e -e(//(xk)) d 1 ]r = e-q(H*(z))~l(f~(x)) (x e G). 

Since K 1 normalizes -N'2, it is easy to see that  

H(x]c) = Hl(X]r ) -}- H2(xk ) = H(~(x]c))  ~- H2(x  ) = H(~t(x)  k) -F Hs(x)  (k E g l ) .  

Hence our assertion follows from the fact (see [4 (q), Lemma 31]) that  

~ l (m)=  f K e-q(H("k)) djc (mEM1). 

As usual let dlc denote the normalized Haar  measure on K. Then the following re- 

sult is an immediate consequence of Lemma 84 and [4 (q), Lemma 31]. 

COROLLARY. 

f e-~(H'(zk))~l(/~(Xk)) dlc = E(x) 

P u t / ?  --- O(N), ~ = O(Ni) (i = 1, 2) and 

(x e G). 

fl(H)= i n fa (H)  (H6a). 
~eZs 

L E M MA 85. ~(Hs(~))>~ 0 and ~(H(~))/> 0 / o r  ~ 6 ~.  Moreover, i / a  6 A s and ~(log a)>7 0, 

we have 
exp ~(H~(~a)) ~< 1 +exp  {-�89 a) +Q(H2(~)) } (~6/?) 

and exp ~(H(~a))~< 1 + exp { -fl(log a) +~(H(~))} (~ 6i92). 

Let  Z be the center of G. Then, for the purpose of this lemma, we can obviously replace 

G by G/Z. Hence we may agree to subscribe to the assumptions and conventions of [4 (j), 

p. 244]. 

For any linear function ~ on ~c, define H A 6 ~c as usual by the condition 

t r  (ad H a d  H~) = t(H) (H 6 ~c). 

Also put  <~1, ~2> =ll(Hx2) for two such functions ~1, A2. Let  Jp denote the set of all ~ such 

that  2<t, g>/<~, ~ is a nounegative integer for every ~6P.  Then for every 16Jp,  we have 

an irreducible representation ~A of G on a finite-dimensional (complex) Hilbert space 

Va with the highest weight t (with respect to 3). We denote the corresponding representa- 

tion of (~ also by ~x. Let  va denote a unit vector in Va belonging to the highest weight ~. 
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LEMMA 86. _FiX 2EJp and let U be the subspace consisting o] all vE VA such that 

7r~(H)v=2(H)v for all Hea~. Then U is invariant and irreducible under:z~(m). Moreover, 

dim U= I if and only i] (2, o~) =0 ]or :r 1. 

We write V and 0z for V~ and z~a respectively. I t  is clear tha t  

g = 0(n~) + m + n2 

and therefore @ = 0(9~) ~J~9~s, 

where (1) 9~ = ~(rrto) and 9~ = ~((rt~)c). 

For any ~ EP define Xa, X_a as in [4 (n), w 4] and put  

1~ = CH~ + CX~ + CX_~. 

Fix u 4= 0 in U. Then if ~ EP~, it is clear tha t  

n(HXa)u = (2(H) + a(H)):~(Xa)u (H Ea~). 

Since 2 is the highest weight of :L we conclude from the definition of our order, tha~ 

~(X~) u = 0. Hence 
V = ~((~)u = ~ ( 0 ( ~ )  ~) u. 

But  then it is obvious from the definition of U tha t  U = n ( ~ ) u .  This proves tha t  U is 

invariant and irreducible under ~(1~). 

Now fix a E P  and observe tha t  ~(X~)va=0.  Hence by considering the subalgebra 

[a, it follows (see [4 (m), Lemma 25]) tha t  ~r(X_~)v~=O if and only if (A, a ) = 0 .  On the 

other hand, m '  = Ira, 11t] is clearly generated, as a Lie algebra, by 0(nl) + nv Hence :z(m') vx = 

{0} if and only if (2, a ) = 0  for all g E P  1. Since U is irreducible under :z(m), the second 

assertion of the lemma is now obvious 

L~MMA 87. Fix A EJp. Then A(H~(~)) >~0 and 

exp A(H~(~a)) ~< 1 + e x p  { -  �89 a) +A(H2(~)) } 

/or ~EN and aEA~ provided fl(log a) >~0. 

Pu t  2 = A - 0 A  so that  

(2, a )  = (A, x ) - ( A ,  Ox) (a~P).  

