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1. Introduction

1.1. Overview

Let G be a connected complex reductive group and let Gr denote its affine Grassmannian.

The space Gr has the remarkable property that its topology encodes the representation

theory of the split Langlands dual group G∨ over any field k (or even over a commutative

ring). To be more precise, the geometric Satake equivalence, in the form due to Mirković–

Vilonen [MV2] (see also [L], [G2]), asserts that there is an equivalence of tensor categories

S: Rep(G∨)
∼−!PervGO

(Gr, k), (1.1)

where PervGO
(Gr, k) is the category of spherical perverse k-sheaves on Gr. (A full ex-

planation of the notation is given in §1.2 below.) This result raises the possibility of

comparing representation theory over different fields via the universal coefficient theo-

rem of topology.

For instance, let λ be a dominant coweight for G, and let I!(λ, k) denote the “stan-

dard” perverse sheaf on the corresponding stratum of Gr. This perverse sheaf serves as a

topological realization of a Weyl module for G∨. When k=C, it is simple, and its stalks

are described by Kazhdan–Lusztig theory.

With a view to applications in modular representation theory, Mirković and Vilonen

conjectured in the late 1990s [MV1] that that the stalks of I!(λ,Z) are torsion-free.

This implies that the k-stalks are “independent” of k. Their conjecture was slightly

too optimistic: counterexamples due to Juteau [Ju] reveal the presence of torsion, but

P. A. was supported by NSF Grant No. DMS-1001594. L. R. was supported by an NSF postdoctoral
research fellowship.
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Type Bound

An any p

Bn, Dn p>2

Cn p>n

Type Bound

E6, F4, G2 p>3

E7 p>19

E8 p>31

Table 1. Currently known bounds (see footnote (1) on next page) for JMW primes.

only at bad primes. Juteau proposed a modified conjecture, asserting that there is no

p-torsion as long as p is a good prime for G∨. In this paper, we prove the following

result, confirming this conjecture in nearly all cases.

Theorem 1.1. If p is a JMW prime for G∨ (see Table 1), then the stalks of I!(λ,Z)

have no p-torsion. Similarly, if k is a field whose characteristic is a JMW prime, then

the stalks of I!(λ, k) have a parity-vanishing property.

An outline of the proof will be explained below, after some preliminaries. In a

subsequent paper [AR], the authors exploit this result to establish a modular analogue

of the derived equivalence of [ABG, Theorem 9.4.3].

1.2. The constructible side

Recall that Gr=GK/GO, where K=C((t)) and O=C[[t]]. For the remainder of the

introduction, k will denote an algebraically closed field. Let Db
(GO)(Gr, k) denote the

bounded derived category of complexes of k-sheaves on Gr that are constructible with

respect to the GO-orbits, and let PervGO
(Gr, k)⊂Db

(GO)(Gr, k) be the subcategory of

perverse sheaves. Those GO-orbits are naturally in bijection with the set X+ of dominant

coweights for G. For λ∈X+, let iλ:Grλ ↪!Gr be the inclusion map of the corresponding

orbit.

For λ∈X+, the irreducible (resp. Weyl, dual Weyl, indecomposable tilting) G∨-

module of highest weight λ is denoted by L(λ) (resp. M(λ), N(λ), T(λ)). The perverse

sheaves corresponding to these objects under S are denoted by IC(λ, k), (resp. I!(λ, k),

I∗(λ, k), T (λ, k)). Of course, IC(λ, k) is a simple perverse sheaf. We saw I!(λ, k) earlier;

I∗(λ, k) is its Verdier dual, a costandard perverse sheaf.

What about the T (λ, k)? It is a deep insight of Juteau–Mautner–Williamson that

these perverse sheaves should be characterized by a topological property: specifically,

they ought to be parity sheaves in the sense of [JMW1].

Definition 1.2. A prime number p is said to be a JMW prime for G∨ if it is good

for G∨ and, whenever k has characteristic p, each T (λ, k) is a parity sheaf on Gr.
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Juteau, Mautner, and Williamson have shown in [JMW2, Theorem 1.8] that for

quasi-simple G∨, the primes in Table 1 are JMW primes. They conjecture(1) that every

good prime is JMW (see [JMW2, Conjecture 1.10]).

1.3. The coherent side

The main idea of the proof of Theorem 1.1 is to translate the problem into an algebraic

question about coherent sheaves on the nilpotent cone N for G∨. The motivation comes

from an old result of Ginzburg [G2, Proposition 1.10.4]: when k=C, he showed that for

all V1, V2∈Rep(G∨), there is an isomorphism of graded vector spaces

Hom�

Db
(GO)(Gr,k)(S(V1),S(V2))∼= Hom�

CohG
∨×Gm (N )

(V1⊗ON , V2⊗ON ). (1.2)

For details on the category CohG
∨×Gm(N ), see §2.4.

To imitate this in positive characteristic, we need control over the algebraic geometry

of N . To this end, we impose the following condition on G∨:

The derived group of G∨ is simply connected and its Lie

algebra admits a non-degenerate G∨-invariant bilinear form.
(1.3)

This condition holds for GL(n) and for every simply connected quasi-simple group that

is not of type A. See [J2, §2.9] for a discussion of other situations where condition (1.3)

holds. Under this condition, it is feasible to adapt Ginzburg’s argument, provided that

S(V1) and S(V2) are parity.

To push this result further, we need the following observation: coherent sheaves of

the form V ⊗ON also lie in the category of perverse-coherent sheaves, denoted

PCohG
∨×Gm(N ),

or simply PCoh(N ). This category, which is the heart of a certain t-structure on

DbCohG
∨×Gm(N ), looks very different from CohG

∨×Gm(N ). For instance, every object of

PCoh(N ) has finite length. We will not use the details of its definition in this paper, we

just require a structural property discussed in §2.4.

Interpreting the right-hand side of (1.2) as a Hom-group in PCoh(N ) leads to new

avenues for generalizing that result. For µ∈X+, let PCoh(N )6µ⊂PCoh(N ) be the Serre

subcategory generated by N(ν)⊗ON 〈n〉 with ν6µ. (Here, 〈n〉 indicates a twist of the

Gm-action.) In §5 we prove the following result, which seems to be new even for k=C.

(1) Since this paper appeared in preprint form, Mautner and Riche have proved that every good
prime is a JMW prime [MR], confirming [JMW2, Conjecture 1.10].
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Theorem 1.3. Let char k be a JMW prime for G∨, and assume that (1.3) holds

for G∨. Let j:Gr\�Grλ!Gr be the inclusion map and let

Π: PCoh(N )−!PCoh(N )/PCoh(N )6λ

be the Serre quotient functor. If V1∈Rep(G∨) has a Weyl filtration and V2∈Rep(G∨)

has a good filtration, then there is a natural isomorphism

Hom�(j∗S(V1), j∗S(V2))∼= Hom�(Π(V1⊗ON ),Π(V2⊗ON )).

Intuitively, this theorem gives us an algebraic counterpart in DbCohG
∨×Gm(N ) of

the geometric notion of “restricting to an open subset” in Gr. Once we have that, it

is not difficult to translate the problem of studying stalks of I!(λ, k) into an algebraic

question about certain objects in PCoh(N ) and its quotients. The latter question turns

out to be quite easy (see Lemma 2.12).

1.4. Outline of the paper

In §2 we recall the necessary background on properly stratified categories and on the

category PCoh(N ), largely following the work of Minn-Thu-Aye. We review the theory

of parity sheaves in §3. In §4, which can be read independently of the rest of the pa-

per, we study the cohomology of parity sheaves on flag varieties of Kac–Moody groups,

generalizing earlier results of Soergel and Ginzburg. That result is a step on the way

to Theorem 1.3, which is proved in §5. Finally, the main result, Theorem 1.1, is proved

in §6.

1.5. Acknowledgements

We are grateful to D. Juteau, C. Mautner, S. Riche, and G. Williamson for helpful

comments on a previous draft of this paper.

2. Properly stratified categories

2.1. Definition and background

Let k be a field, and let C be a k-linear abelian category in which every object has finite

length. Assume that C is equipped with an automorphism 〈1〉: C!C , which we will

refer to as the Tate twist. For X,Y ∈C , let Hom(X,Y ) be the graded vector space given

by

Hom(X,Y )n = Hom(X,Y 〈n〉).
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The Tate twist induces an action of Z on the set Irr(C ) of isomorphism classes of simple

objects in C . Assume that this action is free, and let Ω=Irr(C )/Z. For each γ∈Ω,

choose a representative simple object Lγ∈C whose isomorphism class lies in the Z-orbit

γ⊂Irr(C ). Thus, every simple object in C is isomorphic to some Lγ〈n〉 with γ∈Ω and

n∈Z.

Assume that Ω is equipped with a partial order 6, and that for any γ∈Ω the set

{ξ∈Ω|ξ6γ} is finite. For any order ideal Γ⊂Ω, let CΓ⊂C be the Serre subcategory

generated by the simple objects {Lγ〈n〉|γ∈Γ and n∈Z}. (Recall that an order ideal is a

subset Γ⊂Ω such that if γ∈Γ and ξ6γ, then ξ∈Γ.) As a special case, we write

C6γ = C{ξ∈Ω|ξ6γ}. (2.1)

The category C<γ is defined similarly.

Definition 2.1. Suppose C , Ω, and 6 are as above. We say that C is a graded

properly stratified category if for each γ∈Ω the following conditions hold:

(1) End(Lγ)∼=k.

(2) There is an object ∆̄γ and a surjective morphism φγ : ∆̄γ!Lγ such that

ker(φγ)∈C<γ and Hom(∆̄γ , Lξ) = Ext1(∆̄γ , Lξ) = 0 if ξ 6> γ.

(3) There is an object 
∇γ and an injective morphism ψγ :Lγ!
∇γ such that

cok(ψγ)∈C<γ and Hom(Lξ,
∇γ) = Ext1(Lξ,
∇γ) = 0 if ξ 6> γ.

(4) In C6γ , Lγ admits a projective cover ∆γ!Lγ . Moreover, ∆γ admits a filtration

whose subquotients are of the form ∆̄γ〈n〉 for various n∈Z.

