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1. Introduction 

Let  ~ = (B, X,  ~) denote an  oriented vector  bundle(1) of dimension n, X being its 

base space, B its total  space and ~ :  B - + X  the projection. The obstruct ion to nonzero cross- 

sections s:X-->B is a distinguished element Z in Hn(X), the n-dimensional singular integral 

cohomology of X, known as the Euler class of ~. We begin by  briefly recollecting how g 

m a y  be defined. Let  K denote the singular simplicial complex of X,  K* the singular sim- 

plicial complex of B, a n d K  ~ the subcomplex of K* whose ( n -  1)-skeleton lies in/~, the non- 

zero par t  of B. One now defines an integral coeycle e on K ~ in the following manner:(~) 

Let  A n denote the s tandard  n-simplex, A n its boundary ,  and let a :  A n ~ B  be a singular 

n-simplex in K ~ Then g o a : A  n -+X induces a bundle ~' = (B',  An, ~ ')  over A~, and one m a y  

conclude(a) f rom the fact  tha t  A n is contractible t ha t  ~' is equivalent  to a p roduc t  bundle. 

Consequently there exists a second projection p :  B'-+Vn,  where Vn denotes a s tandard  

oriented n-dimensional vector  space. Moreover, the map a : X  ~ B  induces a cross-section 

s :An B ,  and since a maps /~n to /~, p o s  maps /~n to l/n, the punc tured  vector  space. 

Since/~n and Vn are homotopical ly  equivalent  to the oriented ( n -  1)-sphere, the restric- 

t ion p o s l ~  n has a well-defined degree.(4) I t  is easy to verify tha t  this integer does no t  

depend on the choice of p,  and consequently the formula 

e((~) = degree (p o s I hn) (1.1) 

(*) This research was supported in part by the National Science Foundation under NSF G-23722. 
(x) For basic facts regarding vector bundles and characteristic classes we refer to J. Milnor [i0]. 
(2) For basic facts regarding singular homology we refer to Eilenberg and Steenrod [7]. 
(a) Steenrod [12], Theorem 11.6. 
(4) Cf. Eilenberg and Steenrod [7], p. 304. 
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defines e as an integral n-cochain on K ~ The fact that  e is actually a cocycle may be checked 

by an elementary calculation. One now observes that  the projection ~ : B  ~ X  induces a 

cochain homomorphism ~*:Cq(K)-~ Cq(K ~ and consequently a homomorphism 

g* :Hq(K) ~Hq(K~ 

where C q and H q denote the integral cochain and cohomology groups, respectively. But 

~t ~ turns out to be an isomorphism, a fact which requires for its verification a fairly ela- 

borate argument involving a construction due to Eilenberg.(1) The pertinent details will be 

described in Section 3, where a generalization of this result is to be proved. The Euler 

class Z of ~ is now defined by the formula zr r = [e], where [e] denotes the cohomology class 

of e in H"(K~ The fact that  Z obstructs nonzero cross-sections in ~ is an immediate con- 

sequence of the definition. For such a cross-section s:X-->.B induces a homomorphism 

s ~ :Hq(K ~ ~ H q ( K )  such that s~o~ ~ = 1. But since, by equation (1.1), e(a) =0  for all a lying 

entirely in/~, it follows that  s ~ annihilates [e]. Consequently i~ = s ~ o~ ~ (i~) = 0, proving that  

X obstructs. 

Now let $ be given as before and let J denote a set of local bundle maps of $, i.e., 

bundle maps u :$1 U-+S, where U is an open subset of X and $1 U the restriction of $ to U. 

A cross-section s : X  ~ B  will be called J-invariant  if, for all u E J ,  

~o(81U)=,o(*, 

where ~: U-+X and d: 7[:--1(U) ->B denote the maps of the base and total spaces, respec- 

tively, associated with u. I t  is obvious that if J contains only the identity map of ~, every 

cross-section will be J-invariant. The question, does ~ admit a nonzero cross.section, may 

consequently be generalized to read: given (~, J) ,  does ~ admit a nonzero J-invariant  cross- 

section. The present paper will investigate the possibility of extending the function Z 

to arbitrary pairs (~, J) so as to obtain a natural generalization of the classical obstruction 

theory as outlined above. To give precise sense to this proposal, the notion of a map from 

(~, J) to (~', J ' )  must be defined in an appropriate manner, i.e., it is requisite that  pairs 

(~, J) can be regarded as objects of a category extending the category of oriented vector 

bundles. To this end we shall employ a general procedure for extending local categories 

previously introduced by Y. H. Clifton and the author. These category-theoretic considera- 

tions, however, will be postponed until Section 5. For the present we shall adopt an entirely 

non-functorial point of view and restrict attention to a particular pair (~, J). 

(*) More precisely, the required construction is analogous to the procedure introduced by Eilen- 
berg in [5], Ch. VI. 
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I t  is now evident that  a natural concept of J-invariance may be defined for singular 

eoehains on X and B, and it is reasonable to conjecture that  these must be of basic signifi- 

cance to the problem at hand. A cochain :r in Cq(K) will be called J-invariant if, for every 

singular q-simplex a:Aq-~X and uEJ for which ~oa  is defined, ~r These 

eoehains obviously constitute a subcomplex of C*(K), which we denote by C*(K/J). An 
alternative approach would be to define a quotient K/J of the simplicial complex K as 

follows: The pairing of a with ~oa  for all a in K and uEJ defines a binary relation on K 

which in turn generates an equivalence relation ~ .  Since ~ preserves incidence, K induces 

a simplicial complex structure on the quotient K/J of K by ~ .  I t  is evident that  the inte- 

gral q-cochains on K/J can be identified with the J-invariant eochains in Cq(K), permitting 

us to use the symbol Cq(K/J) in both senses. In  a similar manner one may define a quotient 

K~ of K ~ and the resulting cochains Cq(K~ can be identified with a subset of Cq(K~ 

i.e., with the J-invariant coehains of Cq(K~ I t  is easy to verify that the cocyele e actually 

lies in Cn(K~ a circumstance which accounts for the naturality(1) of )C under bundle 

maps. Moreover, the projection ~:B~X  evidently induces a cochain homomorphism 

~* : Cq(K/J) -+Cq(K~ and consequently homomorphisms ~ : Hq(K/J) ~Hq(K~ of the 

corresponding cohomology groups. I t  appears, therefore, that  we are making some progress 

towards generalizing the definition of Z as outlined in the first paragraph. If  g~ turns out 

to be an isomorphism, an element :~ EHn(K/J) can be defined by the formula 

~(Z) =[e,K~ (1.2) 

where [e,K~ denotes the cohomology class of e with respect to the cochain complex 

Cq(K~ Moreover, since a nonzero J-invariant cross-section s :X~B clearly induces 

a coehain homomorphism s*:Cq(KO/J)~Cq(K/J), it follows as before that the new Z ob- 

structs in the desired sense. 

However, as may be expected, z~ is not necessarily an isomorphism, nor does equation 

(1.2) admit a unique solution for arbitrary J .  This deviation from the classical behavior, 

moreover, is due to the phenomenon of holonomy, to be considered in Section 2. For the 

present it suffices to observe that  the holonomy at a point x E X is defined as a group @x 

of linear automorphisms of the fiber Bx. When all these groups are trivial, one proves by 

an easy adaptation of the classical argument that  ~ is once more an isomorphism, as will 

be seen in Section 3. The case of nontrivial holonomy, on the other hand, poses consider- 

able difficulty. In  the present paper we shall consider this problem only in the lowest 

nontrivial dimension (i.e., n =2), where a rather complete solution has been obtained. Let 

(1) Cf. Milnor [10]. 
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us denote by  Bx the linear subspace of B z which is pointwise fixed under the transforma- 

tions of ~z, and let B* denote the point set union of all B*, xEX.  Let' ~o denote the sub- 

complex of K ~ whose 0-skeleton lies in B*. Natural ly K ~ coincides with K ~ in the case of 

trivial holonomy. We will now adopt  the viewpoint tha t  ]~0 should take the place of K ~ 

i.e., tha t  equation (1.2) should be replaced by 

~(;~) = [~,~:0/j]  (1.3) 

understood in a corresponding sense. I t  will be shown in Section 4 tha t  equation (1.3) 

admits a unique solution, provided that  

d imens ionB*>0 for all xEX. (1.4) 

Moreover, one can see by  simple examples tha t  condition (1.4) is not  superfluous. Since a 

J- invar iant  cross-section s :X-~B  must  he in B* (as shown in Section 2), one also sees tha t  

condition (1.4) is necessary to the existence of nonzero s. The same observation implies 

(by the usual argument) tha t  a solution Z of equation (1.3) constitutes an obstruction to 

nonzero J- invar iant  s. Thus a t  least in dimension 2 one finds tha t  a moderate amount  of 

holonomy may  still be tolerated, and in fact, that  Z can tolerate precisely as much holo- 

nomy as the cross-sections which it obstructs. The problem becomes more difficult for 

n > 2, and it appears doubtful tha t  the state of affairs will be quite as favorable. 

The question of naturality will be taken up in Section 6 after the requisite category- 

theoretic development has been supplied. To obtain a functorial eohomology theory for 

objects (~, J) ,  i t  will be necessary to replace the J.invariant cochains by J.invariant sections 

in the correspondinq shea/ o/ singular cochains. The extended Euler class will take values in 

the  sheaf-cohomology corresponding to Hn(K/J), and naturali ty (with respect to bundle 

maps of the extended category) will pose no particular difficulty. I t  is of interest to note 

that  the extended Euler class of an object (~, J )  with trivial holonomy is actually induced 

from an associated classical vector bundle ~', which is the quotient of $ under identifica- 

tions induced by  J .  When ($, J )  has nontrivial holonomy, on the other hand, it will be 

shown tha t  its extended Euler class (when it exists) is not induced in this manner (because 

the quotient ~' does not exist as a vector bundle), and what  is more, cannot be induced 

from any classical bundle. 

