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By a surface is meant a pair (f, X) where X is a compact m-dimensional Haus-
dorff space and f is a map of X into a Euclidean space of dimension n. The pur-
pose of this paper is to define a Lebesgue type area, Ly, (f), for such surfaces and
to show that it has two desirable properties, (2.6) and (3.3). In this setting, “‘ap-
proximately elementary’” surfaces, defined in terms of the nerves of open covers of
X, form natural substitutes for elementary ones. Indeed, with this simple substitu-
tion, the usual definition of Lebesgue area—in which limits are taken only once—
becomes a reasonable definition of area (called L5 below). However, this functional
is not well understood at present and the alternative, Ly, is defined using two lim-
iting stages.

In seetion 1, L% and L;, are defined; the inequalities L2 <L}, Ly <L, (L, is
the usual Lebesgue m-dimensional area, see, e.g. [2]) follow easily from the defini-
tions. In section 2 the case in which X is a compact 2-dimensional manifold (with
or without boundary) is considered and it is shown that Lj =L, for such surfaces.
This result depends essentially on a countability lemma (Cesari-Radé) and when it

fails—as it does for m>3, even for cells—L} and L, are different. In section

3 an inequality, essentially L (f) < fo (p)dp, is proved for X a compact Hausdorff
En

space and f a light map. This is the so-called “flat case”, ie., m=mn; M, is the

“crude” wultiplicity function. An example is given (2.9) in which the inequalities

Li(h<Ly{f) and L, (f)> f M:(p)dp occur though X is {finitely triangulable and

f:X—>E, is light. "

(1) This research was begun while the suthor was a member of the Seminar on Surface Area.
led by L. Cesari at Purdue University, and completed while he held an XL fellowship from the
Purdue Research Foundation.
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1. Definitions

1.0. If » and m are positive integers, Y is an m-dimensional (geometric) com-
plex, and f:Y—E, is simplicial, relative to Y, then the elementary m-area, e, of f

is defined by: e, (f)= > an(f(g)), i.e., the sum extends over all m-dimensional sim-
cgeY

plexes ¢ of Y, and a, denotes (Lebesgue) m-dimensional measure. If X is a Haus-
dorff space, X is said to be: (i) compact, if and only if each open cover of X has
a finite refinement which covers X and (ii) of dimension < m, if and only if each
open cover of X has a refinement ¥ which covers X, such that no point of X lies
in more than m+1 elements of V. Such a cover ¥ will be said to be an m-dimen-
sional cover of X. If « is an open coper of X, then X, will denote a realized nerve
of «, (called P(x) in [6]). Barycentric x-maps are as in [6]; canonical maps are as
in [3]; simplexes are always ‘“‘open-simplexes”.

If K is a complex and v is a vertex of K, then St (v) will denote the open
star about », relative to K, i.e., the union of all simplexes ¢ of K such that v is
a vertex of ¢. St(K) will denote {St(v):v is a vertex of K}. Note that if K is
n-dimensional, then St(K) is an n-dimensional open cover of |K| and that K and
| K |ss &) are isomorphic complexes.

1.4. If X is a Hausdorff space and Y is a triangulated space, a triple («, g, %)
will be said to be an m-canonical map triple of X into Y, if and only if:

a) « is a finite, m-dimensional open cover of X;

b) g:X—>|X,| is a canonical map;
and ¢) h:X,—Y is simplicial (relative to a subdivision of Y).

1.2. Suppose X is a compact, m-dimensional Hausdorff space and («, g, h) is
an m-canonical map triple of X into E". Then |X,| is metrizable; let g be a metric
for |X,|. Define the *-elementary m-area, ey (x, g, h) to be the least number k such
that for each positive number ¢ and each open cover U of X, there exists an m-
canonical map triple (8, ¢, #) of X into X, such that o (k' ¢',g)<e, p refines U
and e, (hh)<k+e.