(5) In C6γ , Lγ admits an injective envelope Lγ!∇γ . Moreover, ∇γ admits a

filtration whose subquotients are of the form 
∇γ〈n〉 for various n∈Z.

(6) We have Ext2(∆γ ,
∇ξ)=Ext2(∆̄γ ,∇ξ)=0 for all γ, ξ∈Ω.

An object in C is said to be standard (resp. costandard, proper standard, proper costan-

dard) if it is isomorphic to some ∆γ〈n〉 (resp. ∇γ〈n〉, ∆̄γ〈n〉, 
∇γ〈n〉).
More generally, a standard (resp. costandard, proper standard, proper costandard)

filtration of an object of C is a filtration whose subquotients are all standard (resp. co-

standard, proper standard, proper costandard) objects.

Routine arguments (see [B, Lemma 1]) show that when objects ∆̄γ , 
∇γ , ∆γ , and ∇γ
with the above properties exist, they are unique up to isomorphism. It may happen

that ∆̄γ
∼=∆γ and 
∇γ∼=∇γ ; in that case, C is usually called a highest weight or quasi-

hereditary category. The class of objects in C admitting a standard (resp. costandard,

proper standard, proper costandard) filtration is denoted

F (∆) (resp. F (∇), F (∆̄), F (
∇)).
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The relationship between the notions above and the notion of a properly stratified

algebra [D], [FM] is explained in [Mi]. In particular, results in [Mi] explain how to transfer

results from the literature on properly stratified algebras to our setting. For instance,

the following result is a restatement of [D, Definition 4 and Theorem 5].

Proposition 2.2. Let Γ⊂Ω be a finite-order ideal. Then the Serre quotient C /CΓ

is again a graded properly stratified category, and Irr(C /CΓ)/Z is naturally identified

with Ω\Γ. Indeed, we have a recollement diagram

DbCΓ
ı // DbC

Π //

ıL

xx

ıR
ee

Db(C /CΓ).

ΠL

ww

ΠR
ee

Here, the superscripts L and R indicate the left and right adjoints, respectively, of ı

and Π. An important property implied by the preceding proposition is that

Extk(∆γ ,
∇ξ) = Extk(∆̄γ ,∇ξ) = 0 for all k > 0.

Also implicit in Proposition 2.2 (or explicit in its proof) are the next two lemmas, which

express the compatibility of the various functors with the properly stratified structure.

For analogues in the quasi-hereditary case, see [CPS].

Lemma 2.3. The functors ı and Π are t-exact and preserve the property of having

a standard (resp. costandard, proper standard, proper costandard) filtration.

The remaining functors in the recollement diagram are not t-exact in general, but

they do send certain classes of objects to the heart of the t-structure.

Lemma 2.4. The functors ıL and ΠL preserve the property of having a standard or

proper standard filtration. The functors ıR and ΠR preserve the property of having a

costandard or proper costandard filtration.

2.2. Tilting objects

In contrast with the quasi-hereditary case, there are, in general, two inequivalent notions

of “tilting” in a properly stratified category.

Definition 2.5. A tilting object is an object in F (∆)∩F (
∇). A cotilting object is

an object in F (∆̄)∩F (∇).
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The next proposition gives the classification of indecomposable tilting and cotilting

objects. (See [ÁHLU] for a similar statement for properly stratified algebras.)

Proposition 2.6. For each γ∈Ω, there is an indecomposable tilting object Tγ ,

unique up to isomorphism , that fits into the short exact sequences

0−!∆γ −!Tγ −!X −! 0 and 0−!Y −!Tγ −!
∇γ −! 0

with X∈F (∆)<γ and Y ∈F (
∇)6γ . Dually, there is an indecomposable cotilting object

T ′γ , unique up to isomorphism, with short exact sequences

0−! ∆̄γ −!T ′γ −!X ′−! 0 and 0−!Y ′−!T ′γ −!∇γ −! 0

with X ′∈F (∆̄)6γ and Y ′∈F (∇)<γ . Also, every indecomposable tilting (resp. cotilting)

object is isomorphic to some Tγ〈n〉 (resp. T ′γ〈n〉).

Lemma 2.7. Assume that the tilting and cotilting objects in C coincide, i.e., that

for each γ∈Ω, there is an integer mγ such that Tγ∼=T ′γ〈mγ〉. Then

(1) if γ∈Ω is minimal, then ∆γ
∼=Tγ∼=T ′γ〈mγ〉∼=∇γ〈mγ〉;

(2) for any γ∈Ω, we have Ext1(∇γ ,
∇γ)=0;

(3) for any γ∈Ω, there are natural isomorphisms

Hom(∆γ ,∆γ)∼= Hom(∆γ ,∇γ〈mγ〉)∼= Hom(∇γ ,∇γ).

Proof. (1) This is immediate from the short exact sequences in Proposition 2.6.

(2) Consider the long exact sequence

...−!Hom(Y ′,
∇γ)−!Ext1(∇γ ,
∇γ)−!Ext1(T ′γ ,
∇γ)−! ... .

The first term vanishes because Y ′∈C<γ , and the last term vanishes because

T ′γ
∼=Tγ〈−mγ〉 ∈F (∆).

The result follows.

(3) It is easy to see that the natural maps

Hom(∆γ ,∆γ)−!Hom(∆γ , Tγ) and Hom(∆γ , T
′
γ〈mγ〉)−!Hom(∆γ ,∇γ〈mγ〉)

are both isomorphisms. The proof of the second isomorphism in the statement is similar.
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Proposition 2.8. ([Mi]; cf. [BBM, Proposition 1.5]) Assume that the tilting and

cotilting objects in C coincide. Let T ⊂C be the full subcategory of tilting objects, and

consider its homotopy category KbT . The obvious functor

KbT −!DbC (2.2)

is fully faithful. In case C is quasi-hereditary, it is an equivalence.

Proposition 2.9. Assume that the tilting and cotilting objects in C coincide. The

following conditions are equivalent :

(1) X∈F (∆);

(2) there is an exact sequence 0!X!T 0
!T 1

!...!T k!0, where all the T i’s are

tilting.

Before proving this, we record one immediate consequence.

Definition 2.10. For X∈F (∆), we define the tilting dimension of X, denoted by

tdimX, to be the smallest integer k such that there exists a resolution of X of length k

by tilting objects, as in Proposition 2.9.

Corollary 2.11. If X∈F (∆), then there is a short exact sequence

0−!X −!T −!X ′−! 0, (2.3)

where T is tilting, X ′∈F (∆), and tdimX ′=tdimX−1.

Proof of Proposition 2.9. Let F (∆)′ be the class of objects X satisfying condi-

tion (2) above. The notion of tilting dimension makes sense for objects of F (∆)′. More-

over, if we replace every occurrence of F (∆) by F (∆)′ in the statement of Corollary 2.11,

then the resulting statement is true. An argument by induction on tilting dimension,

using the short exact sequence (2.3), shows that F (∆)′⊂F (∆).

Next, let K0⊂KbT be the full subcategory consisting of objects isomorphic to a

bounded complex of tilting modules (X�, d) satisfying the following two conditions:

(1) the complex is concentrated in non-negative degrees;

(2) the cohomology of the complex vanishes, except possibly in degree 0.

It is easy to see that F (∆)′ consists precisely of the objects that lie in the image of K0

under the functor (2.2). In particular, we see that F (∆)′ is stable under extensions,

because K0 is. Thus, to prove that F (∆)⊂F (∆)′, it suffices to show that each ∆γ

lies in F (∆)′. This follows from the first short exact sequence in Proposition 2.6, by

induction on γ.

The next lemma is ultimately the source of the torsion-freeness in Theorem 1.1.
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Lemma 2.12. Assume that the tilting and cotilting objects in C coincide. If X∈
F (∆), then Hom(X,∇γ) is a free module over the graded ring End(∇γ).

Proof. We proceed by induction on the number of steps in a standard filtration of

X. If 0!X ′!X!X ′′!0 is an exact sequence with X ′, X ′′∈F (∆), then we obtain a

short exact sequence

0−!Hom(X ′′,∇γ)−!Hom(X,∇γ)−!Hom(X ′,∇γ)−! 0

of End(∇γ)-modules. If the first and last terms are free, the middle term must be as well.

Thus, we are reduced to considering the case where X is a standard object, say X=∆ξ〈n〉.
If ξ 6=γ, then Hom(X,∇γ)=0. If ξ=γ, then Hom(X,∇γ) is a free End(∇γ)-module by

Lemma 2.7 (3).

2.3. Quotients of the category of tilting objects

The next result compares the Serre quotient C /CΓ to a “naive” quotient category. If A

is an additive category and B⊂A is a full subcategory, we write A //B for the category

with the same objects as A , but with morphisms given by

HomA //B(X,Y ) = HomA (X,Y )/{f | f factors through an object of B}. (2.4)

Proposition 2.13. Assume that the tilting and cotilting objects in C coincide, and

let Γ⊂Ω be a finite-order ideal. Then the quotient functor Π: C!C /CΓ induces an

equivalence of categories

	Π: Tilt(C )//Tilt(CΓ)
∼−!Tilt(C /CΓ). (2.5)

Proof. Let Q: Tilt(C )!Tilt(C )//Tilt(CΓ) be the quotient functor. It is clear that

Π(Tilt(CΓ))=0, so there is a unique functor 	Π such that 	Π�Q∼=Π. From the classifica-

tion of tilting objects in Proposition 2.6, it is clear that every indecomposable object in

Tilt(C /CΓ) occurs as a direct summand of some object in the image of 	Π. If 	Π were al-

ready known to be fully faithful, it would send indecomposable objects to indecomposable

objects, and would therefore be essentially surjective.

It suffices, then, to prove that 	Π is fully faithful. We proceed by induction on the

size of Γ. Suppose first that Γ is a singleton. Let T, T ′∈Tilt(C ) and consider the diagram

HomC (T, T ′)
Q

// //

Π

,,

HomTilt(C )//Tilt(CΓ)(T, T
′)

	Π

// HomC/CΓ
(Π(T ),Π(T ′)). (2.6)
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By Lemma 2.4, all three terms of the functorial distinguished triangle ΠLΠ(T )!T!

ııL(T )! lie in C , so that the distinguished triangle is actually a short exact sequence.

