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Let G be a connected semisimple Lie group and K a maximal compact subgroup of ¢.

We shall show in this paper that @ has a discrete series (see [4 (d), § 5]) if and only if it has
a compact Cartan subgroup B. Let &, denote the set of all equivalence classes of irreducible
unitary representations of G, which are square-integrable. For any w € &,, let O, denote
the character, y, the infinitesimal character and d(w) the formal degree (see {4 (d), § 3])

of w.

Then it is known [4 (d), § 5] that the distribution
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T= 3 dw)O,
wey

represents the contribution of the discrete series to the Plancherel formula of G. We
intend to obtain explicit formulas for d(w), ®, and 7.

Let g and b be the Lie. algebras of @ and B respectively. Then the character group of
B n'lay be identified with a lattice L in the space of all real-valued linear functions  on
(—1)¥b. Put

a®)=I1La) GEF),

where « runs over all positive roots of (g, b) and the scalar product is defined, as usual, by
means of the Killing form. Let L’ denote the set of all 1 €L where w(4) + 0. Then, for every
A€L', we have constructed in [4, (p)], an invariant eigendistribution @, of 3 on G. Put
g¢=%dim G/K and &(A) =signw(l) (AEL’). Our main result (Theorem 16) states that the
distributions (—1)%(1)®, (AEL’) are exactly the characters of the discrete series and

T=c (-1 3 =w(l) O

a
2l
where ¢ is a positive constant.

Let W be the Weyl group of (g, b) and B the normalizer of B in G. Then WG=B/B
may be regarded as a subgroup of W. Define y, (A€L’) as usual (see [4 (p), § 29]) and let
&4(A) denote the set of all w € &, such that y,=yx,. Then(?)

[EaA) =[WAN[We],
where W(A) is the set of all s€ W such that sA€L.

Fix A€ L’ and let ©, ; (b € E) denote the Fourier components of O, (see [4 (q), §17]).
Then 0, , are analytic functions and it is one of the principal steps of the proof to show
that they lie in Ly(G@) (Theorem 12). This is done by means of Lemma 67, whose proof is
based on two key results (Lemmas 42 and 43), which are derived from a study of certain
differential equations. ’

This paper is divided into four parts. After recalling some known facts about representa-
tions on a locally convex space, we prove Theorem 1, which seems to play an important
role in harmonic analysis. Then we introduce the space C(@), which is the analogue of the
Schwartz space over R". Theorem 2 asserts that C,©(@) is dense in C(G) and Theorem 3
allows us to reduce certain problems from G to a proper subgroup. Theorem 4 contains a
general result which implies the convergence of certain integrals (Theorems 5 and 6)
and thus enables us to define the mapping f—F,(f€ C(G)) in § 18. A distribution on @ is
called tempered if it extends to a continuous linear function on C(G). Theorem 7 gives a

(1) As usual, [F] denotes the number of elements in a set F.
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simple necessary and sufficient condition for an invariant eigendistribution to be tempered.
This shows, in particular, that ®, (A€L’) is tempered and Theorem 3 of [4 (q)] remains
valid for f€ C(®) (Theorem 8). This permits us to prove the second conjecture of [4 (k),
§ 16] and thus complete the proof of the Plancherel formula for G/K. Theorem 9 established
a weak estimate for a Fourier component @ of a tempered and invariant eigendistribution
©. This will be required in Parts IT and III.

The main problem in Part II is to determine the behaviour, at infinity, of a K-finite
eigenfunction f of 8, which satisfies a weak inequality of the type mentioned above.
The principal result (Lemma 43) is that f lies in Ly(G) if and only if it lies in C(@). This is
proved by induction on dim G. By making use of the differential equations, one reduces
the problem from G to a proper subgroup M (cf. [4 (k)]).

In Part III, we apply the above results to the task of determining the eigenfunctions
of 8 in C(@). Here Lemma 64 plays an important role. It enables us to show that such
eigenfunctions do not exist unless rank @=rank K. As an application we obtain in § 33
a proof of a conjecture of Selberg.

These results are then utilized to determine all the characters of the discrete series,
Here the fact that we work in C(@), rather than C,©(@), is decisive. First we show that
0, (wEE,) is tempered and there exists a A€EL' such that y,=yxa. Let sy, 8, ..., 5, be a
complete set of representatives for W;\W(4). Then we prove that

On= Z ¢Os2,
1<igr
where ¢, are complex numbers. Moreover, by making use of the Schur orthogonality rela-
tions, it is possible to establish that

Z I C; |2 = 1.
1<isr

On the other hand, one verifies that ¢, are integers. This proves that
0, = (—1)%(s;4) Os:1

for some ¢ and d(w)=c"[Wg]|w(1)|. It should be noticed that the entire discussion of
§§ 40, 41 is quite similar to Weyl’s original treatment of the same problem in the compact
case (see [10, § 3]). The main task here is to relate the Fourier analysis on G, so far as the
discrete series is concerned, to that on B (see Theorem 14 and Lemma 81, together with its
corollaries). This can be done only by operating in C(G).

Part IV deals with certain inequalities which are needed for the proof of Lemma 21.
They will also be useful later, when we come to the continuous series for @ in another paper.

Some of the results of this paper have been announced in [4 (1)].
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Part I. Analysis in the space C(G)

§ 2. Representations on a locally convex space

In this section we recall some elementary and well-known facts about representations
on locally convex spaces (see [2, p. 109]).

Let V be a Hausdorff, locally convex (real or complex) vector space and G a locally
compact topological group. A representation z of G on V is a mapping, which assigns, to
every €@, a continuous endomorphism 7(x) of ¥ such that the following two conditions
hold:

1) n(xy) =n(x)n(y) (x, yEG) and (1) =1.

2) (=, v) >n(x)v is a continuous mapping of G X V into V.
It is easy to verify that the above two conditions imply the following [2, p. 110].

3) Let C be a compact set in G. Then for any neighborhood U of zero in ¥V, we can
choose another neighborhood U of zero such that #(C) U< U,

Let § be the set of all continuous seminorms on V. Then the following immediate
consequence of 3) will be frequently useful.

4) Given a compact set C in G and an element »,€ §, we can choose € § such that
vo((x) v) S ¥(v)
for all z€C and v€V.

Conversely we have the following result.

LemMA 1. Suppose 7 satisfies, in addition to 1), the following two conditions.
2"y The mapping x —7(x)v of G into V is continuous for every vEV.
3') There exists a neighborhood U of 1 in G with the following property. Given vy €S,

we can choose v € § such that
vo(7e(u) v) <v(v)
for all u€U and vEV.

Then 7 is a representation of G on V.
Fix 2,€G and v € V. Then
72(ou) v — (%) v = 7(o) 7u(t) (v — ) + (o) (2 () vy — o)

for u€U and v€ V. Hence it is clear that w(zyu)v >n(x,)v, as « 1 and v —v,. This proves
our assertion.

Now assume that V is complex and complete, G is unimodular and dz is a Haar
measure on G. & being a representation of & on V, we define, for any f€EC,(Q®), a linear
transformation #(f) in V by
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n(fyv= ff(x) n(x)vde (veEV).

It follows from 3) that (f) is continuous. Define the convolution f% ¢ (f, g € C,(®)) as usual,
so that

(f*g) (x)= ff(y) gly 'x)dy  (x€G).
Then n(f % g) =a(f)(9)-
Let us now suppose that G is a Lie group. A vector v€V is said to be differentiable

(under 7r) if the mapping x »n(x)v of @ into V is of class C®. Let ¥V denote the space of
all differentiable vectors in V. g being the Lie algebra of G, define

a(X)v=1im ¢ (n(exp tX)v—v) (ER,{+0)
t—->0

for X€g and v€ V. Then #(X) is a linear transformation in ¥ and X - z(X) is a repre-
sentation of g on V. Let & be the universal enveloping algebra of g,. Then this extends
uniquely to a representation of & which we denote again by 7.

As usual we regard elements of & as left-invariant differential operators on G. Define
the anti-isomorphism ¢ of & onto the algebra of right-invariant differential operators on
@ as in [4 (o), § 2]. U being any open set in @, we write

flg: ) = f(z; 0(9)), Fg: %5 9") = f(x; 0(9)og’) (x€U;g,9'€®)
for f€C>(U).

LeMMA 2. Let f€C,®(G). Then n(f) V< V> and

or X and €V a(X)n(f)v = —nle(X))v
or X€g and vEV. :

It is clear that
a(y)n(f)v =n(,f)v,

where f(x) =f(yz). Fix X €g and put y,=exp tX (!€R). Then

1
o)~ fe)= =t 1w 0,
where f'=o(X)f. Hence

1

t a(y) — D n(f)w= — f 7(ys) v’ ds,

0

where v' =7(f')v. The statements of the lemma are now obvious.
Let g—g* be the anti-automorphism of & such that X*=—X (X€g).
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CoroLLaRY 1. w(g)n(f)v=n(o(g*)f)v for g€G.
This is obvious from the lemma.

COROLLARY 2. Let v€EV® and f€EC.2(G). Then

a(nlg)v ==(g*f)v (9€G).

Define f,(x) =f(zy™) (x€G) for a fixed y €G. Then n(f)x(y)v ==(f,)v and from this we

conclude, as in the proof of Lemma 2 that
a(f)r(X)v = —n(Xf)v (X€g).

Clearly this implies the required result. ;
Let f; (j 1) be a sequence in C,*(G). We say that it is a Dirac sequence if the following
conditions hold. f,>0 and
jf, de=1

and, for any neighborhood U of 1, Supp f,= U for all § except a finite number. Let K bea
compact subgroup of G. It is obvious that there always exists a Dirac sequence f; (j=>1)
such that f(kxk—)=f,x) (€K, z€G).

LemmMa 3. Let f; (j=1) be @ Dirac sequence in C.2(G). Then

j].im n(f)v=v
for every vE€V.

Fix v€V, v€S§ and £>0. Then we can choose a neighborhood U of 1 in & such that
(z(x)v —v)<e for x€EU. Now

alf)v—v= f 1) (@) o — v) d,

and therefore »(7{f;)v —v) <¢ if Supp f,< U. This proves the lemma.
COROLLARY 1. V° is dense in V.
This is obvious from Lemmas 2 and 3.

COROLLARY 2. Fix v,€V and let V, be the smallest closed subspace of V containing
v which is stable under 7i(G). Then elements of the form n(f)v, (f€C,X(G)) are dense in V.
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Let W be the space consisting of all elements of the form 7z(f) v, (f € C.2(G)). It is obvious
that W is stable under n(®). Therefore the same holds for Cl(W). But then since v, €CIW)
from Lemma 3, our assertion follows.

Let K be a compact subgroup of ¢ and £ the set of all equivalence classes of finite-
dimensional irreducible representations of K. For any » € £, define a linear transformation
Ey,in V by

Eyv= d(b)f conj & (k) n(k)vdk (veEV).
K

Here d(b) is the degree and &, the character of b and dk is the normalized Haar measure
of K. Then Ej is a continuous projection. Put Vy=E, V.

LeEMMA 4. DheerVo N V= is dense in V.

We shall give a proof of this lemma in § 6.

§ 3. Absolute convergence of the Fourier series

As before let § be the set of all continuous seminorms on a complex locally convex
space V, which we assume to be complete. Let {v,},c; be an indexed family of elements of V.
We say that the series

2.

jel

converges, if the following condition holds. Define
8p=2
jeF

for any finite subset F of J. Then for any neighborhood V, of zero in V, there should exist
a finite subset F of J such that s;, — sz, € V, for any two finite subsets F,, F, of J containing
F,. Since V is complete, the partial sums s, then have a limit s in V. s is called the sum of
the series and we write

s= > v,

jieJ

Moreover, the series is said to converge absolutely if

> v(v) < oo

jeJ

for every v € §. It is obvious that absolute convergence implies convergence.
Let = be a representation of a compact Lie group K on V and define Ey(b€ &) as
in § 2. Then for any vector v€ V, we call Eyv the dpth Fourier component of v,
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LrMMA 5. Let v be a differentiable vector in V. Then the Fourier series

Z Ebv
beér
converges absolutely to v.

Let f be the Lie algebra of K and & the universal enveloping algebra of {.. Since K
is compact, we can choose a positive-definite quadratic form @ on f which is invariant under
the adjoint representation of K. Let X, ..., X, be a base for f over R orthonormal with

respect to ¢ and put
Q=1—(X2+..+XER.

Also put ap =d(b) conj & (D € ) so that Ky = m(ap). It is obvious that Q, regarded as a differ-
ential operator, commutes with both left and right translations of K. Fix a unitary represen-
tation ¢ in the class b. Then ¢(2) commutes with o(k) (¢€K) and therefore, by Schur’s
lemma, ¢(Q)=c(d)o(1) where c(b) €C. However o(X;) (1 <i{<r7) are obviously skew-adjoint
operators. Hence c¢(b) is real and >1. Therefore

&o(k; Q) =tr (a(k)o(Q)) = o(d) &u(k) (KEK)
and this shows that Qo,=c(D)a,. Hence we conclude from Corollary 2 of Lemma 2 that
Eyn(Q)v=c(d)Eyv (DE Ex).
LeMMA 6. Fiz v€S. Then we can select vy€ S such that
(Eypv) < ¢(D) " "d(D)2(7(Q™) v)
for DE Ex, any integer m =0 and any differentiable vector vE V.
Since K is compact, we can choose v, € § such that

. v(7(k) w) < vo(u)
for €K and 4 €V. Therefore

V(Eyu) =v(m(op)u) < d(D)?vy(w)
since sup [ap] < d(D)?. Now we have seen a,bové that

Eyv =c¢(d) " Eyn(Q™)v (m=0),
if v is differentiable. Hence our assertion follows immediately.

LeEMMA 7. > d®)Pe(d) ™ < oo
beE.
if m is sufficiently large. )
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Assuming this for a moment, we shall first finish the proof of Lemma 5. It is obvious
from Lemmas 6 and 7 that the series

2By

3
converges absolutely. Let v, denote its sum and put v =v —v,. We have to show that «=0.
Fix b,€ E4. Since E;, is continuous,

Ebo Vo= ZEDn ED’U = Ebov

®

from the Schur orthogonality relations. This shows that Eyu=0 for all D€ .
Now fix € § and select »,€ § as in the proof of Lemma 6. For a given £ >0, choose a

neighborhood K, of 1 in K such that »(n(k)u —u) <e for k€ K. Fix a function f>0in C(K)
such that f=0 outiside K, and

ff(k) dk=1.
Then v(z(f)u —u) < ff(lc) v(i(k)u—u)dk<e.

Call a function §€C(K) K-finite, if the space spanned by the left and right translates of
B under K has finite dimension. Then by the Peter—Weyl theorem, we can choose a K-finite
function B€C(K) such that sup |8—f| <e. Then

v(r(fyu —a(f)u) <e su}}{) (k) w) < g vy(u)
€
and therefore
v(7(B)u —u) < g(vy(u) +1).
On the other hand, o % =8 % o sinee s is a class function. Therefore

Eyn(B)u =n() Eyu = 0.

Moreover, since §§ is K-finite, we can choose a finite subset F of £ such that

B=2 wxp.
beF
Therefore a(B)u =bz Eym(f)u=0
€F

and this shows that
v(u) < g(ve(u) +1).

Making ¢ tend to zero, we get ¥(u) = 0. Since v was an arbitrary element in §, this implies
that «=0.
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2. od) "d(d)*< 2"'%‘(1 +q(A) ™" | p(A) [P < oo,

becr

provided m is sufficiently large.

§ 5. Differentiable vectors and Fourier series in function spaces

If M is a differentiable manifold, the spaces C,*(M) and C*(M), taken with their
usual topologies, are locally convex and complete. Let us now return to the notation of
§ 2 and for any f€C®(() and y€G@, define I(y)f to be the function z—f(y~x) (z€GF). We
claim [ is a representation of G on C°(G). For any compact subset Q of @ and g €@, put

va.o(h=sup lgf| (F€0(@)).

Then the seminorms »q ,, taken toghether for all Q and g, define the topology of C*(@®)

and it is clear that
YQ.¢ (l(y) f) =Vy-1Q,9 (f)

Moreover, g and I(y) commute as linear transformations in C*(G). Therefore if f, =gf,
va,s (y)~ ) =sup |Uy) ~ f|~0

as ¥y —1. Hence we conclude from Lemma 1 that ! is a representation.

LEMMA 8. Fix f€EC™(G). Then f is a differentiable vector under 1 and UX)f= —o(X)f
for X€q.

Fix X €g and put y,=exp tX (¢€R). Then it would be enough to verify that
lim ¢y f~ )= —o(X)
in C*(@). Fix Q and g as above and put f, =gf. Then since g and ¢(X) commute, we have

va.0 67 {0y f~ i +e(X)f) = sup |7 (Uyd o=} +al,

where f, = (X)f,. But we have seen during the proof of Lemma 2 that

1
hre w) — h@) = — tfo hya2)ds (z€0).

1
Therefore sup [ Uy i —fi} +fal < f sup [Uys) f,— fo| ds—>0
)

as t—0.
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§ 4. Proof of Lemma 7

It remains to verify Lemma 7. Let K, be the connected component of 1 in K. Since K
is compact, the index N =[K: K] is finite. Put £ = £, and let £, be the set of all equivalence
classes of irreducible finite-dimensional representations of K, If DEE and Dy € E,, we
denote by [d:d,] the number of times d, occurs in the reduction of b with respect to K,
For a given b € &, let £(b,) denote the set of all D€ £ such that [D:d,]>1. Then it is a
simple consequence of the Frobenius reciprocity theorem that

begm [D:Do]d(D) = Nd(b,),
where d(b,) is the degree of d,. Let &, denote the character (on K,) of a class 9, € &,. Then
it is easy to see that

Qébw = C(bo) 550’

where ¢(by) = ¢(d) for any D € £(dy). Therefore

DEZE c(b)”"d(d)* <DDEZ£°C(50)_"‘M%O) d(by)* < sz ogac(bo)_'"d(bo)z-
Hence it would be enough to consider. the case when K is connected.

Fix a Cartan subgroup A of K with Lie algebra a. Then 4 is connected. Let L be the
kernel of the exponential mapping of a into A. Then L is a lattice in a. Consider the space
& of all real-valued linear functions on (—1)¥q and the lattice L* of all 1€ such that
e =1 for HEL. Introduce an order in § and put

e= %aZo %

where o runs over all positive roots of (f, a). For any b€ E, let A(b) denote the highest
weight of b with respect to a. Then the following facts are well known. A(b) €L* and b is
completely determined by A(b). Moreover there exists a polynomial function p on & such
that d(b)=p(A(d)) for all D€ £. Finally, there exists a positive-definite quadratic form

¢ on {§ such that
c(d) =1+g(A(d) +e)—qle) (HEE).

We can obviously choose a compact set € in f such that
9(A+e) —qle) > q(A)/2

for A€ outside C. Let F denote the set of all b € £ such that A(d) €C. Then F is finite since
L*n O is finite. Let °F denote the complement of F in £. Then
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For any « € C(K) and f € C*(G), define

oc*f=f o(k) (k) f dk

and let oy(D € Ex) have the same meaning as in § 3.

COoROLLARY 1. The series

% wxf (f€C*(G))

beéx

converges absolutely to f in C®(G).

This is an immediate consequence of Lemmas 5 and 8.
COROLLARY 2. Fiz f€C,®(G). Then the series

> ap*f

. beéx
converges absolutely to [ in C,2(G).

Fix a compact set Q in G such that KQ=Q and Supp f<2. As usual, let Cp®(G)
denote the space of all functions ¢ € C,*(G) whose support lies in Q. Then Cq®(@) is a closed
subspace of C,®((Y) and the two topologies induced on it from C®(G) and C,®(G) coincide.
Therefore our assertion follows from Corollary 1.

Let r(y)f (y€G, f€C™(R)) denote the function z—f(zy) (x€G). Then one proves in
the same way that r is a representation of @& on C*(Q) and every f€C®(@) is differentiable
under r. Moreover l(g)f =o(g*)f and r(g)f=gf (9€®) in the notation of the corollaries of
Lemma 2. Define

fxa= fxa(lc’l) rik)fdk  (x€O(K)).

Then the analogues of the two corollaries of Lemma 8 hold also for r.
Note that I(x) and 7(y) (x, y €G) commute and hence

ax(f*p)=(axf)*p (« FEC(K)).

We may therefore simply write o ff.

Define a representation 7z of G X @ on C*(@) as follows.
al(x, ) =Ux)r(y)f (z,y€G, [EC™(G)).

Since a((@, y)f~f =Uz) () f —H + U~ 1)
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it follows from Lemma 1 that n is indeed a representation. It is obvious from Lemma 8

and its analogue for r, that every f€(C®(G) is differentiable under 7.
LeMMA 9. Let V be either one of the two spaces C°(G) or C,2(Q), taken with its usual
topology. Then for any fEV, the series

2 % fxa,
b Da€éx

converges absolutely to f in V.

If ¥V =0%((), this follows immediately from Lemma 5. The rest is proved in the same

way as Corollary 2 of Lemma 8.

§ 6. Proof of Lemma 4

We now come to the proof of Lemma 4. Fix v€V, »€§ and &£>0. Then, by Lemma 3,
we can select f€C,%(G) such that

»n(f)v—v) <e.

Choose a compact set Q in @ such that KQ=Q and Supp f=Q. Put

ulg)= flgi dz (g€C7(QY)

and ®p= 2 o
DeF

for any finite subset F of £;. Then p is a continuous seminorm on C,*(G) and

Supp (f — oz % f)= Q. Therefore

V(a(f — op % fv) <cu(f —ap* f),

where =gup »(m(x)v) < oo.
zeQ)

Hence we conclude from Corollary 2 of Lemma 8 that
va(f~apxf)v) Se
if F is sufficiently large. Therefore
wa{op* F)v —v) <v(n(f —ap*f)v) To(a(f)o —v) < 26

Since oz % flvE 2, Vo N V™
b

(154

from Lemma 2, the assertion of Lemma 4 is now obvious.
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§ 7. Some clementary facts about ¢ and E

Let g be a reductive Lie algebra over R. Then g=c¢+g, where ¢ is the center and
g, the derived algebra of g. Let 6 be an automorphism of g such that 62=1 and let f and
b be the subspaces of g corresponding to the eigenvalues 1 and —1 respectively of 6. We

assume that the quadratic form
Q(X)= —tr (ad X ad 0(X)) (X€g)

is positive-definite on g;,.
Let G be a connected Lie group with Lie algebra g and K the analytic subgroup of
G corresponding to ¥. We assume that:

1) K is compact,
2) The mapping (k, X) >k exp X (k€K, X €p) defines an analytic diffeomorphism of
K xp onto G.

Let log denote the inverse of the exponential mapping from p to exp p. Suppose we
have a Euclidean norm on p such that || X*|| =||X|| (€K, X€p) and

(X, (ad Z2)*Y) ={(ad Z)’X, Y) (X, Y,Z€p)

for the corresponding scalar product. Then it is easy to see that cy=cNp and p, =[f, p]=
pN g, are mutually orthogonal (under this norm). Put

ofz) =1 X]|

for z=kexp X (k€K, X€p) and extend § to an automorphism of G (see [4(0), § 16]).

Then it is obvious that
o(x) =o(0(x)) =c(z!) (xEG).

If |C| (C€cy) is an arbitrary Euclidean norm on ¢, and we define
[[C+X]j2=]|C|2—tr (ad X ad 6(X)) (C€cy, XEP,)
then all the above conditions are fulfilled.
Lemma 10. o(zy) <o(x) +oly) for z, yEQ.

We may obviously assume that x=exp X, y=exp ¥ (X, Y€p). Then if xy=~kexp Z
(K€K, ZEp), it is clear that

exp 2Z =0(xy)'xy=exp Y-exp 2X -exp Y.
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Now define Z(t)€p by
exp 2Z(t) =exp tY-exp 2X-exptY (t€R).

Then Z(f) is an analytic function of ¢ and it follows by differentiating with respect to #
that (see [5(a), p. 95])

{(1—exp (—2 ad Z(1)))/2 ad Z(t)} Z'(t) = }(1 +exp (—2 ad Z())) ¥,
where Z'(t) = d Z(t)/ dt. Therefore
<Z(t), Z'(t)) =<Z(), Y.
Now suppose Z(t) =0 for some tER. Then
l=exptY-exp2X-exptY
and therefore X = —1Y. But then Z=(1—1) Y and so
121 <0 |+l = 2]+ ]

which is equivalent to the assertion of the lemma. Hence we may assume that Z(t)=40
for every t€R. Then ||Z(#)] is analytic in ¢ and

<Z@), Z'¢)> = ||Z®)|al|Zo]) /.
This shows that \Z@®) ||| Z@) ||/ dt =<Z(@), Y

and hence |2||Z@)||/ 2] <|| Y|
But then by integrating we get
IZzay| —1zo)| < || 7]i-
However Z(0)=X and Z(1)=Z. Therefore
_ 121 < 1 X1+ ¥

and this proves the lemma.

Put §, =¥+ c=f+¢y and let K, be the analytic subgroup of @ corresponding to f; De-
fine the function E on & corresponding to K, as in [4(q), § 16]. Then by {4 (q), Lemma 31]

Z is everywhere positive.