Obviously this is zero if ~EP~. On the other hand, --Oo~EP~ whenever ** EP~ and therefore, 

(1) We use here the notation of [4 (m), p. 280]. 
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since(l) 10~12= i~l 2, it follows that  2EJp. Put  ~=~z ,  V = V z ,  v=vx and observe that  

2 = 2 A  on ~ N p =a2 and 2 = 0  on ~ fi 3. Hence dim V = l  and ~(m') V={0} from Lemma 86. 

On the other hand, it is easy to see that  ml N p = m' so that  ~(m)v =v for m EMI~. Therefore 

it is obvious that  
I~ (z )  v[ = d c ' + ~  = e 2 A ~ ' ~  (~ e a ) .  

Let E denote the orthogonal projection of V on U. Then if X E0(IIz), it is obvious that  

E~(X*)v=O for r>~l. Moreover, 0(nl )=m'  and therefore z(0(111))v={0 }. On the other 

hand, 112 is an ideal i n  1t and therefore R = R 2 R  1. Hence E~(~)v=v and this shows 

that  l~(~)v[ >~ Iv[ =1 (~eR).  Hence 

A(Hz(~)) >~0 (~ e/V). 

Put  E ' =  1 -  E and let I[ T]I denote the Hilbert-Schmidt norm of a linear transforma- 

tion T in V. Since U = Cv, it is clear that  

exp 4 A(H2(~)) = I[~(~ a) Ell 2 = [I E:~(~a) Eli 2 + l[ E'~(~a) Eli 2 = 1 + H E'~(~)  Ell 2 

since E z ( ~ a ) E = E  as we saw above. On the other hand, we have seen during the proof 

of Lemma 86 that  
V = ~ (0 (~2 )  ~ )  v = z ( 0 ( ~ 2 ) )  v. 

Therefore every weight of g, other than ~, is of the form ~ - a  with 

atEP~ and r~>l. Let  2=20>21>. . .2~ be all the weights of ~ and V~ the subspace of V 

consisting of all vectors belonging to the weight 2~ (0 ~<i ~<p). Since ~ =0(~), V is the ortho= 

gonal sum of V~ (O~i<.p). Put  a~--2-2~ and let E~ denote the orthogonal projection 

of V on Ve Then it is clear that  E '  = E 1 +...  + E~ and therefore 

E' ~(~a) E = ~ e -'~,<~~ a) E~ ~(~) E. 

On the other hand, since fl (log a)>~ 0, it is obvious that  

a~ (log a) >~ in /a( log a) = fl(log a). 
~EP~ 

Therefore 

l ~ p  

e -2fl(lo: a)[ Z~(~)V [2 = exp ( - 2 fl(log a) + 4A(H~(~))}, 

and the assertion of the lemma is now obvious. 

(1) As usu~, [~[~=<~, ~>. 
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Let ~ be an irreducible finite-dimensional representation of G on V and A the highest 

weight of ~ with respect to a. Let  U be the subspace of those vectors u E V for which 

r~(Hju=A(H)u  (HEa2). We denote by E the orthogonal projection of V on U. 

LEMMA 88. Fix  a E A  3 such that fl(loga)>~0. Then 

exp h(H(~a)) ~< 1 +exp {-fl( log a)+A(H(fi))} 

and II~(~a) Eli ~< IIEII +e-~a~ a)ll~(~ ) Eli 

]or ~ E ~  3. Moreover, A(H(fi))~>0/or ~EN.  

Let A = A I > A 3 > . . .  >A~ be all the weights of ~ with respect to a. I t  follows from 

the definition of our orders tha t  there exists an integer q>~l such that  a ~ = A - A i  is zero 

on a3 for i<~q while a, :~0 on a3 for i>q.  Let  E,  denote the orthogonal projection of V 

on the space Vi consisting of all vectors belonging to the weight Av Then E = E 1 +... + Eq 
and 

E ' = I - E =  ~. E~. 
q < i ~ p  

Fix i > q. Then it is clear (see the proof of Lemma 86) that  

a, = Z r(a)a,  

where r(~) are nonnegative integers and r(g)~ 1 for some ~ E Z 3. Hence if v is a unit vector 

in V1, it is clear tha t  

[ ~(~') v [3 = 1 + [E '= (~ ' )  v I ~ < 1 + e -~('o~ ~ I ~(~)  v 13 (~ e ~3)  

and from this the first inequality follows immediately. Moreover, 

II ~(~a) E I1: = II E l[: + II E'  ~(~~ E II 3 ~< II E II 3 + e -'<'o~ ~ l[ E'  ~(~)  E 113 

< II Eli  3 + e - a o :  a)H 7~(~) ~113 (~ ~ ~:) 

and this gives the second inequality. The last statement of Lemma 88 has already been 

proved in [4 (j), Lemma 43]. 