Apply Hom(−, T ′) to get the long exact sequence

0−!Hom(ıL(T ), ıR(T ′))−!Hom(T, T ′)−!Hom(Π(T ),Π(T ′))

−!Ext1(ıL(T ), ıR(T ′))−! ... .
(2.7)

The last term vanishes because (by Lemma 2.4 again) ıL(T ) has a standard filtration and

ıR(T ′) has a costandard filtration. It follows that the map labeled Π in (2.6) is surjective,

and its kernel can be identified with the space

K = {f :T !T ′ | f factors as T ! ııL(T )! ııR(T ′)!T ′}.

We deduce that 	Π is surjective as well. Now, the kernel of Q in (2.6) is the space

K ′= {f :T !T ′ | f factors through an object of Tilt(CΓ)}.

We already know that K ′⊂K. But since Γ is a singleton {γ} with γ necessarily minimal

in Ω, we see from Lemma 2.7 (1) that ıL(T ) is actually tilting (and not merely in F (∆)),

and likewise for ıR(T ′). So K=K ′, and we conclude that 	Π in (2.6) is an isomorphism.

For the general case, choose a non-empty proper ideal Υ⊂Γ. Then Υ and Γ\Υ are

both smaller than Γ, and by induction, we have natural equivalences

Tilt(C )//Tilt(CΥ)∼= Tilt(C /CΥ),

Tilt(CΓ)//Tilt(CΥ)∼= Tilt(CΓ/CΥ),

Tilt(C /CΥ)//Tilt(CΓ/CΥ)∼= Tilt((C /CΥ)/(CΓ/CΥ))∼= Tilt(C /CΓ).

It is also easy to see that there is a canonical equivalence

Tilt(C )//Tilt(CΓ)∼= (Tilt(C )//Tilt(CΥ))
//

(Tilt(CΓ)//Tilt(CΥ)).

Combining all these yields the desired equivalence (2.5).

The next corollary is immediate from (2.7) and the discussion following it.

Corollary 2.14. Assume that the tilting and cotilting objects in C coincide, and let

Γ⊂Ω be a finite-order ideal. If X∈F (∆) and Y ∈F (∇), then the map HomC (X,Y )!

HomC/CΓ
(Π(X),Π(Y )) is surjective.
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2.4. Perverse-coherent sheaves on the nilpotent cone

In this subsection, we assume that k is an algebraically closed field whose characteristic

is good for G∨, and that the derived group of G∨ is simply connected. Recall that

N denotes the nilpotent cone of G∨. Let G∨×Gm act on N by (g, z)·x=z−2Ad(g)(x).

We write CohG
∨×Gm(N ), or simply Coh(N ), for the category of (G∨×Gm)-equivariant

coherent sheaves on N .

Let PCoh(N ) be the category of (G∨×Gm)-equivariant perverse-coherent sheaves

on N . This is the heart of a certain remarkable t-structure on DbCoh(N ). We refer the

reader to [AB], [B], and [A] for details on the definition and properties of this category.

Here are some basic facts about PCoh(N ):

• every object in PCoh(N ) has finite length;

• it is stable under F 7!F〈1〉, where 〈1〉: DbCoh(N )!DbCoh(N ) is given by a twist

of the Gm-action;

• the set Irr(PCoh(N ))/Z is naturally in bijection with X+.

Remark 2.15. For any V ∈Rep(G∨), the coherent sheaf V ⊗ON is perverse-coherent.

The proof of [A, Lemma 5.4] can be generalized to work for any V ∈Rep(G∨). Alterna-

tively, one can give a more direct argument using the definition of the perverse-coherent

t-structure from [B] and the fact that N is Cohen–Macaulay.

For λ∈X+, let δλ be the length of the shortest Weyl group element w such that

wλ is antidominant. We define a subcategory PCoh(N )6λ⊂PCoh(N ) as in (2.1). (The

theorem below implies that this agrees with the definition of PCoh(N )6λ given in §1.3.)

For our purposes, the most important fact about PCoh(N ) is the following result of

Minn-Thu-Aye, which refines the description given in [A] and [B].

Theorem 2.16. (Minn-Thu-Aye [Mi]) Assume that char k is good for G∨, and that

the derived group of G∨ is simply connected. Then the category PCoh(N ) is a graded

properly stratified category. Moreover,

(1) the tilting and cotilting objects in PCoh(N ) coincide and are given by

Tλ = (T(λ)⊗ON )〈−δλ〉 and T ′λ = (T(λ)⊗ON )〈δλ〉;

(2) the object M(λ)⊗ON lies in PCoh(N )6λ and has a standard filtration ;

(3) the object N(λ)⊗ON lies in PCoh(N )6λ and has a costandard filtration.

For completeness, we include a proof of this theorem. The following argument is

adapted from [Mi, Chapter 4].

Proof. Throughout this proof, we will freely make use of the main result of [A], which

states that DbPCoh(N ) and DbCoh(N ) are equivalent. In particular, we will compute

Ext-groups for PCoh(N ) by computing Hom-groups in DbCoh(N ).
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Let Ñ denote the cotangent bundle of the flag variety for G∨, and let π: Ñ!N
be the Springer resolution. Any weight λ∈X determines a line bundle OÑ (λ) on Ñ ,

obtained by pulling back from the flag variety. For λ∈X+, let

∆̄λ =π∗OÑ (w0λ)〈δλ〉 and 
∇λ =π∗OÑ (λ)〈−δλ〉,

where w0 is the longest element of the Weyl group. (Here, π∗ is the derived functor

DbCoh(Ñ )!DbCoh(N ).) According to [A, Proposition 6.1], parts (2) and (3) of Defi-

nition 2.1 hold(2) for PCoh(N ). For λ∈X+, let Lλ denote the unique simple subobject

of 
∇λ, or equivalently the unique simple quotient of ∆̄λ.

That result also says that the {
∇λ}λ∈X+ form a “graded quasi-exceptional sequence”

(see [A, Definition 2.4]). This implies that part (1) of Definition 2.1 also holds. Further-

more, by [B, Lemma 4], the recollement formalism is available, and hence so are the parts

of Lemmas 2.3 and 2.4 involving proper standard or proper costandard objects.

Fix λ∈X+ and let

ı: DbPCoh(N )<λ−!DbPCoh(N ) and Π: DbPCoh(N )−!Db(PCoh(N )/PCoh(N )<λ

be the inclusion and quotient functors, respectively. We will denote their adjoints as in

Proposition 2.2. Let

∆λ = ΠLΠ(M(λ)⊗ON )〈−δλ〉.

By [A, Lemma 5.4], M(λ)⊗ON lies in PCoh(N )6λ, so ∆λ also lies in PCoh(N )6λ and,

by Lemma 2.4, it has a filtration by various ∆̄λ〈n〉. We claim that

Hom(∆λ,
∇µ〈n〉)∼=
{

0, if µ<λ, or if µ=λ and n 6= 0,

k, if µ=λ and n= 0.
(2.8)

By adjunction, we have Hom(∆λ,
∇µ〈n〉)∼=Hom(M(λ)⊗ON ,ΠRΠ(
∇µ)〈n+δλ〉). If µ<λ

then clearly Π(
∇µ)=0, and if µ=λ then ΠRΠ(
∇λ)∼=
∇λ. Due to these observations, (2.8)

follows from [A, Lemma 5.5].

We will next show that, for all µ∈X+, we have

Extk(M(λ)⊗ON ,
∇µ) = 0 for all k > 0. (2.9)

By [KLT, Theorem 2], the object 
∇µ is actually a coherent sheaf. Let Γ(
∇µ) be its space

of global sections. As in the proof of [A, Lemma 5.5], we have

Extk(M(λ)⊗ON ,
∇µ)∼= ExtkG∨(M(λ),Γ(
∇µ)),

(2) That proposition, like [B], actually asserts that PCoh(N ) is quasi-hereditary, but the papers [A]

and [B] use that term in a non-standard way, imposing weaker Ext-vanishing conditions on standard
objects. Of course, PCoh(N ) is not quasi-hereditary in the sense of this paper.
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and the latter vanishes because, by [KLT, Theorem 7], as a G∨-representation, Γ(
∇µ)

has a good filtration.

We also claim that, for all µ∈X+, we have

Extk(∆λ,
∇µ) = 0 for all k > 0. (2.10)

If µ 6=λ, the claim follows from the recollement formalism. If µ=λ, it follows from (2.9)

by a calculation like that used to prove (2.8) (again invoking [A, Lemma 5.5]).

Since every simple object in PCoh(N )6λ occurs as the socle of some 
∇µ〈n〉 with

µ6λ, we see from (2.8) that ∆λ has a unique simple quotient, namely Lλ.

Next, let Kµ denote the cokernel of Lµ ↪!
∇µ, and consider the exact sequence

...−!Hom(∆λ,Kµ〈n〉)−!Ext1(∆λ, Lµ〈n〉)−!Ext1(∆λ,
∇µ〈n〉)−! ... .

If µ6λ, then Kµ must lie in PCoh(N )<λ, and the preceding paragraph implies that the

first term vanishes. The last term vanishes by (2.10), so the middle term vanishes for

all µ6λ. Thus, ∆λ is a projective object in PCoh(N )6λ, and hence the projective cover

of Lλ. Since Lλ is the unique simple quotient of ∆̄λ, ∆λ is also the projective cover

of ∆̄λ. We have now established part (4) of Definition 2.1. The first half of part (6)

holds by (2.10).

Let S be the Serre–Grothendieck duality functor on DbCoh(N ). This is an antiau-

toequivalence that preserves PCoh(N ) and swaps ∆̄λ with 
∇−w0λ. Define

∇λ =S(∆−w0λ).

(In fact, one can check that ∇λ∼=ΠRΠ(N(λ)⊗ON )〈δλ〉.) It follows from the previously

established properties of ∆λ that part (5) and the second half of part (6) of Definition 2.1

hold for PCoh(N ). We have completed the proof of the fact that PCoh(N ) is a graded

properly stratified category.

We saw earlier that M(λ)⊗ON lies in PCoh(N )6λ. By (2.9) and the criterion

in [ÁHLU, Theorem 1.6 (iii)], we see that M(λ)⊗ON has a standard filtration. By Serre–

Grothendieck duality, N(λ)⊗ON lies in PCoh(N )6λ and has a costandard filtration. It

follows immediately that T(λ)⊗ON lies in PCoh(N )6λ and is both tilting and cotilting.