LeEMMA 11. There exists a number r =0 such that

f Z(x)?(1+ o(x)) " dx < oo,
¢
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Let G, and C,, be the analytic subgoups of G corresponding to g, =¥+ p, and ¢, respec-
tively. Then since E(yc) =E(y) and

o(yc) > max (a(y), o(c)) (y€G,, c€CY),

it is clear that the above integral is majorized by

f (A+a(c)™" dcf E@*(l+o(y) " dy,
Cp Go

where dc and dy are the Haar measures on Cy, and G, respectively. Now it is clear that
f (1+0(c)) ™ d:< oo
Cp

if r is sufficiently large. Hence it would be enough to consider the case when ¢, ={0}.
Then we can obviously replace G by G/Z; where Z is the center of G. So we may assume
that @ is semisimple. Define a, £, a+, 4 and A+ as in [4 (q), § 21] and let dh denote the
Haar measure of A. Then it follows from [4 (d), Lemma 38] that

f xR (1+o(x) "dr=c, f +D(h) ER)E(+a(k) " dh,
¢ 4
where ¢, is a positive number and

D(exp H) =[] (™~ e =Py (Hea*),
x

oE

m, being the multiplicity of «. Put p=1 > ,cx m,. Then we know from [4 (j), Theorem3]
that we can choose positive numbers ¢, and d such that

Z(h)<cyge MM (1 +g(h))¢ (REAY).
Therefore, since it is clear that

D(h)gezg(logh) (h€A+),
we conclude that

J E¥(1+o) "de<c czzf Q+o6?)2eTdh<oo,
] 4t
if r is sufficiently large. This proves Lemma 11.

Remark. Suppose ¢,={0}. Then one proves in the same way that (1+0)'E€L,(G)
for p>2 and r€R.

2 — 662900 Acta mathematica. 116, Imprimé le 10 juin 1966.
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§ 8. Proof of Theorem 1

We keep to the notation of § 7 and define & as in § 2. Let 3 be the center of & and
R the subalgebra of & generated by (1, £.). The following theorem will play an important

role in the harmonic analysis on G.

THEOREM 1. (%) Let V be a complex vector space of finite dimension and f a C® function
from G to V such that the functions zf (z € BR) span a finite-dimensional space. Fix a neigh-
borhood U of 1 in G and let J be the space of all functions «€C.*(G) such that Supp a= U
and o(kzk)=a(x) (kEK, x€Q). Then there exists an element a €J such that f* o =f.

We regard f as an element of C*(G@) ® V and extend the representation r of §5 on this
space by making G act trivially on V. Then, as we have seen in § 5, every element
$€C®(G) ®V is differentiable under r and r(g)$ =g¢ (€ ®). Let U be the set of all u€ 38
such that uf=0. Then U is a left ideal in 3§ of finite codimension. Let W be the smallest
closed subspace of C*(G) ® V containing f, which is stable under #(G). Then it is obvious
that W contains W,=r(®)f. We claim that W=Cl(W,). For otherwise, by the Hahn.
Banach theorem, we could choose a continuous linear function $+0 on W such that =0

on W, Put
F(x)=p(r(x)f) (x€Q).

Since f is differentiable under r, it is obious that F €(C°(G) and

F(z; 9) =B(r(x)r(@)f) (9ES).

Therefore u.F =0 for w €11. However 11 contains elliptic differential operators (see the proof
of Lemma 33 of [4 (q)]) and so we conclude that F is an analytic function. On the other

hand,
F1;9)=Br@)Hh=0 (g€B)

since =0 on W,. Hence F =0 and this implies that =0 on W. This contradiction proves
that W=Cl(W,).

Put W, =7(®)f. Then dim W, < co and therefore W, is closed in W. Moreover one proves
in the same way as above that r(K)f< W, so that W, is stable under r(K). Since f€ W,
we can choose a finite subset F of &g such that f=fx «y. (Here & has the same meaning as
in § 6.) Put

(*) In my original proof of this theorem, I had to impose a mild condition on f at infinity, in order
to get a representation of G on a suitable Banach space containing f. It was noticed by H. Jacquet that
the argument worked equally well for a representation on a locally convex space and therefore the extra
condition could be dropped. The proof given here, which is simpler than the original version, although
based on the same idea, was obtained during a discussion with A. Borel.
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Ez= ZEb

beF

in the notation of § 2 (with w=7). We claim that W= E.W has finite dimension. Since
W, is tully reducible under r(K), it is obvious that the natural representation of § on &/&n0 Ul
is semisimple. Moreover since dim (/1) < oo, it follows from [4 (&), Theorem 1, p. 195]

that
Wo= Z EW,

besx
and dim Ey W,<co for every D€ E¢. On the other hand, W is dense in W and therefore
Ey W, is dense in Ky W. Hence E, Wy=Ey; W and this shows that dim Wy<oco.

We have seen in § 2 that there exists a Dirac sequence «, (1) with o;€J. Then by
Lemma 3, fx*o,—~fin W as j—oo. Let W, be the space of all elements in W of the form
[*o (x€J). Since alkxk1)=a(x) (K€K, x€G) and fE€W,, it is obvious that Wo,<= W,.
Hence W, is a vector space of finite dimension and therefore it is closed in W. Therefore

f=Hmy_, ., f % «;€ W, and this proves the theorem.

§9. The space C(G)

Fix an open set U in G and let C°(U) denote the space of all continuous functions f

from U to C such that
w(f)=sup 1+oy E7|f|< oo
for every r€ER. Put
o¥r.a: () =7:((0(g1) ©92) )

for f€C™(U), ¢;, 9.€® and r€R. Let C(U) be the subspace of those f€C®(U) for which
oVr.alf) <oco for all r and (g, g,). We topologize C(U) by means of the seminorms ,», ,,
(91> 92€G, r€R). In this way C(U) becomes a locally convex Hausdorff space which is

easily seen to be complete. (1)

LemMma 12. Fiz a, b€G and, for any function f on U, let | denole the function on aUb
given by
f (@) = fla"lxb-1) (x€ald).
Then f—f defines a topological mapping of C(U) onto C{aUb).

This is an easy consequence of Lemma 10 and [4(q), Lemma 32].

Now let G’ be a Lie group such that @ is the connected component of 1 in G’. Moreover
let U be an open subset of G' which meets only a finite number of connected components
of G'. Then we can choose a;€G and open sets U, in G such that U is the disjoint union

() C(U) = {0} by convention, if U is empty.
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of a;U(1<i<r). For any f€C0®(U), let f, denote the function on U; given by f,(x)=
fa;x) (x€U,). Consider the space C(U) of all f€C®(U) such that f,€ C(U,) (1<i<r) and
let V denote the Cartesian product of C(U,) (1<i<r) with the natural topology. We
topologize C(U) in such a way that the mapping f— (f,, ..., f;) of C(U) onto ¥V becomes an
isomorphism. It follows from Lemma 12 that the structure of C(U), as a locally convex
space, is independent of the choice of a; and U,. Moreover it is obvious that the injection
of C.*(U) into C(U) is continuous.

By a tempered distributon T on U, we mean a continuous linear mapping of C(U)
into C.

Now assume that G'/@ is finite. Then U can be any open subset of G.
THEOREM 2. Suppose G'|G is finite. Then C,2(G') is dense tn C(G').

In view of this theorem, we can identify tempered distributions on @& with those
distributions which are continuous in the relative topology of C,*(G’) as a subspace of
C(G"). Moreover, it is obviously enough to prove this theorem in case G' =G. This requires

some preparation which will be undertaken in the next few sections.

§ 10. The left- and right-regular representations on C(G)
Let § denote the set of all continuous seminorms on C(@). For any f€ C(G) and y€G,
define l(y)f and r(y)f as in § 5.

Lemma 13. l(y)f and r(y)f are in C(G). Moreover for a given compact set Q in G and
V€S, we can choose v' € § such that

v(ly) ) +o(r@) ) <v'(f)
for y€Q and f€ C(Q).

Put r(y)f=f, and fix ¢, 9’ €®. Then
hg' 2 9) =1’ oy ¢ )

for z, y€G. We can choose linearly independent elements ¢, (1 <¢<p) in & and analytic
functions ¢; on G such that

g = a(y)g: (y€G).

1<i<p
Then flgc x5 9) = 2 aly) (9 xy; g1).

If we apply a similar argument to I(y)f and take into account Lemma 10 and [4 (q), Lemma

32], our assertions follow immediately.
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LeMma 14. Fix s20 and put

vi(f) =sup (L+o) E|f] (fEC(IH)).

Then for any £>0, we can choose a neighborhood U of 1 in G and an element v' € § such that

vs(f,—1 <ev'(f)

for y€U and {€ C(G). Moreover, v' does not depend on e.
Introduce a norm in g and fix a base X, ..., X,, for g over R. Then we can choose

¢, >0 such that

max|6i|<('0l ciXiI
1<i<n 1<i<n

for ¢;€R (1<i<n). Now let f€ C(G) and X €. Then it is clear that

f(x exp X)—f(x)= flf(x exp tX; X)dt (z€Q)
0
and therefore

1
| f(zx exp X) — f(x) | <y | X | Zf | f(z exp tX; X,)| dt.
iJo
But then it is obvious that we can choose ¢ > 0 such that

Vs(fexpx—f)<c|X|1 z vs(X, f)

<ign

for | X| <1 (X €g) and f€ C(Q). Clearly this implies the assertion of the lemma.

COoROLLARY 1. Fiz v€S and £¢>0. Then we can choose a neighborkood U of 1 in G and
v' € § such that
vly)f = +vr) - <e'(f)

for yeU and € C(G). Moreover, v' is independent of e.
We use the notation of the proof of Lemma 13. Then

flg': 2 9) — 1(g's 2 9) =2 (auy) — 1) [(g': 2y 90) + {f(g": zy; 9) — (g ; 9)}.

i

Put D=p(g’')og and D;=p(g9")og,. Then D and D, define continuous endomorphisms of
C(G) and the above relation may be written as

D(r(y) f~f)=2 (aily) = 1) r(y) Dif + (r(y) — 1) Df.

i

Therefore it is obvious from Lemmas 13 and 14 that, for a given $>0, we can choose a

neighborhood U of 1 in G and an element »' € § (independent of ¢) such that
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vo(Dr(y)—1)) <&'(f)
for y€U and f€(C(G). Since a similar argument holds for I(y), our assertion follows.
CoROLLARY 2. Both I and r define representations of G on C(G).
This is obvious from Lemmas 1 and 13 and Corollary 1 above.

LeMma 15. Every element f€ C(G) is a differentiable vector under both | and r. More-
over, r(X)f=Xf and IX)f= —o(X)f for X €g.

Fix fe C(@), Y €g and put
¢ =tr(y)—H)— Y (t€R,t+0),

where y,=exp {Y. Then it follows from Lemma 8 that if D is any differential operator on
G and Q any compact subset of G, then

sup | Dé[~0

as £—>0. Fix g, g’ €® and a number m >0. Then it follows in particular that for any com-

pact Q,
sup | $(g'; %3 9) | & (2) 1 + o(2))"~ 0

as t—>0.

On the other hand (see the proof of Lemma 2),
1
$ulx) = f {fxyes Y) = f(z; )} ds.
0

1
Hence bulg's z;9)= tZ f a(Yus) [ (wyess 93 Y)ds —f'(2; 97),
0

where { =0(g")f and a,, g, (1< <p) have the same meaning as in the proof of Lemma 13.
Fix a compact neighborhood U =U-1 of 1 in G. Then we can choose a number ¢ such that
1+a(y)<c, |afy)] <c (1<i<p) and E(zy) <cE(z) for y€U and x€Q. Fix 4>0 such that
4:€U for |t| <4. Then

| be(g's % 9) | B ()71 (1 + o(z))™
<™ sup |f (au; 0.Y) | E (wu) (1 + o@u))" +| (2.9 V)| E (@) (L + o))"

for |t] <4. Now fix £>0. Since f' € C(G), we can choose a compact set Q, in G such that
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|f(x; 9. Y)|E@) (1 +o(@)" <e
outside Q, for 0<i<p. (Here gy =¢.) Put Q=Q,U. Then € is compact and it is clear that
g’ 5 9) [ E@) ML +o(@)" < (p+1) ™%

if ¢Q and |¢] <4. Therefore, in view of our earlier result, we can now conclude that
¢:—>0in C(@) as t - 0. This shows that f is differentiable under 7 and 7(Y)f= Yf. The proof
for [ is similar,

Define oy (DE Ex) as in § 5.

Lemma 16. For any f€ C(Q), the series

2 o % [ o,
b1 Da€ER

converges absolutely to f in C(G).

This is proved in the same way as Lemma 9,

§ 11. Spherical functions

Let p={uy, uy) be a (continuous) double representation (}) of K on a (complex) vector
space V of finite dimension. Then by a u-spherical function we mean a function ¢ from G
to V such that

P(keyks) =pa(ky) (@) ps(ky)  (ky, k2 €K 2€G).
Fix anormon V.

LeMma 17. For any two elements g, ¢ €®, we can choose a finite number of ¢,€S
(1 Si<p) with the following property. If ¢ is any C® u-spherical function, then

| $(g: 2 9" ) pl $(x; 9]

and [$(g: %;9")] <K]Z<pl Plg5 )]
for z€Q.

Let a be a maximal abelian subspace of p. Introduce an order in the space of real
linear functions & on a and, for any such «, let g, denote the subspace of those X €g for
which [H, X]=a(H)X for H€q. Let X be the set of all positive roots of (g, a) and (&, ..., o)

the set; of simple roots in X. Put
=2 g,

>0

Then g=Ff+a+1n and @ =KYAN where (2) § =S(EL,), A=S(a,) and N=CS(n,).

(1) This means that V is & left K-module under x,; and a right K-module under u,. Moreover, the
operations of K on the left, commute with those on the right.
(2) We use here the notation of [4 (m), p. 280].
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Fix an integer d >0 such that g, g’ €,8 (see [4 (o), § 2] for the notation). Then we can
choose a base B for ;& such that every element 6€ B has the form b=xuy where x€S&,
€Y, veEN and

y*=exp ( >, mo(log a))y (a€Ad=expa),

1<i<i

m; being nonnegative integers. Then
g'= 2 ak)b,g"= 3 a)’ (k)b (kEK),
beB beB

where a, and a,’ are continuous functions on K.

Now since any two norms on V are equivalent, we may assume that |u,(k;)vu,(ks)| =
[v] for &, k,€ K and vE V. Put A+=exp a* where a* is the set of those points H €a where
o(H) >0 for €. Then G=KA+K. Put

c=sup max (|a,(k)|, |a,’ (B)]).
keK beB
Then if =k, hky (k,, k, € K; hEA™), it is clear that
| blgz w39") | <|$(g™ s ks g™)| < > |4 b b).

Now b=s,u,, (b€ B) as above. Let us denote the representation of &, corresponding to
1y again by u, (¢=1, 2). For any endomorphism 7' of V, define

|T|= sup |Tw| (w€V)
lvi<t
as usual and put ¢y = sup | puy()].
beB

Then I‘Mbé h;b') E = llh("b) b(h; u, Voh_lb') l <6 I 95(7% uy vy b') I

since a;(log £)=0 (1<:¢<1]). Hence

| dlg: z; 9"y <c? o, bZEs | $(R; uy v, )|

Now let g; (1 <j<p) be a base for the subspace of & spanned by (u, v, b")* (b,b' € B, k€ K).
Then it is clear that we ean choose a number ¢,>0 with the following property. If
b,b'€B, k€K and
()= 3> 7,9, (7,€0),
1<5Zp

then |y,{<c,. This shows that



DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS. II 25

|p(g: 2;9')| <cs 3 |pla;g,)]

1<i<p

for x€G where c3=c%,¢,. Since our hypotheses are symmetrical with respect to left and

right, the assertion of the lemma is riow obvious.

§ 12. Application to C.(G)

For any finite subset F of E, define «; as in § 6 and let Cr(@) denote the subspace
of all elements in C(G) of the form oz % f % az (f € C(G)). It is clear that an element f€ C(G) lies
in Co(@) if and only if oz % f*op=f. Hence Cp(Q) is closed in C(G).

Put V. of) = sup (1+0)"E2|gf]|,
¥n(f) =sup (L +0)"E~|o(g) ]|
for m>0, ge® and f€C(G) and let §;,={v,, ,; m>0, g€®} and §,={»,; m>0, geB}.

LevMma 18. Let F be a finite subset of Ex. Then each of the three sets of seminorms
$1, Sz and S define the same topology on Co(G).

Consider C(K X K) as a Banach space with the norm
|fl= sup |k, ko)|  (FEC(KxK))
k1 k€K
and let g, (k)f and fu,(k) (k€ K) respectively denote the functions
(y, ko) = f(kky, ky)  and  (ky, kp) > f(ky, kok™)  (Ry, By €K).
Then g =(p,, u,) is a double representation of K on C (K x K). Let C; be the subspace of
all f€C(K x K) such that
/= fop(k)ﬂl(k)f dk = thp(k) fus(k) dk.

Then C is a finite-dimensional space invariant under u. We denote the restriction of u
on Cr by pp.
For any f€ Cy(G), define the up-spherical function f* from @ to C; as follows. If z€G,

f¥(z) is the function
(ky, ko) — f(key 22ky™) (ky, k€ K)
in Cy. It is clear that

[ (g3 25 95) | = sup | gy by whey™; g5 |
Ky, k€K

for g,, 9,€® and z€@. Therefore if we apply Lemma 17 with V =0Cy, Lemma 18 follows
immediately.
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§ 13. Density of C,*(G) in C(G)

Now we come to the proof of Theorem 2. We have to show that C,®(G) is dense in
C(G). Fix a finite subset F of £g. In view of Lemma 16, it would be enough to verify the
following result.

LemMA 19. C,2(G)N Cx(G) is dense in Cp(G).

For any t>0, let G, denote the open set consisting of all zEG with o(x) <t. Also let
& denote the characteristic function of G,. Fix >0 and an element « € C,®(G,) such that
o{ley xky) =ot(x) (ky, ke €K; 2€G) and

f a(z)dz=1.
¢

Put w=0N1-&)*xa=1-§x%a,
where the star denotes convolution on @ as usual. It is clear thas u, € C,*(@).
Lemma 20. We have

_{O if o) <t—a,
o) = 1if o(x)>t+a,

and |ude; 9)| < f_l a(y:g)ldy (z€G)
for g€,
It is clear that
uy() = L (1= &lzy™)) aly) dy
and if we fix y € G, it follows from Lemma 10 that

0if o(x)=t+a,
1if o(x) <t—a.

Efwy ™) = {
This gives the first statement of the lemma. Now fix g €@. Since g is left-invariant, we have

gu, = (1 —&,) % ga.

Therefore uz; g) = f(l — &y aly; 9) dy

and this implies the desired inequality.
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Now fix f€y(G) and put
fe={0—u)f = (&% a)f.

Since o and £; are both invariant under left and right translations of K, it is obvious that
F€C2@N Cp(G). We now claim that f,—f in Cx(G) as t—+ co. Fix g€@. Then

g(f_ft)zg(utf)=1<‘§;pgt’ u gif,

where g,, g;’ are suitable elements in &. Moreover,

f(2) = f@) = uy(@) f(z) = f(x)

(1 +o(z)"E (@) | fl; 9)| < (L+8)Wppa o)

if g(x) =t+a and

for o(x) >t and m >0 in the notation of § 12. Hence

(1 +o(@)"E=) | fl@; 9) = 9)| S +8)Wp,6(f)
for o(x)>t+a. Now suppose o(z)<t+a. By Lemma 20, f(x) —f(x)=0 if ¢(z) <t—a. So
let us assume that ¢ —a <o(2) <t +a. Then if £ >a, we conclude from Lemma 20 that

(L+o@)"E (@) | f: g) — fi(z: 9)] <1<fz<,,c‘(l +o(@)"E(@) " | f(z 99|

< ; C;(]. +i- a)—l 'Vm+1.g‘(f)s

where c,~=f|cx(y;g,’)[dy (1<i<p).
¢

This shows that v, ,(f—f)—>0 as t >+ co and therefore by Lemma 18, f, converges to f
in Cy((}). This proves Lemma 19 and therefore also Theorem 2.

§ 14. An inequality

Let h=0(h) be a Cartan subalgebra of g and m and M the centralizers of haping
and @ respectively. Let M denote the connected component of 1 in M.

Fix compatible orders on the spaces of real-valued linear functions on hjny and
HNp+(—1)¥)N ¥ and let P be the set of all positive roots of (g, §). Let Py, be the subset of
those roots in P which vanish identically on §n p and P, the complement of Py, in P. Put

m=gn( 2> CX,)

®eP
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in the notation of (4 (n), § 4]. Then ny is a nilpotent subalgebra of ¢ and M normalizes

1. Put )
d(m)=|det (Ad (m))nbl* (m €M)

and let Ny denote the analytic subgroup of G corresponding to 1.
Extend §N p to a maximal abelian subspace a of p and introduce an order on the dual
of a which is compatible with that chosen above on the dual of hN p. Let g=f+a+1 be the

corresponding Iwasawa decomposition. Then ng<=n. Put
o(H)=}tr (ad H), (HEq)

and define a* and A+=exp at as usual (see [4 (q), § 21]). Then by [4 (j), Theorem 3}, we

can choose a number d >0 such that

sup (1+ o(h)) ¢ M8 ME(R) < co.
heAd+

Let E,; denote the function on M corresponding to E if we replace (G, K) by (M, Kn M).

Lemwma 21. Let dn denote the Haar measure of Ny and fix r>1' >0. Then we can choose

a number ¢ >0 such that
d(m)f (1+a(mn)) " 2P E(mn)dn < c(l+o(m)) " Eylm)
Ny

for m€M. Moreover, there exists a number cy=>1 such that
1+o(m) <cy(l+o(mn)) (mEM, n€Ny).

It is clear that for a fixed () m€M, dn™=d(m)2dn. Therefore since mn=n"-m, we

get the following result immediately.
COROLLARY. In the above notation, we also have

d(m)_lf 1+ o(nm))" 2D E (nm)dn < c(1+ a(m))™" By(m)
Np

for me M.

We shall give a proof of Lemma 21 in § 44.

() y*=ayz? (v, y €G) as usual.
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§15. The mapping of C(G) intoC(M)

Let us keep to the above notation. Then M N K has finite index in Mn K and therefore

M /M is finite. Hence the space C(M) is well defined (see § 9). Let Q be a compact subset
of G. Then it follows from Lemma 10, [4 (q), Lemma 32] and § 14 that, for any f€ C(G),
the integrals

f |wn)| da, f | Hn) | dn
Np Ng

converge uniformly for x€Q (see also Corollary 2 of Lemma 90). Put
uim)=dim)| fmn)dn=d(m™) | flnm)dn (m€M),
¥y g

and (1) I =S(m,). It is easy to verify (see [4 (q), § 10]) that there exist two automorphisms
u—>p' and y—'u of I such that

w =duod, ‘u=duodt (uEM).

Then it follows from what we have said above that u,€ C°(M) and

(s m) =d(m) fN flps': mn)dn,
(]

s 1) = o™ [ ;. 1) dn =) [ sy i

for py, u, €. Since ‘u,f € C(G), we conclude that

ur(phyi m; ) = d(m) ff(,ul': mn; ‘o) dn.
In view of Lemma 21, the following result is now obvious.

Lemma 22. f—u, is a continuous linear mapping of C(@) into C(M).
Put fla) = f i dk (x€Q)
K

for f€C(G). Then if follows from Lemma 13 that f~{ is a continuous endomorphism of
C(@). Now define

gm)=d(m) | flmn)dn (m€M).

i

(1) We use here the notation of {4 (m), p. 280].
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THEOREM 3. f =g, is a continuous linear mapping of C(Q) into C(lef).

This is obvious from Lemma 22.

As usual let § denote the center of & and u =gy, the homomorphism of [4 (o),
§ 12]. Since 0, *(@) is dense in C(@), we get the following result from the corollary of
[4 (q), Lemma 14].

CoROLLARY. Let 2€5 and f€C(G). Then

Gor = u(2)9;-

§ 16. Proof of Theorem 4

Let I(G) be the space of all continuous functions f on G which are bi-invariant under
K, and I+(G) the subset of all real {>0. Put I, *(@)=I1(G)N C,*(G) and

IHG) = C()N I*(@).

Let Q be the centralizer of f in & and u a seminorm (*) on I,°(G) satistying the following

two conditions.

1) There exist elements ¢, ..., ¢, €X) such that

uh< S qu.fladx (L@,

1<i<p

2) If f,, f, are two elements in I,@(G) such that f, =f, >0, then u(f,) = u(f,).

For any ¢ € I(G), put
u($) =sup u(f),

where f runs over all functions in I+(G)N I, °(G) such that ¢>f. Fix a number r>>0 as in

Lemma 11.
TaEOREM 4. Under the above conditions
U(E(1+0)") <oo.