By  way of illustration we shall consider objects (~, J )  arising from a p-dimensional 

foliation(1) :~ of a differentiable n-manifold. Such a structure ~, it will be recalled, sends a 

(1) All foliations are assumed to be oriented. For the precise definition of ~ and its object (~, J), 
we refer to Section 7. 
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p-dimensional variety :~  through every point xEX. The Euler class of (~, J )  is now an 

obstruction to ( p +  1)-dimensional foliations :~* of X with the property tha t  : ~ c  :~x* for 

all x E X. As previously observed,(1) this generalizes the  obstruction problem for direction 

fields on a differentiable manifold. More precisely, when :~ is defined by  a projection 

p:X--->M, where M is an (n-p)-dimensional differentiable manifold, :~* is equivalent to a 

direction field on M. As may  be expected, (~, J )  will now be isomorphic (in the extended 

category) to the tangent bundle T(M). 

In  an earlier paper  on this subject,(~) Y. H. Clifton and the author have defined an 

extended Euler class for a large set of objects (~, J} with practically no condition on the 

holonomy, but at  the cost of using a special homology theory with certain undesirable 

features. The foremost of these, perhaps, is the fact tha t  the theory is entirely ill-adapted 

to computation. The present approach is fundamentally simpler and commends itself as 

more natural  to the problem. 

I t  is a pleasure to acknowledge the ample contribution of Y. H. Clifton, who has 

collaborated with us in the earlier phases of this work. The basic ideas of the present paper 

stem from that  earlier period of joint endeavor. 

2. Some concepts related to holonomy 

Let ~ = ( B , X , ~ )  be an oriented vector bundle as before, and J a set of local bundle 

maps of ~ containing the identity, l~or uEJ, ~ and ~ will always denote the associated 

maps of the base and tota!  spaces , respectively. Now let x E X be a point in the domain of 

and let y =~(x). We will denote by  u~ the linear isomorphism of Bx (the fiber over x) 

onto By induced by  u. Moreover, the following concept will also be needed: Let  

~1= {u~:0<i-<<p} 

be a sequence of maps in J with p even, and let 

be a sequence of maps from some given topological space W to X. The pair ~ = @1, ~2) will 

be called a J.chain if, for every positive value of the index i,/~ =~to/ t_l  when i is odd and 

]i-1 =ui~ when i is even. In  this case we shall say tha t  ~ connects/o to ]~, and we will let 

J(t0, / ,)  denote the set of all such J-chains. I t  is clear tha t  if ~ e J(/ ,  9) and ~' eJ(9,  h), one 

(1) Cf. Clifton and Smith [4]. 
(3) Cf. Clifton and Smith [4]. The present paper takes the place of an expanded version of the 

theory outlined in [4]. 
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can define a composition 7 'o~ E J(~, h), and one can also define a corresponding 7" EJ(g,/) 

by indexing the terms of 71 and 72 in reverse order. With every m a p / :  W-~X we will as- 

sociate the J-chain 7t for which p = 0  (71 is then the empty  sequence) and ]0 =].  We now 

define an equivalence relation on Horn(W, X), the space of maps from W to X, as the set of 

all pairs (/, g) for which J(/, g) is nonempty.  I t  will be called J-equivalence, and one observes 

tha t  when W =Aq, the standard q-simplex, it coincides with the relation ~ on Kq con- 

sidered in Section 1. 

Analogous concepts may  be defined with respect to the total space B. Let  7 = (7~, 72) 

be a J-chain with 7~ = {]~:0~<i ~<p), and let ~2 = {/, :0~<i ~<P} be a corresponding sequence 

of maps from W to B such tha t  xeo]~ =/~ for all i. The J-chain 7 is said to connect ]o to ]~ 

provided L = ~ o L _ I  when i is odd and L-I  = u o L  when i is even (where u, denotes the 

i th term of 71). The set of all such J-chains will be denoted by  J(f0, ]~), and one now defines 

J-equivalence on Horn (W, B) by  taking ] ~  ~ to mean that  J([, ~) is nonempty.  I t  is apparent  

that  for all pairs (f, ~) in Hom(W,B) ,  J(/ ,  ~ ) c J ( ~ o / ,  z~o~), and conversely we shall es- 

tablish the following result: 

L ~ M A  2.1. Given maps / : W ~ X ,  g : W ~ B  and 7EJ( ] ,~o~) ,  there exists a unique 

map 1: W ~ B  such that /=reofand reJ(L ~). 

To prove this it will suffice to consider the case p =2.  Taking 71 = {u, v} and 72 = 

(], h, ~o~} one has h=(~o/=~o~oy. Let ~ = ~ o y ,  and let wEW, x=/(w) and y=(t(x). I f  

] exists, then ux[](w)]-~ ~(w), and consequently 

[ ( w ) = u ;  ~ [/~(w)], (2.1) 

which proves uniqueness. One now observes that  equation (2.1) defines a function [: W-~B 

such tha t  ~ o] = ] and ~ o ] =)~, and it remains only to show that  ] is continuous. We consider 

for this purpose a particular point w 0 E W, set x o =/(wo) and Y0 =u(x0), and select local pro- 

duct representations of ~ in a neighborhood U of x 0 and U' of Y0, so chosen that  z~(U)= U'. 

Thus we may  regard ~-I(U) = U • V and ~-I(U') = U' • V, where V is a standard vector 

space. The restriction of ~ to 7e-• now takes the form ~(x, z) = (~(x), ~(x)z), where T is a 

continuous function from U to the automorphism group Gl(V). Likewise there exists a 

neighborhood U" of wo and continuous functions 

~:U"~U', ~:u"~v 

such that  h = (/~1, 1~) on U". Consequently 

](w) = (/(w), ~-l(l(w))li2(w)) 

on U", which represents a continuous function. 
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We shall henceforth employ the notation ]=7(/ ,  g) to designate the operation defined 

by Lemma 2.1. One further observation regarding J-chains will be required in the sequel: 

If  7 is a J-chain as before, a map h: W'-+W will induce a J-chain ~oh by the formula 

~oh=(~l, {/toh :O < i < p } ). 

One way to define the holonomy groups is to consider the case where W contains 

precisely one point w. Given x E X, let i x: W -+X denote the map taking w to x. For x, y q X, 

it is now evident that  every 7EJ(ix, iy) induces a linear isomorphism 7x:Bx-~By. More- 

over, the set (I)x = {~'x:~ E J(ix, ix)} constitutes an automorphism group of Bx: this is the 

holonomy group of (~, J) at x. I t  defines a notion of J-invariance for vectors in Bx, i.e., 

such a vector will be called J-invariant if it is fixed under all transformations of (I) x. This 

brings us to the following observation: 

LEMMA 2.2. I / S  :X ~ B  is a J-invariant cross-section and xEX,  then s(x) is J-invariant. 

For suppose 7 = (~21, ~22) is a J-chain in J(ix, ix).Then 72 defines a sequence {x i : 0 < i ~<p } 

of points in X such that x 0 =xp = x, and the element ui in 71 determines a linear isomorphism 

hl:Bi_l-+B~ for O<i<~p, such that ~x=hvo . . .oh 1. More precisely, u~ induces hi or hi 1. 

In  either case it follows by definition of J-invariance for cross-sections (given in Section 1) 

that  ht[s(xi_l)] =s(xi), which implies that s(x) is a fixed point of 7x. 

3. The case of trivial holonomy 

We suppose in this Section that (I)x is trivial for all x E X, and our first task will be to 

establish 

TH]~ORWM 3.1. When (~, J) has trivial holonomy, the chain homomorphismQ) 

~ .  : Cq( K~ /J) ~ Cq( K /J) 

induced by the projection constitutes a chain equivalence. 

When J contains only the identity map of ~, the theorem reduces to a familiar result, 

as previously noted. We recall that  the classical proof is accomplished by interposing 

between K and K ~ the singular simplicial complex K* of B, and that  it involves the fol- 

lowing diagram: 

(1) W h e n  K '  is a s implicial  complex ,  Cq(K') will a lways  deno te  t h e  cor responding  in tegra l  cha in  
g roups .  
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C'.(KO) 
# 

T 

CJK) 

= Ca(K*) 

f l ~ ~  (3.1) 

Here/x denotes the chain homomorphism induced by the inclusion K ~ -~K*, and cr the chain 

homomorphism induced by the projection ~t:B ~X.  To prove that  ~r. is a chain equivalence, 

it suffices to show this for cr and/~. In the first case this is a simple matter, since the zero 

cross-section s~ ~ B  induces a chain homomorphism fl: Ca(K) ~ Ca(K* ) such that  (~, fl) 

constitutes an equivalence pair (i.e., both composites are chain homotopie to the identity). 

More precisely, there exists a chain homotopy D:Ca(K* ) --> Ca(K* ) such that  

~of l= l ,  (3.2) 

flo~ - 1 = ~D + D~,(1) (3.3) 

where 1 signifies in each case the appropriate identity. The problem is more difficult for ~u 

and one requires essentially the Eilenberg construction(2) to define a chain homomor- 

phism v: Ca(K* ) ~ Ca(K~ together with a chain homotopy D' :Ca(K* ) ~ Ca(K*), such that  

~ o p = l ,  (3.4) 

luo~- 1 =~D' + D'~. (3.5) 

To see how this argument may be carried over to the case of nontrivial J ,  one observes 

that  a chain homomorphism involving the simplicial complexes K, K* and K ~ will induce 

corresponding chain homomorphisms involving the quotients K/J,  K*/J and K~ pro- 

vided it is J-invariant in a rather apparent sense. Let  us suppose, for example, that  

(p: Ca(K) ~ Ca(K*) 

is a chain homomorphism with the property that  it carries the elementary chain of a 

singular simplex into a chain of this kind (a condition which will be satisfied by all our 

chain homomorphisms). Now J-invariance means that  for every pair (0, a') of J-equivalent 

(1) It will be understood that the term 8D is absent on dimension 0. 
(~) Cf. Eilenberg [5], pp. 439-442. 
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singular simplexes in K, ~(a) and ~(a') will likewise be J-equivalent.(1) For a chain homo- 

topy D: Cq(K*) ~ Cq(K*), J-invariance shall mean that  for every pair (a, a') of J-equivalent 

singular simplexes in K*, D(a) and D(a') shall have the form 

Jg(~) = E a ,  ~,, D(~')  = E a , ~ ;  

with a, J-equivalent to a; for all i. This will insure that  D shall induce a chain homotopy 

on the quotient C~(K*/J). To establish Theorem 3.1, it will suffice to ascertain d-invariance 

for the ehain homomorphisms ~, fl, /~ and 3, and for the chain homotopies D and D'. 