There are non-zero maps ∆λ!M(λ)⊗ON 〈−δλ〉!T(λ)⊗ON 〈−δλ〉 and T(λ)⊗ON 〈δλ〉!
N(λ)⊗ON 〈δλ〉!∇λ. We thus obtain the desired formulas for Tλ and T ′λ.

Note that this theorem does not say that M(λ)⊗ON is itself a standard object.

Indeed, the standard objects in PCoh(N ) do not, in general, belong to Coh(N ). The

costandard objects of PCoh(N ) do happen to lie in Coh(N ), but they are not generally

of the form N(λ)⊗ON .
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Corollary 2.17. Let Γ⊂X+ be a finite-order ideal. Suppose V1∈Rep(G∨) has a

Weyl filtration, and that V2∈Rep(G∨) has a good filtration. Then the graded vector space

Hom(Π(V1⊗ON ),Π(V2⊗ON )) is concentrated in even degrees.

Proof. When Γ=∅, it is clear that the space

HomCoh(N )(V1⊗ON , V2⊗ON )∼= HomRep(G∨)(V1, V2⊗k[N ])

is concentrated in even degrees, since the coordinate ring k[N ] is concentrated in even

degrees. For general Γ, the result then follows from Corollary 2.14.

3. Background on parity sheaves

Let X be a complex algebraic variety or ind-variety equipped with a fixed algebraic

stratification (as in [CG, Definition 3.2.23]) X=
⊔
γ∈ΩXγ , where Ω is some indexing

set. In the ind-variety case, we assume that the closure of each Xγ is an ordinary finite-

dimensional variety; in particular, the closure of each stratum should contain only finitely

many other strata. Let k be a field. Assume that the following conditions hold:

• each stratum Xγ is simply connected;

• the cohomology groups Hk(Xγ ; k) vanish when k is odd.

Let Db(X, k), or simply Db(X), denote the bounded derived category of k-sheaves on X

(in the analytic topology). Let Db
Ω(X, k), or simply Db

Ω(X), denote the full triangulated

subcategory consisting of complexes that are supported on the union of finitely many

strata and are constructible with respect to the given stratification. For each stratum

Xγ , let jγ :Xγ!X be the inclusion map. For a locally closed subspace Y ⊂X, we denote

the constant sheaf on Y by kY .

Definition 3.1. An object F∈Db
Ω(X) is said to be ∗-even (resp. !-even) if for each

γ, the cohomology sheaves Hk(j∗γF) (resp. Hk(j!
γF)) vanish for k odd. It is even if it is

both ∗-even and !-even.

The terms ∗-odd, !-odd, and odd are defined similarly. An object is parity if it is a

direct sum of an even object and an odd object.

The assumptions above are significantly more restrictive than those in [JMW1], but

we will not require the full generality of loc. cit. The following statement classifies the

indecomposable parity objects.

Theorem 3.2. ([JMW1, Theorem 2.12]) Let E be an indecomposable parity object.

Then there is a stratum Xγ such that E is supported on �Xγ , and E|Xγ is a shift of the

constant sheaf kXγ . Moreover, if E ′ is another indecomposable parity object with the

same support as E , then E ′ is (up to shift) isomorphic to E.
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Definition 3.3. The variety X is said to have enough parity objects if for every

stratum Xγ , there is an indecomposable parity object Eγ that is supported on the closure
�Xγ , and such that Eγ |Xγ∼=kXγ [dimXγ ].

For X as above, let Parity(X)⊂Db
Ω(X) denote the full additive subcategory consist-

ing of parity objects. The main result of this section is the following geometric analogue of

Proposition 2.13, comparing a Verdier quotient of Db
Ω(X) to a “naive” quotient (cf. (2.4)).

The statement makes use of the following observation: for any closed inclusion of a union

of strata i:Y!X, we can identify Parity(Y ) with a full subcategory of Parity(X) via i∗.

Proposition 3.4. Assume that X has enough parity objects, and let Y ⊂X be a

closed union of finitely many strata. Then the open inclusion j:X\Y!X induces an

equivalence of categories

̄∗: Parity(X)//Parity(Y )
∼−!Parity(X\Y ). (3.1)

Proof. Let Q: Parity(X)!Parity(X)//Parity(Y ) be the quotient functor, and let

i:Y!X be the inclusion map. It is clear that j∗(Parity(Y ))=0, so there is unique functor

̄∗ such that ̄∗�Q∼=j∗. Because X has enough parity objects, every indecomposable

parity object occurs as a direct summand of some object in the image of ̄∗. By [JMW1,

Proposition 2.11], ̄∗ sends indecomposable objects to indecomposable objects, so it is

essentially surjective.

It remains to prove that ̄∗ is fully faithful. We proceed by induction on the number of

strata in Y . Suppose first that Y consists of a single closed stratum X0. Let E ,F∈Db
Ω(X)

be parity objects, and consider the diagram

Hom(E ,F)
Q

// //

j∗

,,

HomParity(X)//Parity(Y )(E ,F)
̄∗

// Hom(j∗E , j∗F). (3.2)

It suffices to consider the case where E and F are both indecomposable. If E is even

and F is odd, or vice versa, then both Hom(E ,F) and Hom(j∗E , j∗F) vanish by [JMW1,

Corollary 2.8], so ̄∗ is trivially an isomorphism. We henceforth assume that E and F
are both even. (The case where they are both odd is identical.) Apply Hom(−,F) to

the distinguished triangle j!j
∗E!E!i∗i∗E! to get the long exact sequence

...−!Hom(i∗E , i!F)−!Hom(E ,F)
j∗−!Hom(j∗E , j∗F)−!Hom1(i∗E , i!F)−! ... .

Since i∗E is ∗-even and i!F is !-even, we see from [JMW1, Corollary 2.8] that the last

term above vanishes. It follows that the map labeled j∗ in (3.2) is surjective, and its

kernel can be identified with the space

K = {f : E!F | f factors as E! i∗i
∗E! i∗i

!F!F }.
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We deduce that ̄∗ is surjective as well. Now, the kernel of Q in (3.2) is the space

K ′= {f : E!F | f factors through an object of Parity(Y )}.

We already know that K ′⊂K. But since Y consists of a single closed stratum, the object

i∗E is actually even (not just ∗-even), and likewise for i!F . So K=K ′, and we conclude

that ̄∗ in (3.2) is an isomorphism.

For the general case, let S be an open stratum in Y , and let B=Y \S and X ′=X\B.

Then S is closed in X ′, and by induction, we have natural equivalences

Parity(X ′)//Parity(S)
∼−!Parity(X ′\S)∼= Parity(X\Y ),

Parity(X)//Parity(B)
∼−!Parity(X\B)∼= Parity(X ′),

Parity(Y )//Parity(B)
∼−!Parity(Y \B)∼= Parity(S).

The desired equivalence (3.1) follows from these and the general observation that

Parity(X)//Parity(Y )∼= (Parity(X)//Parity(B))//(Parity(Y )//Parity(B)).

4. Parity sheaves on Kac–Moody flag varieties

In this section, we study Ext-groups of parity sheaves on flag varieties for Kac–Moody

groups. The result below will be applied elsewhere in the paper only to affine Grassman-

nians, but it is no more effort to prove it in this generality. As in the previous section, k
denotes an arbitrary field.

Theorem 4.1. Let X be a generalized flag variety for a Kac–Moody group, equipped

with the Bruhat stratification, and let E and F be two parity objects with respect to that

stratification. The natural map

Hom�

Db(X)(E ,F)−!Hom�

H�(X;k)(H
�(E), H�(F))

is an isomorphism.

For finite flag varieties, this result (with some minor restrictions on char k) is due

to Soergel [S1], [S2]. In [G1], Ginzburg proved a very similar result for simple perverse

C-sheaves on smooth projective varieties equipped with a suitable C×-action. The proof

below follows the outline of Ginzburg’s argument quite closely. One exception occurs at a

step (see [G1, Proposition 3.2]), where Ginzburg invokes the theory of mixed Hodge mod-

ules: here, we substitute an argument of Fiebig–Williamson that relies on the geometry

of Schubert varieties.
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Remark 4.2. When k=C, Ginzburg had already observed in a remark at the end

of [G1] that his result could be generalized to the Kac–Moody case. Thus, in that case,

this section can be regarded as an exposition of Ginzburg’s remark.

Remark 4.3. Although only field coefficients are used in the present paper, the

arguments in this section go through unchanged if we instead take k to be a complete

discrete valuation ring, so Theorem 4.1 holds in that setting.

We begin with some notation. Let G be a Kac–Moody group (over C), with maximal

torus T ⊂G and standard Borel subgroup B⊂G. Let B−⊂G denote the opposite Borel

subgroup to B (with respect to T ). Let P⊂G be a standard parabolic subgroup of finite

type (in the sense of [K, §1.2.2]), with Levi factor LP .

For the remainder of the section, X will denote the generalized flag variety X=

G/P. Let W (resp. WP) be the Weyl group of G (resp. LP), and let WP be the set

of minimal-length representatives of the set of cosets W/WP . The length of an element

w∈WP will be denoted by `(w). It is well known that the T -fixed points and the B-

orbits on X are both naturally in bijection with WP . For w∈WP , let ew∈X be the

corresponding T -fixed point, and let Xw=B·ew be the corresponding Bruhat cell. We

will also need the “opposite Bruhat cell” X−w=B− ·ew. Recall that Xw∩X−w={ew}, and

that the intersection is transverse. Moreover, Xw is isomorphic to an affine space of

dimension `(w). In general, X−w may have infinite dimension, but it has codimension

`(w) (see [K, Lemma 7.3.10]).

Recall that Db(X) is the bounded derived category of all k-sheaves on X. Let

Db
(B)(X) be the full subcategory of Db(X) consisting of complexes F such that

(1) F is constructible with respect to the stratification by B-orbits;

(2) the support of F is contained in the union of finitely many �Xw.