Fix a € IT(G)N I, 2(G). Then axf€I>(Q) for f€I(GF) and

waxH< > ||gaxflEd
1<1%p

(1) Here we take the space I,”°(G) without topology.
c pology
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since q,(oc% f) =q,(f % &) =f % q,0c =q; % f, the convolution being abelian in the present case
(see [5 (a), Theorem 4.1, p. 408]). Now

fl giaxf|Edx < fl a(y; ¢) | fy™ «) B (z) dy d=.

Therefore if ¥V =Supp « and ¢y =2 sup | g, al.
i

we get wlaxf)< clf f(x) B (yx) dy d.

Vx@

Since V is compact, we conclude from [4(q), Lemma 32] that there exists a number
¢, = 0 such that

,u(oc*f)<02f fEdx
G

for all f€I,7(@). It follows without difficulty from condition 2) on y4 that the same ine-
quality continues to hold for f€I*(G).

Now take f=E(1+0)"". Then f€I*(Q@). Moreover we know that E > 0 everywhere
and (see[5 (a), p. 399])
f E(xky)dk=E(x)E(y) (x,yEQ).

K

Therefore if we choose a €I*(G) N I,”°(G) such that

focE‘ldx= 1,

(% f) (@)= f«(y) E(y~ o) (1+aly ' 2)) " dy.

it is obvious that ¢ ¥ E=E. Then

Now 1+o(y2) < (1 +0o(y) 1+ a(x)
from Lemma 10. Hence (%) (x)=co ()
where €o=5Up (1+oy)

and V = Supp « as before. Therefore

) <coplok ) <oty [ 1B

Since ffE.dx =J'Ez(1-l-or)"r dx < oo,

we get the assertion of the theorem.
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§ 17. Convergence of certain integrals

We shall now derive some consequences of Theorem 4. Assume that G is acceptable
(see [4 (0), § 18]) and let 4 be a Cartan subgroup of G. We use the notation of [4 (o), § 23].

THEOREM 5. Fix r as in § 16. Then
sup |A(a)] J‘ B@®) (1+o6(@™) "da* < oo,
aeAd’ G*

Let §) be the Lie algebra of 4. Put

wth=sup |E, @] = [ |Au@ F@da (1@

in the notation of [4 (0), Theorem 3]. Then it follows from [4 (q), Theorem 4] that there
exists a number ¢ >0 such that

v(f)<cfa|fIEdz (fEL>(@)).

Moreover, by [4 (o), Theorem 3], we can select 2y, ..., 2, € 3 such that

pOS 3 vel) (FEL” ().

Hence it is obvious that u satisfies the two conditions of § 16. Moreover, it follows from the
elementary properties of an integral that if $ € I*(G) and a€4’, then

, f ¢(a”)dx*=supf fa**) dz*,
G* ! [ead

where f runs over all elements in I+(@) N I, °(@) such that f<¢. Therefore the assertion of
Theorem 5 is now an immediate consequence of Theorem 4.

Let y be a semisimple element in G and @, the centralizer of y in G. Then @, is uni-
modular and therefore the factor space @=G/G, has an invariant measure df. Let &

denote the projection of G on G and put
Y=y =zpxl (z€Q)
THEOREM 6. f E(yz) 1+ a(yz))" di < oco.
cia,

Let 3 be the centralizer of ¥ in g. Since y is semisimple, 3 is reductive in g and
rank 3=rank g. Let ) be a Cartan subalgebra of 3 which is fundamental in 3 (see [4 (n),
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§11]) and A the Cartan subgroup of G' corresponding to §j. Then y €A. As usuallet P and

P; denote the sets of positive roots of (g, fj) and (3, §j) respectively and Py, the complement
of P,in P. Put
Wy = H H,

ocePﬁ

in the notation of [4 (n), § 4].

LemmaA 23.(Y) There exists a number ¢ =0 such that

iy —c f WL
for all {€0.2(@Q). ’

We observe that in view of [4 (o), Lemma 40], the left side has a well-defined meaning.
Moreover, since y is semisimple, the orbit ¢ is closed (see [1, § 10.1]) and therefore [1, § 5.1]
the integral on the right is also well defined.

Normalize the invariant measure dy* on G, /4, in such a way that da*=dF dy*. Let
U be an open, connected neighborhood of 1 in A such that det (Ad (a)—1),,+0
for a€U. Put U'=UN(p14’). Then an element a€U lies in U’ if and only if
det (Ad{ya)—1);5+ 0. Moreover, we may assume (see [4 (i), Theorem 1]} that U has the
following property. For any compact set Q in @, there exists a compact subset C of @
such that zUz 1N Q=0 (x€G) unless F€C.

Fix f€0,*(Q) and select € as above corresponding to Q=Supp /. Then if e €U’

f Hya)™) das* = f e f Halya)” &™) dy".
G* C Gy‘

Let @,° denote the connected component of 1 in G, and Z the center of G. Then ZGY"

has finite index in G, (see [4 (h), Lemma 15]). Let N denote this index and choose
¥; (1<¢<N) in G, such that

Gy= U ytZGyo.
1<isN
Define 9:(y)=_ 2 fleyyyya7l) (y€G,)
I<iSN

for x €G. Then it is clear that

f ey do = fcdx" f(a o, 9l@) Ay

Choose an open and convex neighborhood ¥V of zero in fj such that exp V< U and
|oe(H)| <1 for «€P and HEV. Let V' denote the set of all points H € V where

for a €U’

(}) Cf. Langlands [6, p. 114].
3—662900. Acta mathematica. 116. Imprimé le 10 juin 1966.
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my(H)= ] a(H)+0.

a:ePa

Then exp V< U’ and

Ay exp H)=&,(y) T1 (™ —&aly) ™ ™) AH)

=ePyjs

for HEV. Here A, (H)= [T (€02~ g2y

P,
¢Ea

Let D denote the differential operator on }) given by

D=§,(y)o(m;)o [I (€7 —&uly) e *2).
aePala

As usual D, denotes the local expression of D at the origin (see [4 (f), p. 90]).

Lemma 24, Dy=8&(y) T1T (1—é&.(y))o(w;).
“EPs/.i

Fix g € 8().) such that

@) =Do—&(y) T1 (1-&y) o))

¢EP9/6

If p is the number of roots in P,, it is clear that d®w;=p and d°¢<p. On the other
hand, it is easy to see that Dy’>= — D, for any x € P;. Therefore w, divides g in S(f,) (see
[4 (f), Lemma 10]) and this shows that ¢=0.

For any function g € C,*(G,’), define

$o(H) =Ay(H )f f((exp HY")dy* (HEV").
€9

Then by [4 (n) Theorem 3), and [4 (i), Lemma 19], there exists a number ¢, 0 such that

El_flosﬁa(ﬂ 3 0(wy)) =cog(1) (HEV')

for every g €C,*(G,°). Hence it follows from Lemma 24 that
Fy(y; ‘Wa)=01f gz(l)di=C1Nf ) d,
(o4 G/G,y

where e =coer) E () TT (1—E(»)7Y).

«€Py/3

This proves Lemma 23.
Now we come to the proof of Theorem 6. Put
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= Fy(y;wy)| (fE17(@)

u(f)= ‘ f [(y") di
G/Gy

and define »(f) as in the proof of Theorem 5. By [4 (0), Theorem 3], we can choose
21, --» 2 € 3 such that
ph< 3 vl (FEL(O)).

This shows (see the proof of Theorem 5) that u fulfills the two conditions of § 16. More-

over, it is clear that
f $(y)de = sup f fy7ydz ($eI* (@),
6/c, f Jee,

where f runs over all functions in I+(G)N I, ®(G) such that f<¢. Therefore Theorem 6

follows from Theorem 4.

§ 18. The mapping f— F,
We return to the notation of § 15 and define the function Dg on @ as in [4 (q), Lemma
35]. Also we recall that § is the set of all continuous seminorms on C(@).
LrMMa 25, Put
vl(f>=f0|f| | Dy|"tdz (f€C(G)).
Then v, €8S.

Fix r as in Lemma 11 and put

v(fy=sup |[{|21+0o) (fECH).
Then it is clear that

n(f) <u(f) LE(1+0)"ID[,|‘*da:

and therefore our assertion follows from Lemma 11 and [4 (q), Lemma 35].

Now assume that G' is acceptable and let 4 =4y be the Cartan subgroup of G cor-
responding to §). Since K is compact, 4 has only a finite number of connected components.
Define A’(I) as in [4 (0), § 22]. Then the space C(4’(I)) is well defined (see § 9). For any
f€C2(G), define the function F,€C®(A'(I)) as in [4 (0), § 22].

Lemma 26. Let S(A'(I)) be the set of all continuous seminorms on C(A'(I)). Then
F eC(A'(1)) and for a given vy€ S(A'(I)), we can choose vE § such that

vo(Fy) <o(f)  (fECX(G)).
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We use induction on dim g. Let ¢ be the center of g and first assume that §n p < c.
Then dim m<dim g and the induction hypothesis is applicable to M and therefore our
assertion follows immediately from Theorem 3 and [4 (o), Lemma 52] (see also [4 (q), § 10]).
Hence we may suppose that §N p=c, where ¢y=cNp as before. Let us assume further
that ¢y + {0} and put g, =f+[f, p]. Then ¢ is the direct sum of ¢, and g, and G is the direct
product of the corresponding subgroups Cy, and G;. Put(?) €;=S(cy,) and &, =(g,.).

Then we may assume, without loss of generality, that
volg)= sup (1+o(k)) g(h; yu)| (g€ C(A'(D))
he A'd)

for some >0, y €€, and vw€S(},,) where ;=0 g;. For any f€C(G) and c€Cy, let f,
denote the function x — f(cx; ) (x€G,) on Gy. Put A,'(1) =G, N A’(I) and let F, (g €C,*(Gy))
denote the function on 4,’(I) corresponding to [4 {0), § 22]. Then it is obvious that

(L+o(ch))" | F, (ch; yu) | < (1 + o(c)) (1 + a(h)) ]F,c(h; w)|

for ¢c€Cy and h€A,'(I). Since dim g, <dim g, we can, by induction hypothesis, choose a |

continuous seminorm », on C(G,) such that
(L +o(h)) | Fylh; )| <i(9)
for g€ C . ®(G,) and A€ A,'(I). Then it follows that

vo(Fy) < sup (1 +a(e)) mlfe)  (FECT(G)).

cecp

Now put ()= sup (1 +o(o)) n(fe) (€ C(@).
cE P
Since E{cx)=E(z) and o(cx) >max (a(c), 6(x)) (see §7) for c€Cy and x€G,, it is easy to
verify that y€§.
So now we may suppose that ¢, =0N p={0} and therefore Hf. Put

v1<f>=falf||1>nl**dx (feC (@)

Then 7, €§ by Lemma 25. Therefore since 4 < K in the present case, our assertion follows
from [4 (o), Theorem 3]. This completes the proof of Lemma 26.

Since 0, ®(@G) is dense in C(G) (Theorem 2) and C(A4'(I)) is complete, it is clear that
that f > F, can be extended uniquely to a continuous mapping of C(G) into C(4’(I)). Thus,
for every f€ C(), we get a function F,€ C(4'(1)). v

(1) We use here the notation of [4 (m), p. 280].



DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS. I 37

Lemma 27. Let f€C(R). Then

Fi(a)=ezla) Ala) f fa®)dz* (a€d’)
G*
in the notation of [4 (o), §23].

It is obvious from Theorem 5 that the integral on the right is well defined. Now choose
a sequence f,€ 0, ®(G) (j >1) such that f,~f in C(G) and put ¢;=f—f,. Then, in view of the
definition of F,, it would be enough to verify that

sup [Ae)] J‘G* | $:(a®") | da™ — 0.

But since ¢, >0 in C(), this is obvious from Theorem 5.

Let B be another Cartan subgroup of G conjugate to 4. Fix x€G such that B=A4°".
Then the isomorphism a —a* defines a linear bijection of C(A4’(I)) on a subspace C(B'(I))
of C®(B'(I)). We topologize C(B’(I)) so as to make this bijection a homeomorphism. It
is easy to verify that this topology is independent of the choice of .

Now let us drop the condition that §)=0(])) and define

F0-a@A@ | @)t (ec@),eea ).

It follows from Theorem 5 that this integral exists. Since fj is conjugate to some Cartan
subalgebra which is stable under 6, it is obvious from Lemmas 26 and 27 that f— F, is a
continuous mapping of C(@) into C(4'(1)).

LEmMMma 28. Fy(y; ) = cf f(o°) d

cla,

for f€ C(G) in the notation of Lemma 23.

It follows from Theorem 6 that the integral on the right is well defined. The rest of
the argument is similar to that given above for Lemma 27.

Let us now return to the notation of § 15. If we replace G by M, we get the corresponding
mapping g~ F,M of C(M) into C(A4,'(I)) where Ag=AN M and A, (I)=A4,n A’(I). Define
Z,=Z(4) as in [4 (q), § 12]. Then the following result is obvious from [4 (0), Lemma 52}
(see also [4 (q), § 10]), Theorem 3 and Lemma 26.

Lemma 29. For any a€Z,, put

gr.a(m) =gglam) (m€M, f€C(Q))
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in the notation of Theorem 3. Then there exists a number ¢>0 such that

Fy(ah)=cf(a) Fy, M (h) (a€Z, fEC(R))

95,8
for h€ Ay (1).
§19. A criterion for an invariant eigendistribution to be tempered

Let © be a distribution on G. Then © is said to be 3-finite, if the space of all distri-
butions of the form 20 (z€ 3) has finite dimension. We recall (see {4 (0), Theorem 2]) that
an invariant and Z-finite distribution is actually a locally summable function which is
analytic on the regular set G'.

Define D as in [4 (o), § 28] and let 4, (1 <i<r) be a complete set of Cartan subgroups
of @, no two of which are conjugate in G. As usual put 4,/=4,nG".

THEOREM 7. Let O be an invariant and 3-finite distribution on G. Then © is tempered
if and only if there exists a number s >0 such that

sup (1+0(a)) " | D(a) |t |O(a)| <= (1<i<r).

aeAy

Let a; be the Lie algebra of 4,. In view of Lemma 10, we can obviously assume that
0(a;)=q;. Let us now use the notation of [4 (p), Lemma 63]. Then

f fdx= 3 o f eun0onj A Frudia (FEC(E),
G i1<isr A

where F, ;=F,and ¢, p=¢5 for A=A, (see [4 (0), § 22]). Now choose ¢>>0 such that
| D(@)|¥|O(@)| <c(l+o(@))’ (a€A/, 1<i<r).

Since |D(a)| =|A(@)|? (@€A4,), it is clear that

|®(f)|=UG®fdx

<e c,f (1+0(a))? | Fyi(a)| dia

1igr A

for f€C,2(G). Hence it follows immediately from Lemma 26, that © is tempered.
Before proving the converse, we shall derive the following consequence of the theorem.

COoROLLARY. Suppose O is tempered. Then, in the above notation,

o) = Z ¢ &P Frdia (feC(ay),
1<<r J g,
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where D,(a)=0(a)- conj A;(a) (a€A)).

Fix € C(G) and choose a variable element a€C . ®(®), which converges to f in C(@).
Then
Of)= lin} O(x).

But @(a)=f®ocdx= c,f &30 F,  dia
1<igr 4

and so our assertion is an immediate consequence of Lemma 26 and the above theorem.

Now in order to prove the second part of Theorem 7, we need some preparation.
Define § and §, as in Lemma 18.

LeMMA 30. Let O be a tempered and invariant distribution on G. Then © is contin-
uous in the topology defined on C(G) by §,.

Fix a function « € 0,°(@), such that [ «dx=1 and, for any f€C.*(Q), put

ola) = Loc(y)f(w") Iy (=€)

Then foerwz = [ ot M many ™y Gz
Fix ¢’, " €®. Then it is clear that we can select g, ..., g, €® such that

|folg": x;g”)l<12 sgglf(yxy“;yf)l (x€Q)

<i<p ¥
for all f€C,*(G). Here Q=Supp «. Now fix m>0. Then by Lemma 10 and [4 (q),

Lemma 32], we can choose ¢ =0 such that

sup [folg': 2 9") | E(2) M1+ o(@)" <¢ sup [f(@; 9| B (2)"1 (1 + o(2))™

I<i<p

This shows that, for a given € §, there exists a number ¢>0 and a finite set (vy, ..., ;)
of elements in §;, such that

fo)<c 2. wn(f) (f€C7(@).

1<1%p
On the other hand, since @ is tempered, we can choose » € § such that
O] <#(f) (fEC@).
Moreover, 0(f) = O(fo),

since O is invariant. Hence
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|00]=10¢<s(f) <c 3 () (FEC=E)
and this proves our assertion.

Now fix a Cartan subalgebra §h=0(f)) of g and let 4 be the corresponding Cartan
subgroup of G. Let A, be the center of 4 and A the normalizer of 4 in G. Put W,=4/4,
and let  —>x* denote the natural projection of & on G*=G[A,. Then W, is a finite group
and a® and z*s (s€W,, a €4, x* EG*) are defined as usual (see [4 (0), §20]). If § is any func-

tion on A4’, we denote by §° the function a—>/3(as_1) (a€d’, sEW,).
Put G,=(A4")¢ as usual and normalize the measures dz, da and dz* in accordance with
Lemma 91. Fix a function o*€(0.®(G*) such that o*(x*s)=o*(x*) (x*€G*, s€W,) and

f ofda*=1.
G*

Then, for any f€C,*(4’), we define f3 € C,*(G,) as follows.

fo(a®) = o (2*) A(a)_ls% e(s)B(a’) (a€d’, x€Q).

Here ¢(s) has the usual meaning so that A°*=¢(s)A. Then it follows from Lemma 91 that
o [ opda (pecan,

where ®(a)=0(a)-conj A(a) (a€A’).

Let @ be the set of all roots of (g, {)). Then for each x €@, we have the character &, of 4
(see [4 (0), § 18]). Let 7, denote the function (1 —£,1)~* on 4’ and let R be the ring of ana-
lytic functions on A’ generated over C by 1 and 7, («€Q). It is obvious that R is stable
under W,. Moreover, one finds directly by differentiation that

Hyo=oa(H) a1l —71.) (x€Q, HED).

This shows that R is also stable under the differential operators in &(J.).
Fix a connected component 4+ of 4’. Since K is compact, A’ has only a finite number
of connected components (see [4 (¢), Lemma 9]) and so, in order to complete.the proof of

Theorem 7, it would be enough to show that there exist numbers ¢, m >0 such that
|®(a@)| <c(1+o(a)™ (a€A4¥).

Put §,=HNn¥E §=hNnp, 4,=AN K, 4,°=exp §); and 4,=exp . Then A4,° is the connected
component of 1 in A4,. For any a €A, let a; denote the component of @ in 4, (¢=1, 2) so
that @ =a,a,. Let §),’ be the set of all H €}, such that a(H) =0 for any root « of (g, ) which
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is not identically zero on fj,. Then §j," has only a finite number of connected components.
Fix a connected component §,+ of §)," such that A+ meets 4, 4,*. (Here 4,t=exp fy+.)
It would be sufficient to prove the required inequality for a € A++=A+N (4, 4,%).

Fix an element b exp H, (b€A4,, Hy€l),*) in A++ and let 3 denote the centralizer of
bA4,° in g. Let @, be the set of all roots of (3, ). Then every root in @, is real (see [4 (n),
§4]) and «(Hy)+0 for x€Q,.

Let & and §§, be the spaces of real linear functions on (—1)#), +1j, and §, respectively.
Introduce compatible orders in & and g, such that an element A€, is positive whenever
A(Hy)>0. Let P be the set of all positive roots of (g, §)) under this order and put P,=P N @;.
We may use this order for the definition of A and &, (see [4 (o), § 19]). Then

A=y,
where =] T,epn. € R.

Fix a compact set C=C-! in @ such that Supp a*< C*.

Lemma 31. For any g€®, we can select u,€S(l),) and n;€ R (1 <i<p) such that

[f5(a%9) | <|&, (@) I‘lng . gv [7:(@) B° (@ wi) |

p

for BEC,®(A"), a€A’ and xz€C.

Assuming this lemma, we shall first finish the proof of Theorem 7. By Lemma 10 and
[4 (q), Lemma 32], we can choose ¢>1 such that
E(y")<cE(y), 1 +o(y’) <c(l+oly)) (€0, y€Q).

Since €'=C-1, this implies that

[fs(a%;9)| 2(a®) 1 (1 + a(a®))"
<™ fs(a”; 9)| E(@) (1 + o(@)"

<&@ E@ A to@)” S S |ml@prasu)
Wa

1<i<p s€
for fEC,®(A’), a€A++, x€C and m>0. Put A°=(4++)V4 If B€C,2(A4?, it is clear that
Supp fs< (4++)°. Hence

sup | a(x; 9)| £ ()7 (1 + o(a)”

< sup [G@E@|TAto@) 3 3 @)@ ul,

aeA

for f€C,*(A°) and m >0.
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It is clear that A++<bA4,°4,+. Extend §), to a maximal abelian subspace a of p and
define an order on the dual of a, which is compatible with the one chosen on {,. It is clear

that
|&,(2)| E(a) = E(ay) 2% (a€4).

Since a,€A4,* for a €A+, it follows easily from [4 (j), Lemma 36] that
|&0(@)| E(a) > 1

for a € A++, Therefore since R is stable under W,, we obtain the following result from
Lemma 30.

LemMA 32. We can choose m=>0, 1,€ R and u,€S(Y),) (1<i<p) such that

fAﬂ(I)da

< > sup (L+o@)"|n(@) fla; w)l
I<is<p aed’
for BEC®(A9).
Moreover, we have the following lemma.
LeEvMA 33. Let 2 €Q. Then
|7 (a) a(log @) | <1+ |a(log ay)| (a€4’).

Since e, —¢,| =||¢;] —|¢s] ], for two complex numbers ¢,, ¢,, it is clear that

| 72 (@)  (log @) | < | a(log a,) | |1 — 7> 20|72,

On the other hand, t(l—e ) 1=t+4e—1)"
and Het—1)"1<1 (t20).
Hence [¢] [1—et|7*<1+]|t| (tER)

and this implies our assertion.

Fix a non-empty, open and connected subset U of b4,° such that U4, meets A++
and &, (x€P) never takes the value 1 on U unless «€P,. Clearly this is possible. Then
UA,*c A++cbA 2 A, < A(R), where A’(R) is defined as in [4 (o), § 19]. Also we know
that @ extends to an analytic function on A’(R) (see [4 (0), Lemma 31] and [4 (p), Lemma
64]). For 6€C,*(U) and y €C,®(f),+), define the function § Xy in C,°(4+*) by

(0 xy) (@) =b(a))y(log a;) (a€A).

Let da, denote the Haar measure on 4, and dH the Euclidean measure on f);. We normalize

them in such a way that
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da = da,dH
fora=a,exp HEA. Put

®,(H) = f ®(ay exp H)(ay)day (H €6,").

Then it is clear that f 6xy) Pda= f ®;ydH.
4 Bet

Now fix §€C,*(U) and put ¥V =Supp 6. Then V is a compact subset of U. Let @; be
the set of all imaginary roots (see [4 (n), § 4]) of (g, §)). Then if x€Q),, it follows from the
definition of U, that 7, remains bounded on V. Let P’ denote the complement of P;=PN @,

in P. Put
aH)=T] alH) (HE,).

Then g is a polynomial function on §,, which is not identically zero, and we conclude easily
from Lemmas 32 and 33 that there exists an integer m >0 such that the distribution

TM;HL LQag"ydH  (y€C>(by"))
on f,* is tempered. ‘
On -the other hand, since 4,°A,t< A'(R) and @ is analytic on 4’(R), we conclude
from [4 (e), Theorem 2], [4 (p), Lemma 64], and the 3-finiteness of ©, that

®(ba, exp H) = 2 Eiay) 2 Pij(H)eli(H) (“154410: HEf)2+),

12N 1<5%n
where &; (1 <i<N) are distinct characters of 4,°, 1; (1<j<n) distinct linear functions and
P;; polynomial functions on .
LeMma 34. Fiz j (1 <j<n). Then p;;=0 (1 <i<N) unless (1) RA,(H) <0 for all HEY,".
For otherwise suppose that R4;(H)>0 for some H €f,+. Then it follows from [4 (p),
Lemma 15] that
pqu ‘Ei (al) 5(b‘1a1) dal =0.

I<i<y

Since this holds for every d€C,®(U), we conclude from [4 (h), Lemma 20] that p,;=

0(1<i<N).
It is now obvious from Lemma 34 that we can choose numbers ¢, m >0 such that

|®(a)] <c(l+o(a)™ (a€d+t)

and this proves Theorem 7.

() Re denotes the real part of & conflplex number c.
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We have still to prove Lemma 31. Put q=[g, §] and for any x €@, define the linear
mapping T, of &®® into & as in [4 (0), §2]. Then if a€A4’, ', defines a bijection of
S(g.)®S(h,) onto & (see [4 (0), Lemma 10]). Let o, denote the inverse of this mapping.

Lemma 35. Fiz g€®. Then we can choose ¢,€S(q.), u,€S(l.) and n,€R (1<i<p)
such that
val9)= 2 mi(@)(@®w) (a€d’).