1.3. Suppose X is a compact Hausdorif space and f:X—+E". Define the (Le-
besgue) m-dimensional area Ly, (f) [respectively, L% (f)], to be the least number & such
that for each positive number ¢ and each finite open cover U of X, there exists an
m-canonical map triple («, g, ) of X into E" such that ¢ (kg, })<e, « refines U and
ey (o, g, h)<k+e, [respectively, e, (h)<k+e]. If X is a metric space, the notion of
“refinement” for open covers of X can be replaced by familiar considerations of the

mesh and Lebesgue number of open covers of X, defined as usual.
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1.4. If X is a compact Hausdorff space of dimension <m and f:X—E,, then
LE ()< L.

Proof. Suppose Ly is finite, £>0, and U is an open cover of X. Then there
exists an m-canonical map triple («, g, h): X—E, such that « refines U, o (f, hg)<1le,
and ey (a, g, h)<Lp (f)+3e. Let >0 be such that if », 2" ¢|X,| and o (z, ') <4,
then p{A (), h(z')]<}e. By the definition of e}, there exists an m-canonical map
triple (8, g’, #') : X—| X, | such that § refines U, o (9, 4’ ¢') <0, and e, (A1) <en (¢, g, k) +
+3e<Ly(f)+s Therefore, o (f, hh g')<e so that L% ()< Lk (f).

1.5. If T=(, K) is a finite m-dimensional triangulation of a compact space X
and ' : X—E, is simplicial relative to T, then there exists an m-canonical map triple
(2, 9, b) of X into E, such that:

1) en(, g, h)<en(f);

2) f'=hg;

3) mesh a<2 mesh T.

Proof. Let o be the collection of all open stars about vertices of 7. Then K
is a realization of the nerve of o and hence we may set X,=K. Furthermore,
g=t"':X—>|X,| is canonical. Let h=ft and suppose £>0. Then there is a sub-
division 7"= (¢, K’} of K such that 7" = ({t’, K') has mesh less than 1¢. Let § be
the collection of all open stars about vertices of 7"'; again we may set Xz= K'. Then
B, 871 ') | Xpl>| X,| is m-canonical and e, (ht)=e¢,(f), so that e (x, g, h) <
<e, (f). Parts (2) and (3) follow from the definition of «, g, and h.

If X is a triangulable space and f': X->#, in semi-linear, then there are tri-
angulations of X of arbitrarily small mesh, relative to which f* is simplicial. There-

fore we have the following corollary to (1.5):

1.6. If X is finitely triangulable, dim X <m, and f: X—E,, then L} ()<L, (f).

2. The Case: X=A Compact Manifold

DEeriniTIONS. 2.0. If m is a positive integer, an m-dimensional space will be
said to be Euclidean if and only if it is homeomorphic to a subset of E,; planar,
if it is Euclidean and of dimension 2. If ¥ is a subset of X, ¥° will denote the

interior of Y.

2.1. Suppose X is a compact m-manifold, with or without boundary,

(o, g, B): X—E,
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is m-canonical, and that ¢~ (o) is Euclidean, for all m-simplexes ¢ of X,. Define:

em (@, g, h) = ZX D (g, 0)-an[h (0)],

where D (g, o) is as defined by Federer [4].

23. Let X, Y,f and o be as in (2.5), below. Then a point p€¢ is said to be
a branch point of f, (relative to ¢) if and only if the number S(f, p) of essential
components of f~!(p) is less than D (f, ¢). (See Cesari [1] and Federer [4]). Similarly,
let K, T, and f be as in (2.5.0), below. A point p€7° is said to be on O-branch
point of f (relative to K) if and only if S(f, p) is less than |O(f, K, T°)|, where
O(f, k, T° is the topological index (ordinarily defined, [7], relative to a point, e.g.,
O (f, K, p) for p€T. However, the notation O (K, f, T°) is not ambiguous, as O (f, K, p),

considered as a function of p, is constant throughout 7).

2.4 (Federer). If X is a compact, triangulated, m-dimensional manifold, with or
without boundary, («, g, b): X—E, 1is canonical, and each element of « is Huclidean,
then there exist subdivisions X, of X and X, of X, and o simplicial map g9': X,—>X,
which approximates g relative to X, [3; IT 7.1, such that e, (hg')=en («, g, k).