Let Parity(B)(X)⊂Db
(B)(X) be the additive category of parity objects. Let

jw:Xw −!X and ̄w:X−w −!X

denote the inclusion maps. For any closed subset Z⊂X, we let iZ :Z!X be the inclusion

map, and for an object E∈Db
(B)(X), we put

EZ := iZ∗i
∗
ZE and EZ := iZ∗i

!
ZE .

For simplicity, the inclusions of closures of B- and B−-orbits are denoted

iw: �Xw −!X and ı̄w: �X−w −!X,

rather than i
Xw and i
X−w . Recall that �Xw is known as a Schubert variety, and �X−w as a

Birkhoff variety.
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Certain complexes F∈Db(X) that do not belong to Db
(B)(X) will also appear in our

arguments, including objects whose support may be infinite-dimensional and hence not lo-

cally compact. Some caution is required when working with such objects, especially when

applying functors of the form f! and f !. In this section, whenever infinite-dimensional

supports are involved, the functors f! and f ! will only be used when f is an inclusion of

a locally closed subset. See Appendix A for the definition and basic properties of these

functors on non-locally compact spaces.

Lemma 4.4. Let Z⊂X be a finite union of Schubert varieties, and let Xw⊂Z be a

Bruhat cell that is open in Z. If E is ∗-even, then for each k, there is a natural short

exact sequence

0−!Hk(jw!j
!
wEZ)−!Hk(EZ)−!Hk(EZ\Xw)−! 0.

Proof. The constant map a:Z!{pt} is a proper, even morphism in the sense of

[JMW1, Definition 2.33] so, by [JMW1, Proposition 2.34], if E ′∈Db
(B)(Z) is ∗-even, then

Hk(E ′) vanishes when k is odd. All three terms in the distinguished triangle jw!j
!
wEZ!

EZ!EZ\Xw! are ∗-even, so in the long exact sequence in cohomology, all odd terms

vanish, and the even terms give short exact sequences as above.

Lemma 4.5. Let Z⊂X be a finite union of Schubert varieties, and let Xw⊂Z be a

Bruhat cell that is open in Z. If E is a parity object, then the natural map Hk(EZ)!

Hk(j∗wEZ) is surjective.

Proof. Let kw: {ew}!X be the inclusion map. Since kw factors through jw, and jw

factors through iZ , there is a natural sequence of maps

E −! iZ∗i
∗
ZE −! jw∗j

∗
wE −! kw∗k

∗
wE .

Taking cohomology, we obtain a natural sequence of maps

Hk(E)−!Hk(EZ)−!Hk(j∗wE)−!Hk(k∗wE). (4.1)

We claim first that the composition Hk(E)!Hk(k∗wE) is surjective. This is essentially the

content of [FW, Theorem 5.7 (2)]. That result is stated in an abstract axiomatic setting,

but [FW, Proposition 7.1] tells us that it applies to Schubert varieties. Another concern

is that [FW, Theorem 5.7 (2)] deals with T -equivariant rather than ordinary cohomology.

The reader may check that the proof goes through with ordinary cohomology as well.

Alternatively, note that both H�

T (E) and H�

T (k∗wE) are free modules over the equivariant

cohomology ring of a point H�

T (pt) by [FW, Proposition 5.6]. In that situation, the
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ordinary cohomology is obtained from the equivariant cohomology by applying the right-

exact functor k⊗H�

T (pt)−. In particular, the surjectivity of H�

T (E)!H�

T (k∗wE) implies

the surjectivity of the corresponding map in ordinary cohomology.

Next, we claim that the third map in the sequence (4.1) is an isomorphism. Since

j∗wE lies in the triangulated subcategory of Db(Xw) generated by the constant sheaf

kXw , it suffices to check that Hk(kXw)!Hk(k{ew}) is an isomorphism. That last claim

is obvious.

From these observations it follows that Hk(EZ)!Hk(j∗wE)∼=Hk(j∗wEZ) is surjective

as well.

Lemma 4.6. There is a canonical isomorphism ̄ !
wkX∼=kX−w [−2`(w)].

Proof. Let U⊂B be the pro-unipotent radical of the Borel subgroup. For w∈WP ,

let Uw⊂U be the subgroup generated by the root subgroups Uα where α is a positive

root but w−1α is negative. Then Uw is a finite-dimensional unipotent algebraic group.

Let Ow=Uw ·X−w⊂X. According to [K, Lemma 7.3.10], the multiplication map

Uw×X−w −!Ow

is an isomorphism of ind-varieties. Let i:X−w!Uw×X−w be the inclusion map x 7!(e, x),

where e∈Uw is the identity element. Since Ow is open in X, ̄ !
wkX is naturally isomorphic

to i!kUw×X−w .

To compute i!kUw×X−w , let us consider the Cartesian square

X−w
i //

a

��

Uw×X−w
q

��

{e} i0 // Uw,

where i0 is the inclusion map, and a and q are the obvious projection maps. The space

X−w is contractible, and each cohomology sheaf Hk(i!kUw×X−w ) is B−-equivariant, so in

fact each such cohomology sheaf must be a constant sheaf. It follows from, say, [KS,

Corollary 2.7.7] that the adjunction map

a∗a∗i
!kUw×X−w −! i!kUw×X−w

is an isomorphism. Thus, to finish the proof, we must show that

a∗i
!kUw×X−w

∼= k{e}[−2`(w)].

Using Lemma A.4 and [KS, Corollary 2.7.7] again, we find that

a∗i
!kUw×X−w

∼= i!0q∗kUw×X−w
∼= i!0q∗q

∗kUw ∼= i!0kUw .

Since Uw is isomorphic as a variety to an affine space A`(w), we have a well-known

canonical isomorphism i!0kUw∼=k{e}[−2`(w)], and the result follows.
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Now, let Y ⊂X be a finite union of Birkhoff varieties, and let

ΛY = i!Y kX .

Lemma 4.7. Let dY =min{`(w)|X−w⊂Y }. Then the cohomology sheaves Hi(ΛY )

vanish for i<2dY .

Proof. Let X−w⊂Y be such that `(w)=dY . Then X−w is necessarily open in Y . Let

A1=X−w , and then inductively define Ak, for k>2, by setting Ak to be some opposite

Bruhat cell X−y that is open in Y \(A1∪...∪Ak−1). We also let Bk=A1∪...∪Ak. The

Bk’s form an increasing sequence of open subsets of Y whose union is all of Y . To show

that Hi(ΛY ) vanishes for i<2dY , it suffices to show that for all k,

Hi(ΛY |Bk) = 0 for i< 2dY . (4.2)

We proceed by induction on k. For k=1, we have ΛY |B1
∼=̄ !

wkX , so (4.2) follows from

Lemma 4.6. For k>1, let a:Ak!Bk and b:Bk−1!Bk be the inclusion maps. We have

a distinguished triangle

a∗a
!(ΛY |Bk)−!ΛY |Bk −! b∗b

∗(Λ|Bk)−! .

If Ak=X−y , the first term can be identified with a∗̄
!
ykX . Since `(y)>dY , it follows from

Lemma 4.6 again that Hi(a∗a!(ΛY |Bk))=0 for i<2dY . On the other hand, b∗(Λ|Bk)∼=
Λ|Bk−1

, so Hi(b∗b∗(ΛY |Bk)) vanishes for i<2dY by induction. Thus, (4.2) holds, as

desired.

Lemma 4.8. For any w∈WP , there is a canonical morphism qw: k
X−w!Λ
X−w
[2`(w)]

whose restriction to X−w⊂�X−w is an isomorphism.

Proof. Let Y =�X−w\X−w , and let y:Y!�X−w and u:X−w!
�X−w be the inclusion maps.

The space Y is a finite union of Birkhoff varieties, and, moreover, the integer dY defined

in Lemma 4.7 satisfies dY >`(w). Consider the distinguished triangle

y!ΛY −!Λ
X−w
−!u∗u

∗Λ
X−w
−! .

Note that u∗Λ
X−w
∼=̄ !

wkX . It follows from Lemma 4.6 by adjunction that we have a

canonical morphism

k
X−w −!u∗u
∗Λ
X−w

[2`(w)]. (4.3)

By construction, this map restricts to an isomorphism over X−w . Next, we deduce from

Lemma 4.7 that

Hom(k
X−w , y!ΛY [2`(w)]) = Hom(k
X−w , y!ΛY [2`(w)+1]) = 0.

These facts imply that the map in (4.3) factors in a unique way through Λ
X−w
. The

resulting map k
X−w!Λ
X−w
[2`(w)] is the one we seek.
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Remark 4.9. The map qw: k
X−w!Λ
X−w
[2`(w)] plays a role similar to that of the

fundamental class in Borel–Moore homology.

Define cw: kX!kX [2`(w)] to be the composition

kX −! ı̄w∗k
X−w
ı̄w∗qw−−−−! ı̄w∗Λ
X−w

[2`(w)]−! kX [2`(w)]. (4.4)

We now study the map c̄w :Homk(kX , EZ)!Homk+2`(w)(kX , EZ) induced by cw.

Lemma 4.10. Let Z be a finite union of Schubert varieties, let Xw⊂Z be a Bruhat

cell that is open in Z, and let E∈Parity(B)(X). Then c̄w induces an isomorphism

Hk(j∗wEZ)
∼−!Hk+2`(w)(jw!j

!
wEZ) that makes the following diagram commute :

Hk(EZ) // //

c̄w

��

Hk(j∗wEZ)

c̄w∼

��

0 Hk+2`(w)(EZ\Xw)oo Hk+2`(w)(EZ)oooo Hk+2`(w)(jw!j
!
wEZ)? _oo 0.oo

Proof. Let Y =Z\Xw, and let y:Y!X be the inclusion map. Since cw factors

through an object supported on �X−w , and since �X−w∩Y =∅, we see that the composition

Hk(y!EZ)!Hk(EZ)
c̄w−−!Hk+2`(w)(EZ) vanishes. In other words, c̄w must factor through

Hk(EZ)!Hk(j∗wEZ). The resulting map Hk(j∗wEZ)!Hk+2`(w)(EZ) must factor through

Hk+2`(w)(jw!j
!
wEZ)!Hk+2`(w)(EZ) for the same reason, so we at least have a commuta-

tive diagram as shown above.