1<i<p

We use the notation of [4 (0), § 2] and put dy=Ly— Ry (X €g,). Then dy is a deriva-
tion of §. Define X, (x€Q) as in [4 (n), § 4]. Then

(ra(Xa)=§“(a)_1Lxu—RX“= ~(1—&(a)™) Ly +dy, (a€d)
and therefore Na(@) 02 (Xo) = — (Lx, —na(@)dx,) (a€A’).

This shows that
(= 1Y 0, (@) oo Ma, (@) Tg (X oy Xy ... X, ®u)= (Lchl “ﬂ«:(“)dxal) (LXa, — 7, (@) dxar) w

for a€4’, u€&(Y,) and «, ..., ¢, €Q. The assertion of the lemma now follows by an easy
induction on the degree of g. -

For any f€C0®(G), put f(x:a)=f(a")(z€G, a€4).
COROLLARY. Let f€EC™(G). Then

fla® g%) = lgqm (@) fa; gz w;) (¢€G, a€A)

in the above notation.

This is obvious from [4 (o), Lemma 4].
We are now ready to prove Lemma 31. Let ¢, ..., gy be a base for the vector space
over C spanned by ¢* (x€@). Then

-1

g = 2 ¢ (x)g (x€Q),

1KigN

where ¢;” are analyti functions on G. Hence

fa®9)= 2 o () f(a"97) (x€G, a€d)

I<iSN

for f€C™(@). Therefore it follows from the corollary of Lemma 35, that we can choose
analytic functions ¢; on G and ¢;€&(q,), 4;€S(Y.), 7€ R (1 <i<p) such that
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Ha%9)= 2 a@)nia)f(x; qi:a;w;) (x€G, a€d’)

1<i<p
for any fEC™(G). Put af(x)=o*z*) and o,(x)=c,(x)x(x; q;) (x€G). Then it is clear that

fe(a%9)= Zpa,(x)ni(a)sezw &(s)B*(@; ui0A™) (z€C, a€A’)

1Kig

for BEC,™(A4’). Let u—'u denote the automorphism of &(lj,) such that ‘H=H —o(H)
(HE€Y,). Then since A-1=£,71y, it is clear that

woA =£""uoy (we€E(,)),

as a differential operator on A’. Therefore since R is stable under both &(f),) and W,
Lemma 31 follows immediately from the compactness of C.

§20. Proof of Theorem 8

Now suppose rank (=rank K and fix a Cartan subgroup B of G such that B< K.
Define L and @, (1€L) as in [4 (q), § 8]. Then it follows from Theorem 7 and [4 (p), Lemma
52] that O, is tempered. Similarly we conclude from [4 (p), § 29] that

LI
is a continuous mapping of C(G) into C. Therefore

f~ 3 w@)0u(f) (eCO)
is a tempered distribution.

Now we use the notation of [4 (q), § 14]. It follows from [4 (q), Lemma 27 and Cor. 1
of Lemma 57] that 7', is a tempered distribution on C(4y). Define

¢f(h) = Ff(h§ wy) (b GAR)

for f€ C(&). Then it follows from § 18 that -~ ¢, is a continuous mapping of C(() into
C(45) and therefore
1=Tu4) (FECG)

is a tempered distribution on G. Hence we obtain the following result from [4 (q), Theorem 3].
THEOREM 8. Let € C(Q). Then
of)=(-1)* 2 w(A)Os(H+_ > Ti(r.0)
AeL 2Kigr

in the notation of [4 (q), Theorem 3].
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Let J(G) denote the subspace of all f€ C(G) which are invariant under left and right
translations of K. It follows from Lemma 19 that I,°(Q)=J(G)Nn C.2(G) is dense in J(G).
Moreover if we take into account Lemma 18 and [4 (j), Theorem 3 and Lemma 36], it
follows without difficulty that the space J(@), including its topology, is the same as I(G)
of [4(k), § 12].

COROLLARY. Let f€ J(G). Then, if G is not compact,

)=, 3 Tidr)

This is an immediate consequence of [4 (q), Theorem 6].

§ 21. Proof of an earlier conjecture

We now drop the assumption that rank G =rank K. Let a be a maximal abelian
subspace of p. Define 4, N, 1 and ¢ as in [4 (q), § 16] and fix a Haar measure dn on N. Put

@, (a) = "8 “’J‘N/(an) dn (a€A)
for f€ J(G). Then we know from Theorem 3 that f—®; is a continuous mapping of J(G)
into C(4).
LeMMA 36. Let | be an element in J(G) such that ®,=0. Then f=0.
‘We shall prove this by induction on dim G. However we first verify the following result.
LeuMMA 37. It is sufficient to show that, under the conditions of Lemma 36, f(1)=0.

Fix an element «€ I, °(G) and consider fo=o%f. Then

fo= f w() l(w) f dr € T ()
G

from the results of § 10. Let da denote the Haar measure on A. Then we can assume that

de=e*" "% dkdadn (x=kan, kEK, a€ K, n€N)
and therefore

fo¥)= f oz ") f(ay) dz = feg"““ Pa(n'a?) flany)dadn (y€G).
G

Hence it follows without difficulty that
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;. (00) = f (@) B (a " ap)da=0 (ao€A)
A

and so we conclude that foc(x‘l) fx)dz=fo(1)=0.

Since this holds for every o€ I, 2(@G), it is obvious that f=0.

We shall now undertake some preparation for the proof of Lemma 36. Let B=0(B)
be a Cartan subgroup of G and b its Lie algebra. For any f€ C(), define F, corresponding
to B as in § 18. Let m be the centralizer of bNp in g and M the analytic subgroup of G
corresponding to n. Define the differential operator w on B as in [4, (o), § 22].

LeEMMA 38. The statements of [4 (0), Lemma 52] remain true for { € C(G). Moreover, if
b is fundamental in g, there exists a positive number ¢ such that

cf(1) = (—1)°F(1; w)
for € C(Q). Here g=%(dim G/K —rank G +rank K).

The first part follows from Theorem 3, its corollary and Lemma 29. The second is a
consequence of [4 (o), § 22], [4 (i), p. 7569] and [4 (n), Lemmas 17 and 18].

Since ¢ is maximal abelian in p, we can choose k€K such that (bN py<a. Hence we
may assume that 6N p<a. Put ny=mnun, ¥ ,=MnNN, K;,=MnNK and

oy(H) =tr (ad H),, (HEaq).

For any f€ J(G), define u, as in Lemma 22 (for j =b). Then it is clear that u, is bi-invariant
under K, and therefore u, € J(M). The following lemma is a simple consequence of the
definition of w,.

LeMMA 39. The Haar measure dn, on N, can be so normalized that

D, (a) = ™ 9® “’f us(any)dn, (a€A)
Nt
for f€J(G).

Now we come to the proof of Lemma 36. We may obviously assume that G is not
compact. Fix f€ J(G) such that ®,=0 and first suppose that m=+g. Then the induction
hypothesis is applicable to M and therefore we conclude from Lemma 39 that u,=0. But
then F,=0 from Lemma 29.

In view of Lemma 37, it would be sufficient to verify that f(1)=0. We now use the
notation of the proof of Lemma 26. Let f, be the restriction of f on Gy. If ¢y {0}, our
induction hypothesis is applicable to &, and therefore f(1)=f,(1)=0. So we may assume
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that ¢,={0}. Choose b so that it is fundamental in g. If rank g>rank f, it is clear that
b N p = {0}. Therefore since ¢p,={0}, it follows that m = g. But as we have seen above, this
implies that F,=0 and therefore again f(1)=0 from Lemma 38.

So we may now suppose that rank f=rank g. Then b0 pd-c, if b is not fundamental
in g, and therefore ¥,=0. Hence it follows immediately from the corollary of Theorem 8
that f(1)=0. This completes the proof of Lemma 36.

In [4 (k), § 16] the proof of the Plancherel formula for G/K was reduced to two con-
jectures. The first of these has been verified by Gindikin and Karpelevié [3] (see also
[56 (b), § 3]) while Lemma 36 proves the second. Hence in particular, [4 (k), Corollary 2,
p- 611] holds for all f€ J(Q).

§ 22. Proof of Lemma 40 (first part)

We return to the notation of § 18 except that we write B=Ay. Let dh denote the Haar
measure on B. Fix a finite subset F of £ and define oz as in § 12. Put ;C(G) = oz % C(G).
It is obvious that »C(G) consists exactly of those f€ C(G) for which azxf=f.

LEemmaA 40. Given 7,20 and u€S(Y),), we can choose r>0 and a finite set of elements
g1, - Jp 10 & such that

fB(l + o ()| Fy(h; w) | dh < 1<i§<pL|g,f| E(l+ o) de
for all f€:C(Q).

First suppose ) N p={0}. Then B< K and
[ 1wl an< sup 1,501,
B he B’

provided the total measure of B is 1. Let ¢ denote the characteristic function of Gz =(B')®.
Then it follows from [4 (0), Lemma 41 and Theorem 3] and Lemma 25 that there exist
elements z,, ..., 2,€ g such that

sup [Fmal< 3 [ Jaflsds Gec@)

Now suppose ¢ € zC(GF). Then g= a; % ¢ and therefore

lg@) | <|oplwp (@) (=€),

where | otz|o, =sup |az| and gl(w)=f | gtke)| dk.
K
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Therefore f]g | padz <|ap|o fgl b5 decf[g |Edx (g€C(B))

from [4 (q), Theorem 5], where ¢ is a positive number independent of g. Hence

sup |Ehsl<e 3 [1a/l2de (e

1<i<y

and this implies our assertion in this case.

Now, in order to prove the lemma in general, we use induction on dim G. Let us keep
to the notation of the proof of Lemma 26 and first assume that ¢, =+ {0}. We can obviously
suppose that w=yu; where y €€, and u, €&(}),,). For f€(G) and c€C)y, let f, denote the

function on G, given by
fo(@) = (L+a(c))“f(ca; y) (w€Gy).

Then f,€ C((,). Moreover, since K< G, it is obvious that f,€,C(&,) if f€C(@). Finally
(L+o(ch))| Filch; u)| < (1 +o(h))| F rolh; uy)|

for c€Cp and hEB,’=PB'NG,. Therefore our assertion follows immediately by applying
the induction hypothesis to @, and observing that

max (c(c), o(x)) <olex) (c€ECy 2€EG,).
So we may now suppose that ¢,={0} and §N p= {0}. Then the induction hypothesis
is applicable to M.

§ 23. Proof of Lemma 40 (second part)

Let dm denote the Haar measure on M. Define 5, 4, (f€ C(G)) and Z; as in §§ 14, 15
and Lemma 29 respectively. For b€Zy and f€ C(@), put

fo(x)= f f(kbxk VY dk (xz€Q).
K
Since Zz< K, it is obvious that if € ,C(#), the same holds for f,.
LevMwma 41, Fix r>0 and [ €S(m,). Then we can choose vy, ..., v, in & such that
[ lowjguarorin< 3 [ jafiza+oyds
M 1<i<p J@

for f€:C(G) and bEZp.
4—662900. Acta mathematica. 116. Imprimé le 10 juin 19686.
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Put N,=Ny in the notation of § 14. We have seen in § 15 that fu,=u, (g€ C(G))
where '{ =d{od-L. Fix b€Zy,. Then if f € C(Q), it is obvious that f' ="{f, is also in C(G) and

@< nple [ 1 ) b= aple | (1™ 29 by b

Let £y, ..., £, be a base for the subspace of & spanned by ‘(¥ (k€ K). Then

= 3wk (kEK),

1<i<p
where a,; are continuous functions on K. Put

¢,=max sup |a|
i

and ¢, =|oploec;. Then it is clear that

| (x)] < e, Ei: J;{ K| fi (ky 2ky) | diey dFe,

where f,=(,f.
On the other hand, it is clear that

f| Cuy | Epr (1 + o')'dm< f |f (mn)] d(m)Ep(m) (1 + o(m)) dm dn.
MxN,

By Lemma 21, there exists a number ¢, > 1 such that

1+ao(m)<cy(l+o(mn)) (m€E€M, n€N,).

Put ¢y =c¢y"¢c,. Then
fl Cuy, | By (L + o) dm<c, ffo (x) e ¢ E (u(x)) (1 + o(z)) dz
in the notation of § 42, where
folx) = J‘ | f1 ey ks | Aoy A
1<i<p JKxK
But we know from the corollary of Lemma 84 that
f e dHE T, (u(xk))dk=E(x) (z€Q).
K

Hence it is clear that
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fl Cup, |Ey(1+ 0) dm <y 2, fl GHEQ +0) da
i

and this implies the assertion of the lemma.

We can now finish the proof of Lemma 40. Let F, be the set of all irreducible classes
of K;=K N M, which occur in the reduction, with respect to K,, of some element of F.
It is clear from Lemma 22 that u €, C(M) if f€,C(G). Since the induction hypothesis is
applicable to M, we can choose {j, ..., {, in &(in,) and >0 such that

L | F ™ (h; w)| (1 + o(h))odh < 1<,-Z<,, fM [£09] Ba(1+ 0) dm

for g€5,C(M). (Here B,=BNM and F™ is defined as in Lemma 29.) Therefore the re-
quired result follows immediately from Lemmas 29 and 41.

§ 24. Proof of Theorem 9

Let O be an invariant and 3-finite distribution on G. Fix b € £4 and let ©; denote the
corresponding Fourier component of @ (see [4 (q), § 17]). Then we know from [4 (q),
Lemma 33] that O is an analytic function on G.

THEOREM 9. Suppose © is tempered. Then we can choose ¢, m =0 such that
|Os(2)| < cE(x)(1 +o(x))” @€G).

It follows from Theorem 1 that we can choose §'€C,*(G) such that @y =0, *f".
Put g(z)=p'(x1). Then
Os(f) = On(f %) (fEC™(G)).

On the other hand, from Theorem 7 and its corollary, we can choose numbers ¢y, =0

such that
|0@)|<eo L‘(lw(a»SIFg.i(a)ldia (9 €07(@)).

1<igr

Therefore from Lemma 40, there exist elements v, ..., v,€® and m >0 such that

[0s(9)] = O(g") | < fIvig'l5<1+a)'"dx<d(b)2§f!vigIE(Ho)"'dx.

1<i<p
Here ¢’ = ap % g and we have made use of the fact that

BOs(9) = O(g % o) = Oap % g)
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which follows from the invariance of ®. Therefore if we put 8;=v,f, we get
|01 =157 % I < Sd0) 11 % lEQ+oyds (e02(@),

Now put Q==Supp B and ¢y =d(d)* 3sup |-
2. S

Then 105 <oy fn(l T o) dy Llf(x) |2 () (1 + o(a))"de.

But we can choose (see [4 (q), Lemma 32]) ¢,>0 such that

Hxy)<c,2(x) (z€G, y€Q).

Then c=¢ czf (1+o(y))"dy < oo
o

and ol 1B +ords
G

for f€C,*(G). The assertion of Theorem 9 is now obvious.

CoroLLARY. Let f€C(R). Then
()= fa Osf d.

Let « be a variable element in C,” (@) which converges to f in C(&). Then

Oy (f) =lim By (x) = limf@)b xdx= f@bfdx

from Lemma 11.

§ 25. Application to tempered representations

Let = be a representation of G on a locally convex space §). We say that an element
$ €9 is K-finite (under 5), if the space spanned by the vectors n(k)¢ (k € K) has finite dimen-
sion. Now suppose £ is a Hilbert space and 7 is unitary and irreducible. Let ©®, denote the
character of 7 (see [4 (b), § 5] and [8]). We say that s is tempered if ©, is tempered.

TaEOREM 10. Let v be an irreducible unitary representation of G on a Hilbert space 9,
which is tempered. Then there exists a number m >0 with the following property. For any two
K-finite vectors ¢, w €, we can choose a constant ¢=>0 such that
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|($, n(@)p)| < cE(@)(1+o()" (x€G).

Let ® denote the character of zz. Then @ is an invariant eigendistribution of 5 on G.
Define Ej (D€ Eg) as in § 2 and put H=E,§H. Choose an orthonormal base y, (:€J) for
£ such that every y, lies in §); for some b. Let J; be the set of all ¢ such that y,€Hy. Then(3)

(/5] = dim $» < Nd(d)® (d€ Ex),

where N is a positive integer independent of b (see [4 (b), Theorem 4]). It follows from the
definition of O that

0= 3, [ 1)t sl pada (€020,

and therefore it is clear that
O(2) = tr (Byn(z) By) (x€G)

for p € E. Now fix Dy € E¢ such that §;,+ {0}. Then, by Theorem 9, we can choose numbers
€o» m=0 such that

|Os,(2)] < QE@) (1 +o(@)"™ (z€6).
Let ¢ and p be two K-finite elements in §. For any finite subset F of &g, put

Ep= 2 B,
beF
and Hr=Er§. Also define o as in § 6. We can obviously choose F so large that b €F
and ¢, p lie in §. Let L£r(G) be the space of all functions f € C,®(G) such that f=otz % f* «.
Then Lp(G) is an algebra under convolution and it is clear that $y is stable under z(f)
for f€ Cp(G). Let mz(f) denote the restriction of #(f) on § 7. Then x; is a representation of
L:(@) on §r. We claim that this representation is irreducible. Fix an element y,+0 in
e Since §) is irreducible under x, elements of the form 7(f)y, (f€C.°(G)) are dense in §.

Therefore, since
Epn(f)py = m(op % % o)

and dim §z < oo, it is clear that §r=n(Lr(F))y, and this shows that n is irreducible.
Hence, by the Burnside theorem, we can choose «, § € Cz(@) such that
¢ =n(2)ps, y =7(B)y; (1€J3,).
Therefore (6, 2(@)p) = (p, (@)@ By (€T, €Ty,
where &(y) = conj a(y*) (y €Q). This shows that

(1) As usual, [F] denotes the number of elements in a set F.



54 HARISH-CHANDRA

($, 7(x) p). dim Py, = tr (By, 7v(éx) 7(2) 7(B) By,) = LXG&(Z/) O, (y22) B(=) dy dz,

and the required result now follows immediately from Lemma 10 and [4 (q), Lemma 32],
if we observe that $s, + {0}.

Part II. Spherical functions and differential equations
§ 26. Two key lemmas and their first reduction

Let V be a (complex) Hilbert space of finite dimension and u=(u,, us) & continuous
and unitary double representation (') of K on V. Define ¢, as in § 7.

LeMMa 42. Let ¢ 0 be a C® y-spherical funciion (see § 11) from G to V such that:

1) The space of functions of the form z¢ (2€ 3) has finite dimension.
2) There exist numbers ¢, r >0 such that

|$(x)| < cBE(z)(1+o(x)) (z€Q).

¥
Pu Ih-{[__ls@pa} o0,

Then there exists a unique integer v >0 such that

0 <lim inf ¢ *2||$||, < lim sup +*2||¢]|; < o.
t->00 t—>o0

Moreover, v >dim ¢, and, for any >0, we can choose t,, 6 >0 such that

07 {lIglla® — llelle®} <e

Jor ty <ty <t, < (1+6)¢,.

Fix a maximal abelian subspace ay of p and let A,=exp a, be the corresponding
subgroup of G. Introduce an order in the space of (real) linear functions on g, and let

g=%+ay+n be the corresponding Iwasawa decomposition of g. As usual put
o(H)=4%tr(ad H), (HEay)

and let ap* be the set of all H€ay where a(H) >0 for every positive root « of (g, ay). We
recall (see § 7) that p is a Hilbert space with respect to the norm || X|| (X €p). Consider the
set S+ of all points H €ay* with ||H|| =1 and put Ap+=exp aypt.

(1) This means that V is a left K-module under y,; and a right K-module under u,. Moreover,
the operations of K on the left, commute with those on the right.
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LeMma 43. We keep to the notation of Lemma 42. Then the following three conditions are
mutually equivalent.

1) =0,
2) lim ™ $(h exp tH)=0 for HES' and h€ Ap*.

t>+e0

3) deC(D) V.

It is convenient to prove the above two lemmas together. We shall call » the index
of ¢. The uniqueness of v is obvious from its definition. For the rest we use induction on
dim g. If p={0}, G is compact and all our assertions are true trivially with »=0. So we
may suppose that dim p>1. First assume that cp+ {0}.

Fix an element H €, with [|[H,[|=1 and let g, =¥+p, where p, is the orthogonal
complement (see § 7) of RH in p. Then g, is an ideal in g. Let Gy be the analytic subgroup
of @ corresponding to g,. Then the mapping (¢, y) >exp tHy 'y (tER, y€G,) defines an
analytic diffeomorphism of R X G; onto G. Put ¢(¢:y) =¢(exp tH, y). Since H, lies in the
center of g, we can, in view of condition 1) of Lemma 42, choose complex numbers ¢;
(0 <9 <m) such that ¢,=1 and

> cH™d=0.
o<i<m
Therefore it is clear that

$it:y)= 3 e VHtg1:y) (HER, yeGy),

1gi<p

where 4, ..., 4, are distinet complex numbers,

bit:y)= 2 Vdyly) (1<i<p)

- 0gj<d

and ¢,; are (1) C° functions from &, to V. We may assume that ¢,+ 0. Then it follows (see
[4 (), § 15]) from condition 2) of Lemma 42 that 4,, ..., 4, are all real. Now K< @, and

dim G, <dim G. Therefore it is easy to see that, if ¢,,+ 0, Lemmas 42 and 43 are applicable
to ¢;; by induction hypothesis. Let dy denote the Haar measure on G; and »,, the index

of the function ¢,; on Gy. Moreover we put »,,= — oo if ¢,;=0. Now let
y=1-+max (27 +,).
14

We shall prove that » is the index of ¢.
We may obviously assume that dx=dtdy. Then for 7' >0,

(1) Here we make use of the fact that the functions f;;(f) =V h‘t(lng p, j= 0) are linearly
independent over C.



56 HARISH-CHANDRA

T i T 3
. ) . 2
| (@[ isworal <s{[ wal igora)

by the triangle inequality. Now fix ¢, § such that ¢;;=0. Then by the definition of »;;,
we can choose a number b;;>0 such that

f _$swbay <y Ty
a(y.

for all 7> 0. Therefore since » >1+ 24§+, it is clear that

lim sup 7% {|$[|r < oo.
T—>o

On the other hand, in order to show that

lim inf 77" [|$]lz>0,
T

it would be sufficient to obtain the following result.

LEMMA 44, Fix 6>0. Then

lim inf 77 f |(t:y)|*dtdy >0.
e o< T
e(y)<bt

We may obviously assume that §<1. For T'>0, let J(T) denote the interval

T/2<t<T/V2 and Gy(T) the set of all points y€Q, with o(y)<7. If t€J(T) and
y€G,(6T/2), it is obvious that 4 o(y)®<7T? and o(y) <ét. Hence it would be enough

to show that
lim inf 77 I1(T) >0,

T-»o0

where I(T) =f dtf |d(t:9) | dy.
(T G1(6T/2)

Let {vq,v,> (01,7, €V) denote the scalar product in ¥ and put

1,(T)= f p f DG (20, b (6:) dy
J(T) G1(0TI2)

and I;(T)=1,(T) (1 <i,j<p)- Then it is clear that(!)
I(T)=1 z I,(T)+2§H1 z IH(T).

<i<p <i<i<p

Fix m, n (0 <m,n<d) and put

(*) e denotes the real part of a complex number c.
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Iim.jn (T) = f dtf e(_l)*(lj_l‘)ttm+n <‘l’tm (y): ?Sjn(y» d:'/
I J616TI2)
for 1 <+¢,5<p. Then if ¢ j, there exists a constant a(im, jn) > 0 such that

f g+ VYA g S gfim, jn) (1+ TY™" (T>0).
J(T)

(This follows by integrating by parts and using induction on m + n.) Hence it is clear that

| Lim, 1 (T)| < a(im, ju) (1 + T)™ | mlozsz [| sm loz:2,

where | Prall® = fa o |$u () Pdy  (¢=>0)

for 1<k<p, 1<I<d, Therefore if ¢y +0, ¢;, =0, we get
| Zim, 1 (T) | S B(im, jn) (L + T)™* "+ Cimt w2 < p(im, jn) (L + TV (T>0),

where b(im, jn) is a positive number independent of 7', Therefore it would be enough to

verify that
lim inf 7% > I,(T)>0.

T—>o0 1<i<p

Fix ¢ such that v;+ 25+ 1=y for some j. Then it would suffice to show that

lim inf 7" I,(T)>0.

P->00

Let @ be the set of all § (0<j<d) such that »,+2j+1=y. Then if j¢@, we have
vy+2§+1<y. Hence

T_”f tz’d"f |y () [Py < Too 210 Tvu [ b, |20
J(T) Gi(6TI2)
as T'— oo, Put
$3(t:9)= S ¢ dyly) and INT) = f dt f |63 5) Pdy.
je@ I G1(67T12)

Then it would obviously be enough to prove that

lim inf T~ I2(T)> 0.

T-»o0

Now fix ¢(0 <& <4/2) and put
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I(e:T)= dtf |6:° (t:9) [ dy.
J(T) Gi(eT)

Then I(e:T)<I,°(T) and so it is sufficient to verify that

lim inf T~" I(e: T)> 0.