Now this is immediately verified for the natural maps a, fl and #. One can define the 

chain homotopy D entering into equation 3.3 on the generators ~:Aq ~ B  by the formula 

D(a) = SP,, where Po:Ar • I - * B  (I  denotes the unit interval) is the singular prism given by 

P,(x, t)= tot(x), and S denotes its basic chain.(~) If u E J and a ' =  j ou is defined, it now fol- 

lows by linearity that  P,. = j oPt,  from which one may conclude that  D is J-invariant in the 

specified sense. Thus the first half of the argument, involving the pair (~, fl), carries over 

to the quotient complexes without difficulty, and without the assumption of trivial hole- 

horny. 

We will now briefly recall the classical construction of 3 and D', and see what can be 

done to insure J-invariance. In the first place it is important to note that  if a is a singular 

simplex in K*, 3(a) will be a-singular simplex ~ belonging to K ~ but  basically equivalent 

to ~, i.e., ~ o ~ = ~ o a .  Given such a chain homomorphism 3, one can define the associated 

chain homotopy D' by setting D'(a)=SP,,  the prism P , : A r  being given by 

P,(x, t) = t~(x) + (1 - t) a(x). 

This implies equation (3.5) by the usual calculation. Moreover, if 3 is J-invariant, it will 

follow by linearity that  D'  is likewise J-invariant. Our problem reduces therefore to the 

consfruction of a J-invarian~ chain homomorphism 3:Cr ~ which preserves 

basic equivalence, is J-invariant and satisfies equation (3.4). Since 3(a) is consequently 

prescribed for a belonging to K ~ it remains to define 3 on the sets K~ of q-simplexes in K* 

which do not lie in K ~ This is accomphshed by induction on the dimension q, starting with 

q=0 .  Thus the classical construction on dimension zero simply associates with every 

aEKo a basically equivalent ~EK ~ To achieve J-invariance, it will obviously be expe- 

dient to order the simplexes of K0, and to define 30 by transfinite induction. Thus if 3(a) 

has been defined for all a<u0, the definition of 3(a0) will distinguish two cases: 

(1) W e  shal l  avo id  no t a t i ona l  d i s t inc t ion  b e t w e e n  a s ingu la r  s implex  a a n d  i ts  e l e m e n t a r y  cha in .  
(2) Cf. E i l e n b e r g  [5], p. 423. 
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(i) o 0 is J-equivalent  to some o,  <a0; 

(ii) there does not exist a o ,  EKo with these properties. 

In  the first case there exists a ~ EJ(o0,a,), and we may  take ~(o0)=y(zoo0,v(o,)). In  the 

second case we may  take v(a0) to be any ~0 E Ko ~ basically equivalent to 0 0. By this means the 

condition of J-equivalence will be propagated, and the definition of 3 o may  be completed b y  

transfinite induction. 

Now let us see what  happens on the next  dimension, i.e., for q= 1. I f  oEK~, the con- 

dition ~l(a)=To(aa)  becomes 

5(O=Vo(aCi)), 0~<i~<1; (3.6) 

where 5=v1(o) and the superscript i signifies the ith face of the given singular simplex. 

The classical construction on dimension one simply associates with each a EK1 a basically 

equivalent 5 E K  ~ satisfying equation (3.6). To achieve J-invariance, we will again order 

the simplexes of K~, and posit the inductive hypothesis that  ~(a) has been defined for all 

q <01 SO as to satisfy equation (3.6). Again one is confronted with two possibilities, and in 

the second case one is free to define T(Ol) as in the classical construction. Let  us suppose 

then tha t  01 is J-equivalent  to some preceding o. ,  and let ~EJ(ol,a,). To achieve J-in- 

variance, we define 
T(O1 ) : ~(:Tl:O O1, T(O,)) .  (3.7) 

I t  is clear, in the first place, tha t  if ~(o,) E K ~ V(Ol) will likewise lie in K ~ The crucial question 

is whether the singular simplex 51 :V(Ol) satisfies equation (3.6). We note that  for each 

value of the index i, 7oe~EJ((?l(~176 where e~q denotes the standard map from Aq_ 1 

onto the ith face of Aq. On the other hand, by J-invariance of T o there exists a J-chain 

y~EJ(~(o,(o),T(al(i~)), so tha t  

I t  is now evident tha t  equation (3.6) cannot be expected to hold in the general case of 

nontrivial holonomy. The present hypothesis, however, insures that  the automorphism 

~)~ of By must  reduce to the identity, y being a point in the image of A 0 under zeoal (0. The 

validity of equation (3.6) is therefore assured, and the definition of T 1 may  be completed 

by transfinite induction. 

I t  will now suffice to observe that  the general step of the finite induction (involving 

the dimension q) may  be carried out by  an exactly analogous consideration, and this com- 

pletes the proof of Theorem 3.1. 

The result implies tha t  the homomorphism :re~:Hq(K/J)--> Hq(K~ induced by  the 

projection is an isomorphism for each q ~> 0, so tha t  equation 1.2 defines an element 

zEHn(K/J). As previously observed, Z is an obstruction to J- invar iant  cross-sections 
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s :X-+ /~ .  However ,  a somewha t  s t ronger  resul t  will be of in teres t .  Given a vec tor  bundle  

= (B, X, 7r), let  ~0 = (S, X, 7r0) denote  the  associa ted  sphere bundle. '  F o r  eve ry  xEX,  we 

can iden t i fy  the  f iber  Sx in ~0 wi th  the  set  of d i rect ions  in Bx, where direction means  a 

half- l ine centered  a t  the  origin. I t  is known  t h a t  the  Eu le r  class of G is an  obs t ruc t ion  to  

cross-sections s o : X -~ S in ~0. I n  case X is pa racompac t ,  this  is impl ied  b y  the  fact  t h a t  

admits(1) a R i e m a n n i a n  metr ic ,  so t h a t  eve ry  s o induces a cross-section s:X-->B of un i t  

vectors.  W e  now note  t h a t  every  local bundle  m a p  u of ~ induces a corresponding bundle  m a p  

u 0 of G0, so t h a t  the  no t ion  of J-invariance for cross-sections s o: X -~ S has  an  obvious mean-  

ing. W e  will p rove  the  following result :  

THEOREM 3.2. Let (~, J) have trivial holonomy and Z denote the corresponding solution 

of equation 1.2. Then Z obstructs J-invariant cross-sections in Go. 

L e t  K* denote  the  s ingular  s implieial  complex  of S and  ~fl:Cq(K*)--> Cq(K) the  chain  

homomorph i sm induced  b y  the  pro jec t ion  zr0:S-~X. W e  shall  be in te res ted  in cons t ruc t ing  

a chain homomorph i sm O:Cq(Kt)-+ Cq(K ~ which assigns to  eve ry  a E K* a nonzero ~ E K  ~ 

i.e., a s ingular  s implex  5:Aq-~/~.  Such 0 will be cal led J - i n v a r i a n t  if i t  preserves  J -equi -  

valence,  where J-equivalence for a EK* is def ined in the  obvious  way.  The  desired resul t  

will be an  immed ia t e  consequence of the  following:(~) 

LEMMA 3.1. There exists a J-invariant chain homomorphism O:Cq(Kt)--->Cq(K ~ such 

that rr. oO =yJ and 0((~) is nonzero/or all (rEK t. 

The cons t ruc t ion  of 0 proceeds in a manne r  en t i re ly  analogous  to the  cons t ruc t ion  of ~. 

The following aspect  of the  m a t t e r  is suff icient ly different ,  however ,  to w a r r a n t  some con- 

s iderat ion:  Le t  us consider  the  d i ag ram 

B 

Y 

d s 

A~ ~ A. b X 

(1) Cf. Milnor [10], p. 20. 
(2) Lemma 3.1 does not require trivial holonomy but may be established on the assumption that 

the holonomy transformations have no positive eigenvalues different from 1. 
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where v:B-+S denotes the natural  map. Given ~:Aq-~S and 0:Aq-~B (determined by 

0q_l) , one wishes to extend 0 to a nonzero lifting 0(a) of ~. Again there are two cases to be 

considered, and when q is J-equivalent  to some a .  <cr,0(a) will be defined in terms of 0(~.) 

by the usual procedure involving J-chains. Case (ii), on the other hand, requires attention. 

Here one considers the bundles ~' =(B' ,Aq, ~r') and ~o=(S',Aq, Zro) induced by ~r0oa. Now 

induces a (local) cross-section $:A e-~B',  and the problem of defining 0(~) reduces to the 

construction of a nonzero cross-section s :Aq ~ B '  extending $. Since {~ is nonzero by  in- 

ductive hypothesis, $ is likewise nonzero, and the desired extension s will exist provided 

is contractible in the nonzero space J~'. To insure tha t  this will be the case, it will suffice 

to suppose tha t  the homomorphism 0 satisfies the following natural  condition: For all 
(x E K*p and x E A~, 5(x) shall lie on the direction (~(x), where 5 = 0((~). One observes, in the first 

place, that  if the condition holds for a particular a, it will then hold for all a '  which are 

J-equivalent  to a. Supposing tha t  the condition holds on dimension (q-l), one now finds 

tha t  for every x E Aq, ~(x) lies on the direction of so(x), where s~:X ~B' denotes the cross- 

section induced by  a. But  this implies tha t  $ admits a nonzero extension s, which induces a 

map 0(a): Aq-~B such that  our condition is again satisfied. The construction of 0 is therefore 

feasible. 