It remains to show that the right vertical map is an isomorphism. Let p: {ew}!Xw

be the inclusion map. Applying i∗w to (4.4) yields the composition

k
Xw −! jw∗p∗kew −! k
Xw [2`(w)],

where the second map comes from adjunction and the identification kew∼=p
!kXw [2`(w)].

Note that jw!p∗kew∼=jw∗p∗kew . Thus, c̄w is given by the following composition:

Hk(j∗wEZ) = Homk(k
Xw , jw∗j
∗
wEZ)−!Homk(jw∗p∗kew [−2`(w)], jw∗j

∗
wEZ)

∼= Homk+2`(w)(p∗kew , j
!
wEZ)∼= Homk+2`(w)(jw!p∗kew , jw!j

!
wEZ)

−!Homk+2`(w)(k
Xw , jw!j
!
wEZ) =Hk+2`(w)(jw!j

!
wEZ).

We claim that each step of this is an isomorphism. If it happens that j∗wEZ∼=kXw [m],

this can be checked explicitly. But because EZ is ∗-parity, j∗wEZ is always isomorphic to

a direct sum of various kXw [m].

A very similar argument establishes the following result, whose proof we omit.
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Lemma 4.11. Let Z be a finite union of Schubert varieties, let Xw⊂Z be a Bruhat

cell that is open in Z, and let F∈Parity(B)(X). Then c̄w induces an isomorphism

Hk(j∗wFZ)
∼−!Hk+2`(w)(jw!j

!
wFZ) that makes the following diagram commute :

0 // Hk(FZ\Xw) � � // Hk(FZ) // //

c̄w

��

Hk(j∗wFZ) //

c̄w∼

��

0

Hk+2`(w)(FZ) Hk+2`(w)(jw!j
!
wFZ).? _oo

With the following proposition, we complete the proof of Theorem 4.1.

Proposition 4.12. Let Z⊂X be a finite union of Schubert varieties, and let E ,F∈
Parity(B)(X). The natural map

Hom�

Db
(B)(X)(EZ ,F

Z)−!Hom�

H�(X;k)(H
�(EZ), H�(FZ))

is an isomorphism.

Sketch of proof. This is proved by induction on the number of Bruhat cells in Z,

via a diagram chase relying on formal consequences of the commutative diagrams in

Lemmas 4.10 and 4.11. The argument is essentially identical to the proof of [G1, Propo-

sition 3.10]; see also [G1, equation (3.8a–b)]. We omit further details.

5. Ext-groups of parity sheaves on the affine Grassmannian

In this section, k will denote an algebraically closed field whose characteristic is good for

G∨. We also assume that G∨ satisfies (1.3). Recall that the GO-orbits are parameterized

by X+. If Γ⊂X+ is a finite-order ideal, we can form the closed subset GrΓ=
⋃
γ∈Γ Grγ .

Let

jΓ:UΓ =Gr\GrΓ ↪−!Gr (5.1)

be the complementary open inclusion. For the remainder of the paper, all constructible

complexes on Gr or on any subset of Gr should be understood to be constructible with

respect to the GO-orbits. In particular, Parity(GO)(Gr) will denote the category of GO-

constructible parity objects.

Our goal is compute certain Ext-groups in Db
(GO)(Gr) or in some Db

(GO)(UΓ) in terms

of PCoh(N ). The main result, a modular generalization of [G2, Proposition 1.10.4],

depends on a result of Yun–Zhu [YZ] describing the cohomology of Gr. We begin by

recalling that result.

Let e∈Lie(G∨) be the principal nilpotent element described in [YZ, Proposition 5.6].

Let B∨⊂G∨ be the unique Borel subgroup such that e∈Lie(B∨), and let U∨⊂B∨ be its
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unipotent radical. Recall that G∨×Gm acts on N by (g, z)·x=z−2Ad(g)(x). Below, for

any subgroup H⊂G∨×Gm, we write He for the stabilizer of e in H.

Let Gr� be the identity component of Gr, and let Dist(U∨e ) denote the algebra of

distributions on U∨e with support at the identity (see [J1, §I.7.1 and §I.7.7]).

Theorem 5.1. (Yun–Zhu [YZ]) There is a natural isomorphism

H�(Gr�; k)∼= Dist(U∨e ). (5.2)

The “naturality” in this proposition refers to a certain compatibility with S. To

be more precise, given M∈PervGO
(Gr, k), the isomorphism (5.2) endows H�(M) with

the structure of a Dist(U∨e )-module. On the other hand, if we forget the grading on

H�(M), we obtain the underlying vector space of S−1(M)∈Rep(G∨). Thus, we can

regard H�(M) as a representation of U∨e ⊂G∨, and hence as a Dist(U∨e )-module. In fact,

these two Dist(U∨e )-module structures on H�(M) coincide.

Remark 5.2. Theorem 5.1 is stated in [YZ] only when G is quasi-simple and simply

connected (in which case Gr=Gr�), but it is easily extended to general G by routine argu-

ments. One caveat is that the element e may depend on a choice in general (it is uniquely

determined in the quasi-simple case). Once e is fixed, however, the isomorphism (5.2) is

still natural in the sense described above.

Let Gm act on G∨ by conjugation via the cocharacter 2%:Gm!T
∨, where 2% is

the sum of the positive roots for G. The resulting semidirect product will be denoted

Gmn2%G
∨. This action preserves the subgroups G∨e , B∨e , and U∨e , so groups such as

Gmn2%U
∨
e also make sense.

Lemma 5.3. There are isomorphisms

(G∨×Gm)e∼=Gmn2%B
∨
e
∼=Gmn2%U

∨
e ×Z(G∨),

where Z(G∨) denotes the center of G∨.

Proof. Let φ:G∨×Gm!Gmn2%G
∨ be the map φ(g, z)=(z, 2%(z−1)g). This map is

an isomorphism, and it is easily checked that it takes (G∨×Gm)e to Gmn2%G
∨
e . By [Sp,

Theorem 5.9 (b)], G∨e =B∨e
∼=U∨e ×Z(G∨).

Lemma 5.4. Let M1,M2∈PervGO
(Gr�, k). Then there is a natural isomorphism

HomCoh(N )(S−1(M1)⊗ON ,S−1(M2)⊗ON )
∼−!HomDist(U∨e )(H

�(M1), H�(M2)).

In the course of the proof of this lemma, we will encounter an analogous statement

(see (5.4) below) that is entirely in terms of G∨-modules, and that does not involve the

geometric Satake equivalence.
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Proof. The assumptions on k imply that N is a normal variety (see, e.g., [J2, Prop-

osition 8.5]). Let Nreg⊂N be the subvariety consisting of regular nilpotent elements,

and let Oreg denote its structure sheaf. Let h:Nreg ↪!N be the inclusion map, and let

V ∈Rep(G∨). Since the complement of Nreg has codimension at least 2, the restriction

map h∗: Γ(V ⊗ON )!Γ(V ⊗Oreg) is an isomorphism of (G∨×Gm)-modules. Equivalently,

the adjunction map V ⊗ON!R0h∗h
∗(V ⊗ON ) is an isomorphism. It follows that h∗ is

fully faithful on the category of free sheaves in Coh(N ). In particular, if we set

V1 =S−1(M1) =H�(M1) and V2 =S−1(M2) =H�(M2), (5.3)

then h∗ gives us a natural isomorphism

HomCoh(N )(V1⊗ON , V2⊗ON )
∼−!HomCohG

∨×Gm (Nreg)(V1⊗Oreg, V2⊗Oreg).

Now, Nreg is the orbit of the point e under G∨ or G∨×Gm. Due to condition (1.3),

the natural map G∨/G∨e !Nreg is an isomorphism of varieties. (See [J2, §2.9], for an

example.) Factoring this map as G∨/G∨e !(G∨×Gm)/(G∨×Gm)e!Nreg, we see that

(G∨×Gm)/(G∨×Gm)e!Nreg is also an isomorphism. Therefore, restriction to e induces

an equivalence of categories CohG
∨×Gm(Nreg)

∼−!Rep((G∨×Gm)e). In view of Lemma 5.3,

we have a natural isomorphism

HomCoh(N )(V1⊗ON , V2⊗ON )
∼−!HomGmn2%U∨e ×Z(G∨)(V1, V2). (5.4)

Since the Mi’s are supported on Gr�, Z(G∨) acts trivially on the Vi’s, so we may simply

omit mentioning it and consider HomGmn2%U∨e
(V1, V2).

Now, the category of finite-dimensional U∨e -representations can be identified with

a full subcategory of the finite-dimensional Dist(U∨e )-modules [J1, Lemma I.7.16]. Sim-

ilarly, the category of finite-dimensional (Gmn2%U
∨
e )-modules can be identified with a

full subcategory of graded finite-dimensional Dist(U∨e )-modules, where Dist(U∨e ) itself is

graded by the action of Gm via the cocharacter 2%. This is precisely the grading appear-

ing in (5.2), according to the remarks following [YZ, Theorem 1.1]. On the other hand,

the grading on the right-hand side of each equation in (5.3) is also given by 2%, as seen

in [MV2, Theorem 3.6]. Thus, we have

HomGmn2%U∨e
(V1, V2)∼= HomDist(U∨e )(H

�(M1), H�(M2)),

and the result follows.

Proposition 5.5. For all V1, V2∈Rep(G∨), there is a natural map

S: Homi
Db

(GO)(Gr,k)(S(V1),S(V2))−!HomCoh(N )(V1⊗ON , V2⊗ON 〈i〉). (5.5)
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When S(V1) and S(V2) are parity sheaves, this is an isomorphism. For any V1 and V2,

this map is compatible with composition ; i.e., the following diagram commutes :

Hom�(S(V2),S(V3))⊗Hom�(S(V1),S(V2)) //

��

Hom�(S(V1),S(V3))

��

Hom(V2⊗ON , V3⊗ON )⊗Hom(V1⊗ON , V2⊗ON ) // Hom(V1⊗ON , V3⊗ON ).

(5.6)

Note that the naturality of (5.5) just means that it is compatible with composition

of morphisms in PervGO
(Gr). The diagram (5.6) expresses a stronger property, allowing

arbitrary morphisms in Db
(GO)(Gr).