T>o00
Put Imn(EIT)=f dtf 7" Cim (y)s bin(y))> dy
I Jewen
and L,(e:T)=I1,,(:T) (m,n€Q).
Then I(s:T)=jZQI,~(s:T)+2§R ZQI,,m(e:T).

m<n

Moreover, since ¢; + 0 for j € Q, we can, by induction hypothesis, choose positive numbers

a, b such that
| sllz<b1+Tys (T>0,j€Q)

and I $ullz> T (j€Q)
for T sufficiently large. Then

| Zn (&2 T) | S BET™ 741 (1 4 e TYOmt 602 (1, n € Q)

Hence Le:T)> S T (eTyi—2 5 Bmn+i(] + g T)im i,
jieQ mneQ
m<n
for large T, where c;=a? (270D 2@y /(954 1)> 0.

Let k=max;.qj. Then v;— v, =2(k~—j) and therefore

I(S : T) > Tvev‘k{ Z CjSZ(k—b — 2 Z b282k—m—n (1 + (&‘T)—l)(”‘”‘-‘-"‘")/z}.
jeQ mmneQ
m>n

This shows that

lim inf 77 I(e: T) > &* {c, + 3 ;%N —2 T p2gk-m-n}
T>oo je@’ mneQ
m>n

where @’ is the set of all j+=% in Q. Now ¢,>0 and 2k —m —n>1 since m <n. Hence

lim inf 77" I(e: 1) >0

T

if ¢ is sufficiently small. This proves Lemma 44,
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If I=dim ¢y, it is obvious thas dim (¢, N g;)=?—1. Hence, by induction hypothesis,
vy 21— 1 whenever ¢,;#0. Therefore

y=max (¥;+ 2§+ 1)=1=dim ¢,.
1.1
Now we come to the last assertion of Lemma 42. By the triangle inequality,
Ul —llgllz3 < 3 {2~ Nl
1<4%p
for T,>T7,>0. Here

di(exp tHy y)=di(t:y) =P S #d.(y) (tER, yEG)

0<j<d

as before. Put »,=1+max; (2§ + ;). Then »=max; »; and so it would clearly be enough

to consider the case when p=1. Hence we may assume that

d(t:y)=e VM S g (),

0<j<d

where A is real. Then again, by the triangle inequality, we have

4
ole-lstei<, 3 A 1,0 vy
TS+ o)< Te?

</<d

and so it would be sufficient to consider the case when

$(t:y) =YY ().

Then v =24+ 1+, where », is the index of the function ¢, on G;.
Now suppose 0 <7, <T,. Then

"¢”T22— "‘15”7'12:211(7713T2)+212(T1:T2')’

Ty
where 1,(T,:T,) =f 2 dtf |b1(y) > dy
0 (T~ ) <oWI<(Ts 17

Ty
and I,(T:Ty) = J‘ tzjdtf |¢1(?/) Izd.’%
T oy T 12

Fix £>0 and select a small number ¢ >0. Then, by induction hypothesis, we can choose
t,>1 and 6,(0 < §, <1) with the property that

f |¢1(y) |2d?/< AN
81<OWI<ts
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if 8 <, <t,<(1+46,)¢;. Fix a small positive number 4(0 <d<1)and put y=1-— 6. Then
if0<t<yT, and 0<T,<T,<(1+6)T,, we have

(T2~ ) (T2 — ) = 1 < (T2~ ) (T2~ &) — 1
=(T2—T2) (T2—)'<{(1+0)°—1} (1 —9*) ' <36t <4,
provided § is sufficiently small. Moreover,
(TE—2R>T,1-y)=>T,6t >4,
if Ty > Ty=06"*t, Therefore if T,<T,<T,<(1+06)T,; and 0<t<yT,, we have
|ba(y) [Pdy < ex(T'y2 — ).
(T tH<oWIK(T— 1D
But then since y =9, + 2§+ 1, we conclude that
yT1
J £ dt f |$1(9) P dy <&, T4
0 (T - 1) <oP<(T5 1Y)

On the other hand, we can select b> 0 such that

f |1(y) [2dy <bA + )
Gi(t)

for t>0. Therefore if Ty<T,<T,<(1+38)T,, we have

T: Ty
f & dt [b1(y)|2dy <b f (14T, dt < 3"bT, 6%
v (T3 E)<oYI<(TA—tH) i
since 1+ 7, <1+ (1+68)T,<37T,. This proves that
L(T,:Ty)<Ty (3"‘b6* +&)

if To<T,<T,<(1+6)T;. On the other hand, it is obvious that

L(T,:T,) < T2 (Ty—T)b (1 + T <bT6.
Therefore

I fllz2— | llr2 =2 I (Ty: Ty) + 2 Lo(T: Tp) < 2(gy + 3700 + 3°00) Ty <& Ty,

if £, and 0 are chosen sufficiently small. This completes the proof of all the statements of
Lemma 42 in case dim ¢, >1.
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Now we come to Lemma 43. Since » >dim ¢, >1, condition 1) of Lemma 43 cannot be
fulfilled in the present case. Since it is obvious that 3) implies 2), it would be enough to
verify that 2) is never satisfied in our case. But since o(H,) =0, it is clear from [4 (j), § 15]
that 2) implies that ¢ =0, giving a contradiction. This proves Lemma 43 when dim ¢, >1.

We state the following result, which has been proved above, as a lemma for future

reference.

LeMmA 45. Given >0, we can choose >0 and T>0 such thal

f | (t:y)|2dtdy <eTy
T3<tB+o()i< Tyt

for To<T,<T,<(1+8)T,.

§ 27. The differential equation for &

In order to complete the proofs of Lemmas 42 and 43, we may now assume that ¢, = {0}
and p + {0}. Fix an element H, €S+ and let m be the centralizer of H, in g and [ the centralizer
of m in qa, Since ny<=m and ap is maximal abelian in p, [ is also the centralizer of m
in p. Moreover, dim m<dim g.

Put I =ES(m,) and let 3, denote the center of I and yu, the homomorphism (see [4 (o),
§12]) of 8 into 8;=8m. Define U, =3,u,(ll) where 1l is the ideal consisting of all u€ 3
such that u¢=0. Then it follows from condition 1) of Lemma 42 and [4 (o), Lemma 21]
that dim 3/11 and dim 3,/1, are both finite. Let { —~(* denote the natural projection of
81 on 3,*=35,/11;. We regard 3,* as a 3;-module in the usual way so that z{*=(20)*
(2, (€ 3y)- Let 3,** be the vector space dual to 3,*. Then since 3, is abelian, 3,** is also a
left 3;-module by duality. Put V=V ® 3,** and let I' denote the representation of 3,
on V defined by

T'(2) (v®L*) =v@2L*™ (2€8,, vEV, ™ €3,™).

Moreover, by making K act trivially on ,81**, we can regard V as a double K-module. Note
that T'(z) (€ 3,) commutes with the operations of K on V.

Fix elements #, =1, 9, ..., 7, in 3, such that #,% ..., 7,* is a base for 3,*. Let n**
(1 <t<p) be the dual base for 3,**. We regard 3,** as a Hilbert space with (1,**, ..., 7,**)
as an orthonormal base. Then V also becomes a Hilbert space.

Let X be the set of all positive roots of (g, ap), =, the subset of those ®€X which
vanish identically on [ and Z, the complement of 3, in X. For any x€Z, let g, denote
the set of all X €g such that [H, X]=a(H)X for HEay. Put :
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m= > g. (1=1,2)
xeX;

and 1 =1, +1t,. Let M be the analytic subgroup of G corresponding to m. Then M normalizes

1t,y. Put
d(m) = |det (Ad (m))n,|* (mEM)

and {'=d-od for [€3,. It is easy to verify (see the Appendix, §45) that {—~{" is an
automorphism of 3;,. Now define

®m)=_ 5 dimen’™ (meM),

where ¢ (m) =d(m)¢(m; n,).

Then it is obvious that ® is a spherical function from M to V corresponding to the double
representation of K;=M N K on V which we denote by u = (1t;, u,).
For any { € 3,, there exist unique complex numbers c,; such that

w()=Cmi— 2 eym€Wy (1<i<p).
1<i<p

LemMMma 46. Let C€3,. Then

1<

Q(m; £) = T(8) D(m) i<pd(m)¢(m; w(0))on**
for meM.

Fix { and define ¢;; as above. Then
(I)(m; C) = Z¢l (m; C)@ni** a'nd C’ ni, = ;61'1 77]’ + uil,

where u; = u;({). Therefore since

Bu(m; £) = d(m) $(m; ' /),

our assertion is obvious.

Put We(m)=_ 3, dm)d(m; wi(l))@n'™ ((€J,, meM).

1<i<p

Then the following corollary is merely a restatement of the above lemma.
CorOLLARY 1. O(m; {)=T() O(m)+WV'; (m) for mEM and EJ,.

~ Now  lies in the center of m. Hence if H €1, we conclude from the above corollary that
AT O(m exp tH))/dt = e TOW (m exp tH)

for t€R and m € M. Therefore the following result is now obvious,.
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CoROLLARY 2. ®(m exp TH)= e P ®(m) + [T T TEY (m exp tH)dt for mEM,
Heland TER.

§ 28. Some estimates for & and ¥,

Let 5, =E, be the function on M which corresponds to Z when (@, K) is replaced
by (M, K,).

LEMMA 47. There exist numbers ¢y, 79 =>0 such that

o Heay: d(exp H)ZE(exp H) <c,E,(exp H)(1 + || H|)"
or ap™.

We shall give a proof of this lemma in § 45.

Put M+=K, A,+K,. Since K, lies in the kernel of the homomorphism d, the following
corollary is obvious.

COROLLARY. d(m)E(m)<cyBy(m)(1+a(m))™ (m€eEM™).
Fix r>0 as in condition 2) of Lemma 42.

LemmA 48. Given g,, 9,€®, we can choose a number c(g,, ¢,) >0 such that
|$(9:: 3 g5)| < €(91, 92) E(2) (1 +0(2))"  (v€G).

In view of Lemma 17, it is enough to consider the case g, =1. By Theorem 1, we can
choose a €0, ®(G) such that ¢ % a=¢. Then g = x (ga) (g €S) and so our assertion follows

immediately from Lemma 10 and [4 (q), Lemma 32].
Put r,=r-+r,.
CoROLLARY. For any v€ M, we can choose a number c(v) =0 such that
| ®(m; v)| < ¢(v) By(m) (1 +o(m))* (m€MH).
This is obvious from Lemma 48 and the corollary of Lemma 47.
For a €X, define g, as in § 27.
LeEMMA 49, Fiz g€®, a€X and X €g,. Then we can choose ¢, >0 such that

for hE A+ |dR)$(h; 6(X)g)| < cre™ 5P B, (h) (1 +o(h))™
or p.

Since ¢(k; 6(X)g) =e *E W 4(O(X); h; g), this follows from Lemmas 47 and 48.

CoROLLARY. Fix (€5, and v€IR. Then we can choose ¢ =0 such that

| W, (m exp H; )| < ce™P®PE, (m) (1+o(m))*(1 + || H||)
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for HEr=[Nay* and mEM+. Here
B(H)= il:léll o(H).
We know that (see the Appendix, § 45)
2= po(z) €0(ny) G.
Fix g€®, u €W and put g, = — (u—py(u)’)g €H(11,) @. Since up =0, it is clear that
b(m; po(u)'g) =¢(m; g,).

Define the automorphism v —+v'=d-vod on M as in the Appendix, § 45. Fix v and {

as above. Then
Welmso)= 3 dlm)lm: o' wi()) @i

Since ()€U, < 3,, v commutes with u,({) and therefore
vuy(§) = ui()vEp () M.
Hence, in view of the remark above, we can choose g,€0(11,) & such that
$(m; v'ull)) =¢(m; g,) (meM).

Since M+=K, A,"*K,, our assertion now follows easily from Lemma 49.

§ 29. The function ©
Let @ be the set of all eigenvalues of I'H,). Then

V=3V,
e Q

where the sum is direct and V), is the subspace consisting of all » €V such that (T{(Hy) —1)™ =0
for some integer m=>0. Let E, denote the projection of V on V, corresponding to the
above sum. We divide @ into three disjoint sets @+, @° and Q-. An element A€Q lies in
Q*, @ or Q- according as (1) R1>0, R1=0 or R1<0. Put

Ei'-" ZE;,EO= ZE;,

req deq
and VE=E*V, V*=E°V.

Since 3, is abelian, I'(¢) (¢ € 8,) commutes with the projections E;.

(1) Re denotes the real part of a complex number c.
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Put @'=Q* U @ and let (1)

4¢,= mi .
&= min | R4
Then £,>0. Put BH)= mi21‘1 a(H) (HEN

as before, so that S(Hg)>0. Fix a number £(0 < £ < ¢y) and an open and relatively compact
neighborhood Q of H, in [. By selecting them sufficiently small, we can arrange that
B(Hy) = 5¢ and(?)

B(H)> 4z, |T(H)~T(H)| <s/2
for HEQ.

Lemma 50. We can choose a number ¢ =0 such that
|eTDET |+ | TPE~ | <ce 2%t (£20
and | T | <ceflil  (tER)
for HEQ.
Fix 1€ Q. Then
T(H)E; = {1+ (T(H) —T(H,)) + (T(H,) — 1)} £,
and therefore |eTDE;| <exp {tRA+e|t|/2}| THI-D K, |

for HeQ and t €R. Since (I'(Hy)—A)E; is nilpotent, our assertions follow without
difficulty.
Put ®*(m)=E*@(m), P°(m)=E°®(m) (meM).

Then by Corollary 2 of Lemma 41,

T
@~ (m exp TH)=e™® O~ (m) + f ¢TI P (m exp tH)dt

0
for HEQ and T'> 0. Therefore if » €JIR, we conclude from Lemma 50 that

T
| @~ (m exp TH; v)| <ce 27| D~ (m; v) | + cf e 2T | (m exp ¢H; v)| dt.

0

Put f(t) =Wy (m exp tH; v) for fixed m, H,v. Then

(*) We define gy =1, in case @’ is empty.
(%) If T is a bounded linear operator on & Banach space B, | T'| = sup| <1 | T®| (b € D), as usual.
5~ 662900, Acta mathematica. 116, Imprimé le 10 juin 1966.
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T

fTe—z(T—t)eoIf(t) I dt< e-Tsojlelf(t) I dt+ f |f(t)]dt
0 [}

T2

<er["ljwlae+ [" 1no1ae

0 T2

On the other hand, since ¥’y depends linearly on H and Q is relatively compact, we have
the following result from the corollary of Lemma 49.

LeMMA 51. For a given v€IR, there exists a number c(v) >0 such that
| Wy (m exp tH; v)| < c(v) e ' E, (m) (1 + a(m))™
for me M+, HEQ and 0.
Therefore in view of the corollary of Lemma 48, we obtain the following lemma.
LeEMMA 52. For any v €I, we can select a number ¢—(v) >0 such that
| @~ (m exp TH; v)| <c (v)e " E, (m) (1 + a(m))"
for me M+, HEQ and T >0.

Now we come to ®+. Again, by Corollary 2 of Lemma 46, we have
r ,
®*(m;v)=e TP O (m exp TH; v) — f e T® EYY (m exp tH; v) d.
0

Fix HEQ, m€M+ and let T tend to + oo. Then it is clear from Lemmas 50 and 51 and the
corollary of Lemma 48, that

O (m; v) = ~J e T EYY, (m exp tH; v)dt
0
and therefore

¢ ¢TI B (m exp tH; v) di.

O*(m exp TH;v)= —f
T
In view of Lemmas 50 and 51, this gives the following result.
LemMaA 53. For any vEIR, there exists a number ct(v) >0 such that
| @+(m exp TH; v)| < ct(v)e *TEy(m) (1 +a(m))"
for meM+, HEQ and T >0.

We shall now consider ®°. But first we need some preparation.
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LemmA 54. Let C be a compact subset of M. Then we can choose Ty>0 such that
mexp THEM* for m€C, HEQ and T>T,,

We may obviously assume that K;CK,=C. Let C; be the set of all hEC'N A4, such
that «(log 2)>0 for all ®x€X,. Then C is also compact and C=K,C,K;. Now choose

T,>0 such that
oflog ) +4eTy =0

for all 2€C; and a €Z,. Then it is clear that C; exp TH< A+ and therefore C expTH< M+
for T>T, and HeQ. ' ‘

Now fix v€IR and HEL. Then we conclude from Lemmas 50, 51 and 54 that the
integral

f [T By (m exp tH; v) | di
0
converges uniformly for m €C. Put

Oy(m) = D%m) + f e T EPOY (mexp tH)di  (m€M).
[
Then it is clear that @ is a ¢* function on M and

Ox(m;v)= 0% (m; v) + f e T PO (m exp tH; v) di.

0
Moreover, it follows from Corollary 2 of Lemma 46 that

Oy(m;v)= lim e TT Q(m exp TH; v).

T->+o0

So, in particular, the following result is obvious.
LEMMA 55. Qy(m exp tH) =T PO (m) (m€M, HEQ, tER).

We now claim that ®, is actually independent of H. Fix H,, H,€Q and m€M and
choose T',>0 such that m exp tH €M+ for t> T, and HEQ. Put my=mexp Ty H, (T, >T,).
Then by Corollary 2 of Lemma 46,

Ty
e TTHVD (m, exp T', H,) = DO (m,) + f e~ POV (my exp ¢ H,) dt,
0
and therefore

e-—I‘(Tx H1+Ts Hy) q)o (m exp (Tl Hl + TZ sz) - e_r(T' "2 q)o (m exp T2 H2)

T
= f e TG HATH) RO (m exp (8, H, + T, H,)) dt,

0



68 HARISH-CHANDRA

for T,>0. But it follows from Lemma 50 and the corollary of Lemma 49 that there

exists a number ¢ > 0 such that
| T HH T HD O (4 exp (8, H, + Ty H,)) | < ce™ @t 12T
for ¢, >0 and T,> T, Therefore by making T, T, tend to + oo, we get

Op,(m)= lim e TTHATEY @Oy exp (T, Hy+ T, Hy)).

Ty, Te=>+0

Since the right side is symmetrical in H,, H,, we conclude that @y (m)=0y,(m).

Hence we may now write ® instead of ®j.
LeMMA 56. O(mexp H)=e"PQ(m) (meEM, HE).

Since Q is open in |, every H€[ can be written in the form H=2X;,.tH; (t,€R,
H,€Q). Our assertion therefore follows from Lemma 55.

Lremma 57. For any v€IN, we can choose a number ¢*(v) =0 such that
| e~ ®° (m exp tH; v) — O(m; v)| < (v) E, (m) (1 + o(m)) e 2!
formeM*, t>0 and HEQ.

Since O(m; v) — e T Q% (m exp TH;v) = J' e T B0, (m exp tH; v) dt,

T
our assertion follows immediately from Lemmas 50 and 51.

CoROLLARY. For any vEIN, there exists a number c(v) >0 such that

| @(m exp tH; v) — O(m exp tH; v)| < c(v) Eq(m) (1 +o(m))* e

for me M+, HEQ and t>0.

For,
| ®(m exp tH; v) — O(m exp tH; v)|

< |®+(m exp tH; v)| + | O~(m exp tH; v)| + [T E°| e TP DO(m exp tH; v) — O(m; v)|,

and so our assertion follows immediately from Lemmas 50, 52, 53 and 57.

LemMmA 58. Let &y, k, €Ky, m€M and [€3;. Then

O(ky mley) =H1(k1)®(m)l‘2(k2)’ O(m; £) =T({) O(m).
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Moreover, there exist numbers cq, 75220 such that
|O(m)| < e, Ey(m)(1+o(m))* (mEM).

Fix HeQ. Since I'(H) commutes with the operations of K on V (see § 27), the first

assertion follows from the relation

O(m)= lim e T® @ (m exp tH).

Moreover, E° I'(H) and I'({) commute with each other and
®O(m exp tH; £) =IT({)D(m exp tH) +¥¢(m exp tH)
from Corollary 1 of Lemma 46. Hence

O(m; &)= lim e~ T® @ (m exp tH; ) =T'()O(m) + Hm e T EOW (m exp tH).
t—>+o0

t>+o0

But from Lemma 50 and the corollary of Lemma 49, the limit on the right is zero. There-
for O =T({)0O.

Now put =1 and {=0 in Lemma 57. Then we conclude from the corollary of Lemma
48 that there exists a number ¢, 20 such that

[O(m)] < ¢, Ey(m)(1+a(m))™* (mEMH).
On the other hand, we can obviously choose a number »,>0 such that
|a(log k)| <vo0(h) (x€Zy, REA).

Put v =max (1, vy/4¢). Then it is clear (see the proof of Lemma 54) that m exp tHEM+
(m€M, HEQ) provided ¢t >vo(m). Now fix m €M and put {,=vo(m) and my=m exp t,H,.
Then my€ M+ and

O(m) = ¢ *TH O (my).
Therefore |O(m) | <c,| e TH B | B, (mo) (1 + a(mg))™.

But E,(mg) =E,(m), o(m,) <o(m) +t,=(v+1)6(m) and I'(H,) E° has only pure imaginary ei-
genvalues. Therefore (see the proof of Lemma 50), the last statement of the lemma follows
immediately.
For any linear function 4 on [, let V(1) denote the subspace of all v€V such that
(TH)-AH)"v =0 (HEL),

where N =dim V. Let °V denote the sum
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> YA,
Ri=0

where A runs over those linear functions which take only pure imaginary values on [.
LeEMMa 59. O(m)€V (m€EM).

Since O(m exp tH)=eT"H@(m) (HERQ, tER), this is obvious from the last statement
of Lemma 58.

§ 30. Application of the induction hypothesis to 6

We recall (see §7) that p is a Hilbert space under the norm || X|| (X€p). Put a,=I
and let a; be the orthogonal complement of g, in ay. It is clear that X, is the set of all
positive roots of (m, ap) and [ is the set of those HE€ ay where a(H)=0 («€ZX;). Hence
a; < [m, m]. Let a,* be the set of all H€Eq, where a(H)>0 (x€X,). Put 4,*=exp a,+ and
fix a number N >1 such that if 5, €A4,* and ¢>No(h,), then h, exptH€A,* for HEQ.
This is possible (see the proof of Lemma 58).

LEMwmA 60. We can choose a number ¢’ =0 such that

| @(hy exp tH) — O(hy exp tH)| < ¢'e”*¢~¥"IF (k) (1 +a(k,))"
for b €A+, HEQ and t = No(h,).
Put hy=h, exp t,H where t,=Na(k,). Then =, (k) = Z, (k) and o(hy) <o(h,) + No(h,)||H||

Since ) is relatively compact, our assertion follows from the corollary of Lemma 57.
Define 0,(m)€V by

Om)= 3 0,men™ (meM)

and put 0=0,.
CorovrrLaRY. Under the conditions of Lemma 60,
|d(h, exp tH)p(h, exp tH) —0(h, exp tH)| < ¢'e ¢ VoD (k) (1 +a(hy))™.

This is obvious since 7, =1.

Let b be the orthogonal complement of H, in ay and b* the set of all H€D where
a(H) >0 for every a€Z,. Let E and E, denote the orthogonal projections of ay on b and
q; (2=1, 2) respectively. Fix a number >0 and let U be the set of all H€S+ such that

| EH|| <8(H,, H,

the scalar product being defined as in §7. We assume that J is so small that N <},
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E,UcQ and a(H)>3¢ for a€X, and HEU. Clearly this is possible. Then U consists of
all elements of the form cH,+H, where H,€b+, 2+ | H,|2=1 and ||H,| <dc¢ (c>0),
provided 6 is chosen sufficiently small. Therefore, in particular, (1+48%) ¥ <c<1. For any
T >0, let U(T) denote the set of all elements tH with HEU and 0<t<T.

Put o(H)=1tr (ad H), and o,(H)=1}tr (ad H)y, (HE€ap, i=1,2) in the notation of
§27. Then gp=p, 0, and we claim that o,(H)=¢(E,H) (H€ay). Since [ centralizes 1, =
mnNu, g,=0 on a,=I. Moreover m normalizes 1, and a,<[m, m]. Therefore g,=0 on a,
and clearly this implies our assertion. We also note that d(exp H)=e* (H €qy).

LeMMmA 61. There exists a number ¢ =0 with the following property. Suppose || H, || <ot
(H,€bt, £20). Then

| eetHo+ EHD doxpy (1H o+ H,)) — O(exp (tHy+ H,))| < ce™24/8 e @D,
If 2 €X,, it is clear that a(E, H,) =a(H,)>0. Hence E, H, €qa,*. Moreover N|| E, H, || <

N||H,|| <Nét <t/2. Therefore it follows without difficulty from the corollary of Lemma 60
that the left side is majorized by

c'e” B, (by) (1 +(hy))™,
where h,=exp E, H,. Therefore our assertion follows by applying [4 (j), Theorem 3] to
E, and observing that a(h,) = || B H,|| <6t
As in §7, put

D(h) = H {eoc(los k) _ g—adog h)}mu (h € Ap),
LT

where m, is the multiplicity of . Then D(k)>0 for h€A,. Put

Fy(T) = f |$(k) pD(R)dR  (T>0),
log heU(T)

where dh is the Haar measure on 4. Also let us recall that ¢=+0 and it is analytic (see

[4 (q), Lemma 33]).

