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1. Introduction

The brilliant 350-page monograph [DS] by David and Semmes, which, like many other
research monographs, has been cited by many and read by few(!) is, in a sense, devoted
to a single question: How to relate the boundedness of certain singular integral operators
in L?(u) to the geometric properties of the support of u? At the moment of its writing,
even the case of the Cauchy integral on the complex plane had not been understood.
This changed with the appearance of the pioneering work by Mattila, Melnikov, and
Verdera [MMV], which led to many far-reaching developments culminating in the full
proof of Vitushkin’s conjecture by David [D3] in 1998. Since then, there was a strong
temptation to generalize the corresponding results to kernels of higher dimensions. How-
ever, the curvature methods introduced by Melnikov, which were an indispensable part
of every approach known until very recently, fail miserably above the dimension 1. The
development of curvature-free techniques is still an urgent necessity.

For dimensions greater than 1, connecting the geometry of the support of u with the
boundedness of some singular integral operators in L?(p) is not easy in either direction.
Passing from the geometric properties of the measure to the bounds for the operator
norms is somewhat simpler. It had been known to David and Semmes already that the
uniform rectifiability of an Ahlfors—David regular (AD-regular, for short) d-dimensional
measure x4 in R™ suffices for the boundedness in L?(p1) of many reasonable d-dimensional
Calderén—Zygmund operators (more precisely, the ones with smooth antisymmetric con-
volution type kernels).

Tt is the other direction that remains a challenging task. We do not know what [DS]
looked like to its authors when they were writing it, but an unexperienced reader would,
most likely, perceive it as a desperate attempt to build a bridge in this direction starting
with the destination point. Formally, the book presents a variety of conditions equivalent
to the uniform rectifiability. Apparently, the hope was that one of those conditions could
be checked using the boundedness of the d-dimensional Riesz transform in R"™, which is

the natural analogue of the Cauchy operator in the high-dimensional setting. David and

(1) Namely by four people: Guy David, Steven Semmes, Peter Jones, and Someone Else, as the
saying goes.
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Semmes did not manage to show that much. Nevertheless, they proved that the uniform
rectifiability of y is implied by the simultaneous boundedness in L? (1) of a sufficiently big
class of d-dimensional convolution type Calderén-Zygmund operators with odd kernels.

The aim of the present paper is to fulfill that hope in the case n=d+1 and to supply
the missing part of the bridge, the part that leads from the boundedness of the Riesz
transform in L?(u) to one of the equivalent criteria for uniform rectifiability in [DS].
Ironically, the condition that we use as a meeting point is an auxiliary condition that is
only briefly mentioned in the David-Semmes book. The result we prove in this paper

reads as follows.

THEOREM. Let p1 be an AD-reqular measure of dimension d in R, If the asso-

ciated d-dimensional Riesz transform operator

f— Kx(fu), where K(m):L

|z|dtT’
is bounded in L?(u), then the non-BAUP cells in the David—-Semmes lattice associated

with p form a Carleson family.

Proposition 3.18 of [DS] (p. 141) asserts that this condition “implies the WHIP and
the WTP” and hence, by Theorem 3.9 (p. 137), the uniform rectifiability of . Note that
[DS] talks about AD-regular sets rather than AD-regular measures, so the notation there
is different, and what they denote by FE is the support of p in our setting. We want
to emphasize here that the current paper treats only the “analytic” part of the passage
from the operator boundedness to the rectifiability. The full credit (as well as the full
respounsibility) for the other “geometric” part should go to David and Semmes.

There are two key ingredients of our proof that may be relatively novel.

The first one is the flattening lemma (Proposition 6, §11), which ultimately leads
to the conclusion that it is impossible to have many cells on which the support of the
measure is close to a d-plane but the measure itself is distributed in a noticeably different
way from the Lebesgue measure on that plane. The exact formulation of the flattening
lemma we use here is tailored to our particular approach but it takes its origin in the
earlier works by Tolsa [T1] and [T2] on the relations between a-numbers and measure
transportation costs and the boundedness of the Riesz transform.