Proof. There exist subdivisions, X; of X and X,; of X, and a simplificial map
g’ : X,—>X,, such that for each m-simplex A€X,, ¢ " (y) has D (g, A) elements, for
almost all (Lebesgue m-dimensional measure) points y of A, and such that g’ ap-
proximates g relative to X,. (See Federer, [4], p. 6.13. Federer is concerned only
with the case |X,|=E,, though his proof applies here.) Then kg’ is simplificial.
Suppose ¢ is an m-simplex in E, such that for some simplex A in X,, c="h(A).
Then for almost all y€g, y is the image of > D (g, A) points of X, where the sum

extends over all m-simplexes A of X such that h(A)=c¢. Therefore

en (hg')= AEEX D(g, A)-an [k (A)],

and by definition, this is ep (a, g, A).
(2.5.0) (Cesari). Suppose K is a finitely connected closed Jordan region with
mutually exclusive boundary curves J,, ..., Jp, J=U J;, that T is a solid triangle with
i1

boundary B, f:K—T, and f(J)<B. Then the subset A of T° of all O-branch points
of f is finite.

Proof. We first show that A is locally finite, by induction on m. For m=1,
this is proved by Cesari [1; Theorem B]. Suppose that for all positive integers less
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than m, A is locally finite. Let @, be a point of T° and assume as case 1 that

f1(Q,) does not separate any two of the sets J,, ..., J,. Then there exist closed
non-overlapping dises, K, ..., K,, such that (@)= U K?. Then > O(f, K;, Q)=
i=1 <1

=0(f, K, Q,) and, by Cesari’s theorem, there exists a neighborhood N; of @, such
that if pEN,~@Q, then f'(p) has at least |O (f, Ki, @,)| essential components in

K}, i=1, ..., n. Therefore AN (N N, contains at most the point @, so that A4 is
i1

locally finite.

Case 2: {!(Q,) separates some two of the sets, J,, ..., J,. Let K, ..., K, de-
note those components of K—f'(Q,) which contain one of the sets Jy, ..., J,. For
=1, ..., n, let ]%i denote the decomposition space of K,;, in which all points of ‘
K, nf'(Q,) are identified, let g,:K,—~K; be the decomposition map and h,=fg;".
Then Iﬁ is a finitely connected closed Jordan region, whose boundary curves consist
of certain of the sets Jy, ..., Jn, say {Juy}/ , i=1, ..., n. Note that n;=+n;;, un-

less (4, j)= (', §'), and that g¢;|Jn; is a homeomorphism, i=1, ..., n, j=1, ..., m;, so

that > (k, K;, T")=0(f, K, T°. Turthermore, m;<m, i=1, ..., n, so that by the
1

induction hypothesis, there exists a neighborhood N; of @,, such that the set 4; of

all branch points of %;, intersects N; in at most the point ¢,. As before, A0 (N N;)
i=1

contains at most the point @, so that A4 is locally finite.

We complete the proof by showing that this weaker conclusion implies the
stronger. Enlarge K by adding annular regions, one for each boundary curve, J;
t=1, ..., m, obtaining K’ with boundary .J’; similarly, add an annular region to 7'
obtaining 7" with boundary B’. Extend f to f:K'—T', so that J =B, and
K' - K—T"—T, by homotopies. Then O(f, K', T')=0(f, K, T°) so that A'>A.
The fact that A’ is locally finite implies A=A'NT°c A’ N T is finite.

2.5. Lemma. (Cesari-Radd). Suppose X is a compact 2-manifold, with or without
boundary, Y is a 2-complex, f: X—|Y|, o is a 2-simplex of Y, U is an open subset
of X, U is planar, and that {7' ()<= U. Then the subset A of o of all branch points

of f has no limit point in o.

Proof. Assume, on the contrary, that A has a limit point y€o. Let ¥ denote
the collection of all components of f'(s). Then D (f, 6)= > D(f, ¢, V), and for only
Vew

finitely many elements of ¥, say V,, ..., V,, is this index different from zero. Let
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k
A; denote the set of all branch points of f|I7i, t=1, ..., k. Then U 4,> A4, so that
i=1

there is an integer n such that y is a limit point of A.; let g=f|V,.