LEMMA 62. There exists a unique integer v =0 with the following property. We can
select numbers a, b(0 <a <b<oo) such that

al" < Fy(T)<bT”
for all T>1.v=0 if and only if 6=0.

The uniqueness of » is obvious from its definition. So we have only to verify its

existence.
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Let Uy(T") denote the subset of all H Eay of the form H=tH,+ H, where 0<¢<T,
H,€b" and || H, || <dt. Then

U(T)< Uy(T) < U(T(1+ 82)}).
Put Fy(T)= fl . m] $(h) |2 D(h) dh.

Then Fy(T1+8) H)SF(T)<SF(T),
where F =F;. Therefore it would be enough to prove the existence of an integer » >0
such that
0<lim inf 77°Fy(T) <lim sup T7"F(T) < oo.
T —»00 T -0

For any ¢>0, let 6*(c) denote the set of all H€b* with || H|| <c. Then if yp(H)=
d(exp H) (H €ay), we have

T
F ()= f dtf |eg<tH°+E’H‘)1p(tH0 +H,) |2D1 H) T a- ¢ 2etHet Hoymg g Ff |
Y sten ac s
where D,(H))= T] ("> —e "y (H,€D)
[-1-p2%%

and dH, is the (suitably normalized) Euclidean measure on b. Choose T, = 0 so large that
2«(tH,+ H,)>1log 2 for « €X,, H, €b*(6¢) and ¢ > T, and put

T
J(T)= f . dt f . |eetHo B HO 0t H + H Y [2 D, (H,) dH,
¢ 57 (6Y)

for T>1T,. Then if ¢=dim 1n,, it is clear that
2UJ(MYSFy(T)=Fo(To)<J(T) (T=Ty).
Also put p(H)=0(exp H) (H €ay) and
T
JW(T)=f dtf |peo(tH,+ H,) 2D, (H,)dH,.
To  Jpt(se)
Then, by the triangle inequality, we have

T
[J(T) — T (T)E]2< f . dtf . | ee¢Hot BsHOy(t H + H ) — poo (8Hy + H,) 2D, (H,)dH,.
° b7 (6%)

Now apply Lemma 61 and observe that
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e ?e® D (H)<1 (H,€b").
Then it follows easily that
| J(T) = To(T)|<c (T>T,),

where ¢ is a fixed positive number.

Now first suppose § =0. Then y,, =0 and therefore J,,(T)=0. Hence J(7T'() <c?for all
T>T, and it is clear that we can take v=0.

So let us now suppose that 6 + 0. Then it is obvious from Lemma 58 that all the assump-
tions of Lemma 42 are fulfilled if we replace (G, K, ¢) by (M, K, 6). Since dim m <dim g
and Hy€l=mn p, it follows from the induction hypothesis that the index v, of 6 (on M)
is positive. Hence it follows from Lemma 44 and [4 (d), Lemma 38] that

0 <lim inf T *ooJ (T} <lim sup T oo, (T) < oo.
T T >0
Since v, 21, it is clear that similar inequalities hold if we replace J,(T") by J(T'). Hence

we can take y=v.

LemMmA 63. Define v as in Lemma 62. Then for any & >0, we can choose Ty>0 and

8, >0 such that
T, {Fu(Ty) — Fy(T))} <g
for To<T,<T,<(1+6)7T,.

Put F=Fy and let 0<T,<7T,. Then

F(T,)—F(T)< f | eetHor BByt F 4+ H) 2D, (H,) dt dH,,
a(Ty, Tp)

where a(T,, T,) is the set of all points in a, of the form tH,+H, with ¢>0, H,€b*(d¢)
and T2<#2+|H,||?<Tg? Therefore

{F(Ty)— F(T)}} < I(T,, To)t + 1T, Ty,

where 1,(T,,T;)= f

Ty,

. )Iww(tHo+H1) D, (H,)dtdH,

and

L(T,,T,)= f | e2CHA B 0y H -+ H,) — oo (tHy+ H,) [2 D, (H,) dt dH,.

Ty, Ts)

If we apply Lemma 61 and observe, as before, that e 2##2 D (H,)<1 for H,€b", it
follows easily that
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LT, ,Ty)<cye™*™ (T,2T,>0,

where ¢, is a fixed positive number and &' = (1+82) - ¢/2.
Now first suppose 6=0. Then »=0 and I,(T,, T;)=0. Hence

F(Ty)— F(T) < Iy(T,, Ty) <cye™®™

and the statement of Lemma 63 follows immediately. So let us assume that 040. Then
¥=v,>1, as we have seen above, and therefore the required assertion is a consequence
of Lemma 45.

§ 31. Completion of the proofs of Lemmas 42 and 43

We shall now finish the proofs of Lemmas 42 and 43. For any open subset U of S+
define

Fy(T)= |$()[D(YdR  (T'>0),
logh eU(T)
where U(T) is the set of all elements in a,*+ of the form tH (0<¢<T, HeU). Since S+ is
compact, we can choose open sets U, in St and integers »,>0 (1<i<gq) such that S+=
Ui<i<oeU; and the statements of Lemmas 62 and 63 hold for (U, »,) in place of (U, »).
Put F;=Fy, and y=max,»,. It is clear (see [4 (d), Lemma 38] that

max F(T)<[|$[*< > Fu(T),
i 1<1<q

if the measure dh is suitably normalized. So it is obvious that

0<liminf 72| ¢ ||, <lim sup T2 ||$[|z < oo.
T >0 T->00
Moreover, lollz2— ¢ lz.2 <1<1z<q{Fi (T)—F(T)} (O<T,<T,).

Therefore the last assertion of Lemma 42 follows immediately from Lemma 63.

Now we come to the proof of Lemma 43. First assume that »=0 and fix Hy €S8+
Then »;=0 (1<¢<gq) in the above proof. We may suppose that H €U,. Define U as in
§ 30 for H, and let A,(U) denote the set of all €A, of the form h=exptH (t>0, HEU).
We may obviously assume that U< U,. Then it follows from Lemma 62 that 6=0 and

therefore
lee(tH) p(exp tH) | Sce™®t (HeU,t=0)

from Lemma 61 where ¢’ =(1+82)-%-£/3. Hence it is clear (see [4 (j), Lemma 36]) that
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sup ()| = ()" (L+a(h)) < oo

heAp(U)
for every r>0. Since @ =KA4,*K and 8+ is compact, this means that
sup| (z)|E(2)™ (1 +0(2))" < o
zeqd

for any r>0. But then it follows easily (see the proof of Lemma 48) that € C(A)® V.
Thus 1) implies 3) in Lemma 43. In view of Lemma 11 and [4 (j), Theorem 3], it is obvious
that 3) implies both 1) and 2). Hence it remains to prove that 2) implies 1).

So suppose 2) holds. Fix H €8+ and use the notation of §30. Then it follows from

Lemma 61 that
lim O(exp (tHy+ H,))=0 (H,€b").

f>+00

" Now fix H,;€b* and put f(t)=0 (exp (tH,+ H,)) (t€R).). We have seen in § 29 that
O(exp (tH,+ H,)) = ¢T#0(exp H,)
and all eigenvalues of I'(H,) E° are pure imaginary. Hence it is clear that

f0)=_3 p)e ¢ (eR),

where A, ..., A, are distinet real numbers and p, are polynomial functions from € to V.
Since f(t) >0 as t—> -- oo, we conclude (see [4 (j), § 15]) that }=0. Since b* -+ RH|, is open
in gy and 0§ is analytic (see [4 (q), Lemma 33)), it follows that 6 =0 and therefore y=0 in
Lemma 62. This being true for every H €S8+, we conclude (see the proof of Lemma 42
given above) that the index of ¢ is zero. This shows that 2) implies 1) and so the proof of
Lemma 43 is now complete.

Part ITII. Applications to harmonic analysis on G

§ 32. Lemma 64 and its consequences

Let a=0(a) be a Cartan subalgebra of g and 4 the corresponding Cartan subgroup of
G. For f€C(R), define F € C(A'(])) as in §18. Let J be the algebra of all invariants of
W (g/a) in A=S(a;). Then we have a canonical isomorphism y of 8 onto J (see [4 (e),
Lemma 19]). Moreover, since 0.®(®) is dense in C(&), it follows (see § 18 and [4 (o), § 22])
that
F.=yR)F,; (z€5, f€C(G)).
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Let T be a distribution on G. We recall that 7' is said to be J-finite, if the space of
distributions of the form 27" (z€ 3) has finite dimension. In particular, we can speak of a
locally summable function being 3-finite.

LeMMA 64. Let f be a 3-finite function in C(G). Then F;=0 unless an p={0}.

Put a;=an¥, a,=anyp, 4,=4NK and A,=exp a, and suppose that a,=+{0}. Fixa
point a €A4'(I) and let a=a,a, (@;€4,, i=1,2). Select an open and connected neighbor-
hood a,° of zero in @, such that

a, exp 0,0+ A, < A'(I).
This is clearly possible. Put a®=qa,°+a, and 4°=a, exp a°.
Let 1 be the set of all w € 3 such that uf=0. Then 1l is an ideal in 3 of finite codimen-
sion. Since ¥ is a finite module over J, it follows that B =Uy(l1) has finite codimension

in 9. Moreover y(u) F,=F,,=0 (x€11) and therefore vF,=0 for v €®B. Since a° is connected,
we conclude from [4 (e), p. 131] that

Fy(a, exp Hy= . > pi(H)M®  (Hea"),
<i<r

where 1, are linear functions and p; plynomial functions on a, (1<¢<r). Put
g(H) = F/a,exp H) (HEa,).
Since F',€ C(4'(I)), it is clear that
sup o) | 1+ | [ <

for any m >0. Since a,+ {0}, we conclude from [4 (j), § 15] that g=0. This shows that
F;=0 on a, 4, and therefore F{a)=0.

CoROLLARY 1. Suppose f=0 in the above lemma. Then rank G =rank K.

For let us otherwise assume that rank G >rank K. Choose a so that it is fundamental
in g. Then aNp=={0} and therefore F,=0. But then it follows from Lemma 38 that
f(1)=0. Now fix €@ and put f,=r(z)f in the notation of § 10. Then f, is also a 3-finite
function in C(@) and f(x) =f.(1) =0, from the above proof. This shows that f=0, giving a

contradiction.

COROLLARY 2. Suppose rank G=rank K and f is a 3-finite function in C(G). Then

cf(1)=(— 1)”A€ZL =(4) ©a(f)
in the notation of Theorem 8.
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It is clear from Lemma 64 that ¢, ,=0 (2<i<r) in Theorem 8. Hence our assertion
is obvious.

An element y of @ is called elliptic if it is contained in some compact Cartan sub-
group.

COROLLARY 3. Suppose y is a semisimple element of G which is not elliptic. Then if f
18 a 8-finite function in C(G), we can conclude that

f HR)dE=0
G/Gy

i the notation of Lemma 28.

Define 3 and §) as in Theorem 6. By replacing y by »* for some y €@, we may assume
that 0() =1. Let 4 be the Cartan subgroup of G corresponding to ). Then y€A4. Since y
is not elliptic, we conclude that 4 is not compact and therefore )N p = {0}. Our assertion
now follows from Lemmas 28 and 64.

§ 33. Proof of a conjecture of Selberg

Let f be a measurable function on Q. We say that (1) f is K-finite, if the left and right
translates of f, under K, span a finite-dimensional space.

LEMMA 65. Let f be a function in C°(Q) N Ly(G) which ts K-finite as well as 3-finite.
Then there exist numbers ¢, r >0 such that

| fx)| < cE(x) (1 +o(z))" (z€Q).

We shall give a proof of this lemma in § 38.

COROLLARY 1. Let f be a function in Ly(G) whick is both K-finite and 3-finite. Then
feC(G).

We regard §=L,(K X K) as a Hilbert space in the usual way and define a unitary
double representation u®=(u,, u,) of K on § as follows (cf. § 12). If #€$ and k€K, then
the functions u; =u,(k)u and wu,=wuu,(k) are given by

uy(ky, ko) = uy(B71E, ky), us(ky, ky) = u(ky, kak™?)  (ky, k3 € K).

It follows from [4 (q), Lemma 33] that f is analytic. For any €@, let ¢(zx) denote the

function

(1) We do not distinguish between two measurable functions which differ only on a set of measure
zero.
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(ky, kg) > f(ley~txky™Y)  (Ky, K, € K)

in §). Then it is clear that ¢(k,xky) =y, (ky) (@) ug(ks) (ky, ks €K). Let V be the subspace of
£ spanned by ¢(x) for all z€G. Then V is stable under u° and dim V < oo since f is K-finite.
Let p denote the restriction of u® on V. Then ¢ is a C® y-spherical function from G to V
and it is clear from Lemma 65 that Lemmas 42 and 43 are applicable to ¢, provided f=+0.
Since f€L,((), we conclude that the index of ¢ is zero and therefore ¢€C(G)® V from
Lemma 43. Obviously this implies that f€ C(G).

CoRrROLLARY 2. Suppose f=+0 in Corollary 1. Then rank G'=rank K.

This follows immediately from Corollary 1 of Lemma 64.
If we combine Corollary 3 of Lemma 64 with Corollary 1 of Lemma 65, we get the

following theorem.

TurorREM 11. Suppose v is a semisimple element of G, which is not elliptic, and f a
function in Ly(G), which is both K-finite and 3-finite. Then f€ C(G) and, in the notation of
Lemma 28, the integral

f fr") di
6ia,

exists and its value is zero.

This theorem represents, essentially, a conjecture of Selberg [9, p. 70]. I understand
that R. P. Langlands had obtained a similar but somewhat weaker result, a few years ago.

§ 34. The behaviour of certain eigenfunctions at infinity

We now return to the notation of § 27. Extend q, to a Cartan subalgebra a of g.
Define w=1w", W=W(g/a) and W,=W(ut/a) as usual (see [4 (p), § 12]) and, for a given

linear function 4 on a,, put
1a(2) = 12%p.) (2€3)

in the notation of [4 (p), § 12] and [4 (o), § 14]. Let 11, denote the kernel of ¥, in 3 and put
Uia = B1toll2)s Bia*=31/W1a- (Here ug=pgm as in § 27.) Let o, denote the natural repre-
sentation of 3; on 3;*.

Let r=[W:W,] and select elements s, =1, s,, ..., s, in W such that W= U 1¢< Wys;.
Consider the subalgebras J and J, of all invariants of W and W, respectively in S(a,).
Then we have the canonical isomorphisms y:8—J and y,:8; —>J, (see [4(0), § 12]) and
y=y,0u, We identify S(a,) with §=8(a,) as usual and denote by y,({:1) ({ € 3,) the value
at 4 of the element y,({)€S.
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LEMMA 66. dim 8,,*=r and, if w()=+0, we can choose a base (vy, ..., v,) for B*

such that
oxQ)vi=n(l:8d)v; (L€, 1<is<r).

Since W and W, are both generated by reflexions, the results of [4 (j), § 3] are applic-
able. Therefore by taking into account the isomorphisms y and y,, our assertions follow
immediately from Lemmas 13 and 15 of [4 (j)].

Let x4 and V have the same meaning as in Lemma 42.

LeMMA 67. Let A be a linear function on a, and ¢ a C® u-spherical function from Gio V.
Suppose the following conditions are fulfilled:

1) rank G=rank K.
2) A takes only real values on aNp+(—1)tant and w(d)+0.
3) zp=x(2)¢ (2€3).

4) There exist numbers ¢, s >0 such that

[$(x)| < cE(z)(1+o(x)° (€EQ).
Then $EC(Q) @ V.

We may obviously assume that ¢ =0 and G is not compact so that ap= {0}. Then, in
view of Lemma 43, it would be enough to verify that

lim e*®d(hexptH)=0

t—=>+o0

for HES* and h€A4,*. For any H, €S8+, let iy, denote the centralizer of H in g. Suppose
the above condition does not hold. Then we can choose H, €S+ such that:

1) For some h€Ay*, e 94k exp tH,) does not tend to zero as ¢ -+ co.

2) dim 1y, is minimum possible consistent with condition 1).

Put m=mniy, my=mnN{+[m, m]Np and let [ be the centralizer of m in p. Then
m, N p is the orthogonal complenrient of [ in mN p. Let M, be the analytic subgroup of G
corresponding to m;. We now use the notation of §§ 27-30 for this particular H,. (Note
that ¢, ={0} in the present case since rank g=rank f.) Define @(m) and 0(m) (m €M) as
in §§ 29, 30. We know from Lemma 66 that the representation I of 8, is semisimple.
Moreover it is clear from condition 2) of Lemma 67 that s,A takes only real values on a,

and therefore also on [. Hence we conclude from Lemma 59 that
O(mexp H) =0(m) (me€M, HEJ).
This implies, in particular, that



80 HARISH-CHANDRA
O(m exp H) =0(m) (meM, HE).

Hence it follows from Lemma 61 and the definition of H, that 0==0.
Fix an element H=+0 in q,*. Then if h€4,", we claim that

DG exp tH) >0

as t— +oo. Put H,=c,(H,+cH), where ¢ is a small positive number and ¢, =||Hy+cH||-%.
Then H, €8+ and it is obvious that

dim 1My < dim Mg,

Hence we conclude from definition of H, that
eI b(hoexp tH))~0  (Ro€4y")

as t >+ oco. Define U as in § 30 and let U, denote the interior of U in 8+. Then, by choosing

¢ sufficiently small, we can assume that H, € U, and therefore

lim |ee®V (b exp tH,) — e2¢*0(h exp tH,)| =0 (h€A4;")

{—>+oo

from Lemma 61. Fix h€A,*. Since a(H,)>0 (x€Z,;), we can choose t,=0 such that

ho=h exp t,H, € Ay*. Hence it follows from what we have seen above that
e O d(h exp tH,) >0
as ¢+ oco. Put ¢, =c,c. Then g,(H,)=c,0,(H) and H,=c, H,+c,H. Therefore since H,€l,

we conclude that
DGR exp tH)~0

and this proves our assertion.

Let §, denote the restriction of 6 on M;. It is clear that 6,40 and we conclude from
Lemmas 43 and 58 that 6, € C{(M,)® V. But then rank m, =rank (m, N ¥) from Corollary 1
of Lemma 64.

Fix a Cartan subalgebra ¢ of m; N¥. Then fh=[+¢ is a Cartan subalgebra of m and
therefore also of g. Since rank g=rank f and H€l, ) cannot be fundamental in g. Hence
there exists a root § of (g, §)) such that(!) Hz€hN p=[ (see [4 (g), Lemma 33]). Let M,
denote the (connected) complex adjoint group of m, We can choose y€M, such that
b =a,. Then =4 is a root of (g, a) and H, = (H ) =H 4€l.

Now we know that ®=+0 and by Lemma 59 ®(m)€'V (m€M). Therefore it follows
from Lemma 66 and the definition of T', that there exists an element s€ W such that
sA=0 on . But then sA(H,)=0 and therefore w(1) =0, contrary to our hypothesis. This

proves the lemma.

() Here Hg has the usual meaning (see [4 (n), § 4]).
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§ 35. Eigenfunctions of 3 in C(G)

Let us now assume that rank G=rank K and use the notation of § 20. Let L’ be the
set of all 1€L where w(1)+0. We denote by y, (A€L’) the corresponding homomorphism
(see [4 (p), § 29]) of 3 into C so that 20, =x,(z) @, (z€ ). Consider the space Cy(G) of all
functions f€ C(G) such that zf=y,(2)f (€ 3). Let §, denote the closure of C,(G) in L,(G)

and § the smallest closed subspace of L,(@) containing Ujez 3.
It is obvious from the definition of @, {see [4 (p), Theorem 3]) that

Ox(@) = conj Ox(x) = (~1)"0-x(x) (AEL, z€QF),
where m =% (dim g —rank g). Hence it follows that

Z22(z%) = conj a(n(2)) = x-1(2) (2€3),

where z* denotes the adjoint of the differential operator z and # the conjugation of g,
with respect to g.

Lemma 68. Let f be any eigenfunction of 8 in C(G). Then f€Cy(G) for some AEL'.

We may obviously suppose that f==0. Let y be the homomorphism of 3 into € such
that zf=y(z)f (€ 3). We have to show that y=y, for some A€L’. Suppose this is false.
Fix A€L and consider ®,(f). Then

12 Ox(f) = O,(zf) = xa(z")Os() = 1-22)Oa(f)  (2€3).

Since y = y_,, we conclude that ©,(f) =0. In view of Corollary 2 of Lemma 64, this implies
that f(1)=0.

Now fix x €@ and put f,=r(z)f in the notation of § 10. Then the above proof is appli-
cable to f, and therefore f(x) =f,(1) =0. This shows that {=0 and so we get a contradiction.
Hence the lemma.

CoROLLARY. Let ¢ be an element in Ly(Q) which is an eigendistribution of 8. Then
S ED, for some AEL'.

We may again assume that ¢+ 0. Let I and r respectively denote the left. and right-
regular representations of G on L,(G) and v the usual norm on L,(&). For «, fEC(K),
define

w b f= | all) Bl k) Bk,

as usual. Let C denote the space of all K-finite functions in O(K). Since £ is dense in C(K)
6—662900. Acta mathematica. 116. Imprimé le 10 juin 1966.
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in the norm |o|. =sup|a| (x€C(K)), it follows easily (see § 3) that, for any £¢>0, we can
choose «, $€ L such that

v —axdxf) <e.
Put p=ax¢p%p and suppose e<v(¢). Then it is clear that p=+0 and 2p=y(2z)y (2€3).
Hence we conclude from Lemma 68 and Corollary 1 of Lemma 65 that g € C,(G) for some
A€L’. Therefore, in particular, y =yx,. Since the space C,(&) depends only on y, (and not
on 1), this shows that ¢ €CI{C (&) =a.

§ 36. The role of the distributions @, in the harmonic analysis on G

For any DEEg, let Oy (AEL') denote the corresponding Fourier component of
0, (see [4 (q), §17]).

THEEOREM 12. O, 1€ C (&) for AEL' and DE Eg.

This follows from Theorem 9 and Lemma 67 (see also the proof of Corollary 1 of
Lemma 65).

CororraRY 1. Cy(@)+ {0} for AEL".

Since @, +0, we conclude from Lemma 9 that 0, ;=0 for some H € £;. This implies
our assertion.

Fix 1,€L" and let L{A;) denote the set of all A€L of the form l%s-].o (SEW=W{g/b)
in the notation of [4 (p)]). Let ¥E,, denote the orthogonal projection of L,(&) on ,, and
define

(f.9)= L (conj flgdx (f,9 €Ly (G))

as usual.
Let £(G) denote the space of all K-finite functions in C,*(G).

CoroLLARY 2. Let y€L(Q) and A €EL'. Then E, y€C, (G) and

O(y), if AEL(—A),

0 otherwise,

(B, y)= {
for A€L/.

It is obvious that E,, commutes with the translations of ¢ and therefore f=E, y
is K-finite. Hence we conclude from Corollary 1 of Lemma 65 that f€ C,,(G). Therefore (see
the proof of Lemma 68), ©,(f)=0 (A€L’) unless A€L({—4,). Now fix A€L(—4;). Then
conj @, ,€C,, (@) from Theorem 12 and therefore
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@z,b(j/) = (conj ®/1.b,7/) = (conj ®z.b, Eh?) = ®z,b(f) (b € gx)

from the corollary of Theorem 9: Therefore, since y and f are both K-finite, we have

Oa(y) = % Orv(y)= Zb 2.5 () = Ox(f).

LeEMMA 69. Fix A €L and define ¢ and q as in Theorem 8. Then

(-1 > ; )'a'r(l) Os(a%f)=cla, By, f)

Ae L(—2,

for « €C.*(G) and {€ C(G). Here &(x) =conj afx~1) (x€Q).

Since &% f€ C(@) (see § 10), the left side is defined. Fix a,, € £(G) and put g = E,, B
Then &, % g=E, (%,%f). Now apply Corollary 2 of Lemma 64 to &,* g, taking into account
Corollary 2 of Theorem 12 with y =&, . Then we get

c(ogy Brf)=(—1)" > w(A)Os(&* )

Ae L(—2g)

On the other hand, £(@) is dense both in O, ®(@) and C(G), by Lemmas 9, 16 and 19.
Moreover, convergence in either one of these spaces implies convergence in Ly(@) (see
Lemma 11). Finally, if «, and § are two variable elements of £(@), which converge to «
and f in 0, ®(@) and C(@) respectively, then it is obvious from § 10 that &, tends to
&% f in C(G). Therefore the statement of Lemma 69 now follows immediately.

Define the representation r of ¢ on C(G) as in § 10.

CoroLLARY 1. Let f€ C(G). Then E,, f is a continuous function on G given by

Epfe)=c'(-1)° > @(2)Oi(r(2)f) (x€G).

Ae L(—2y)

It is obvious that the right side is continuous in x and the equality follows fromr
Lemma 69, if we observe that O,(a*f)=0,(f% &) (x€C,(H)), in view of the invariance:
of @,\.

Let E denote the orthogonal projection of Ly(@) on .

COoROLLARY 2. ¢(ot, Ef)=(—1)" Dsez w(A)O1(&%f) for  €C,Z(G) and € C(G).