Now if we take A = � 8 9  in Lemma 87, and choose ~, in Lemma 88, such that  its 

highest weight, with respect to a, is Q, then we get Lemma 85 immediately. (1) 

(1) The second inequality of Lemma 88 has been proved for later applications. 
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w 43.  Appl icat ions  o f  the  above  inequal i t ies  

Define the  n u m b e r  d ~> 0 as in w 14 and  observe t h a t  Q(H(~))/> 0 for  ~ E/V f rom L e m m a  

85. Le t  d~fi denote  the H a a r  measure  on Nt  ( i = 1 ,  2). 

LEMMA 89.(1) For any e > 0 ,  

f e-e(H(n))(1 ~)(H(~))} -(d+e) d2 oo. § 

We can choose c > 0  (see [4 (j), Theorem 3]) such t h a t  

e q(l~ ~. (a) ~< c(1 + a(a)) a (a E A). 

On the  other  hand,  b y  [4 (j), Cor. 2, p. 289], 

e -~176 ~ (a) = f exp { - e(H(~a)) - e(H(~))} dg (a E A ) ,  

where d~ is the  (sui tably normalized) H a a r  measure  on /~. We m a y  assume tha t  dg = 

d z ~ . d l ~  1 for f i=~2~1 ( f i t E ~ ,  i = 1 ,  2). Now 

= ~,2nl En2 k-1 exp H(nl).N1, 

where k =u(~l)  - 1 E K  1. Since M normalizes 0(n2) , we get  

H(~)  = H(~2 ~) -]-H(~I). 

We m a y  normalize d l~  1 in such a way  (see [4 (j), L e m m a  44]) t h a t  

Then,  since d~ ~ek/d2 n2 = 1 (k E K1) and  A S commutes  with ~1,  we conclude t h a t  

e q(1~162 ~) ~ (a) = ~7 exp { - e(H(~a)) - e(H(~))} d~a < c(1 + a(a)) a (a E A2). 

P u t  at = exp tH (t E R) where H is an e lement  in ~ such that, 

b = ~ ( H )  >0 .  

Then  if a=a t  (t~>0), it follows f rom L e m m a  85 t h a t  

exp e ( H ( ~ ) )  < 1 + e x p  {~(H(~) ) -b t}  ( ~ e - ~ )  
and  therefore 

(i) Cf. [4 (j), Lemma 45J. 
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f e -er + eer 2~ <~ + <c' + t) ~ C(1  a(at)) ~ (1 
I 

for t >/0. Here c' is a positive constant independent of t. Let N2.r denote the set of all 

~E/V2 with Q(H(~))~<2 ~ and put  t=2~b -1. Then 

e ~(H~))-bt  <<. 1 

for ~ E N2. r and therefore 

f~ e-~(m~))d ~<.2c'(l+b-12")a<.Cl 2ra (r>~O), 2 

where c 1 is a positive number independent of r. Let/~2(r) denote the complement of/V~,r-I 

in/V2, ~ (r/> 1). Then 

~ tr) 

Since -~.o is compact [4 (j), Lemma 40], we get the required result from the convergence 

of the series ~..~>o 2-r~. 

L ~ M ~  90. Put  ~=O(n -1)/or n~.N. Then there exists a number c>~l such that 

1 + m a x  (a(h), 0(H(fi))) < c(1 +a(hn)) 

7~(hn) <~ c(1 +a(hn)) ~ exp { -~(log h) -~(H(fi))) and 

/or hEA and hEN.  