To establish Theorem 3.2, it remains to observe that  0, y~ and 7~, induce corresponding 

chain homomorphisms 

0 Cq(Kt/J) ~ Cq(K~ 

~ Cq(K/J) / 

on the quotient complexes. A cross-section so : X -~ S would now induce a chain homomor- 

phism ~: Cq(K/J) --+ Cq(K+/J) such that  ~,oOoq~ = 1. On the other hand, since O(a) is always 

nonzero, it follows tha t  the associated cochain homomorphism 0* annihilates the cocycle 

e, Consequently 
Z=q~+ oO+ o~r+(Z ) =q~ oO+([e,K~ =0,  

where ~ signifies in each case the associated homomorphism of the cohomology groups. 

4. The case n = 2  

Let (~, J )  be given, with ~ of dimension 2. As noted in Section 1, it is now expedient to 

replace the simplieial complex K ~ by  the subcomplex/~0 whose 0-skeleton lies in B* (the 

subspace of J- invar iant  vectors in B). Clearly this gives rise to a quotient complex ~o/j, 
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which may be identified with a subcomplex of K~ The cocycle e admits therefore a 

restriction gE C2([;~ and we will let [g] denote its cohomology class in HZ(K~ 

TH~OI~EM 4.1. Let r~r176 denote the homomorphism induced by the 

projection, and let 

dimensionB* >0  ]or all xEX.  (4.1) 

Then there exists a unique element g EH2(K/J) such that rlr [~. 

The proof will naturally involve the subcomplex K* of K* with 0-skeleton in B* ,  

and the chain homomorphisms 

ft: Cq(K ~ ~ Cq(I~*), ~: C~(I~*) ~ C,(K) and /5: cq(g) --> C~(I~*) 

induced by the inclusion ~7~ *, the projection g:  B-~X and the zero cross-section sO: 

X ~ B ,  respectively. Evidently all three chain homomorphisms are J. invariant,  and equa- 

tion (3.2) is again satisfied. 

LEM~IA 4.1. There exists a J-invariant chain homotopy D:Cq(/~*)--> Cq(/~*) satis/ying 

equation (3.3). Thus (a,/~) constitutes a J.invariant equivalence pair. 

The chain homotopy D will be defined precisely as before in terms of prisms 

Pa:Aq • I-+B. 

I t  should be observed that  if ~rEK*, every singular simplex a' belonging to the standard 

subdivision(1) of Pc will likewise lie in ~7". For every vertex of a'  is either a vertex of a, or 

must lie on the zero cross-section. In either case the vertex will lie in B*, and consequently 

a' E K*. The shift from K* to K* therefore causes no difficulty. 

L ]~ M M A 4.2. There exists a chain homomorph ism T: Cq(K*) -+ C~(~7 ~ and chain homotopy 

D':Cq(~7*) ~ Cq(K*) satis]ying equations (3.4) and (3.5), such that ~ and D' are J-invariant 

on dimensions 0 and 1. 

Again we observe that  once ~ has been constructed, D' may be defined by the usual 

formula. Let  us therefore recall the construction of ~ in Section 3. I t  is apparent that  the 

only modification required on dimension 0 is to choose ~(go) to lie in B*, which is possible 

on account of condition (4.1). We note that  case (i) will cause no difficulty, for when 

~(g0) is defined by the formula 

(t) Cf. Eflenberg [5], p. 423. 
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"c(O'o) =~,(~oo'o,T(o',) ), ~' EJ(o'o,a,); 

the fact that  ~(a.) lies in B* implies the same for ~(a0). In  dimension 1, on the other hand, 

the construction of Section 3 is applicable precisely as it stands. That  ~(~1) defined by 

equation (3.7) will satisfy equation (3.6) is now assured, not by  the assumption of trivial 

holonomy, but  by  the fact tha t  the 0-skeleton of ~(~,) lies in the J- invar iant  par t  of B. 

For dimensions q > 1 the construction may  proceed precisely as in the classical case, since 

J-invariance is no longer required.(~) 

Let  us next  consider the chain homomorphism 9 =zo/~ and its dual ~* :Cr ~ -~ Cr 

As usual we regard Cr176 as a subcomplex of Cr176 i.e., the subcomplex of J-invari-  

ant eochains in ~7 ~ Thus 9"(r is defined and represents a cocycle in C2(K), which we de- 

note by 2. 

LEMMA 4.3. ~ is J-invariant. 

To establish this, we consider two J-equivalent  singular 2-simplexes al and 02 in K. 

Let  ~EJ(al ,  as), and let 5j =~0(aj), j =1,  2. Each of the maps aj:A2-~X induces a bundle ~j 

over A2, and we let hj : ~j ~ ~, B j and sj denote the associated bundle map, total  space of ~j 

and cross-section in ~j induced by 5j, respectively. I t  is also easy to see that  ~ induces a 

bundle map g: ~ -~ ~2 such tha t  ~ is the identity of A s. Now 2(aj) = e(Sj), which is simply the 

winding number  of sjl/k 2 (as explained in the first paragraph of Section 1). One must  con- 

sequently show tha t  s I I ~ and s21 &z have the same winding number. To this end we con- 

sider the cross-section s. =~os 1 in ~ ,  and observe tha t  s .I /~ ~ has the same winding number  

as 81[& 2. The desired conclusion will now follow if it can be established that  the formula 

s(x,t) =ts,(x) + (1 -t)s~(x), (x,t) eh2 • I ,  (4.2) 

defines a homotopy in Bz, the nonzero par t  of B z. I t  remains therefore to show tha t  the 

right side of equation (4.2) cannot vanish for (x, t) E/~z • I .  Now if x E As(O and y = a2(x), the 

points s. (x), s 2(x) E B~ correspond under h 2 to the points a ,  (x), 52@) E By, where a .  =~(rt o as, 51). 

On the other hand, since fl and ~ are J- invar iant  on dimension 1, the same holds for ~0, 

so that  51 (t) and 5~ (~ are J-equivalent.  I t  now follows tha t  a,(x) and 5z(x) differ by  an 

element 95y e ap~, i.e., tha t  ~u maps a.(x) to 52@). Thus ~v is an automorphism of the oriented 

2-dimensional vector space B~, and by  condition (4.1), it has 1 for an eigenvalue. But  this 

implies tha t  ~ can have no negative eigenvalues, so tha t  the equation 

Q) Needless to say, J-invariance could not be achieved on dimensions q > 1 under the present 
hypothesis. 



THE EULER CLASS OF GENERALIZED VECTOR BUNDLES 65 

ta.(x) + (1-t)Sz(x) = 0 

has no solution for t E I .  Lemma 4.3 is therefore established. 

Now 2 E C2(K/J), and we assert that  the corresponding cohomology class g EH2(K/J), 
maps to [~] under ~z r Let 7e*: Cq(K/J )  --> Cq(Ko/J) denote again the cochain homomorphism 

induced by  the projection, so that  

~*(2) = [roflo~o~]* (~. 

I t  follows now by  Lemma 4.1 that  

~*(2) =g+~v, 

where ~ denotes the coboundary operator and v=[roDo/~]*(~.  Our assertion will be es- 

tablished provided v is J- invariant .  But  this is implied by  the fact tha t /~  and D are J -  

invariant, and 

LEM~A 4.4. ~*(D is J-invariant. 

The latter follows by  the argument employed in the proof of Lemma 4.3. 

To establish uniqueness, we suppose that  u~(Z ") =[~] for some g '  EH~(K/J), and let 2' 

denote a representative cocycle of Z'- This means that  there exists a cochain v E CI(K~ 
such tha t  

n*(2') =~+6v. (4.3) 

Applying the cochain homomorphism ~* to both sides of equation (4.3), one obtains (by 

Lemma 4.2) 
= 2' + ~v', (4 .4)  

where v' = [:r D '  off]* (2') - T*(v). 

Since fl, ~0 and D'  are J- invar iant  on dimension 1 and a is J- invar iant  on dimension 2, it 

follows that  ~' ECI(K/J), and this establishes uniqueness. 

We turn next  to the question of J- invar iant  cross-sections in the associated sphere 

bundle ~o. The previous approach to this problem is not of much use in the present case for 

the reason that  our construction of the chain homotopy 0 is no longer feasible. I t  will be 

recalled tha t  0 was required to take each singular simplex a:Aq ~S  to 5:Aq-~B which is a 

lifting of 5, i.e., for all xCAa, 5(x) must  lie on the direction a(x). Since the present assump- 

tion regarding the holonomy groups does not rule out holonomy transformations with 

positive eigenvalues different from 1, it can happen tha t  a J- invar iant  direction a(x) 

contains no nonzero J- invar iant  vector. I t  is therefore apparent  tha t  the proposed con- 

struction could not satisfy the lifting condition even on dimension 0. We will consequently 

adopt  an entirely different approach, based on an idea due to Y. t I .  Clifton. 