Let r be a 2-simplex such that y€rcfce. There exists a continuum M such
that g '(ncMcV, Let r be a simplex such that g(M)cr' <7 cg. From the
hypothesis concerning U it follows that there exists a finitely connected Jordan region
R, with boundary J, such that g(V,—R%) N#=0. Let B denote the boundary of
o, let s:5—>G be a map such that s|# U B is the identity and s (g (V, — R%)< B, and
let h=sg. It follows, (see [8; VI.1.4]), that |O (R, B, o)|=D (h, 0). As

gl eMeg @)=k (")=h7 (o),

some component, say V', of h™! (¢) contains ¢~ (r)=%"" (). From this last it follows
that h(V,— V')Nr=0, so that D(h, 0)=D (h, o, V').
In the diagram

1—,_[,")<—— H: (T, V- py ——> H*(R, J)

'[ 7 MT f34 h;‘,[ i

h: 2 ’
H® (5, B)b—-—— H*(5, B) ¢———— HYG,6-1 «————— H*(R, R- V")

¥
%
ke H

v, v-v)

g7 is induced by g, j=1, 2; &} by &, j=1, ..., 6; i} by inclusions, j=1, ..., 5; and
s* by s. Then s* is the identity and if is an isomorphism onto, j=1, ..., 5 (see
[3; X, 5]).

These groups are all infinite cyclic, [3; XI, 6.8], and commutativity holds
throughout. As the homomorphisms g¢f and 4§ are “connected” by isomorphisms,
the indices they define are equal, i.e., D (g, 6, V,)=D (k, 6, ¥V'). Therefore D(f, o, V,)=
=|0 (b, R, a)|. Thus, as f and % agree on RNA™' (), it follows that the set A, of
all O-branch points of | R satisfies 4, Nr=A,Nr. But (2.5.0) applies so that A,

has no limit point in ¢, contradicting the fact that y is a limit point of A4..

2.6. LEmMmaA., Let X, Y, f, 0, 4, and B be as in (2.5). Suppose, in addition that
U and V are open subsets of G such that AUB< V<V U and let Xo=f"(G—U).
Then there exist positive numbers e, 8, such that if g: Xy~ is a map with o (g, f| X,) <e,
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then for each y€G—U, g~ (y) has at least D (f, o) essential components, no two of which

are within 0 of each other.

Proof. Let m=D(f, o), f,=f|Xy and let C denote the space of all maps
g:X,—>a, metrized as usual. For each (g, y)€Cx&, let S (g, y) denote the number
of essential components of ¢7'(y). Then, as S is lower-semi-continuous and >m on
{fo}x(6—1U), it follows from the compactness of G—U that there is a neighborhood
N of f, in C such that if (g, y) ENx (6~ U), then S (g, y)=m.

For each (g, y)ENx(6—U), let d, (g, y) be the greatest lower bound of the set
of all numbers & such that: (a) g~* (y) does not have m essential components, no two
of which are within d of each other. Then d,>0 on Nx(G—U). Furthermore, d,
is lower-semi-continuous, for assume the contrary. Then there exist a sequence {g;}32¢
of maps of X, into &, a sequence {y;}72 of points of — U, and a positive number
0, such that (i) g;—>g, and y,—>y, as i—>oo, (ii) (g;, ¥;) satisfies (a) for 8, i=1, 2, ...,
and (iii) (gy, %,) does not satisfy (a) for 8. Let L,, ..., L, be essential components
of ¢5'(y,) such that o (L, L;)>9, for é+j, 4, =1, ..., m, and let N, be a neigh-
borhood of L; such that ¢ (N;, N;)>d, for i+4, ¢, j=1, ..., m. It follows from the
definition of ‘“‘essential component”, that for sufficiently large ¢, ¢gi'' (y;) has an es-
sential component L;c Ny, for each j=1, ..., m, contradicting (ii).