I t  is clear that ,  for the proof of this lemma, we may assume, as in w 42, that  the con- 

ditions of [4 (j), p. 244] hold. Fix an irreducible finite-dimensional representation g of G 

with the highest weight ~ with respect to a. Define A + as in w 14. Then G=KA+K and 

therefore hn = k 1 h'k 2 (kl, k~ E K; h' E A+). Then 

~h = O(hn) -1 = k2-1h'k1-1 

and therefore I I ~ ( h n ) l l  = II (h')ll = II ( h)ll. Hence ~ V is the degree of ~r, we get 

Let  lV be the Weyl group of g with respect to a (see [4 (j), p. 249]). Fix setD and choose 

k e K  such that  Ad (k )H=sH for all H e a .  Then (see [1, w 7.4]) ~ = ~ t n ~  where 

a l e ~ n / ~  k, n ~ e N n / ~  ~. 
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H e n c e  II (h' II = II = II ( ihSna ') I[, 

where n2 ' =  (hS)-lnah ~. Therefore 

where yJ is a uni t  vector  belonging to  the highest weight ~. This shows tha t  

~(log h') + �89 log p >/max 0(log h ~) ~> ] ~(log h)] 
se~  

(see [4 (j), p. 281]). On the other  hand, we can obviously choose c l, c~>0 such tha t  

cla(ht) ~<~(log hi) <c2a(hl) (h lEA+). 

T h e n  c z a(h') + �89 log p ~> max  0(log h 8) >/c 1 a(h). 
SEI0 

Since a(h ' )=a(hn) ,  this shows tha t  we can choose c a > 0  such t ha t  

ca(l +a(hn)) >1 l + a ( h )  (hEA, hEN).  

Moreover, we know [4 (k), Lemma  42] t ha t  

e(log h')/> Q(log h) +e(H(a)) .  

Since 0(log h') + 1 log p ~> -~( log  h) 

b y  our result above, we conclude tha t  

2~(log h') +�89 log 19/> ~(H(fi)). 

Hence  we can choose c 4 > 0 such tha t  

1 +0(H(a))  < c4(1 +a(hn)) (hEA, nEN).  

Now select c a > 0 such tha t  

E (h l )  "~<C 5 e -Q(l~ hi) (1 + a(hl)) ~t (h I EA+). 
Then  

~(hn) = E(h')  ~< % e -~(1~ h,) (1 + a(h')) ~ ~< % (1 + cx(hn)) d exp { - o(log h) - o(H(~))}. 

This proves Lemma 90. 

P u t  ~i (H) = t r  (ad H)., ( H E a ,  i = l ,  2) so t ha t  0=~1+Q2.  

107 
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COROLLARY 1. Suppose rl, r 2 are two numbers >10 and r = r l  §  2. Then 

eq,Oog a)~ (hn) (1 + a(hn)) -(r +a) ~< cr+X e-q,(log a) (1 + G(h)) -rl e -0(H(~)) (l + ~(H(~))) -r~ 

/or h E A  and n E N .  

For,  in the  above  nota t ion,  we have  

= (hn) (1 + a(hn)) -(r+d) = ~ (h') (1 + a(h')) -(r +a) ~< ce -q(l~ a.) (1 + a (h ' ) ) - ' .  

Bu t  (1 + a(h')) -~ <~ c'(1 + a(h)) -~' (1 + ~(H(~))) -~' 

and  9(log h') >~ p(log h) + Q(H(~)). 

Hence  our assert ion is obvious.  

Le t  d 2 n denote  the H a a r  measure  on N2. 

COROLLARY 2. Let ~ be a compact set in G. Then i / r > 2 d ,  the integral 

N ~(xn)  (1 + a(xn))-r d2n 

converges uniformly for x E ~ .  

Let  x=Icohn o (koEK, hEA,  noeN).  Then  Y~(xn)=.~(hno n) and (~(xn)=a(hnon). Now 

let ~o=~2~1 where ~ i E / ~  ( i = 1 ,  2). Then  h and  ~ remain  bounded(1) and  

H(O(non) -1) = H(~2~1)  = H(fi~2k -1) +H(~I )  = H ( ( ~ )  k) + H(~I) (n EN2), 

where b = u ( n l ) - l E  K r F ix  a compac t  set U in ~ such t h a t  ~ s tays  within U. Since r - d > d, 

we can, b y  L e m m a  89, choose, for a given e > 0, a compac t  set Vo in hT~ such t h a t  

fe e -~(H(~) (1 + ~(H(~))} -~+a d2~ < e, 
v. 

where cV o denotes the complement  of V o in /~2. P u t  V = Vo~'U -1. T h e n  if ~E cV, it  is 

clear t h a t  (fifi~)kE~V o. Moreover,  since h remains  bounded,  we can choose c 1 such t h a t  

c ~+1 e -e(l~162 ~<c 1. Then  we conclude f rom Corollary 1 above  t h a t  

(hn) (1 § a(hn)) -r < c 1 e -q(HC~)) (1 + e(H(~))) - '+~ (n e 212). 