This is obvious from Lemma 69.

CoroLLARY 3. For f€C(G), put

fi)=c(—1)? 3 w(A)Oa(r(2)f) (z€Q).

AeL

Then f8 is a continuous function on G and %= Ef.
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Put T(fy=c'(— 1)"“ZL @A) Oa(f) (f€C(A)).

We have seen in § 20 that 7' is a tempered distribution. Hence it is obvious that f4

is' continuous. The rest follows from Corollary 2, if we take into account the fact that
T@%f)=T(f%&) = f A () conj a(x) - dax.

Let W(4) (AEL') be the set of all s€W such that sA€L. Put ()

O =[N, 2 els)Ou (AEL).

Wi
COROLLARY 4. For any A€ L', the distribution (—1)%w(A) @1 s of positive type.
This is obvious from Lemma 69 since ¢(x, B, a) =0 for « € C,(G).
LEMMA 70. Fix D€ Ex. Then there exist only a finite number of AEL' such that @, 5=+ 0.

Let ¢ be the center and g, the derived algebra of g. Fix a quadratic form @ on g such
that 1) @ is negative-definite on ¢, 2) ¢ and g, are mutually orthogonal under @ and 3)
Q(X)=tr (ad X)2 for X €g,. Then @ is negative-definite on ¥, positive-definite on p and it is
invariant under G. Moreover, ¥ and p are orthogonal under @. Fix bases (Y,,..., ¥,) and
(Zy, ..y Zy) for p and ¥ which are orthonormal with respect to @ and —@ respectively and

put
wp=Y 2+ ... +Y 2% o= —(Z%+..+2Z)

in @. Then w=wptw€3

Let y denote the canonical isomorphism of 3 into(?) 8(b,) =S(b,) (see [4 (e), Lemma 19])
and y(z:u) (€3, u€F) the value of the polynomial function y(z) at u. Put

Q - %ag}’a’
where P is the set of all positive roots of (g, b). Then (see [4 (e), p. 144])
luP=y(@:p)+13 ol (n€J)
is a positive-definite quadratic form on §§ and y(w: ) =0, so. that

yw: p)=|ulP—|el®
Moreover, ya(w)=y(w:4)=|A|*—|g|? for AEL'.

(*) See the foot-note on p. 3.
(2) Here the notation is the same as in [4 (p)].
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Let & be the subalgebra of & generated by (1, ) and 3 the center of & Then
wt€ 3k and
wy oty = Xp (wr) o,

where yp(ws) is a number > 0 (see § 3). Therefore since L is a lattice in §, it would be

sufficient to prove the following lemma.

LeMma 71. Suppose A and D are two elements in L' and Ex respectively such that @, =+ 0.
Then
|4]2 < go(n) + |o] %

We know from Theorem 12 that f=0, ;€ C;(G)< Ly(G). Let r denote the right-regular
representation of G on L,(F), V the smallest closed subspace of Ly(G) containing f which
is invariant under r, and s the restriction of » on V. Since convergence in C(G) implies

convergence in Ly(G), it follows from Lemma 15 that f is differentiable under 7z and
al)f=X(w)f,  w(w)f=Xs(w)f.
Hence {12 =lelPHIFl12= (f, () f) = 2o (o) | F 112+ (f, lewp) ),

where || || denotes the usual norm in L,(G). But since 7 is unitary and f is differentiable
under 7, it is obvious that

(halwp)h=— 2 lla(T)f]2<0.

1<igp

Hence our assertion follows immediately from the fact that ||f|| > 0.

Lemma 72. Let f be a K-finite function in C(G). Then E,f€ CA(G) (AEL') and E,f=0
for all A€L' except a finite number. Hence Ef€ C(G) and it is both K-finite and 3-finite.

Since E, commutes with the translations of @, it is clear that E,f is K-finite and
therefore, by Corollary 1 of Lemma 65, it lies in C,(@). Now select a finite subset F of
Ex such that f=oyp f% o in the notation of § 12. Replacing F by F U F*, we may assume
that F=F*, (Recall that d* is the class in £ contragradient to b.) Put

[1@)=0i(r(x)f) (x€G)
for A€L’. Then it is obvious that
fi(®)= Oz (r(z) ),

where Onr= 2 Oy

beF
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Hence we conclude from Lemma 70 that f, =0 for all A€EL’ except a finite number, and
therefore the assertions of the lemma follow from Corollaries 1 and 3 of Lemma 69.
Define B'=BN G as in §19.

LrmMa 73. Fiz A€L’ and let © be a tempered and invariant distribution on G such that
2*=11(2) 0 (z€3). Then Oy€ C\(Q) for DE Ex. Moreover, in order to show that ©® =0, it is

sufficient to verify either one of the following two conditions.

1) O()=0 for every K-finite function f€C_(G).
2} O@=0 pointwise(l) on B’

It follows from Theorem 9 and Lemma 67 that ©,€ C (@) (D€ Eg) and therefore
f=conj @, €C_,(G) (see § 35). Then

&)= [ |0s(a)faz

from the corollary of Theorem 9. Therefore ®, =0 under condition 1). In view of Lemma 9,
this implies that ©=0.

On the other hand, by Lemma 64 and the corollary of Theorem 7, 2) implies 1) and
80 the lemma is proved.

Define W as in [4 (p), Theorem 3]. Then L is stable under W, and ©,, =&(s)0,
(SEWg, AEL).

LemMma 74. Let O be an invariant eigendistribution of 3 on G, which is tempered. Sup-
pose there exists an element D € Eg such that Op+0 and Oy ELYQ). Then we can choose AEL’
such that 20 =y,(z)© (z€ 3). Moreover, for any such A, there exist unique complex numbers
¢; (SEW(A)) such that c,;=c, LEW ) and

O=[Wel™ > &ls)e,00.
seW

The first statement follows from the corollary of Lemma 68. Now put
D) =AB)O®k) (BEB),

where A has the usual meaning (see [4 (p), Theorem 3]). Then it follows from [4 (0), Lemma
31] that ® extends to an analytic function on B. Moreover, we know from [4 (¢), Theorem 2]

that
P(R)D = (20 (2€3),

(') Here we have to make use of Theorem 2 of [4 (0)].
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where p(z) €S(b,) is to be regarded as a differential operator on B. Finally it is obvious
that @(b%) =¢(s)®(b) for s€ W, and b € B. Therefore (see [4 (f), p. 102] and [4 (p), Theorem
3]), we can choose unique complex numbers ¢, (s € W(4)) such that c;;=c, (t€ W) and the
distribution
Q' =0—[Wel" 3 &(s)c;0n
seW@)

vanishes pointwise on B’. It is clear (see § 20) that @' is tempered and 20’ =y,(2) 0’ (z€ 3).
Therefore ®' =0 from Lemma 73.

Lemma 75. Let b, denote the class of the trivial representation of K. Then Oy 5,=0
for A€L'.

Fix A€L' and put @, =0, 5, Then from Theorem 9, there exist numbers ¢, m >0 such

that
| @] <cE(1 o)™

This is the analogue of [4 {q), Lemma 43]. By making use of the corollary of [4 (q), Lemma
47], we prove in the same way as in [4 (q), § 20] that @, =0.

§ 37. The discrete series for G

Let G be a locally compact unimodular group satisfying the second axiom of count-
ability. Fix a Haar measure dx on G. By a unitary representation of ¢, we mean a repre-
sentation of G on a Hilbert space, which is unitary. Let € be the set of all equivalence
classes of irreducible unitary representations of G.

Let 7 be an irreducible unitary representation of G on a Hilbert space . We say that
7 is square-integrable if any one of the following two mutually equivalent conditions holds
(see [7, p. 640]).

(1) There exist nonzero elements ¢, p in §) such that

fG| (B, 7w(x) p) |2 dr<co.

(2) There exists a closed subspace V of L,(G) stable under the right-regular repre-
sentation r of (f on Ly(@), such that z is equivalent to the restriction of r on V.

It is known (see [7, p. 640]) that, if & is square-integrable, there exists a number
d(7) >0 such that

[ 1@ a@pde-dr gl vl 6 pes)
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where ||¢|| is the norm of ¢ in §. We shall call d() the formal degree of 7 (see [4 (d), § 3]).
It is obvious that square-integrability, as well as the formal degree, are invariant under
equivalence. We call a class w € £ discrete if every representation z €Ew is square-integrable
and put d(w) =d(x).

Let &, denote the set of all discrete classes in £ Then &, is called the discrete
series of G.

Now let us return to the case when G and K are defined as in § 7. For any w€ €, let
@, denote the character (see {4 (b), §5]) and g, the infinitesimal character of w so that

20,=2.,()0, (z€3).
LeEMMA 76. Let w€E,. Then O, is tempered and O, »€Ly(G) for HE Ex.

Fix m€w and let § be the representation space of 7. We now use the notation of § 25
and put
$i(@) = (py, 7(@)yp)) (2€G, 1€J).

Then 0ul)= 3 f Ihde (FEC2(@)),

the series being absolutely convergent (see [4 (b), p. 243]). Moreover, ¢, is analytic from
{4 (q), Lemma 33]. Fix an integer m >0 as in Lemma 7. Then

ffgb,dx = c(b)""ff Q" dx=c(d)™" fﬂ'"f -didx ((€Jy),

in the notation of Lemma 6. Hence, by the Schwartz inequality, we get

I

where || || denotes the usual norm in L,(G). This shows that

19, ()] <d(w) | Q’"fllngc(b)"" dim §y (FEC(R)).

<c®) | Qflldm)t  (i€Tv),

But zb;c(b)"'" dim £, < sz:c(b)‘"'d(b)2 < oo

from Lemma 7. Since ) =[Q™g]l (@eCR)

is a continuous seminorm on C(@) (see Lemma 11), we conclude that @,, is tempered.
Moreover, (see §25),

0.0 S b (€€
ely
and therefore ©, € L, (G).
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§ 38. Proof of Lemma 65
As before, let r denote the right-regular representation of G on Ly(@®).

LemmA 77. Suppose f + 0 is a J-finite function in Ly(G) such that the right translates of f,
under K, span a finite-dimensional space. Let V be the smallest closed subspace of Ly(G)
containing f, which is stable under r. Then

V= z U{:
¥

1<i<

where U, are mutually orthogonal closed subspaces of V, which are invariant and irreducible
under r.

Let 7 denote the restriction of » on V. For any finite subset F of £, define E, as in
§25 and put V;=E_ V. It is clear that F can be so chosen that f€ V. Define V= as in
Lemma 4. We know from [4 (q), Lemma 33] that f is analytic and therefore, by Theorem 1,
f=fxa for some «€C,*(G). This shows (Lemma 2) that f€ V>, Moreover, a simple argu-
ment (see § 8) shows that W =n()f is dense in V. Finally we conclude from [4 (a}, Theorem

1] that
W= > EW

beér

and Wy=E,W has finite dimension. Since W is dense in V,, it follows that W= V,.

Let U+ {0} be any closed subspace of V stable under n. We claim that ErU = {0}.
For otherwise suppose E,U={0}. Let U’ denote the orthogonal complement of U in V.
Since 7 is unitary, U’ is also stable under = and f€ V< U’. But this implies that V< U’
and therefore U ={0}, contradicting our hypothesis.

Let U, (1<i<p) be a finite set of mutunally orthogonal, closed, nonzero subspaces of V,
which are stable under z. Then since U;N Vy=+ {0}, we conclude that p<dim Vp<oo.
Therefore the required result follows immediately by assuming that p has the largest
possible value.

Now we come to the proof of Lemma 65. We may assume that /= 0. Define V and U,
(1<¢<p) as in Lemma 77 and put f,= E,f, where E,is the orthogonal projection of ¥ on U,.
It is obvious that f; is 3-finite as well as K-finite. Hence by [4 (q), Lemma 33], it is analytic.
Moreover, f=f,+...+f,. Therefore it would be sufficient to prove Lemma 65 for each f,.
Thus we may assume that V is irreducible under s so that = is square-integrable. By
Theorem 1, there exists an element a €C, (@) such that f=axf. Since f is K-finite, we

can obviously assume that « is also K-finite. But then
flx) = (a, n(x) ) = (Ea, n(x)f) (x€G)
where & is defined as in Lemma 69 and E is the orthogonal projection of Ly(@) on V. The

required inequality is now an immediate consequence of Theorem 10 and Lemma 76.
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§ 39. The existence of the discrete series

Henceforward we assume, for convenience, that G is acceptable.

THEHEOREM 13. G has a discrete series if and only if rank G =rank K.

Suppose £;+ 0. Fix w€ €, and choose D € Ex such that =0, ;0. Then it follows
from Lemma 76 and Corollary 2 of Lemma 65 that rank @ =rank K.

Conversely suppose rank @ =rank K. Fix A€L’ and choose D€ £ such that @, ,+0.
Then by Theorem 12, the function f=0), ; satisfies the hypotheses of Lemma 77. Let =z,

denote the restriction of # on U, (1 <7< p), in the notation of Lemma 77. Then 7, is square-
integrable and therefore £,+ 4.

§ 40. The characters of the discrete series

In view of Theorem 13, we shall now assume that rank G'=rank K and use the
notation of §§ 36, 37.
For any A€L’, let £,(A) denote the set of all w€ &, such that y,=yx,. The following

result is an immediate consequence of Lemmas 74 and 76.

LemMaA 78. E;= U e E4(A). Moreover, for any w€ E;(A) (AEL'), there exist uhique
complex numbers c,(w) (s€ W(A)) such that ¢, (w)=cw) (€Wg) and

Qu=[Wel™ 2 &(s)e,(w) O

seW@)

For any w € &, define the analytic function @, on B (see § 36) by

D, (0)=A(b)O,(b) (bEB")
and put F.(b)=A(b) f f®°)dx (bEB')
G

for f€C(@) as in §18, Put Gz=(B’')® and let db denote the normalized Haar measure

on B. Then G is open in G and (see Lemma 91)
f a(@)de=(-1)" [Wc]'lf AF,db (x€C:*(Gg),
G B

where m =} dim G/B.

LemMa 79. Let f be a B-finite function in C(Q). Then

Qul(f) = (~ 1" [We]™ fBF,mb (@EEy).
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This follows immediately from Lemmas 64 and 76 and the corollary of Theorem 7.

Lemma 80. Let n be a square-integrable representation of G on  and w its class in &;.
Fig two K-finite elements ¢, €S and put

fx)= (¢, n(x)y) (z€G).
Then Fr=d(w) (¢, v) D,
on B'.

First observe that f€ C(G) from Corollary 1 of Lemma 65 and therefore F, is defined.

Now fix € C,”(@) and consider the operator
(o) = foc(x) (@) de.
Then @, (x) = br () and the argument of [4 (d), 576] shows that
[ 32] stntwrty = | a9 = do) 6 9)0u 01
Now suppose « €C,°(G). Then we claim that
ﬁ oy {(y*)| dee dy < oo
For we can choose «, € 0,*(Gg) such that ay>|«|. Then
fl aly) f(y") | da dy < f“b(y) [y") | de dy = [Wa]—lfBlFa., )] {IA(b)l LI f(b”)ldy} db.

Since | F,,| is bounded on B’ (Lemma 26), our assertion follows from Theorem 5.

Therefore we conclude from Fubini’s theorem that

L) () O ) = f aly)dy f H)de (a€ 0 (Ey).
But it is clear that

fa(y) dyff(yx) dz=(~- 1)'“[Wa]“fBF¢Ffdb

and ®w(cx)=fac@mdx=(—l)’"[WG]‘1f F,®,db.
B
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This shows that

[Fra-dwr g [Fowd @ecs@.

On the other hand, it is easy to verify (see [4 (o), § 20]) that there exists a ¢ function
% on (5 such that

A®) u(b%) = Fy(b) — d(w)  (d, p) D, (b) (BEB’, z€G).

Then if follows from the above result that
fowdx =0 (x€C,~(G3))

and therefore # =0. This implies the assertion of the lemma.

For any w€ £,, we define a subspace §),, of Ly(@) as follows. Fix z€w and let U be
the representation space of 7. Then §, is the smallest closed subspace of Ly(G) containing
all functions f of the form

f@) = (¢, n(x)y) (2€G),

where ¢, € U. It is clear that this definition is independent of the particular choice of
7 and §, is stable under both left and right translations of G. Put C,(&)=9,0 C(G).
Then it follows from Lemma 11 that C,(G) is closed in C(G).

TueorEM 14. C,(G) is dense in §,, and

F,=d(w)f(1)2,
for f€C(G) and w€ E,.
Choose an orthonormal base y, (1€J) for U as in § 25 so that y, (1€J;) is a base for

Uy (DE Eg) and put
fulx) = (i, w(2)p;) (z€G).

Then it follows from Corollary 1 of Lemma 65 that f,,€ C,(&). This shows that C,(G) is
dense in §,,.
Let V be the set of all f€ C,(G) such that

F;=d(w){(1)D,.

Then it is clear that ¥ is a closed subspace (}) of C,(&). Hence it would be enough to show
that V is dense in C,(G).

(1) The topology of Cy(@) is the one inherited from C).
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Fix f,€C,(@). Then in view of Lemma 16, it would be enough to prove that
[=o, % foxos, €V for by, D,€ Ex. Since Jy is a finite set for every D€ E, it is clear that
f is a finite linear combination of f; (¢, j €J) and therefore € V from Lemma 80. This proves
the theorem.

Remark. The above proof shows that f;; (¢, j€J) span a dense subspace of C,(G).
Moreover, f;(1}=1 for <¢€J.

For any w€ &, let w* denote the class contragredient to w. It is clear that @ =conj @,
as functions on @, and * is discrete whenever  is discrete.

Lemma 81. Let w, w’ be two elements in E,. Then

d(w) (1) if o' =w*,
0 otherwise,

0u(f) ={
for €C, (G).

We keep to the above notation. Then it follows easily from Lemma 19 that

0.(f)=2 f/fn dz= 2, (conj fu, f)
! i

for any K-finite function f in C,(&). Now conj ;€9 and if w*+w’, we conclude from
the Schur orthogonality relations [4 (d), Theorem 1] that §,« is orthogonal to §, and
therefore ®,(f) =0. Since K-finite functions are dense in C,, (@) by Lemma 16, we get the
required assertion in this case.

Now suppose w*=w" and f=conj f, (¢, j€J). Then it follows again from the Schur

orthogonality relations that
0u(f) = dw)(1).

But we have seen above that conj f;; (¢, j€J) span a dense subspace of C,+(G) and so the
agsertion of the lemma is now obvious.

As before, let db denote the normalized Haar measure of B.

COROLLARY 1.
[Wel if w=o',
0 otherwise.

f {(conj ®,)D,.db ={
B

Fix f€C,(G) such that f(1)=+0 (see the remark after Theorem 14) and put g =conj f.
Then

Ou (9)=(— l)m[Wc]'ILFaCDw' db
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from Lemma 79. But F,=(—1)" conj F;

and therefore our assertion follows from Theorem 14 and Lemma 81.

Define the number ¢>0 by the relation (see Lemma 38)
Fi(1; w)=(~1) cf1) (f€C(@)).

Then ¢ has the same value as in Theorem 8 (see [4 (q), § 15]). Fix A€ L’ and for any
w € E4(A), define ¢,(w) (s € W(A)) as in Lemma 78. Then

Ou=_ > &s)0s(w)Ou,

seWg\ W(1)
where the sum is over a complete system of representatives.
COROLLARY 2. Let w€E,4(A). Then

d(w)= (-1 w@) > c(w)

seWd)

and > lestw)p=1.
seWg \W(1)

We know from Theorem 14 that
(=1)%f(1) = F(1; w) = d(w) (1)@ (L; =) (f€Cu(G)),

and the first relation is an immediate consequence of this fact. The second follows by
putting w’=w in Corollary 1 above.

Let F(4) (AEL’) be the space of all tempered and invariant distributions @ on @ such
that 20 =yx,(2)0(z€3).

THEOREM 15. Fix AEL'. Then O, (w € (X)) form a base for T(A) over € and
[E4A)] = dim T(A) = [W(A)][Wel

Moreover, > dw)O,=(—1)Yc ! > w(sd) Oy,

meed(ﬂ.) seW@)
where ¢ and q have the same meaning as in Theorem 8.
We know from Lemma 76 that 0, (w € £,(4)) lie in T(4) and from Lemma 81 that they

are linearly independent. Now fix ® € T(1). We have to show that @ is a linear combination
of O, (w€ E4(A)). Define analytic functions ® and @, on B as follows.

OB)=AD)OB) (bEB')
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and Dy=D— > c(w)D,,
wee, (B
where c(w) = [WG]“IJ ® conj D, db.
B

Then it is clear from Corollary 1 of Lemma 81 that @, is orthogonal to @, (w € £,(4)) in

Ly(B). Put
@0 = @ - Z(},) C((A)) @w.

WEE 4
We claim that &,=0. In view of Lemma 73, it would be encugh to verify that @,(f)=0
for any K-finite function € C_,(G). We may obviously assume that f+0. Define ¥ and
U, (1<i<p) as in Lemma 77 and let E; denote the orthogonal projection of V on U,.
Put f,=E;f (1<i<p). Then it follows from Corollary 1 of Lemma 65 that f,€ C_,(G).

Therefore since

®o(f) =1<‘z<q®o(fz),

it would be enough to consider the case when V is irreducible under 7.
Let n denote the restriction of r on ¥V and  the class in £, such that 7€w* Then

w € E,4(2) and, as we have seen in § 38, there exists an element « € C,®(G) such that
f@) = («, n(@)f) = (B, n(x)f) (x€G).

(Here E denotes the orthogonal projection of L,(G) on V.) This shows that f€ C,«(G). On
the other hand, it follows from Lemma 64 and the corollary of Theorem 7, that

O (f) = (= 1)"[We] ™ fBF,cpodb.

Therefore we conclude from Theorem 14 and the definition of @, that @4(f)=0.
Let sy, 8y, ..., 5, be a complete set of representatives of W \W(4) in W(1). Then by
Lemma 74, the distributions Og; (1 <:<1) also form a base for T(A) and therefore

[WAI[Wel ' =p=dim T(R)=[E,(A)].
Now put 0= > dw)0O,—(—1)¥? > w(si)0,.

wesd(l) seWh

We have to show that ®=0. In view of Lemma 73, it would be enough to verify that
®(f)=0 for any K-finite function f€ C_,(@). By the argument given above, we are reduced
to the case when f€( «(G) for some w€ E,A). But then O(f)=0 from Lemma 81 and
Corollary 1 of Lemma 69. This completes the proof of Theorem 15.
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§ 41. Explicit determination of these characters

Put g(A) =sign w(d) for AEL’.

THEEOREM 16.(Y) For any AEL’, there exists a unique element w(A)€EE,; such that
O, =(—1)%&(1) @,. The mapping A—>w(A) of L' into &, is surjective and
d(w@d) = [ Wel|w(d)|

in the notation of Theorem 15. Finally w(A) =w(As) (A4, A,€L’), if and only if Ay, A, are conju-
gate under W.

We begin by proving the surjectivity first. Fix w € &;. Then by Lemma 78, @, is a
finite linear combination of the characters of B. Introduce an order on {§ and let 4 be the
highest element in L such that

Co =f @, conj &;db+0.
B

(As before, £, has the same meaning as in [4 (p), § 24].) Then A€L’.
Lemma 82. @,=(—1)%(4)0,.

For the proof of this lemma, we may, by going over to a finite covering group of &,
assume that K is also acceptable (see [4 (0), § 18]). Let P be the set of all positive roots
of (g, b) and P,, P. respectively the sets of all compact and singular rootsin P (see [4 (n),
§ 4]). Put

e=%12« 00=3%2a 0+=% 2
aeP o€ Py

a€P

Then g, gy, 0+ are all in L and o =g,+ g+. Hence we can define two analytic functions
A, and A, as follows.

Aglexp H)= ] (P2~ ™) A,(exp H)= [] (™2 —¢ ™) (HeD),

aePy aeP
so that A=Ay A,. Tt is clear that

Ay (B°)=¢(s) Ay (D), A (b°)=A,(b) (bEB)
for sE€EW,.

Let db and dk denote the normalized Haar measures on B and K respectively. Fix
a function « € C,*°(Q) such that « is invariant under right translations by K and

foc(x) dz=1.

(1) Cf. [4(c), p. 40] and [4(d), Theorem 4].
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For any f€C,*(B’), we can define fz€ C,*(Gp) (see [4 (0), § 20]) by
o6) =a@) AB)* T ele) ) (@€, BEB).

Similarly define gz € C*(K) by

gs(¥)=AL(B) Ag(0)" 2 &(s)f(b°) (kEK, BER')

seWg
Fix n€w and let U be the representation space of 7. Define Ey and Uy (D € E¢) as usual
and plit
' & (z)=tr (Bymt(z) By) (x€Q).

Then ¢y (k) =n(b) Xy (k) (k€ K), where n(D) is a nonnegative integer and s is the character
of . Moreover, as we have seen in § 25, there exists an integer N > 1 such that
n(d) SNA®) (b€ Eg).
Put m=1} dim G/B, my=1% dim K/B and
Tp= fxgﬁ (k) m(k)dk, n(fs)= J‘Gf,g () m(x)dx (BEC,®(B)).