5--652944 Acta mathematlca. 115. Imprimd le janvier 1966 
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Given a J - invar ian t  cross-section s o in t0, we propose to construct  a cochain v E CI(K~ 

such tha t  e = 5v. I t  should be observed, moreover,  tha t  t h e  construct ion will no t  depend 

on condition (4.1) and will in fact  be valid for a rb i t rary  J .  Given a : A l - ~ ,  we let ~ ' =  

(B', A1, ~') denote the vector  bundle induced by  :~oa and s: A1 -~B' the cross-section induced 

by  a. A product  s t ructure on ~' defines a projection p f rom/~ '  to S 1, the s tandard  1-sphere, 

which we m a y  take to be the real line R modulo 1. The given cross-section so:X--> S in- 

duces now a direction field So in ~' and consequently a m a p / 0 : A 1 - >  S 1. Let  the produc t  

representat ion of ~' be so chosen tha t  ]0(x)=0 mod 1 for all xEA1, and  let ]:AI-~R denote 

a lifting of pos. We will define v by  the formula 

~(~) = [1(1)] - [/(0)1, (4.5) 

where [x] denotes the largest integer n ~<x.(1) I t  is no t  difficult to verify, in the first place, 

tha t  the integer v(a)does not  depend on the choice of p a n d / ,  so tha t  equat ion (4.3) defines 

a cochain ~ E CI(K~ To show tha t  v is J - invar iant ,  let 5 = ~ o a ,  where u EJ .  Now 5 gives rise 

to an induced bundle $' and  corresponding cross-section ~, and s o determines a direction 

field ~o in ~'. Moreover, u induces a bundle map  g :~' - ~ '  such tha t  ~ is the ident i ty  of A1 

and  ~=~os .  Since s o is J - invar iant ,  ~ also takes So into $0. Having  chosen the produc t  

s tructure on ~' we m a y  consequently choose the product  s t ructure on ~' so tha t  p os = pos 

(where ~ : /~ ' -~S  1 denotes the corresponding projection). Thus v(a)=v(5),  establishing 

J-invariance.  Lastly,  the fact  t ha t  e = ~ m a y  be verified by  a simple calculation. This proves 

THEOREM 4.2 (Clifton). For (~, J) with n : 2 ,  [~,K~ obstructs J-invariant cross- 

sections in to. 

Now let ~ denote the restriction of v to  Cl(]i~ so tha t  ~=  ~ .  Assuming condit ion 

(4.1), let ~ : ~ o f l  as before, giving 2 = 5~0"(~). Since ~ is J - invar ian t  on dimension 1, therefore 

q~*(~) E CI(K~ which implies Z = 0 .  We have consequently established 

TH~OR]~M 4.3. The cohomology class X defined by Theorem 4.1 obstructs J.invariant 

cross.sections in to. 

5. Extension of local categories 

The not ion of a local category was introduced by  H. Car tan and  Eilenberg(~) to axio- 

matize the category-theoret ic properties of fiber bundles. I t  will suffice to recall t ha t  a 

local category J4 consists of 

(1) I t  should also be noted that we are representing A 1 by the unit interval. Cf. Eilenberg and 
Steenrod [7], p. 185. 

(~) For full definitions and basic theory of local categories, we refer to Eilenberg [6]. 
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(i) a category (which we also denote by M); 

(ii) a covariant functor L:M~C (where C is the category of topological spaces and 

continuous maps); 

(iii) a function which to every object A in M and every open subset U of L(A) assigns 

(1) an object A I U in A, and (2) a map iAI U in A; 

these data being subject to some rather natural axioms. These insure, for instance, that  

given/:A-->A' in M, UcL(A) and U'cL(A'), there will exist g such that  the diagram 

AIu 

iA[u 1 
A 

! 

A'IU'  

A' 

iAI U' 

is commutative, if and only if L(/) Uc U', in which case g is unique. This map g will be 

designated by the symbol U']/I U. I t  should also be observed that  in the context of vector 

bundles, L corresponds to the functor which (in terms of our previous notation) takes 

to X and u to 4, A [ U corresponds to the restricted bundle $[ U, and iA I U to the inclusion 

map ~ [ U ~ }. Moreover, the category C of topological spaces may be regarded as a local 

category in an obvious way, i.e., by taking L to' be the identity functor, A I U to be U, and 

iA [ U to be the inclusion map U -~ A. 

In previous papers(I) Clifton and the author have described a process for extending 

the category C, together with functors of a certain kind. This process remains applicable 

when C is replaced by an arbitrary local category M, and the basic results carry over in a 

rather obvious way. A brief summary of the extension theory in its general setting will now 

be given. I t  shall be understood in the sequel tha t  the generalized objects, maps, etc., are 

defined with respect to a given local category M and should, strictly speaking, be called 

M-objects, A-maps, etc. 

De]inition 5.1. A preob]ect is a pair A = (A,J), where A is an object in M and J a set 

of maps in M such that  

(i) for every /E  J, / is a map from A ] UI to A, U r being an open subset of L(A); 

(1) Cf. Clifton and Smith [2], [3]. 
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(if) g iven/ ,  gEJ and xE UI N Ug, there exist jr, ~ E J  and an open neighborhood V of x 

such that  

/o(V;l/I v)=yo(V lgl v). (5.1) 

Condition (if) will play an essential role. I t  compensates for the fact that  the maps in 

J are not assumed to have an inverse, and will be referred to as the extension axiom for 

objects. 

Definition 5.2. An object is a preobject A =(A, I) such that  

(i) the identity map 1A of A belongs to I ;  

(if) if ] :AIUr~A is a map in A such tha t  for every xE Uf there exist f, g, ~ E I  and an 

open neighborhood 1 z satisfying equation (5.1), then ] E I .  

Condition (if) (the closure axiom for objects) insures, for instance, tha t  I will contain 

all composites and inverses of its elements, when these exist in A. 

Definition 5.3. A preobjeet (A, J) generates an object (A, I)  if 

(i) J H  I;  

(if) for every object (A, 1) with J H i ,  I c i .  

PROt'OSITION 5.1. Every preobject generates a unique object. 

De]inition 5.4. Let A~-(A, I )  and A'=(A' , I ' )  be objects. A premap F :A->A'  is a 

set of maps in A such tha t  

(i) for every / E F, / is a map in J4 from A I Ur to A',  U r being an open subset of L(A); 

(if) ( U f / e F )  is a covering of L(A); 

(iii) given u E I ,  /, q E F and x E Uu N Ug such tha t  L(u) (x) E U I, there exist u', v' E 1' 

and a neighborhood V of x such that  

u'o(Vu, lg I v)=v' o(V ,ll I Vr)o(V,lul v). (5.2) 

�9 ' is a map if it is a premap and satisfies 

(iv) if g:A[ Uo-~A' is a map in r such tha t  for every xE Ug there exist ]EF, uEI,  

u' ,  v'E I '  and a neighborhood V of x satisfying equation (5.2), then g E F. Conditions (iii) 

and (iv) will be referred to as the extension and closure axioms for maps, respectively. A 

map  F is generated by a premap G if G ~ F. 

PROPOSITION 5.2. Every premap generates a unique map. 
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PROPOSITION 5.3. Let F : A  -+A' and F' :A' -+A" be maps, and let H denote the set o/all 

compositions ] ' o / in  .4, where/EF and / 'EF ' .  Then H:A-+A" is a premap. 

Definition 5.5. In virtue of Propositions 5.2 and 5.3 we may define the composition 

F ' o F  to be the map generated by H. 

One now observes that  if A = ( A , I )  is an object, I : A ~ A  will be an identity map. 

Moreover, if A is an object in .4, (A, (1A }) will be a preobject, and we will let ~ denote the 

object generated by (A, {1A }). Similarly, i f / : A  -~B is a map in .4, {/}: A -~/~ will be a pre- 

map. The map generated by {/} will be denoted by f. 

P R 0 P 0 S I T I 0 ]r 5.4. The class o/objects A, A', ...; and maps F: A ~A' ,  together with the 

given law o] composition, constitutes a category .,4". The correspondence A ~ ,  / ~ f  identifies 

A with a /u l l  subcategory o/.4* (an identification which will henceforth be understood). 

The next task is to define a functor L :A ~ C  extending L. This is accomplished in two 

steps: 

PROPOSITION 5.5. I /  A =(A, I )  is an object in .4*, then (L(A), L(1)) is a C-preobject. 

Similarly, i / F  is a map in .4*, then L(F) is a C-premap. A covariant /unctor 1::.4" ~C* may 

be defined by taking F~(A) to be the object generated by (L(A), L(I)) and F~(F) the map gener- 

ated by L(F). Moreover, ~ extends L. 

PRO:POSITION 5.6. Let X = ( X , I )  be an object in C*, and let Q denote the set o/pairs 

(x,y) E X • X such that u(x) =v(y) /or some (u,v) E I x 1. Then Q is an equivalence relation on 

X.  Let ~)(X) denote the (topological) quotient o/ X by Q, and p:X-+~)(X) the projection. 

Then {p}:X-->p(X) is a C-premap. Let P(X) denote the map (in C*) generated by {p}. I /  

F:X-->X' is a map in C*, there exists a unique map ~(F)  in C such that the diagram 

P(x) 

X 

1 
O(x) 

F 
X' 

O(F) 
p(x,) 

commutes. ~) constitutes a covariant /unctor /rom C* to C, extending the identity/unctor o/C. 

Definition 5.6. L=~)oi : ,  where E and ~ are defined by Propositions 5.5. and 5.6. 

Lastly, we need to extend the stroke-function: 
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PROPOSITION 5.7. Let A = ( A , I )  be an object in A* and U an open subset o/L(A*). 

Let p:L(A)-->L(A) be the natural projection (defined in Proposition 5.6), and let 

iA] U= (/o(iAIp-l( U)):le I}. 

Then A t U=(A Ip-l(u),iAI u) 

is an object in A* and i), I U a map/rom A I U to A. 

PROPOSITION 5.8. The category A*, together with the/unctor L :A * ~ C and the stroke- 

/unctions defined by Proposition 5.7 constitutes a local category extending A. 

We turn next to the problem of extending functors defined on A. A contravariant func- 

tor on A will admit a canonical extension to J4* provided it has certain sheaf-like properties. 

Such a functor S has been called a shea] on A in [3], and it has been shown that  every (set- 

valued) contravariant funetor T on ~4 generates a sheaf S. To begin with, we must recall(1) 

that  a set-valued preshea/on a topological space X may be defined as a contravariant functor 

G:c(X)~E, where c(X) denotes he category consisting of the open subsets of X and in- 

clusion maps, and E is the category of all sets and functions. If  U, V are open subsets of 

X with V c  U, and sEG(U), then G(ivl V)(s) may be called the restriction of s to V, and 

will be denoted by s I V. A shea/on X is now a presheaf G satisfying two conditions: 

(i) Let {Ui:iEY} be a family of open subsets of X and U their union. If  for two ele- 

ments s, s'eG(U), sIU~=s'IU ~ for all iCY, then s=s'. 