As ahove, there exist a neighborhood N’ of f, and a positive number 4, such
that for all (g, y)EN'X(6—U), dn (g, y)>9J, so that g ' (y) contains m essential com-
ponents, no two of which are within 6 of each other.

2.7. LeMma. If X is a 2-manifold, with or without boundary, and (e, g, b): X—E,,
is 2-canonical, then e (a, g, h) <ei («, g, h).

Proof. Suppose £>0 and that e («, g, h) is finite. For each 2-simplex ¢ of X,,
let M;=D(yg, 0), R,=g ' (0), B,=the boundary of ¢, and 4, be the subset of ¢ of
all branch points of the map g, relative to . Let N be the number of 2-simplexes
in X. By (2.5) there exist neighborhoods U,, V, of 4,U B, such that V,cU, and
ay (R (Us)]1<e/3(Ms+1) (N +1). Let &, 0, be as guaranteed by (2.6).

By the definition of ¢; there exists a 2-canonical triple (8, ¢, »') : X—X, such that:

a) p(h' g, 9)<es for all 2-simplexes ¢ €X,;

b) mesh §<§; for all two simplexes ¢ €X,;

and ¢) e, (hk')<es (o, g, h)+¢/4.

Then A': Xz—>X, is simplicial relative to a subdivision X,; of X,. For each 2-simplex
o of X,, let ¢, be the subdivision of ¢ induced by X,;. Then
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ez(hh/):Az ay[hh (A)]=A§ Mp-apfh (A= 2 AZ Mp-ay [k (A)],
eXﬁ €X,1 ceX, Aeo,

where M, is the number of 2-simplexes of X; which map onto A under 2'.

Suppose ¢ is a 2-simplex of X,. Let o;={A€cg,:A—U=+0}. Then

L2 oA <ay[h (U] <o/ (Mo + 1) (V4 D).

Furthermore, for each 2-simplex A€oy, Mpy>M,, for suppose on the contrary that
MA<M,, for some 2-simplex A€o;. Let y€A—U, z=M, and let s, ..., s, be
those 2-simplexes of X; which map onto A under 2. As no 1-simplex of X; maps
onto y under &', it follows that {s;}7_, covers 11 (y); therefore {g~'(s;)}i-1 covers
g 'A"'(y). But for each i=1, ...,z g '(s;) lies in some element of § and hence
has diameter <§,. This contradicts the fact that g%~ '(y) has M, essential com-
ponents, no two of which are within 8, of each other.

Therefore '

a(hk)= 3 5 Mawh(A)]> 3 M, 5 o lh(A)]

ceX, A€o €0,

= Z Md(a?[h(o')]_az [h(UU)])> Z Mo'az [h(a)]_é‘:eéj ((X, g, h)—é‘,

ge X, ana

and the proof is complete.

2.8. TaEOREM. If X 4s a compact 2-manifold, with or without boundary and
f:X—E,, then L3 (fy=L,(f).

Proof. Let a triangulation of X be specified. By (1.6), L3 (f)< L,(f). To show
the other inequality, for i=1, 2, ..., let (a;, ¢, k) : X—F, be a 2-canonical map triple
such that k;g; converges uniformly to f, mesh a;—0, and e3 (o, g5, b;)—L3 (f), as 1—>oo.
For each positive integer i, lemma (2.4) implies the existence of a semi-linear map
gE:X—)Xai- which approximates g; relative to X,, such that e, (hgi)=e% (i, Gi, 1)
But for sufficiently large i, 2 (o, gi, bi) <e3 (x> gi» by), by lemma 2.7. As hg; con-

verges uniformly to f, we have

L, (f)< lim inf e, (hg:)=lim inf €7 (o, ¢, b) < lim inf €3 (o;, g1, hy) = L ().

2.9. ExamprLE. There exisis a triangulable space X and o map | of X onlo the
unit square @ suck that Lg (f) < L, (f).
Proof. Let X be the union of two (solid) squares, ¢; and ¢, whose intersection

is a diagonal of each. There exists an isometry %:Q,—@Q, such that & (x)==x for all
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2€Q, N Q,. There exists a homeomorphism f, : Q,—@ such that f, (@, N @,) is a “heavy
arc”’, i.e., an arc having positive 2-dimensional Lebesgue measure, say d. Define
f:X=Q by f(x)=f;(x), for x€Q, and f(x)=f; k(x), for £€Q,.