The second crucial ingredient is the Eiderman—Nazarov—Volberg scheme from [ENV],
which was later exploited by Jaye in [JNV] to show that for the case of a non-integer s€
(d,d+1), the boundedness in L?(u) of the s-dimensional Riesz transform associated with
an s-dimensional measure p in R*! implies the finiteness of some Wolff-type potential

with an exponential gauge function. This scheme allowed one to fully develop the idea
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of Mateu and Tolsa in [MT] and to turn the scales of low density, which were the main
enemy in most previous approaches, into a useful friend.

Roughly speaking, the present paper uses the non-BAUP cells instead of the scales
of high density and the flat cells instead of the scales of low density to introduce a Cantor-
type structure, which is then treated similarly to how it was done in [ENV]. The most
essential deviations and additions are using the holes in the non-BAUP cells to hide the
negative part of R*(1)m), the alignment of the approximating planes in the stopping
flat cells, the quasi-orthogonality estimates based on flatness instead of smallness of the
density, and the consideration of only the d-dimensional part of the Riesz kernel aligned
with approximating planes.

The main limitation of our approach, which does not allow us to extend our result
to codimensions greater than 1, comes from the reliance of the [ENV] scheme on a
certain maximum principle, of which no analogue is known in codimensions higher than 1.
Extending or bypassing this maximum principle could possibly lead to the full solution
of the problem.

It is worth mentioning here that shortly before our paper was finished, Hofmann,
Martell, and Mayboroda posted a paper [HMM] on arXiv that contains a result equivalent
to ours under the additional assumption that p is the surface measure on the bound-
ary of a not too weird connected domain in R**t!. They also expressed the hope that
their techniques may eventually provide an alternative approach to the full rectifiability
conjecture. Unfortunately, their proof is also heavily based on the harmonicity of the
kernel, which seems to make it hard to extend their techniques to the case of higher
codimensions.

Including all the relevant definitions into this introduction would take too much
space, so if the reader has got interested enough at this point to continue reading the
paper, he will find them all in the main body of the article (and if not, all we can do is

to bid him farewell now).

2. Acknowledgements
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mathematicians. We thank them all for sharing their ideas and techniques with us. The
reader can find the (possibly incomplete) list of their names in the notes [D4] by David
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delicate technical details in the proof and to Vladimir Eiderman for his unwavering
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We also thank the anonymous referee who has read this paper from cover to cover
and made many pertinent remarks, which helped to improve its style and readability.
At last, we are grateful for all the grant support from various organizations we

received during our work on this project.(?)

3. The structure of the paper

We tried to make the paper essentially self-contained. The only thing that the reader is
assumed to be familiar with is the elementary theory of Calderén-Zygmund operators in
homogeneous spaces. Everything else, including such standard for experts things as the
David—Semmes lattice and weak limit considerations, is developed almost from scratch.
The paper is split into reasonably short sections each of which is devoted to one step, one
construction, or one estimate in the proof. We tried to explain the goal of each section
at its beginning and to give each section some meaningful title. We hope that this will
help the reader to easily separate topics he already knows well from those that might
be new to him. We also believed that it would make sense to include extra details or
routine computations even at the cost of making the paper longer if they may spare the
reader some time and headache when checking the argument. However, despite all our
efforts, the text is still fairly dense and the full logic of the proof will reveal itself only

at the end of the last section.

4. The notation

By ¢ and C' we denote various positive constants. We usually think of ¢ as of a small
constant used in a bound of some quantity from below and of C as of a large constant
used in a bound from above. The constants appearing in intermediate computations
may change from one occurence to another. Some constants may depend on parameters,
in which case those parameters are always mentioned explicitly and often included in
parentheses after the constant unless such dependence is absolutely clear from the context
like in the case of the dependence on the dimension d: all constants we use do depend

on d but, since d is fixed throughout the entire paper, we hardly ever mention this.

(3) F.N. was partially supported by the U.S. NSF grant DMS-0800243. X.T. was partially sup-
ported by the ERC grant 320501 of the European Research Council (FP7/2007-2013) and by the grants
2009SGR-000420 (Catalonia) and MTM-2010-16232 (Spain). A.V. was partially supported by the U.S.
NSF grant DMS-0758552
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Due to the fact that the Riesz transform operator maps scalar-valued measures (or
functions) to vector-valued functions, scalar- and vector-valued quantities will be heavily
mixed in many formulae. We leave it to the reader to figure out in every particular case
when the product is a product of two scalars and when it is a product of a scalar and
a vector in R, However, whenever the scalar product of two vector-valued quantities
is meant, we always use angular brackets (-, -). Whenever the angular brackets are also
used for the scalar product or duality coupling in some function spaces, we indicate that
by writing something like (-, <) z2(,), or merely (-, -),.