(ii) Let {Ui : iE3}  and U be given as before, and let s, EG(U,) for all iEY. If  s,I U, N U s 

= sjl u , =  U s for i, j e  y,  then there exists an element sEG(U) such that  s I U,=s,, iCY. 

Definition 5.7. Let A be a local category, A an object in A and TA :c(L(A))4.,4 the 

eovariant functor defined by 

TA(U)=A IU, UcL(A); 

TA(i~ I V)=iAivl V, V c  U~L(A). 

A preshea/on .,4 is a contravariant functor S: A -~E, and a shea/on A is a presheaf S on A 

such that, for every object A in A, So  TA is a sheaf on L(A). If S is a sheaf on A, A an 

object in A, sES(A) and U~L(A),  then S(iAI U)(s) is the restriction of s to U (denoted 

by slU). 

(x) For basic facts regarding sheaves, we refer to Godement [8]. 
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PROPOSITIO~ 5.9. Let S be a preshea/ on A .  _For every object A in A ,  let GA denote the 

shea/ on L(A)  generated by So  TA, let S* (A)= GAoL(A) and let h(A):S(A)---> S*(A) denote the 

natural map.(1) Given a map f : A ---> A ' in .,4, there exists a unique map S* (f) : S* ( A ') ~ S* ( A ) 

such that S*( f )oh(A ' )=h(A)oS( f ) .  Moreover, S* defines a sheaf on A and h a natural trans- 

formation from S to S*. 

Definition 5.8. S* is the sheaf on .4 generated by S. 

Definition 5.9. Let  S be a sheaf on .4 and A = (A, I )  an object in .4*. An element s eS(A) 
is I- invariant  if, for every f E I ,  S ( f ) ( s )=s]  Uf. The set of I - invar iant  elements seS(A) 
will be denoted by S(A). 

P R 0 ~ o S I T I 0 ~ 5.10. Let ,.4 be a local category, S a sheaf on ,.4 and F : A  -->A' a map in .4*. 

Given s 'E S(A')I there exists a unique element s E S(A)  such that S ( f ) ( s ' )=s l  U r /or  all f E E .  

Moreover, s lies in S(A). Let S(F) denote the map from S(A') to S(A) taking s' to s. This  defines 

a sheaf S on .4* extending S. 

Definition 5.10. S is the canonical extension of S to .4*. 

This completes our summary  of the general extension theory. I t  needs to be pointed 

out tha t  the category E may  of course be replaced by  certain algebraic categories, e.g., 

by the category d M  of graded differential modules. I f  S is a dM-valued presheaf on .4, 

the generated sheaf S* on .4 and its canonical extension S* will likewise take values in dM.  

The singular integral cochains, for example, define a dM-valued presheaf on C. Let  S de- 

note the corresponding sheaf on C and S its canonical extension to C* .If X = (X, I )  is 

an object in C*, S(X) will be a graded differential module, and we will let Itq(X) denote its 

cohomology groups. I f  Cq(X) denotes again the group of singular integral q-cochains on 

X and h : C q ( X ) ~  Sq(X) denotes the natural  map (from sections of the presheaf to sections 

of the sheaf), it is easily verified tha t  h commutes with the coboundary operator and 

takes I - invar iant  cochains to S(X). I t  consequently defines a homomorphism h:Hq(X, I ) -~  

IIq(X), where H q ( X , I )  denotes the cohomology of the I - invar iant  singular integral co- 

chains on X. The cohomology I I  q is clearly functorial on C*, and will be called the extended 

singular integral cohomology. 

6. The extended Euler class 

Before proceeding to examine the particular extended categories with which we shall 

be concerned, a few remarks regarding the general extension theory may  help to clarify 

the essential idea. An object A in.4* is by  definition a pair (A, I),  where A is an object in 

(1) Since A = TA(L(A)), therefore S(A) = So TA(L(A)), so that h(A) is simply the natural map from 
sections of the presheaf to sections of the sheaf. Cf. Godement [8], pp. 109-112. 
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the original category • and I a set of local maps of A. However, instead of regarding A 

as simply the classical object A with additional structure (given by  I) ,  we propose an es- 

sentially opposite viewpoint whereby much of the structure of A itself will be regarded 

as nongeometric, i.e., as not belonging to A. More precisely, we propose that  only those 

properties of A which in some natural  sense are invariant under isomorphisms o/~4" shall 

be regarded as geometric, i.e., as belonging to the object A. To formalize this viewpoint, it 

would of course be necessary to introduce some abstract  concept of the geometric object 

of which (A, I )  is a representation, and this might perhaps lead further to geometric maps 

and so forth. Needless to say, it will be preferable to avoid introducing further levels of 

abstraction and notational complexities. All that  is really required is to observe tha t  cer- 

tain aspects of the pair (A, I )  are geometric in our sense, while perhaps much of the struc- 

ture is not. Two examples may  serve to illustrate the point: (1) An isomorphism 

~: (x,1) ->(x', i ')  

in C* does not generally induce any point correspondence between the spaces X and X',  so 

that  these need not even have the same cardinality. For example, if I contains all local 

maps of X, then (X, I )  will be isomorphic in C* to a classical space consisting of one point. 

(2) Let  *~ denote the local category of vector bundles and S~ the eontravariant  functor on 

which to every vector bundle ~ assigns the set of cross-section in ~: and to every bundle 

m a p / : ~ - + ~ '  the naturally induced map So(~):S~(~')-~So(~). One verifies that  S~ is a sheaf 

on ~q. Let So denote the canonical extension of So to ~*. Then So(~) is precisely the set of 

I . invar iant  cross-sections in ~:, where ~ =(s I)  denotes an arbi trary object in ~*. Thus 

"cross-section" (as a geometric concept in ~*) means I-invariant cross-section. Generally 

speaking, the extended local categories A* are designed precisely for the purpose of studying 

those aspects of a classical structure which express themselves as geometric properties in A*. 

To lend further emphasis to this point, we shall henceforth refer to A as the representative 

object of A and I the set of representative maps, A = (A, I)  being an arbi trary object in A*. 

Let  us now take a closer look at  a general object ~ in the extended category ~q* of vector 

bundles(1) in order to clarify the geometric aspects of its structure. The object ~ has, in the 

first place, a dimension (i.e., the dimension of ~), and this is of course invariant under 

isomorphisms of ~q*. The functors C and L (see Proposition 5.5 and Definition 5.6, respec- 

tively) provide ~ with a base object s belonging to C* and a basic space L(~). Both reduce 

to the orindary base space when ~ lies in ~q. Now let T:*~ -~C denote the (covariant) functor 

(:) Strictly speaking we shall be concerned, in regard to the Euler class, with the extended local 
category of oriented vector bundles. But this distinction need not be made in the earlier part of the 
discussion. 
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representing the total space.(1) Replacing L by  T in the constructions defining s and L, 

one obtains corresponding functors 9': ~* -> C* and T: ~* -~C, both of which extend T. More- 

over, the natural  transformation z :  T -~L representing the projection induces natural  trans- 

formations ~ : 9 " ~  and v::T-->L of the extended functors. To see this more clearly, let us 

recall that  i:(~) = (L(~), i),  where I contains the set L(I) and possibly some additional maps 

brought in by  the closure axiom (~ being the representative bundle of ~ and I its set of 

representative maps). Similarly, 9"(~) = (T(~),~), with T(I) c ~. Clearly (~(~) } : 9"(~) -+ I:(~) 

is a premap, and one defines 7e(~) to be the corresponding map in C*. The spaces L(~) and 

T(~) are now defined as quotient spaces of L(~) and T(~), respectively. More precisely, let 

two points x, y EL(~) be called L(I).related if there ex i s t / , g  EL(I) such t ha t / ( x )  =g(y).(~) 

As a consequence of the extension axiom, this constitutes an equivalence relation on L(~:), 

and L(~) is the corresponding quotient. A T(I)-relation on T(~) is defined in a precisely 

analogous way, and T(~) is the resulting quotient. Since T(I)-related points project to 

L(I)-related points under ~(~), the latter induces a map g(~) of the quotients. 

Let  us now write ~ = (B, X, ~) as before, and abbreviate ~(~), T(~), and L(~) by ~,/~ and 

_~, respectively. Let ~ : B->/~ and p : X - > X  denote the natural  projections. I t  is easily 

verified tha t  two points on a given fiber B x in ~ will be T(I)-related if and only if they cor- 

respond under a transformation in (Px (the holonomy group at  x). But  this shows tha t  B~ 

will induce a vector space structure on iS(Bx) precisely when (Px is trivial. Since ~(B~)= 

~-i(~(x)), one sees tha t  ~ will induce a bundle structure on ~=  (/~,X, ~) if and only if (~, I )  

has trivial holonomy, in which case p = (~0, ~) will evidently be a bundle map from ~ to ~, 

and this will generate a map P :~-+~  in ~q*. We may  summarize this observation in the 

form of 

THEOREM 6.1. An object ~ in ~* admits a natural quotient ~ in ~q i/an donly i /~ has 

trivial holonomy. 

I t  is of interest to note that  the only i/part of Theorem 6.1. follows from a much shar- 

per result regarding the behavior of holonomy with respect to maps in ~q*, viz. 

THEOREM 6.2. Let F:~ ~ '  be a map in "~* with ~=($,I) andS' = (~ ' , I ' ) ,  and let 

(x,x') eL(~) • 

correspond under L(/), where /EF. The map / induces then an isomorphism q~I:~P~ ~T'r, 

where ~F f is a subgroup o/the holonomy group (l) 'x,. Moreover, the con~ugacy class o/ LF I in (1) "~, 

is independent o/]. 