By over-additivity and symmetry, we have L, (f) > L, (f| @) + Ly (f| Qo) = 2 - Ly (f) = 2;
the last equality follows from the fact that f, is a homeomorphism. That L3 (f)<2—d

follows from theorem 3.3, below.

3. An inequality for flat mappings

3.0. In this section we are interested in a compact Hausdorff space X and a
light map f: X—E,. (It follows that X is of dimension <=z.) For each point p€E,,
let M, (p) be the number (possibly infinite) of points of ' (p). Then M, is the so-

called ‘“‘crude multiplicity’” function; it need not be measurable, indeed.

(3.0.1). Suppose Y is a topological space and M :Y—{0, 1, ..., oo} is a func-
tion. Then, in order that there exist a compact Hausdorff space X and a light map
f: X—=Y such that M =M, it is necessary and sufficient that the support of M be a
compact Hausdorff space.

The necessity is just the fact that the continuous image of a compact Hausdorff
space is again a compact Hausdorff space. To prove the other half, assume the
support of M is Y’, a compact Hausdorff space. Let X ={(y, j):j is a positive in-
teger <M (y)}, and define f: X—7Y, by f(y, /)=y, all (y, j)€X. A basis N of neigh-
borhoods for X is defined as follows: a subset N of X is in M if and only if either
(1) N is a single point (y, j), where y€Y and 1<j<M(y) or (2) N=f"(U)—F,
where U is an open set in Y and F is a finite set of points (y, j)€X such that
1<j<M (y). The axioms of Hausdorff can easily be verified.

Let X'={(y,1):y€Y'}. Then f|X' is open and one-to-one and therefore a
homeomorphism. Hence X’ is compact. Therefore if U is a sub-collection of ¥ which
covers X, some finite subcollection U, of U, covers X', and hence all but finitely
many points of X, so that X is compact. The projection f is clearly continuous
and M,=M.

Thus, in the main result of this section we are forced to use the lower Rie-

mann integral of M,, fM +(p)dp. However, if X satisfies the second axiom of count-

ability—i.e. is metric—then M, is measurable, as may be seen as follows: there
exists a countable collection {U;};2; of finite open covers of X such that if U is an
open cover of X, then some U; refines U. For p€E, let M;(p) be the least

integer j>0 such that some subcollection of j elements of U; covers f'(p). Then
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M, is upper-semi-continuous, finite valued, and M; (p) <M, (p) for all p€E,. Finally,
sup M;=M,, so that M, is measurable.

(3.1). LEmMA. Suppose X is a Hausdorff space, Y is a finite n-complex f: X—| Y|,

and that for each wvertex v of Y, there exist non-emply open sels otyq, ..., %y, m@) Such that:
m)
1.y a =11 (St (v)); and

2. %y Ndly=0, unless ¢=7.

Let a={o,:v is a verter of Y and i=1, ..., m (v)}, and let v; be the vertex of X,
corresponding to o,;.. Then the correspondence v,—v determines a simplicial map h:X,—7Y
and there exists a (unigue) barycentric «-map g completing the following commutative
diagram:

X >17|

| X

Proof. First, if v and w are vertices of ¥ such that w; and w, are adjacent in
X, then o Noy =0 so that St (v) NSt (w) > f (aty; N i) =0, and hence v and w are
adjacent. Note also that v==w so that h collapses no simplex of X,.

To define g, suppose x € X and let oy, ..., %sj be the only elements of o which
contain x. Let ¢, be the simplex of X, with vertices vy, ..., vrj;,. (Here, and below,
vi; is used instead of (v;);.) Let g(x)=a,N A" f(z); this is a single point as |0,
is a homeomorphism.