We will always denote by B(x,r) an open ball of radius r centered at x€R4! and
by B(z,r) the corresponding closed ball. The notation xg will always be used for the
characteristic function of a set FCRI*H!,

By the support supp p of a measure p we always mean the closed support. The same
notation and the same convention apply to supports of functions. We always specify the
measure 4 in the notation when talking about LP(u) norms in the usual sense. However,
we also use the notation || f|| L (g) for the supremum of | f| over the set E. If we omit £
and just write || f||z, it means that the supremum is taken over the whole space R4 *!,
The same convention applies to integrals: if the domain of integration is not specified,

the integral over the whole space is meant. The Lipschitz norm of a function f on a set

ECR%! is defined as @) —f )
r)—J\y
[fllLip(m) = sup =————==.
P z,y€E lz—yl
TFY

If E is omitted in this notation, we mean the Lipschitz norm in the full space R4+,
We use the letter m to denote the (d+1)-dimensional Lebesgue measure on R4*1. The
d-dimensional Lebesgue measure on an affine hyperplane L CR%+! is denoted my,.

We use the notation dist(x, E) for the distance between a point z€R*! and a set
ECRY*HL, Similarly, we write dist(E, F') for the distance between two sets E, FCR4*1,

5. The d-dimensional Riesz transform in R%t?

The goal of this section is to remind the reader (or to acquaint him with) the general
notions of the theory of AD-reqular measures and the associated Riesz transform opera-

tors.

Fix a positive integer d. Define the d-dimensional (vector-valued) Riesz kernel in
R by K(x)=x/|z|4"!. For a finite signed Borel measure v in R4T! define its Riesz

transform by
Ryv=Kxv= / K(z—y)dv(y).
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The singularity of K at the origin is mild enough to ensure that the integral always
converges absolutely almost everywhere with respect to the (d+1)-dimensional Lebesgue
measure m in R and everywhere if v is sufficiently smooth (say, has a bounded density
with respect to m). Moreover, the Riesz transform Ry is infinitely differentiable in

R4\ supp v and, since
C(k)

|(VkK)($)|<W

for all x#0 and each k>0, we have

dlv|(y)
V*Rv)(z)| < C(k / —t 1
I( )(2)| <C(k) T (1)

for each x¢supp v, where |v| stands for the variation of v.
Note also that the finiteness of the measure is not so important in these estimates,

so the Riesz transform Ry can also be defined for any measure v satisfying

[,
1+ |z|d '

Similarly, using the estimate

|$/_1,//‘
min{|z|, [z}

[K(2')—K(z")| < C

we also obtain

2" —a"| d|v|(y)
min{|z’ —y|, [ —y[}4+1

|(Rv)(z")—(Rv)(z")| < C

An immediate consequence of this bound is that if v satisfies the growth restriction
lv(B(x,r))|<Cr? for all z€RI*! >0, and if E is any subset of R?*! separated from

supp v, then
C

dist(E,suppv)’

(2)

Note that this estimate does not follow from (1) immediately because it may be impossible

| RV ||Lip(E) <

to connect a’, 2" € E by a path of length comparable to |2’ —x"”| that stays far away from
supp v.

In general, the singularity of the kernel at the origin is too strong to allow one
to talk of the values of Rv on suppr. The usual way to overcome this difficulty is to
introduce regularized kernels K5 (6>0). The exact choice of the regularization is not
too important as long as the antisymmetry and the Calderéon—Zygmund properties of the
kernel are preserved. For the purposes of this paper, the definition

T

K5($) = max{é, |$|}d+1
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is the most convenient one, so we will use it everywhere below. The corresponding

regularized Riesz transforms
Rsv=Ksxv= / Ks(x—y) dv(y)

are well defined and locally Lipschitz in the entire space R%*! for any signed measure v

dlv|(x)
/ T jafd =%

In particular, if we have a positive measure y satisfying p(B(x,7))<Cr? for every z € RI+!
and r>0 with some fixed C>0, and a function feLP(u), 1<p<oo, then Rs(fu) is

well defined pointwise for all >0, so it makes sense to ask whether the corresponding

satisfying

operators R, s f=Rs(fu) are uniformly bounded in LP(p).
The standard theory of Calderén-Zygmund operators(®) implies that the answer
does not depend on pe(1,00). Moreover, if we know the uniform growth bound

w(B(z,r)) < Cr?

and an estimate for the norm || R, s|| £ro ()10 (u) for some po€(1,00), we can explicitly
bound the norms ||R,, 5| rr(u)—rr(y) for all other p.