Proof. We construct the map (5.5) as the following composition:

Hom�(S(V1),S(V2))
H�

−−−!HomH�(Gr)(H
�(S(V1)), H�(S(V2)))

Lemma 5.4−−−−−−−−!
∼

Hom(V1⊗ON , V2⊗ON ).
(5.7)

When S(V1) and S(V2) are parity sheaves, Theorem 4.1 tells us that the first map in (5.7)

is an isomorphism. Note that the first map in (5.7) is induced by a functor defined on all

of Db
(GO)(Gr), while the second map is essentially the inverse of (5.4), which is induced

by a functor defined on all of Coh(N ). These two observations imply the commutativity

of (5.6).

For the remainder of this section, we will assume that char k is also a JMW prime

(Definition 1.2) for G∨. Recall that most good primes are known to be JMW.

Theorem 5.6. ([JMW2, Theorem 1.8]) Assume that G∨ is quasi-simple. If char k
satisfies the bounds in Table 1, then S sends every tilting module to a parity sheaf.

Proposition 5.7. There is an equivalence of additive categories

S: Parity(GO)(Gr)−!Tilt(PCoh(N ))

such that for any tilting G∨-module V, we have S(S(V )[n])∼=V ⊗ON 〈n〉.

Proof. Every indecomposable object in Parity(GO)(Gr) is isomorphic to an object of

the form S(V )[n], where V ∈Rep(G∨) is a tilting module. Similarly, every indecompos-

able tilting object in PCoh(N ) is of the form V ⊗ON 〈n〉 for such a V . Thus, Proposi-

tion 5.5 implies that the full subcategory of indecomposable objects in Parity(GO)(Gr) is

equivalent to the full subcategory of indecomposable objects in Tilt(PCoh(N )). Such an

equivalence extends in a unique way (up to isomorphism) to an equivalence

Parity(GO)(Gr)
∼−!Tilt(PCoh(N )).
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Corollary 5.8. Let Γ⊂X+ be a finite-order ideal. There is an equivalence of

categories SΓ, unique up to isomorphism, that makes the following diagram commute up

to isomorphism:

Parity(GO)(Gr)
S //

j∗Γ

��

Tilt(PCoh(N ))

ΠΓ

��

Parity(GO)(UΓ)
SΓ // Tilt(PCoh(N )/PCoh(N )Γ).

Proof. The functor S of Proposition 5.7 restricts to an equivalence of categories

Parity(GO)(GrΓ)
∼−!Tilt(PCoh(N )Γ), and so it induces an equivalence

Parity(GO)(Gr)//Parity(GO)(GrΓ)
∼−!Tilt(PCoh(N ))//Tilt(PCoh(N )Γ).

Propositions 2.13 and 3.4 then give us the result.

Theorem 5.9. Let Γ⊂X+ be a finite-order ideal. If V1 has a Weyl filtration and

V2 a good filtration, then there is a natural isomorphism of graded vector spaces

ŜΓ: Hom�

Db
(GO)(UΓ)(S(V1)|UΓ , S(V2)|UΓ)

∼−!HomPCoh(N )/PCoh(N )Γ
(ΠΓ(V1⊗ON ),ΠΓ(V2⊗ON )).

(5.8)

This map is compatible with (5.5), in the sense that the diagram

Hom�

Db
(GO)

(Gr)
(S(V1),S(V2))

S
∼

//

j∗Γ

��

HomPCoh(N )(V1⊗ON , V2⊗ON )

ΠΓ

��

Hom�

Db
(GO)

(UΓ)
(S(V1)|UΓ ,S(V2)|UΓ)

ŜΓ

∼
// Hom PCoh(N)

PCoh(N)Γ

(ΠΓ(V1⊗ON ),ΠΓ(V2⊗ON ))

(5.9)

commutes. Moreover, (5.8) is compatible with composition : if V1 has a Weyl filtration,

V2 is tilting, and V3 has a good filtration, then the following diagram commutes :

Hom�(S(V2)|UΓ ,S(V3)|UΓ)

⊗Hom�(S(V1)|UΓ ,S(V2)|UΓ)
//

��

Hom�(S(V1)|UΓ ,S(V3)|UΓ)

��Hom(ΠΓ(V2⊗ON ),ΠΓ(V3⊗ON ))

⊗Hom(ΠΓ(V1⊗ON ),ΠΓ(V2⊗ON ))
// Hom(ΠΓ(V1⊗ON ),ΠΓ(V3⊗ON )).

(5.10)

Note that, in contrast to (5.5), the map ŜΓ is only defined when V1 has a Weyl

filtration and V2 has a good filtration, and not for general objects of Rep(G∨).
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Homi−1(S(T )|U ,S(V2)|U ) = 0

��

Homi−1(S(V1)|U ,S(V2)|U )

��

0

��

Homi(S(V ′1)|U ,S(V2)|U )

u

��

∼̂
S // Hom(Π(V ′1⊗ON ),Π(V2⊗ON )〈i〉)

u′

��

(∗)

Homi(S(T )|U ,S(V2)|U )

v

��

∼̂
S // Hom(Π(T⊗ON ),Π(V2⊗ON )〈i〉)

v′

��

Homi(S(V1)|U ,S(V2)|U )

��

// Hom(Π(V1⊗ON ),Π(V2⊗ON )〈i〉)

��

Homi+1(S(V ′1)|U ,S(V2)|U ) ∼̂
S // 0

Figure 1. Commutative diagram for the proof of Theorem 5.9

Proof. For brevity, we will write Ŝ for ŜΓ, U for UΓ, and Π for ΠΓ throughout the

proof. We proceed by induction on the tilting dimensions of V1 and V2.

If V1 and V2 both have tilting dimension 0, i.e., if they are both tilting, then we simply

take Ŝ to be the map induced by the functor SΓ from Corollary 5.8. The commutativity

of both (5.9) and (5.10) is immediate from that proposition.

Suppose now that the result is known when V1 has tilting dimension6n1 and V2 has

tilting dimension6n2. Now, let V1∈Rep(G∨) have a Weyl filtration and tilting dimension

n1+1. By Corollary 2.11, we can find a short exact sequence

0−!V1−!T −!V ′1 −! 0, (5.11)

where T is tilting and V ′1 has a Weyl filtration and tilting dimension n1.

Let V2 have a good filtration and tilting dimension6n2. Let i be an even integer, and

consider the commutative diagram in Figure 1. The left-hand column is the long exact

sequence induced by (5.11). The right-hand column is also induced by (5.11). It is a short

exact sequence because, by Theorem 2.16 and Lemma 2.3, Π(V ′1⊗ON ) and Π(V2⊗ON )

have standard and costandard filtrations, respectively, in PCoh(N )/PCoh(N )Γ, and so

Ext1(Π(V ′1⊗ON ),Π(V2⊗ON ))=0.
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By induction, we have Hom�(S(T )|U ,S(V2)|U )∼=Hom(Π(T⊗ON ),Π(V2⊗ON )). In

particular, since i is even, we have Homi−1(S(T )|U ,S(V2)|U )=0 by Corollary 2.17. Next,

because the square (∗) involving u and u′ in Figure 1 commutes, the map u must be

injective. It follows that

Homi−1(S(V1)|U ,S(V2)|U ) = 0 for i−1 odd.

The left-hand column in Figure 1 has now been reduced to a short exact sequence. It is

clear that there is a unique isomorphism

Ŝ: Homi(S(V1)|U ,S(V2)|U )
∼−!Hom(Π(V1⊗ON ),Π(V2⊗ON )〈i〉) (5.12)

that makes the diagram in Figure 1 commute. For now, the map we have constructed

appears to depend on the choice of (5.11). We will address this issue later.

First, let us consider the special case where Γ=∅, so that U=Gr, and Π is the

identity functor. In this case, the solid horizontal arrows in Figure 1 are given by (5.5),

by induction. Since the dotted arrow is uniquely determined, it too must be given

by (5.5). In particular, we have now shown that the top horizontal arrow in (5.9) is an

isomorphism for the pair (V1, V2).

Now, compare the special case (Γ=∅) of Figure 1 with the general case. Since (5.9)

holds for the pairs (V ′1 , V2) and (T, V2) by induction, one can see by an easy diagram

chase that it also holds for the pair (V1, V2).

Recall from Corollary 2.14 that the right-hand vertical map in (5.9) is surjective.

Since the horizontal maps are isomorphisms, the left-hand vertical map must be surjective

as well. Once we know that both vertical maps are surjective, we can see that the bottom

horizontal map is uniquely determined. Thus, the map (5.12) is independent of (5.11).

It remains to show that (5.12) is natural in both variables, and that (5.10) commutes.

The former is essentially a special case of the latter, so we focus on the latter. In the

special case Γ=∅, the commutativity of (5.10) is contained in Proposition 5.5. For

general Γ, we deduce the result by a diagram chase using the special case Γ=∅ together

with several instances of (5.9).

An entirely similar argument establishes the required induction step involving the

tilting dimension of V2.

6. Proof of the Mirković–Vilonen conjecture

In this section k may be any field. We begin with a lemma about sheaves on a single

GO-orbit Grλ in Gr. Note that Db
(GO)(Grλ) is the category of complexes of sheaves whose

cohomology sheaves are (locally) constant.
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Lemma 6.1. The following conditions on an object F∈Db
(GO)(Grλ) are equivalent :

(1) F is even.

(2) Hom�(F , kGrλ) is a free H�(Grλ)-module generated in even degrees.

Proof. Every even object is a direct sum of objects of the form kGrλ [2n], so it is

clear that the first condition implies the second. Suppose now that the second condition

holds. Choose a basis e1, ..., ek for Hom�(F , kGrλ) as a H�(Grλ)-module, and suppose

each ei is homogeneous of degree 2ni. That is, each ei is a morphism F!kGrλ [2ni]. Let

F ′=
k⊕
i=1

kGrλ [2ni],

and consider the map f=(e1, ..., ek):F!F ′. The map Hom�(F ′, kGrλ)!Hom�(F , kGrλ)

induced by f is surjective (all the ei lie in its image), and since these are finite-dimensional

graded vector spaces, it is an isomorphism. Therefore, letting G denote the cone of

f :F!F ′, we have

Hom�(G, kGrλ) = 0. (6.1)

We claim that G=0. If not, let n be the top degree in which Hn(G) 6=0. Then, there is

a non-zero truncation morphism G!τ>nG∼=Hn(G)[−n]. The constant sheaf Hn(G) is a

direct sum of copies of kGrλ , so there is a non-zero map G!kGrλ [−n], contradicting (6.1).