To show that g is continuous suppose z€X and that oy, ..., o, are the only

elements of « which contain x. Let aw 1441, ..., Gy be the only other elements of
T

o which intersect () awj;. Let o, be the simplex with vertices woj,, ..., ¥rs, and let
=0

Oy ... > O be the only simplices of X, which have ¢, as a face. Note that oy, ..., gy
are characterized as having each of vy, ..., 9, as a vertex and all remaining ver-
tices among w1141, ..., ¥s;,. Let agi=h(ai), i=0, ..., k.

Suppose N is a neighborhood of g(z) in X,. Then N contains an open subset

of &; and hence % (N) contains an open subset of i, i=0, ..., k. Hence there exists
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a neighborhood R of k(g (z)) such that R0 & <h(N)N4&;. Let N’ be a neighborhood
of z such that N'< M ayj; and f(N')<R. Then g (N')<= U o; and g (N')<h™' f (N')
i=0 =0
<h Y (R), so that g(N')=(U ;) N2~ h (N)<N.
im1

Then if x€a,, g (r) lies in a simplex having v; as a vertex and conversely, for
all vertices v of ¥ and j=1, ..., m(v), so that ¢ is a barycentric «-map.

Furthermore, if g’ is such a barycentric a-map, ¢’ (x)€c, N k™' f(x) (notation as
above) so that g’ =g.

(3.2). LEMma. Suppose both the diagrams

are as in the previous lemma and that

a) Y’ is a subdivision of Y, and

by if v is a vertex of Y and v is a wvertex of Y', then mo one of the sets
Bots v s Pormrony nfersects two of the sels ay, ..., ume. Then there exists o map
®: X;—X,, simplicial relative to o subdivision of X,, such that commutativity holds
throughout the diagram:

> Y|

[X;]

Proof. Suppose v; is a vertex of X;, that is v’ is a vertex of ¥’ and ¢ one of

the integers 1, ..., m' (¢'); let x€8,, Let v, ..., v, be the only vertices v of Y
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such that v €8t (v). Then there exist unique integers 4, ..., j, such that €y, for
i=0, ..., . As B,;<f'St' (v) (here and below, St’ (') denotes the open star

about v', relative to Y’), and St’ (v')< St (v;), it follows that ﬂv’tC’:G;)acv“', i=0,..., r
Then from part (b), it follows that Suv:<aws, =0, ..., 7. Let ow be the simplex of
X, with vertices v, =0, ..., 7. As k|ow, is a homeomorphism, PR (W) Naw is a
single point, »,", so that the correspondence v;—wv; is single valued.

We must show that if v; and w, are adjacent vertices of Xj then v;" and v
lie together in a single closed simplex of X,. To this end, let the notation of the
previous paragraph hold for v; and let Wys ..., W, Ky, ..., ks and owu, be the corre-

sponding elements for w;,. Then Puwu< O, 8=0, ..., 8. As above the non-empty
r 8

set fveN Buwuc (M o) N (N owsr;) and thus it follows that there is a simplex ¢ in X,
i=0 i=0

which has both ¢, and ¢, as faces. Then v; and w, lie together in . Therefore
the map ®:X;—X, is determined and is simplicial relative to a subdivision of X,.

We conclude by proving the commutativity of the diagram. As A® and 2’ are
simplicial and agree on the vertices of Xj, it follows that A®=54'. To show that
®g =g, suppose v€X. As h®g (x)=h"¢ (x)=f(x)=hg(x) and as k|G is a homeo-
morphism for each simplex ¢ of X,, it will suffice to show that ® g’ (x) and g ()

lie together in a closed simplex of X,.

Let @ be the simplex of X; containing ¢ (), V0> .-+ > Vs its vertices. Let o,
be the simplex of X, used above in defining vi;, let wi, ..., vy be its vertices, and
aie be the element of « corresponding to v, =0, ..., 7, ¢=0, ..., k. (Note that

(11

the symbols ‘v, and “oy.”’ constitute a change from the notation of the previous

paragraphs.) As x€fy;, and B C e, €=0, ..., 7, ©=0, ..,k it follows that
N e so that there is a simplex ¢ of X, with vertices {wic}i—o,...,x. Then

e==%,, .....’,’I;{ e=0,...,7;

® (vi;)€q, =0, ..., k, so that ® g’ (z) €D (w)=5. But as g is a barycentric a-map,

g(x) is in a simplex ¢’ which has ¢ as a face so that both g(z) and ® g’ (z) lie

in &

(3.3). TurorEM. If X is a compact Hausdorff space and f:X—E, is light,
then L3 (f)< [ M, (p)dp.