Then m=m,+ q and it is clear that
m{fe) = (=" [Wel™ BA(b)sgm &(s) B(°) dbfoa(x) n(b°) da

=(- 1)’"J‘ A(b) B(d) dbf o(x) 7t (b%) dx
B G
since a(zk) = o(x) (k€ K), Similarly

Te= (- 1)'"°[WG]‘lf Ag(b)*gs (D) dbf i (b*) dlow= (— l)m'f A(b) B(d) dbf n(b") dk.
B JE B K
Therefore if follows that

(fe)=(— 1)“f () (@) Tp 7o (27") da,

[e]
Now, by [4 (¢), Lemma 24], the operator T's is summable and therefore it follows easily
that

Ou(fs) =tr (fg)=(—1)" tr Tp=(— 1)“b§xn(b)fxgﬂ (k) Xp (k) dk.

On the other hand, O,(fs) = f@w fadx=(— 1)”'f D, 3db.
B

7— 662900, Acta mathematica. 116. Imprimé le 14 juin 1966.
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Therefore we have obtained the following result.

LEMMA 83. Put 15(b) = Ag(b) X5(b) (D EEx, bEB). Then

L@wﬂdb =3 n(b)fBA+ﬂ 7 db

beéx
for BEC . ®(B'), the series being absolutely convergent.

Define & and Q as in the proof of Lemma 5 and let 3x denote the center of &. Then
Q€Zg. Let u be the image of Q in &(b,) under the canonical isomorphism (see [4 (e),
Lemma 19]) of 3, into &(b,). Then it follows from [4 (e), Theorem 2] that

ump=c(®)ny (D€Eg)

in the notation of Lemma 6. Hence

fﬁmdb = c(b)"’fu*"ﬂ “mpdb (BECT(B)),

where u* is the adjoint of the differential operator » and p any positive integer. It follows
from Weyl’s formula for y;, that |ny] <[W]. Therefore

2 n(d)

beéx

fﬂm db\ SN[Welsup [u*?B| 2 ¢(d)"?d(d),
befx
and so we conclude from Lemma 7 that there exists a distribution S, on B such that

8of)= 5100 pmav (oo,

Put S=d,—-A,8,.

Then it follows from Lemma 83 that S=0 on B’. Therefore since B is compact, we can
choose (see [4 (m), Lemma 21]) an integer p >0 such that A?S=0. This means that

f(Dw A’pdb= 3 n(b)fﬁA"Amb db
beéx

for p€C=®(B). Now put f=conj &,,,.. Then it is clear that the left side is equal to c,.

Moreover, we know from Weyl’s formula that A°A s is a finite linear combination of

characters of B with coefficients in Z. Therefore, since #(b) is an integer, we conclude that

¢y €Z. Since ¢y+ 0, this shows that |c,)| >1.
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On the other hand, let s,=1, s,, ..., s, be a complete set of representatives in W(4)
for W \W(J). Then, by Lemma 78 there exist unique complex numbers ¢, such that

®w = Z 8(81) Cy ®s‘l-

I<igr

It is obvious that ¢; = ¢, and we know from Corollary 2 of Lemma 81 that

Z IC,'|2=1.

1<isr

Therefore ¢, =¢y= 11 and ¢;=0 for ¢>>2. This shows that
®a) =Cq @,\.

By Theorem 15, there exist exactly r distinct elements w;=w, ws, ..., w, in E,(4).
For each 4, we can, by the above proof, choose s,€ W(1) (s;=1) and a number ¢;=+1

such that
@w‘=ci®s‘;, (I<i<r).

Then it follows from the linear independence of ©,, (Lemma 81) that sy, s, ..., s, form a

complete system of representatives of W\ W(4). Therefore
2 d(w;) O, = (—1)%¢™ [W¢] iZci w(8;4) O,
from Theorem 15 and this shows that
o) =(—10c (Wl |w@ |eielsid) (1<i<r).
But d(w;) >0 and so we conclude that ¢;=(—1)%(s;1) and
d(w;) = [Wl|m(A)|.

Hence in particular ¢y,=c, =(—1)%(4) and this proves Lemma 82.

We now come to Theorem 16. Since a class w € £ is completely determined by its charac-
ter (see [4 (b), p. 250]), the uniqueness of w(d) (A€L’) is obvious. Moreover since @, =
£(s) 0, (s€W;) from the definition of @, (see [4 (p), Theorem 3]), it follows from the linear
independence of the characters, that w(,) =w(4,) (4;, A,€L") if and only if 4,, 4, are conju-
gate under W. Now fix A€L’ and let r =dim T (A). Then by Theorem 15, there are exactly
r distinet elements w,, w,, ..., ©, in E;(1). Moreover, from the above proof, we can choose a.

complete set of representatives (s, 8y, ..., 8,) for Ws\W(A) such that

Gwi =(—1)%(s;A) @s‘)( (I<e<r).
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We may assume that s, € W, and therefore
0,, = (—1)%(8,4) O3 = (—1)%(2) O

This shows that w, =w(A). We have already seen that d(w,) =c-[W]|w(4)| and therefore
the proof of Theorem 16 is now complete.
Theorem 16 shows that
=12 w(A)0r= > d(w)00
Ael meEy

and we know (see [4 (d), § 5]) that this distribution represents the contribution of the discrete

series to the Plancherel formula of G.

Part IV. Some inequalities and their consequences
§ 42. Proof of the inequalities

Let us use the notation of § 14 and put a,=§Np, ny=mn5 o, =an [m, m], =fnm,
m,=nNm and m, =¥, +a, +1n,. We denote the analytic subgroup of G corresponding to a
subalgebra of g by the corresponding capital latin letter e.g. 4, and N correspond to
as and 1 respectively. Then @=KAN and M, =K, A, N, are the Iwasawa decompositions
of G and M, respectively. For any x€G, let () and H(z) denote the unique elements
k€K and H €q respectively, such that =k exp H-n (n€N). Let H(x) denote the compo-
nent of H(x) in a; (¢=1, 2) so that H(x)=H,(z)+ Hy(x).

We fix orders in the duals of the real vector spaces g, aand h*=HNnp+(—1)thnf
and assume that they are compatible for the pairs (a, a,) and (§*, a,). Let P denote the set
of positive roots of (g, §)) and X the set of positive roots of (g, a). Let P; and X, be the sets
of those elements in P and X respectively, whose restrictions on a, are zero. We denote by
P, and X, the complements of P; and X, in P and X respectively.

Put M,,=exp (m;Np) so that G=KM,,A,N, (see [4 (g), Lemma 11]). Fix z€G
and let x=kman (k€K, m€M,y, a€A,, n€N,). Then k, m, a, n are uniquely determined.
Put u(x)=m. Since M, and A4, commute, it is easy to verify that

#(x) = kx(m), Hy(x)=loga, H,(x)=H(m).

Define g and E,=E, as in § 14. Since m normalizes 1,, it is clear that tr (ad X),, =0

for X €[m, m]. Therefore since =1, +1,, we conclude that

o(H)=}tr(ad Hy,, (HEay).
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LeMwmaA 84. Let dy k denote the normalized Haar measure on K,. Then
f e—e(H(xk)) dl k= e—e(ﬁh(ﬂt))E1 (,u(w)) (x € G).
K

Since K, normalizes N,, it is easy to see that
H(wk) = H,(xk) + Hy(ak) = H(u(xk)) + Hy(x) = H(p(z) k) + Hy(x) (E€K,).

Hence our assertion follows from the fact (see {4 (q), Lemma 31]) that
B (m)= f e CHMN gk (m€M,).
K

As usual let dk denote the normalized Haar measure on K. Then the following re-

sult is an immediate consequence of Lemma 84 and {4 (q), Lemma 31].

COROLLARY.

fxe—gm,(xk»gl(ﬂ(xk)) dk=E(x) (r€G).

Put N =0(N), N;=6(N,) (i=1, 2) and

pH)= inzf «(H) (HEeaq).
LemMmA 85. o(H,y(7)) >0 and o(H()) >0 for REN. Moreover, if a €4, and B(log a) >0,
we have '
exp o(Hy(%) <1-+exp { —§f(log a) +o(Hy(#%))} (7€N)
and exp o(H(7%) <1+exp { —f(log ) +o(H(@)} (EN,).

Let Z be the center of G. Then, for the purpose of this lemma, we can obviously replace
G by G/Z. Hence we may agree to subscribe to the assumptions and conventions of [4 (j),
p. 244].

For any linear function 4 on Y, define H, €}). as usual by the condition
tr (ad H ad H)) =A(H) (HEY,).

Also put (4, 4,> =4,(H,,) for two such functions 4, A,. Let J» denote the set of all 1 such
that 2{4, «>/{e, &) is a nonnegative integer for every o €P. Then for every A€J,, we have
an irreducible representation 7, of ¢ on a finite-dimensional (complex) Hilbert space
V, with the highest weight 4 (with respect to §j). We denote the corresponding representa-
tion of & also by x;. Let v, denote a unit vector in ¥, belonging to the highest weight A.
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LeMMA 86. Fix A€Jp and let U be the subspace consisting of all vEV, such that
m(Hyv=MH)v for all HE€q, Then U is invariant and trreducible under st;(m). Moreover,
dim U =1 if and only if {A, &) =0 for x€P;.

We write V and & for V, and s, respectively. It is clear that

g=0m,)+tm+n,
and therefore ® = 6(9L,) MN,,

where (1) M =S(m,) and N, =S((1,).).
For any o« €P define X,, X_, as in [4 (n), § 4] and put

[,=CH,+CX,+CX_,.
Fix v+ 0 in U. Then if x€P,, it is clear that
a(HX )u=(AH)+oa(H)n(X,)u (HEaqy).

Since A is the highest weight of 7, we conclude from the definition of our order, that

7(X,)u=0. Hence
V =n(®)u = m(0(NR:) M) u.

But then it is obvious from the definition of U that U=a(IN)». This proves that U is
invariant and irreducible under z(m).

Now fix «€P and observe that n(X,)v,=0. Hence by considering the subalgebra
I,, it follows (see [4 (m), Lemma 25]) that n(X_,)v, =0 if and only if <A, «) =0. On the
other hand, m’ =[m, m] is clearly generated, as a Lie algebra, by 6(1n,) +1,. Hence z(m’) v, =
{0} if and only if (A, «>=0 for all x€P,. Since U is irreducible under s(m), the second

assertion of the lemma is now obvious

LeEMMa 87. Fiz A€J,. Then A(Hy(7))>0 and
exp A(Hy(i%)) < 1 +exp { —}f(log a) + A(H (%))}
for REN and a € A, provided f(log a)>0.

Put A=A —6A so that
<l’ OC> = <A’ “>—<A’ 0“> (‘ZEP)

Obviously this is zero if « €P,. On the other hand, —0x€P, whenever o €P, and therefore,

() We use here the notation of [4 (m), p. 280].
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since (1) |Ox|2=|a|? it follows that A€Jp. Put w=n,, V=V,, v=v, and observe that
A=2Aonhn p=a,and A=0on hn¥{. Hence dim U=1 and #(m') U ={0} from Lemma 86.
On the other hand, it is easy to see that 1, N p < m’ so that n(m)v =v for m € M,y,. Therefore

it is obvious that
| () U| = M) = AU (ye @),

Let E denote the orthogonal projection of ¥ on U. Then if X €6(n,), it is obvious that
En(X")v=0 for r=1. Moreover, O(n;)<m’ and therefore n(0(11,))»={0}. On the other
hand, 1, is an ideal in n and therefore N=N,N,. Hence En(@i)v=v and this shows
that |n(#)v| > |v]| =1 (Z€N). Hence

A(Hy(#@)>0 (REN).

Put E'=1—F and let || T|| denote the Hilbert—Schmidt norm of a linear transforma-
tion 7' in V. Since U =0, it is clear that

exp 4 A(Hy(7%) = (%) B||2= || Bn(®) B||2 + | B'n(7% E||2 = 1 + || B'n(2) E|?

since En(7*)E=E as we saw above. On the other hand, we have seen during the proof
of Lemma 86 that \

V =am(0(N) M) v = m(0(N,)) v.
Therefore every weight of z, other than 4, is of the form 1 —o¢ with

o= &,
I<ir

0 €EP, and r>1. Let A=1,>2;>...4, be all the weights of 7 and V; the subspace of V
consisting of all vectors belonging to the weight A, (0 <¢<p). Since §=0(Y), V is the ortho-
gonal sum of V,; (0<i<p). Put ¢;=1—1; and let E, denote the orthogonal projection
of V on V,. Then it is clear that E'=E, +...+ E, and therefore

Eni®)E~= > ¢ %% E n(n)E.

1<i<p

On the other hand, since g (log @)= 0, it is obvious that

o;(log a) > inf «(log a)=p(log a).
o€ Py
Therefore
| B’ n(a®) E ||? < e~2P0E | B n(q) E|*

1<i<

3

< 208D | 7(53) 2 = exp { — 2 B(log a) + 4 A(Hy(i))},

and the assertion of the lemma is now obvious.

(1) As usual, ||% =0, o).
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Let 7 be an irreducible finite-dimensional representation of G on ¥V and A the highest
weight of zz with respect to a. Let U be the subspace of those vectors €V for which
a(Hjyu=A(H)u (H€q,). We denote by E the orthogonal projection of V on U.

LemmaA 88, Fix a€A, such that f(log a)=>0. Then
exp A(H(7%) < 1+exp {—f(log a) + A(H(7))}
and (@) E|| <|| B|| +e# % @||n(%) B||
for #€N,. Moreover, A(H(7))>0 for n€N.

Let A=A;>A,>...>A, be all the weights of = with respect to a. It follows from
the definition of our orders that there exists an integer ¢ 1 such that ¢;=A — A, is zero
on g, for ¢<¢q while ¢;+0 on q, for :>¢. Let E, denote the orthogonal projection of ¥
on the space V, consisting of all vectors belonging to the Weight A, Then E=E,+...+ E,
and

E=1-E= 3 E,.

a<i<p

Fix ¢>gq. Then it is clear (see the proof of Lemma 86) that

0= Z r(“) o,
el

where r(a) are nonnegative integers and r(ax)>1 for some ¢ €%,. Hence if v is a unit vector

in V,, it is clear that
| 2@ oP=1+|E (@) ot <1+ e 208D | gig)p|? (REN,)
and from this the first inequality follows immediately. Moreover,
(@) B|* = | B2+ | B’ n(a®) B|* <|| E||* + e7*/%% | B’ n(7) B ||
<|B]*+er0E | n(@) B (7€)

and this gives the second inequality. The last statement of Lemma 88 has already been
proved in [4 (j), Lemma 43].
Now if we take A=12X,.,a in Lemma 87, and choose 7, in Lemma 88, such that its

highest weight, with respect to qa, is g, then we get Lemma 85 immediately. (%)

(*) The second inequality of Lemma 88 has been proved for later applications.
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§ 43. Applications of the above inequalities

Define the number d >0 as in § 14 and observe that g(H(%)) >0 for €N from Lemma
85. Let d,7 denote the Haar measure on N, (i=1, 2).

LeMmA 89.(Y) For any £>0,

f_ e—e(H(Z»{l + o(H (%))} @9 d, i1 < oo.

Ny
We can choose ¢>0 (see [4 (j), Theorem 3]) such that
18D E(g)<¢(l +6(a))® (a€A).

On the other hand, by [4 (j), Cor. 2, p. 289],

ee(mga)g(a):f_exp {—Q(H(ﬁ“))—Q(H(ﬁ))} dii (a€A4),

N

where dii is the (suitably normalized) Haar measure on N. We may assume that da=

dyfy-dy iy for =myn, (M, €N, i=1, 2). Now
7l =figily Efigk™ exp H(#,) Ny,
where k=x(7,)"1€ K,. Since M normalizes 0(n,), we get
H(#) = H(~y*) + H(@,).

We may normalize d, %, in such a way (see [4 (j), Lemma 44]) that

f e_“(”(’_“”dlﬁl =1.
N,
Then, since d, 7i,*/d, i, =1 (k€ K,) and 4, commutes with ¥,, we conclude that

—

N,

exp { —o(H(#%) — o(H(7))} dy A< c(l + 0(a))" (a€4,).

Put a,=exp tH (tER) where H is an element in a, such that
b=p(H)>0.
Then if a=a, (:=0), it follows from Lemma 85 that

exp o(H() <1+exp {o(H(7)) ~bt} (2€N,)
and therefore

(1) Cf. [4 (j), Lemma 45].
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f . e CHM (] 4 H@0 -1, 5 < o(1 + o(ay))? <c' (L +8)*
for £>0. Here ¢’ is a positive constant independent of £. Let N, , denote the set of all
€N, with o(H(%))<2" and put {=2"b"1. Then

_ ee(H(n))—bt <1
for 7 € N, , and therefore

f_ e EM 7 <2 (1+b7127)! <27 (r>0),
N,

where ¢, is a positive number independent of r. Let N,(r) denote the complement of N, ,_,
in N, , (r>1). Then

f L S ED] 4 o(H(@)} 9V dy @l Sy 270TTTR@HO = 9470 (p 2],

Natr)

Since N, , is compact [4 (j), Lemma 40], we get the required result from the convergence
of the series >, 27"

LeEMMA 90. Put i=0(n"1) for n€N. Then there exists a number ¢>1 such that
1 +max (o(k), o(H(#))) < c(1 +a(hn))
and E(hn) < c(1 +o(hn))? exp { —o(log k) —o(H (7))}
for h€A and n€N.

It is clear that, for the proof of this lemma, we may assume, as in § 42, that the con-
ditions of [4 (j), p- 244] hold. Fix an irreducible finite-dimensional representation 7 of G
with the highest weight o with respect to a. Define A™ as in § 14. Then G=KA*K and
therefore hn ="k, h'k, (k,, k,€K; b’ € A*). Then

7ih = 0(hn)~t = kyh'k, 71
and therefore ||7(hn)| = ||w(k’)|| = ||=(7h)||. Hence if p is the degree of 7, we get
e2q(logh') < ||7z(h') "2 <p62g(los h').
Let v be the Weyl group of g with respect to a (see [4 (j), p. 249]). Fix s€iv and choose
k€K such that Ad (k) H =sH for all H€qa. Then (see [1, § 7.4]) #* =4, n, where
n, €NNN, n,€eNnNE
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Hence [l || = |le(@he)|| = || (g hons) ||
where n," = (h°)~nyh°. Therefore

l|7e(h) |2 = | (g 1) [P > 2edos 2,

‘where y is a unit vector belonging to the highest weight ¢. This shows that

o(log &) + } log p > max o(log k) > | o(log %) |
SEM

{see [4 (j), p. 281]). On the other hand, we can obviously choose ¢;, ¢;>0 such that
c,a(hy) <p(log h,) <cyo(h,) (R ,EAT).

Then ¢, 0(h') + % log p > max g(log #°) = ¢, o(h).
S€EW

Since g(h’) =o(hn), this shows that we can choose ¢3 >0 such that
cs(l +o(hn)) = 1+o(k) (hE€EA, nEN).
Moreover, we know [4 (k), Lemma 42] that

o(log ') > g(log k) +o(H(7)).
Since o(log &')+ 4 log p = —o(log h)
by our result above, we conclude that

20(log #') +1 log p = o(H(7)).
Hence we can choose ¢, >0 such that

1+p(H(n)) <c4(l +a(hn)) (R€A, n€EN).

Now select ¢;> 0 such that

- B (hy) Scge (14 g(hy))? (R €EAY).
en

E(hn)=E(R') <cse ™) (14 o(h'))* < c5 (1 + o(hn))? exp { — o(log k) — o(H(7))}.

This proves Lemma 90.
Put g;(H)=tr(ad H),, (HE€aqa, 1=1, 2) so that p=g, + .
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CoroLLARY 1. Suppose ry, r, are two numbers >0 and r=r;+r,. Then

21T (hn) (14 o(hn)) D S TTle @8 M (] + g(h)) ™" e™eHM (1 4+ o(H (@)™

for h€A and n€EN.

For, in the above notation, we have

E(hn) (1+o(hn)) TP =2 (1) (1 + o(h")) TP <ce 2" (1 + (') ".

But (1+o@®) "<l +a®) ™ (1+pHT))™
and o(log &') = p{log k) + Q(H (B)).

Hence our assertion is obvious.

Let dyn denote the Haar measure on N,.

COoROLLARY 2. Let Q be a compact set in G. Then if r>2d, the integral

JN S (zn) (L +o(zn)) "dyn
converges uniformly for t€Q. ‘
Let x=kyhn, (k,€K, h€A, ny€N). Then E(xn)=ZE(kn,n) and o(xn)=oc(hnyn). Now
let 7, =7,7, where @,€EN, (i=1, 2). Then & and %, remain bounded (}) and
H(B(ngn)) = H(iimyity) = H(iiiph) + H(iy) = H(@s)) + H(F,) (n€N,),

where k=x(7i,)"1€ K,. Fix a compact set U in N, such that 7, stays within U. Since r —d >d,
we can, by Lemma 89, choose, for a given £>0, a compact set V, in N, such that

f e DL+ (H(R)} T dyi <,
ch
where °V, denotes the complement of V, in N,. Put V=V 5 U-1. Thenif #€ °V, it is
clear that (##7,)*€°V,. Moreover, since % remains bounded, we can choose ¢, such that

¢l 7?8 <, Then we conclude from Corollary 1 above that
E (hn) (L+ o(hn)) " <c; e *FM (1+ o(H(@))) "¢ (n€N,).

We may obviously assume that d,n=d,7 under the mapping n—>n. Therefore since
o(H (7)) = 0 by Lemma 85, it is clear that

(!) This means that they stay within compact sets as x varies in Q.
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f E(hnon)(l+0(}mo'n))_’d2n<c1f e‘e‘H(;’”{l+Q(H(ﬁ))}"+dd2ﬁ<cle.
cv

CVo

This proves our assertion.

§ 44. Proof of Lemma 21

We now come to the proof of Lemma 21. Put 4,+=exp a,*, a;+ being the set of all
He€aq, where a(H)>0 (2€X,). Then M, =K, A,*K, and M =M, 4,=K,(4," A,)K,. There-
fore it is obviously enough to consider the case when m=~h="h,h, (h,€A,*, hy€A,). Put
ry=1" and ro=d+r—7'. Then it follows from Lemma 89 and Corollary 1 of Lemma 90 that

¢@0EM | Bihn) (14 o(hn) 2P dyn <cy e 2P (1 +g(h))™",
. 2 1

where ¢, is a positive number independent of k. Since
IEME (h) = uIEM T (h)>1

from [4 (j), Lemma 36], the first statement of Lemma 21 is now obvious. The second is an

immediate consequence of Lemma 90 and the relation M =K, AK,.

§ 45. Appendix

We now use the notation of §§ 27, 28. Put g,(H)=} tr (ad H),, (HE€aqy, i=1, 2) s0
that p=p; +0,. Let M, and 4, be the analytic subgroups of G corresponding to m, =
f-+pn[m, m] and a,={ respectively. Then M =M, 4, and d(ma)=e?"** (m€M,, a€4,).
Hence it follows without difficulty that

d-1Xod=X' (X€m),

where X X' is the isomorphism of m into It given by H'=H +g(H), Y'=Y (HE],
Y €n1,). This gives rise to an automorphism » —v’ of IR which preserves 3;.
Now let H€ay*. Then

d(exp H)ZE (exp H) = e E (H) = e @ ™ E (H).

The assertion of Lemma 47 now follows immediately if we apply [4 (j), Theorem 3] and
observe [4 (j), Lemma 36] that

1< ™ E, (exp H).
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Since g=~0(my) +m+1,, it is clear that
& =6(N,) MN,,
where N, =G(1,,). We know (see the proof of the corollary of Lemma 13 of {4 (q)]) that
z—ul2) €GNy (2€3).
Put w=2—py(z)’. Then u commutes with | and since
= MR, +0(1,) G,

it is obvious that €0 (1,) @n,. This is the result needed in § 28.

Now suppose g and G are defined as in § 7. Let 4 be a Cartan subgroup of &, 4, the
center of A and A4 the normalizer of 4 in G. Put W,=A4/A4,. Then 4, is open in 4 and
W, is a finite group (see [4 (0), § 20]). We denote by z —z* the natural projection of G
on *=G[A,.

Let §) be the Lie algebra of 4 and dz, da the Haar measures on ¢ and 4 respectively.
Put G,=(4")¢ as usual (see [4 (o), § 20]).

LEmmA 91, Let dx* be the tnvariant measure on G* such that

fo(x) de = fg‘dx* fA.f(xa) da (f€C,(Q)).

Then fa f(x)dx=[WA]‘1f v(a)alaj~ fa™)ydz* (f€C(GL))
y 4 G

in the notation of [4 (0), § 22], where
v(a) = |det (Ad (a71) — D)y

Let ¢ denote the mapping (z*, @) >a*" of G* X A’ onto G,. Then we know (see [4 (o),
§ 20]) that ¢ is regular and ¢-Y(x) (x€G,) contains exactly [W ] points in G* X 4’. Hence
our result follows from a simple computation which gives the functional determinant of

this mapping.
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