(i) In terms of our previous notation, T takes ~ to B and u to d. 
(2) The same relation is defined if L(I) is replaced by .T. 
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To prove this result, it be conveMent to let I I I, I FI and II'1 denote the sets of 

fiber maps induced by the bundle maps of I ,  F and ] ' ,  respectively. We assert now tha t  

every yxEOx can be written in the form ~,x=h2-1Ohl, where hl,h2E ] / ] .  For since [ I  I con- 

tains the identities, one may  assume 

~ =h~lo . . .ohaoh~lohl .  (6.1) 

But  by the extension axiom there exist h2, }~3 e 11] such that  ]7 2 oh 2 = ]~3~ ha, so that  h 3oh~ 1 = 

h~loh 2. Consequently the number of factors on the right side of equation 6.1 may  be re- 

duced by 2, and proceeding in this manner one can achieve the case p = 2. 

G i v e n / E F  such tha t  [ (x )=x '  and ~ E  Ox, we may  define ~0r(Tx ) :[xO~xO/x 1. TO show 

that  ~cs(y~ ) E (I):,, we choose g E [ F[  such tha t  goh~ is defined, which is possible by  condition 

(ii) of Definition 5.4. By  the extension axiom for maps there exist ki,li E I I '  [ such tha t  

k~o/~=liogoh~, i = 1 , 2 .  

But  this implies 
~gr(~/x)  = ~21o l~o 1110 ]gl' 

so that  ~I(7~) Eq):,. I t  is now obvious that  ~I:q)~ ~ O~, is a monomorphism, and we take ~F r 

to be its image. Now suppose ]EF is a second map such that  L(D takes x to x', and let 

~i(r~) =/~~176 1- By the extension axiom for maps, there exist s,~e I I ' [  such tha t  so/~= 

~of~. Consequently 

proving that  LF I and ~F? are conjugate by  (~-los)E 0~,. 

As immediate consequences one has 

COROLLARY 1. When F is an isomorphism in "~*, O~ and 0"~, are isomorphic (as ab- 

stract groups). 

COROLLARY 2. When ~' lies in ~. , ~ must have trivial holonomy. 

Our construction also implies 

COROL~.ARY 3. The preimage o/ an I'-invariant vector under a fiber map /~ IF[ is 

I-invariant. 

I t  is important  to note tha t  the fiber map / foes not in general take I- invar iant  vectors 

to I ' - invar iant  ones. Maps F in ~q* for which this always holds will henceforth be referred 

to as invariance preserving maps. One sees that  the objects in ~*, together with all invari- 

ance preserving maps, give rise to a subcategory ~q*f. 
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Theorem 6.2 and its corollaries describe the fundamental  facts regarding holonomy in 

~*. I t  is evident that  the holonomy groups modulo inner automorphisms constitute geo- 

metric invariants of ~ associated with points of the basic space L(~). 

This may  suffice as a preliminary orientation regarding the generalized vector bundles. 

The extended Euler class will be a function ~, defined on a subcategory E of ~*, which to 

every object ~ assigns an element X(~)EH~oI:(~), where n denotes the dimension of 

and H q the extended singular integral cohomology. Since no adequate analysis has been 

given for n > 2, it will be appropriate to illustrate the category-theoretic aspects of the prob- 

lem by considering the case n = 2. In  accordance with the analysis of Section 4 we will 

define a subcategory E~ whose objects are precisely the 2-dimensional objects in ~* satis- 

fying condition (4.1). Let ~ = (~, I )  be such an object, and let I denote the set of representa- 

tive maps of s Theorem 4.1 defines an element zEH~(L(~),L(1)), where the notation 

Hq(X ', I') signifies the cohomology of I ' - invar iant  singular integral cochains in X' .  Since 

contains L(I) and only such additional maps as are brought in by the closure axiom, one 

sees that  cochains invariant under maps of L(I) will be likewise invariant with respect to I .  

Consequently one has Z E H~(L(~),I). The natural  projection h (see end of Section 5) takes g 

to an element of H~(E(~)), and this will be X(~). Before completing the definition of E~, 

it will be of interest to establish 

THEROREM 6.3. Let ~,~' be objects in Ee and F: ~ - ~ '  an invariance preserving map 

in ~q*. Then tI2o s maps ~(~') to ~(~). 

Let S denote the dM-valued sheaf of singular integral cochains on C and S its canonical 

extension to C* (see end of Section 5). I f  ~ = ($, I)  and ~:= (B,X, ~), So E(~) will be the sub- 

complex of L(I)- invariant  elements in S(X). Now let ~0 denote again the singular simplicial 

complex in B whose 0-skeleton lies in B* and 1-skeleton in B. The integral cochains on ~0 

clearly define a dM-valued presheaf over X. In  other words, if U is an open subset of X, 

one takes G(U) to be the graded differential group of integral cochains on the restricted 

complex /~~  , and if i: V-)-U is an inclusion, G(i) will be the corresponding restriction 

map. Let  S denote the sheaf over X generated by G. A subcomplex S of S(X) consisting of 

T(I) - invar iant  elements (analogous to S = So E(~)) may  be defined in an obvious way, and 

one observes that  the dM-homomorphism ~*:S(X)~S(X)  induced by the projection 

: B - > X  maps S to S. 

Corresponding definitions apply to the second object ~', and it will be convenient to 

distinguish quantities relating to ~ and ~' by  applying the subscripts 1 and 2, respectively. 

The map F :~I  --> ~2 induces now a map S F = S o I:(F) : S~ -~ Sx. Moreover, since F is invariance 
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preserving, /o~ will belong to/~o)  whenever a~ ~:~ a n d / e  F. One again finds, therefore, 

t h a t / v  induces a map SR:S~-~ ~,(1) and this gives a commutative diagram 

S~ ~ $I 

~ 

Let g, denote again the cocycle in C*(K~ previously considered in Section 4, and let 

~, denote its projection to S(X), for i = 1,2. I t  follows by the well-known invariance of s 

under bundle maps that  ~, E Si and w ~,. 

At this point we must recall the eochain homomorphisms q~*:Cq(K~ 
defined by the constructions in our proof of Theorem 4.1. They induce maps q~ :S~(X) ~S,(X), 
and we let ~i = r i = 1, 2. Since the corresponding eochains Jti are I,-invariant (by 

Lemma 4.3), it follows that  ~,, e S,. By eommutativity of diagram (6.2) one now has ~* (~') = i x, 

where ~' =SF(~,). Moreover, it is readily verified that  the cohomology classes of ~1 and X' 

(with respect to the complex Sl) are precisely X(~I) and the image of X(~)under  H2o s 

respectively. I t  therefore remains to show that  X1 and X' represent the same cohomology 

class with respect to S~. 

Since henceforth only one bundle will be involved in the discussion, we may drop the 

subscript 1 and consider ~ E S(X); ~,, X' E S(X), 

=* :S(X) -~ S(X) and r S(X) -+S(X), 

with ~, = r and =*(k') =~. We must show that  there exists ~' E S 1 such that  k = k '  + ~v', 

where 8 denotes the coboundary homomorphism in dM. But this problem is entirely 

analogous to the uniqueness question previously considered in the proof of Theorem 4.1. 

Consequently let ~, fl denote the chain homomorphisms defined in Section 4 and let D' 
denote the chain homotopy of Lemma 4.2. The coehain homotopy [~oD'ofl]* induces 

now a corresponding homotopy D': S(X) -~ S(X), and one obtains 

X = k' + $D'(X') 

(1) Cf. Clifton and Smith [3], p. 448. 
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corresponding to equation (4.4). Since D'  is invariant on dimension 1, D' maps S s to S 1, 

so that  D'(~')E S 1 as was to be proved. 

Theorem 6.3 asserts that  X is naturaI with respect to invariance preserving maps. Since 

this condition was essential to our argument,  it will be appropriate to define E~ as the full 

subcategory of ~** determined by  the given class of objects. 

7 .  F o l i a t i o n s ( 1 )  

In  the differentiable case, a p-dimensional/oliation :5 of an n-dimensional manifold 

X (with 0 < p < u )  is equivalent to an involutive distribution(2) of p-planes on X. The 

maximal integral varieties of the distribution are called leaves o/:~, and we will denote by 

:~ the unique leaf of ~ through a given point xEX. Moreover, we shall be concerned only 

with oriented foliations, i.e., it will be assumed tha t  X and the distribution are both orient- 

ed. An open subset U of X will be called a distinguished neighborhood with respect to :~ 

if there exists a diffeomorphism ~ : R  p x Rn-P-+U (R being the space of real numbers) 

such that,  for every Y0 ER~-P, the points {q~(x, Yo):xERP } lie on one leaf of :~. I t  is clear 

that  the distinguished neighborhoods cover X. If  U is a distinguished neighborhood and 

~t a leaf of :~ meeting U, then U f3 ~t consists of one or more connected T-dimensional varie- 

ties, sometimes known as plaques. Let us employ the term coplaque to designate an (n - p ) -  

dimensional variety in U which meets each plaque in precisely one point. Thus if ~ is a 

diffeomorphism as above, the set {~(x0,y ) :y E R n-p } defines a coplaque in U. A foliation is 

called regular if every point x E X admits a distinguished neighborhood U such that  no two 

plaques of U lie on the same leaf. 

A foliation :~ on X determines a generalized vector bundle (object in ~*) in the fol- 

lowing manner: Annihilating the p-planes of :~ in the tangent bundle of X, one obtains a 

vector bundle ~: = (B, X, ~) of dimension (n-p). Moreover, an orientation of ~ will induce an 

orientation of 4. One observes now that  if U is a distinguished neighborhood in X and V 

a coplaque in U, the natural  projection p:U ~ V  (taking x to the point in V on the plaque 

through x) admits a unique lifting to a bundle map u: ~ ] U -~ 4- I f  J denotes the set of all 

bundle maps u arising in this way, then (4, J)  will be a preobject, and this generates an 

object ~ in ~*. 