Proof. Suppose U is an open cover of X. If p€f(X), there exists a neigh-
borhood N, of p, such that f~' (p) is the union of mutually exclusive sets, 4,1, ..., Apk,

such that A4, lies in some element of U, ¢=1, ..., k. Then by the covering theorem,
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there exists a 0>0, such that if B is a subset of E, of diameter less than &, then

f1(B) is the union of mutually exclusive sets Ay, ..., 4;, such that A; lies in an
element of U, i=1, ..., 1. Let T be a triangulation of E, such that St (7') has mesh
< 0. For each vertex v of T, let o1, ..., % mw, be open sets such that

m(v)

1. le fxuiz.f_l (St (’0));
i
2. @FuNay=0, for i+4,¢,4=1, ..., m(v); and
3. &y lies in some element of U, i=1, ..., m ().
Let a={o,:v is a vertex of T and i=1, ..., m(v)}. Lemma (3.1) applies, yielding

the commutative diagram:

lXxl

Then (a, g, h): X—E, is n-canonical, « refines U, and g (g, f)=0; it will therefore
suffice to show that e} (a, g, h)<fM, (p) dp.

To this end, suppose £>0 and ¥ is an open cover of X. As X is normal, there
exists an open cover V¥ of X such that if v is a vertex of T, then no element of
W intersects two of the elements &1, ..., &, mw. Let U be a finite open cover of
X which refines both ¥ and . As before, there exist arbitrarily fine subdivisions
T" of T, such that for each vertex v of 7", there are open sets fuv.1, ..., fo.m
such that:

m’ ("
L {718t ()= U Bvs
2. Boi N Po,;=0, unless i=7j; and
3. {Buo,i}it{" refines W.

By (3) and the definition of ¥ we obtain
3. If v is a vertex of T, then no one of the sets By 1, ..., Bor, mw intersects

two of the sets &, 1, ..., %v, m)-

Let f={B,.i:v" is a vertex of 7" and i=1, ..., m’ (¥)}. Then Lemma 3.2 applies,
yielding the commutative diagram
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| X5l

in which ¢’ is a barycentric f-map, »' is simplicial relative to 7", and ® is simpli-
cial relative to a subdivision X,; of X,. Now as k|G is a homeomorphism for each
simplex ¢ of X,, the mesh of X,; is directly related to that of 7"; we suppose that
T' was chosen to be so fine that the mesh of X, is less than .

For each n-simplex ¢’ of 1", let p,r be a point of ¢’ at which the minimum of
M|o’ is attained. Let L denote the collection of all n-simplexes A of Xj such that
B (A)N{py:6’ is an n-simplex of 7"}=0, and let X, denote the complex X;— L.
Then for any n-simplex ¢ of 7", it follows from the fact that f=4'g" that there
are at most M, (p,) simplexes of X, which map onto ¢’

The notation X, anticipates the following definition of an open cover y having
X, as its realized nerve: as ¢’ (X) covers no simplex of L, there exists a retraction
s of ¢’ (X) into |X,|. Let g”"=sg’ and v={¢" " (St (v)):v is a vertex of X,}. This
suffices; furthermore, ¢’ : X —| X, | is a barycentric y-map and y refines § and hence
V. The triple (y,g", (I)|Xy|) is m-canonical and, as the mesh of X, is less than ¢,
@9, 9)=0(@g", Og)=0(®s, ®|g' (X))<e. Lastly, ¢, (|| X,])=e,(¥'||X,])=
=a’eZT’ M;(ps) - an (6"), & lower Riemann sum of M, Thus, as ¢ and V¥ are arbitrary,

en(x, g, h) < fo (p)dp and the proof is complete.
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