Thus, G=0, and f is an isomorphism. In particular, F∼=
⊕k

i=1 kGrλ [2ni] is even.

Theorem 6.2. (Cf. [JMW2, Conjecture 1.10]) Assume that char k is a JMW prime

for G∨. Then the perverse sheaf I!(λ, k) is ∗-parity.

More precisely, I!(λ, k) is ∗-even (resp. ∗-odd) if dimGrλ is even (resp. odd).

Proof. Let k̄ be an algebraic closure of k. For any x∈Gr, we have that

I!(λ, k̄)x∼= I!(λ, k)x⊗k̄.

Thus, if I!(λ, k̄) were known to be ∗-parity, the result would follow for I!(λ, k). In other

words, it suffices to prove the theorem for algebraically closed fields. For the remainder

of the proof, we assume that k is algebraically closed.

It is well known that every component of Gr is isomorphic to a component of the

affine Grassmannian for the group G/Z(G), via an isomorphism compatible with the

stratification by GO-orbits. For groups of type A, there is a similar statement in the

opposite direction: every component of the affine Grassmannian of PGL(n) is isomorphic

to some component of the affine Grassmannian of GL(n). These two observations imply

that to prove the theorem in general, it suffices to consider groups of the form

GL(n1)×...×GL(nk)×
(

a semisimple group of adjoint type

containing no factors of type A

)
. (6.2)
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Assume henceforth that G has this form. Then G∨ is a product of GL(ni)’s with a

semisimple, simply connected group containing no factors of type A. According to [J2,

§2.9], such a group satisfies (1.3), so we can invoke the results of §5.

For simplicity, let us assume that dim Grλ is even; the argument in the odd case

is the same. Let µ∈X+ be a weight such that Grµ⊂�Grλ. Recall that this implies that

dimGrµ is also even.

Let Γ⊂X+ be the set of weights that are strictly smaller than µ. Let U=UΓ=

Gr\GrΓ, and let j=jΓ as in (5.1). By Theorem 5.9, we have a natural isomorphism

Hom�(j∗I!(λ, k), j∗T (µ, k))∼= Hom(Π(M(λ)⊗ON ),Π(T(µ)⊗ON )).

In particular, by (5.10), this is an isomorphism of graded modules over the ring

Hom�(j∗T (µ, k), j∗T (µ, k))∼= End(Π(T(µ)⊗ON )).

Finally, in the quotient category PCoh(N )/PCoh(N )Γ, the tilting object Π(T(µ)⊗ON )

coincides with the costandard object Π(N(µ)⊗ON ), by Lemma 2.7 (1). By Lemma 2.12,

the space Hom(Π(M(λ)⊗ON ),Π(N(µ)⊗ON )) is a free End(Π(N(µ)⊗ON ))-module, and

by Corollary 2.17, it is generated in even degrees.

Now, let i:Grµ!U be the inclusion map. This is a closed inclusion, and we clearly

have j∗T (µ, k)∼=i∗kGrµ [dimGrµ]. Rephrasing the conclusion of the previous paragraph,

we have that

Hom�(j∗I!(λ, k), i∗kGrµ)∼= Hom�(i∗j∗I!(λ, k), kGrµ)

is a free module generated in even degrees over the ring

Hom�(i∗kGrµ , i∗kGrµ)∼=H�(Grµ).

By Lemma 6.1, i∗j∗I!(λ, k) is even, as desired.

Theorem 6.3. (Cf. [MV1, Conjecture 6.3] or [MV2, Conjecture 13.3]) If p is a

JMW prime for G∨, then the stalks of I!(λ,Z) have no p-torsion.

Proof. Let M be a Z-module. It is a routine exercise to show that if M has p-

torsion, then Hi(M⊗LFp) 6=0 for both i=0 and i=−1. Now, let x∈Gr, and consider

the stalk I!(λ,Z)x, which is an object in the derived category of finitely generated Z-

modules. Since Z has global dimension 1, I!(λ,Z)x is isomorphic to the direct sum

of its cohomology modules, and if any cohomology module had p-torsion, the object

I!(λ,Z)x⊗LFp would have non-zero cohomology in both even and odd degrees. But

by [MV2, Proposition 8.1(a)], we have

I!(λ,Z)x⊗LFp∼= I!(λ,Fp)x,

and Theorem 6.2 tells us that the latter cannot have cohomology in both even and odd

degrees. Thus, I!(λ,Z)x has no p-torsion.
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Appendix A. Sheaves on non-locally compact spaces

Let X and Y be Hausdorff topological spaces, and let h:Y!X be a continuous map. If X

is not locally compact, then h! may not be defined, and h! may fail to have some familiar

properties. However, if h is an inclusion of a locally closed subset, these difficulties can

be largely circumvented. In this appendix, we briefly explain how to define the functors

h! and h!, and we discuss some of their properties.

Let Sh(X) denote the category of sheaves of k-modules on X. The discussion be-

low will make heavy use of the two functors Sh(X)!Sh(X) discussed in [KS, Proposi-

tion 2.3.6 and Definition 2.3.8], denoted by

F 7−!FU and F 7−!ΓU (F).

As in the main body of this paper, h! and h∗ will always denote derived functors. Their

non-derived analogues will be denoted by �h! and �h∗, respectively.

As explained in [KS, equation (2.5.1)], the functor �h!: Sh(Y )!Sh(X) (and hence

its derived functor h!) can be defined without any local compactness assumption. Ac-

cording to [KS, Proposition 2.5.4], when h is a locally closed inclusion, we have a natural

isomorphism
�h!h

∗F ∼=FY . (A.1)

On the other hand, inspired by [KS, Proposition 3.1.12], we define a new left-exact

functor �h!: Sh(X)!Sh(Y ) by

�h!(F) =h∗ΓY (F). (A.2)

Let h!: Db(X)!Db(Y ) be its right derived functor.

Lemma A.1. Let h:Y!X be a locally closed inclusion.

(1) The functor �h! is exact.

(2) If h is an open inclusion, then h!∼=h∗.
(3) There are natural isomorphisms h!h

∗F∼=FY and h!F∼=h∗RΓY (F).

(4) Let k:Z!Y be another locally closed inclusion. Then there are natural isomor-

phisms (h�k)!
∼=h!�k! and (h�k)!∼=k!

�h!.

(5) There are natural isomorphisms h!F∼=(h∗F)Y and h∗h
!F∼=RΓY (F).

Comparing part (3) with [KS, Proposition 3.1.12], we see that our definition of h!

agrees with the usual one in case X is locally compact. For part (4), the usual proofs

(see [KS, equation (2.6.6) and Proposition 3.1.8]) require the use of c-soft sheaves, which

may not be available on X.
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Proof. (1) This is [KS, Proposition 2.5.4 (i)].

(2) We see from [KS, Proposition 2.3.9 (iii)] that �h!∼=h∗��h∗�h∗∼=h∗, and so h!∼=h∗

as well.

(3) According to [KS, Propositions 2.3.6] and part (1), every functor in (A.1) is

exact, so its derived version follows. In (A.2), since h∗ is exact, the derived functor of

the right-hand side is just h∗RΓY .

(4) Since �h! and �k! are exact, the first assertion follows immediately from its non-

derived analogue, found in [KS, equation (2.5.3)]. Next, a routine argument (cf. [KS,

Proposition 2.4.6]) shows that �h! takes flabby sheaves to flabby sheaves, and that its

derived functor h! can be computed using flabby resolutions. Therefore, the desired result

follows from its non-derived analogue, which says that

k∗ΓZh
∗ΓY ∼= (h�k)∗ΓZ .

(Note that on the left-hand side, ΓZ is a functor on Sh(Y ), while on the right-hand side,

it is a functor on Sh(X).) This can be checked directly from the definition, in the spirit

of [KS, Proposition 2.3.9].

(5) Since h∗h∗F∼=F , it follows immediately from part (3) that h!F∼=(h∗F)Y . For

the second assertion, due to part (4), it suffices to consider the cases where Y is open or

closed. If Y is open, the non-derived analogue �h∗
�h!∼=ΓY is [KS, Proposition 2.3.9 (iii)],

and the derived version follows because �h!∼=h∗ takes flabby sheaves to flabby sheaves.

If Y is closed, one can check from the definitions that �h∗
�h!=�h∗h

∗ΓY ∼=ΓY . Since �h∗

is exact, it follows that h∗h
!∼=RΓY .

Lemma A.2. The functor h! is right adjoint to h!.

Proof. It follows from [KS, equation (2.6.9)] that Hom(FY ,G)∼=Hom(F , RΓY (G)).

We therefore have the following sequence of natural isomorphisms:

Hom(h!(F),G)∼= Hom((h∗F)Y ,G)∼= Hom(h∗F , RΓY (G))

∼= Hom(h∗F , h∗h!G)∼= Hom(h∗h∗F , h!G)∼= Hom(F , h!G).

Lemma A.3. Let i:Z!X be the inclusion of a closed subset, and let j:U!X be

the inclusion of the complementary open subset. For any F∈Db(X), there are functorial

distinguished triangles

i∗i
!F −!F −! j∗j

∗F −! and j!j
∗F −!F −! i∗i

∗F −! .

Proof. According to [KS, equation (2.6.32)], there is a functorial distinguished tri-

angle RΓZ(F)!F!RΓU (F)!. Using Lemma A.1 (5), we obtain the first distinguished

triangle above. The second follows similarly from [KS, equation (2.6.33)].
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Lemma A.4. Suppose we have a Cartesian square

Y ′
h′ //

f ′

��

X ′

f

��

Y
h // X,

where h and h′ are locally closed inclusions. Then we have h!f∗∼=f ′∗h′!.

Proof. According to [KS, equation (2.3.20)], ΓY
�f∗∼=�f∗ΓY ′ . Since all these functors

take flabby sheaves to flabby sheaves, we also have the derived version RΓY f∗∼=f∗RΓY ′ .

In other words, h∗h
!f∗∼=f∗h′∗h′!∼=h∗f ′∗h′!. Compose with h∗ to obtain h!f

∗∼=f ′∗h′!.
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