Regarding the geometric significance of direction fields in ~(a) we have commented in 

(1) The original monograph oil this subject is Reeb [11]. A survey of recent results may be found in 
Haefliger [9J. 

(2) Cf. Chevalley [ll. 
(a) I.e., J-invariant direction fields in ~. 
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Section 1. I t  should also be noted tha t  the basic space L(~) is precisely the set of leaves, and 

by  Theorem 6.1, this carries a natural  bundle s t ructure  ~ if and only if ~ has trivial holo- 

nomy.  When  :~ is regular (which implies trivial holonomy),  the natura l  p ro jec t ionP  :~-~ 

will be an isomorphism in ~*. For  if 9: is regular, every point  of L(~) has a neighborhood 

which can be lifted to a coplaqne V in X by  a homeomorphism s:~--> V, and moreover,  

s admits  a unique lifting to a bundle map  / :  ~ I / )  -~ "  I t  requires some construct ion to verify 

tha t  the set F of all such bundle maps  / satisfies the extension axiom (as a premap from 

to ~). F therefore gnerates a map P' : ~-~ ~, and this will be an inverse of P.  The fact  t ha t  

P'oP ~ I (the ident i ty  of ~) depends of course on the circumstance tha t  I contains maps  

u:  ~l U --> ~ with the proper ty  tha t  ~ projects U onto a coplaque V.(1) Conversely, analogous 

considerations indicate tha t  :~ will be regular whenever P is an isomorphism. For  arbi t rary  

:~, the object ~ represents therefore a natural  generalization of the classical vector  bundle 

associated with a regular foliation. 

A simple example m a y  now serve to illustrate the geometric significance of the ex- 

tended Euler class in the context  of foliation theory.  Take X to be an  oriented Euclidean 

space of dimension 3, let (x, y, z) denote Cartesian coordinates on X and let (r, 0, z) denote 

cylindrical coordinates, defined by  

x = r c o s 0 ,  y = r s i n 0 .  

We will let (~/~x, ~/~y, ~/~z) and (~/~r, ~/~0, a/az) denote the natural  f rame fields associated 

with the two coordinate systems, respectively, bearing in mind tha t  the tangent  vectors 

~/~r and ~/~0 are defined only for r > 0. The formula 

v = cos r ~/~z + sin r ~/~0 

defines now a vector  field v on X, and this determines a 1-dimensional oriented foliation :~. 

The leaves :~  (as a funct ion of p EX) are easily described: When  p lies on the z-axis, :~  

coincides with the z-axis. Otherwise let p = (f, ~,5). For  0 < f <n/2 ,  :~  will be a helix about  

the z-axis; for ~=n/2 ,  a circle given by  r=~, z =5; and so forth. Actually,  only the region 

0 ~<r<~ for some ~ > z / 2  will be of interest. I t  should be observed tha t  the behavior  of 

the helical leaves near the cylinder r =7e/2 causes :~ to be nonregular.  

We assert t ha t  the generalized vector bundle ~ associated with :~ belongs to the 

subcategory ~2. Since ~ clearly has dimension 2 (the codimension of :~), it remains to 

(1) These maps u are of course not invertible. When the representative maps of an object (in an 
extended category) are all invertible, its identity reduces to a pseudo-group on the representative object. 
In general, the extension and closure axioms are needed to replace the restrictive condition of a pseudo- 
group. 
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examine the holonomy groups Cp. Since these must be trivial unless :~v is a circular leaf,(1) 

we must look at points on the cylinder r =~/2, e.g., the point p with Cartesian coordinates 

(z /2 ,  0, 0). We recall that  Cp operates on the fiber Bp over p in the representative bundle 

= (B, X, z) of ~. Since v(p) = (~1@)~, one may identify Br with the subspace of X~ spanned 

by  (~/~x, ~/~z)~,, where X~ denotes the tangent vector space to X at p. One now observes 

that  for ~ > 0 sufficiently small, 

V = {(x, 0, z): (x, z) e R 2 and Ix -z /21  < ~}~ 

constitutes a coplaque through ~o. Clearly every helical leaf of 7 meeting V at a point 

(x, 0, z) reenters again at points of the form (x, 0, z + nzt z cot x), n being an integer, and this 

implies by an elementary calculation that  @v is infinite cyclic with generator given by the 

matrix 

(lo 1 

relative to the basis (~/~x, ~/~z)v of B v. Thus (~/~z)v constitutes an I-invariant vector in 

Bp, I being the identity map of ~. Condition (4.1) is therefore satisfied, and ~ belongs to E2. 

Since the computational aspects of the extended cohomology theory are as yet  un- 

developed, an actual calculation of the groups Hqo s would not be feasible at this point. 

Instead, we  will show by a direct argument that  X(~) does not vanish. Let  the singular 

simplicial complexes K and/~0 be defined as before, and let I be a circular leaf of :~ on the 

cylinder r =z/2.  The leaf 1 gives rise to a cycle e E C2(K/I ) in the following way: Let  a :A 2 -+X 

be a singular simplex such that  ~I/~2 maps A 2 onto I with degree + 1.(2) Let  p~ denote the 

point on 1 corresponding to the ith vertex of A2, i=0 ,1 ,2 ;  and let a ' :A2-~X denote the 

singular simplex mapping A 2 on P0. Since each of the segments P~Ps of l can clearly be 

mapped to Po by 4 for some u E I,  the chain c = a - a '  will correspond to a cycle e in C2(K/I). 
Let Z denote the cohomology class in H2(K/I) determined by Theorem 4.1. We recall that  

Z derives from a cocycle ~ =~*(~, where q: Cq(K)-->Cq(I~ ~ represents a lifting operation 

applied to the elements a E K. I t  is important to note that  if this lifting operation has been 

carried out on a subcomplex K '  of K, it can be extended to K. The period X(e) is now given 

by 2(c), and moreover, ~(c) =r for an admissible lifting ~ of c. A lifting of ~' to/~0 is de- 

fined by taking 

a'(w)=(~/~z)~,~ w~A2; 

(1) I t  is well known  for general foliations t ha t  the ho lonomy groups  are trivial on simply-cormect~d 

leaves. Cf. Reeb [1]. 

(2) This s imply means  t h a t  if p t raverses  A~ once in a positive sense, (r(p) will t raverse  l in the same 

way, 
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and  one can ce r ta in ly  f ind a l i f t ing ~ of a such t h a t  

O(w)=(~l~z)~(~), w~h2.  

This gives an  admiss ib le  l i f t ing ~ = ~ - ~ '  of c, and  since e(~') is obvious ly  zero, one has  

~(e) =e(~).  Now suppose (el, e~, e3) is an  or thogonal  f rame field on X with  e3 = v .  This implies  

t h a t  (~/Oz)~ mus t  lie in the  p lane  spanned  b y  (el, e2) for p on l, and  one m a y  ver i fy  t h a t  

e(~) is precisely the  winding number  of (~/Oz)p with  respect  to  (el, e2) as p t raverses  l in a 

posi t ive  sense. I t  is n o t  difficult ,  of course, to  f ind a f rame field wi th  the  des i red  p rope r ty .  

Since the  vec tor  field 

e = - sin r O/~z + cos r ~/~0, 

def ined for r > 0, is o r thogonal  to  v a n d  O/~r, our  p rob lem is to  express  e I and  e~ as l inear  

combina t ions  of e and  O/~r in such a w a y  t h a t  (el, e~) m a y  be cont inuous ly  ex t ended  to the  

z-axis. Se t t ing  

% =cos  0 0 / 0 r - s i n  0 e (7.1) 

e~ = sin 0 O/Or + cos 0 e 

will  be admissible ,  for c lear ly  el -~ 8/Ox and  e 2 -~ O/Oy as r -~ 0. B u t  e = - (O/Oz) on l, so t h a t  

equat ions  (7.1) give e(a) = - 1. 

This  proves  t h a t  Z does no t  vanish.  The  fact  t h a t  the  ex tended  Eu le r  class X m u s t  also 

be nonzero m a y  now be es tab l i shed  b y  a s t a n d a r d  sheaf- theoret ic  considerat ion.  The  idea  

of the  a rgumen t  is this:(1) The  cohomology class X der ives  f rom a sect ion ;k in the  sheaf of 

eochains over  X corresponding to the  cocyle ~ (see above).  The vanish ing  of ~ would  

i m p l y  t h a t  ~k cobounds  a sect ion ~ which is I - i n v a r i a n t  in the  n a t u r a l  sense. B u t  the  ca- 

nonical  m a p  from cochains to sections is a lways  sur jec t ive  when the  under ly ing  space is 

paracompact , (~)  so t h a t  ~ der ives  f rom a cochain ~r There  now exis ts  an  open covering 

of X such tha t ,  wi th  respect  to  s ingular  s implexes  subord ina te  to  ~ ,  :r is I - i n v a r i a n t  in the  

usual  sense and  ~ = ( ~ .  F o r  a suff ic ient ly  fine ba rycen t r i e  subdivis ion c* of the  chain  c 

(defined above),  one has  therefore  2(c*)= 5:r Since c* projec ts  to  a cycle in  C2(K/I),  

th is  implies  2(c*) =0 .  Similar ly ,  b y  the  fac t  t h a t  c also pro jec ts  to a cycle in C2(K/I) and  

is I - i n v a r i a n t ,  one m a y  conclude t h a t  2(c)=~(c*). B u t  this  con t rad ic t s  the  resul t  of the  

preceding  calculat ion,  thus  es tabl ishing t h a t  ~ is nonzero.  

(1) For an arbitrary sheaf S on X, the elements of S(X) may be identified with sections in an as- 
sociated espace gtal~ p:E--->X. If S is generated by a presheaf G, a point in p-l(x) is precisely the germ of 
an element s E G(U) at x, U being a neighborhood of X. Cf. Godement [8]. 

(2) Cf. Godement [8], p. 160. 
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