We m a y  obviously assume t h a t  d 2 n = d ~  under  the  mapp ing  n - ~ .  Therefore since 

~(H(~I) ) >~ 0 b y  L e m m a  85, it  is clear t h a t  

(1) This means that they stay within compact sets as x varies in ~. 
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fc ~(hno n) (1 + (r(hnon)) -r d2n < c 1 ~ e -e(m~)) {1 + 0(H(~))}-r+~d~ ~< ct e. 
g J eva 

This proves our assertion. 
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w 44. Proof  of  Lemma 21 

We now come to the proof of Lemma 21. Pu t  AI+ =exp  al +, al + being the set of all 

H E a l  where ~(H)~>0 (~EZ1). Then MI-=K1AI+K1 and M = M 1 A ~ = K I ( A I + A ~ ) K r  There- 

fore it is obviously enough to consider the case when m = h = h l h  2 (hlEA1 +, h2EA~). Put  

r 1 = r' and r~ = d + r - r ' .  Then it follows from Lemma 89 and Corollary 1 of Lemma 90 that  

e ~'(I~162 ~) f E (hn) (1 § a(hn)) -('+2 '~) d~ n <~ c 1 e -q'a~ ~) (1 + a(h))-r ,  
d N2 

where c I is a positive number independent of h. Since 

e -~'(l~ a) E1 (h) = e q'(l~ h,) E1 (hi) ~> 1 

from [4 (j), Lemma 36], the first statement of Lemma 21 is now obvious. The second is an 

immediate consequence of Lemma 90 and the relation M = K I A K  1. 

w 45. Appendix 

We now use the notation of w167 27, 28. Put  0f(H)=�89 t r  (adH).~ (HEap, i=1 ,  2) so 

that  Q=01+0~. Let  M 1 and A~ be the analytic subgroups of G corresponding to 11tl = 

~q-p N Ira, 11t] and a~=I respectively. Then M = M 1 A  2 and d(ma)=e ~a~ (mEM 1, aEA~). 

Hence it follows without difficulty tha t  

d - l X o d  = X '  (XEm), 

where X - + X '  is the isomorphism of m into ~ given by H ' = H + o ( H ) ,  Y ' = Y  (HEI, 

Y E ml). This gives rise to an automorphism v ~ v' of ~ which preserves ~1. 

Now let H E a~ +. Then 

d(exp H) ~ (exp H) = e "~ ~ (H) = e-q'(me ~(m ~ (H). 

The assertion of Lemma 47 now follows immediately if we apply [4 (j), Theorem 3] and 

observe [4 (j), Lemma 36] that  

1 ~< e ~ El(exp H). 
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Since g=O(112)+m+112, it is clear tha t  

(~ = 0 ( ~ 2 ) ~ 2 ,  

where ~2 = ~(1t2r We know (see the proof of the corollary of Lemma 13 of [4 (q)]) tha t  

z-/~0(z)' e(~n2 (zeS). 

Put  u=z-/~o(Z)'. Then u commutes with I and since 

it is obvious tha t  u E 0 (1t2) (~11~. This is the result needed in w 28. 

Now suppose g and G are defined as in w 7. Let  A be a Cartan subgroup of G, A 0 the 

center of A and ~ the normalizer of A in G. Pu t  WA =-~/Ao. Then A 0 is open in A and 

WA is a finite group (see [4 (o), w 20]). We denote by  x~x* the natural  projection of G 

on G* = G/A o. 
Let ~ be the Lie algebra of A and dx, da the Haar  measures on G and A respectively. 

Put  GA = (A') a as usual (see [4 (o), w 20]). 

LEMMA 91. Let (ix* be the invariant measure on G* such that 

fa / (x )dx=fa ,  dx*f~/(xa)da ( /e  Co(G)). 

The~ ya/(x)dx= [WA]-lfA~,(a)dafG.](aX* )dx* (/~Cc(GA)) 

in the notation o/[4 (o), w 22], where 

~(a) = [det (Ad (a -1) - 1)g/~ I . 

Let r denote the mapping (x*, a ) ~ a  x* of G* •  onto GA. Then we know (see [4 (o), 

w 20]) that  r is regular and r (xeG~) contains exactly [WA] points in G* • A ~. Hence 

our result follows from a simple computation which gives the functional determinant  of 

this mapping. 
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