These observations lead to the following definition.

Definition. A positive Borel measure p in R+ is called C-nice if u(B(z,r))<Cr?
for every z€RI! and r>0. It is called C-good if it is C-nice and || R, s

2220 SC
for every 6>0.

Often we will just say “nice” and “good” without specifying C', meaning that the
corresponding constants are fixed throughout the argument. A few notes are in order.

First, for non-atomic measures p, the uniform norm bounds

Rusll2(uwy-r2) <C

imply that g is C’-nice with some C’ depending on C only (see [D2], Proposition 1.4,
p. 56).
Second, it follows from the above remarks that despite “goodness” being defined in

terms of the L2-norms, we will get an equivalent definition using any other LP-norm with

(3) Though the measure u is not assumed to be doubling at this point, we will apply this theory
only when p is an AD-regular measure, so we do not really need here the subtler version of the theory
dealing with non-homogeneous spaces.



UNIFORM RECTIFIABILITY AND THE RIESZ TRANSFORM 245

1<p<oo. What will be important for us below is that for any C-good measure y, the
operator norms ||R, s||54(.)—14(u) are also bounded by some constant C’.

We now can state formally what the phrase “the associated Riesz transform is
bounded in L?(x)” in the statement of the theorem means. We will interpret it as
“the measure u is good”. By the classical theory of Calderén—Zygmund operators, this is
equivalent to all other reasonable formulations, the weakest looking of which is, probably,
the existence of a bounded operator T: L? (1) — L? (1) such that

(Tf)(x) = / K(x—y)(y) du(y)

for p-almost all z¢supp f.
A few words should be said about duality and the adjoint operator R*. The formal

change of order of integration combined with the antisymmetry of K yields the identity

[wan = [{ [ Ka-par.anw)
— [( [ e-saaon ) avte)=- [ §<ej,R<n,ej>>) du

leading to the formula
d+1

Rn=—=) (ej, R(n,e;)), (3)
j=1
where v is a scalar (signed) measure, 7 is a vector-valued measure, and ey, ..., €411 is an
arbitrary orthonormal basis in R4+1,

This computation is easy to justify if both v and 7 are finite and at least one of
them has bounded density with respect to the (d+1)-dimensional Lebesgue measure m
in R because then the corresponding double integral converges absolutely and the
classical Fubini theorem applies. This simple observation will be sufficient for us most of
the time. However, in a couple of places the adjoint operator R* has to be understood in
the usual sense of functional analysis in the Hilbert space L?(u) for some good measure .
All such cases are covered by the following general scheme (which is, perhaps, even too
general for the purposes of this paper).

The identity

d+1
<R,u,5fa g># = _<fa Z<€j, R,u,5<ga ej>>>
j=1 w
holds for every locally finite measure p and any bounded functions f (scalar-valued) and

g (vector-valued) with compact supports. If u is good, both sides of this identity make
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sense and define continuous bilinear forms in L?(u)x L?(p). Since these forms coincide
on a dense set of pairs of test functions, they must coincide everywhere. However, the

latter is equivalent to saying that

d+1

(Rus)"9=—) (ej, Ruslg.e5)

j=1

in the usual sense of functional analysis.

Finally, if the operators R, 5 converge at least weakly to some operator R, in L*(u)
as 0—0+, so do the operators (R, s)* and, therefore, the last identity remains valid for
R,, in place of R, 5.

The upshot of these observation is that all reasonable properties of or estimates for
R, R, s, or R,, automatically hold for R*, (R, s)*, or (R,)*, respectively, due to one of
the above identities, so we may (and will) freely refer to the results formally obtained
only for the operators themselves when talking about their adjoints.

In what follows, we will mainly deal with measures p that satisfy not only the upper
growth bound, but a lower one as well. Such measures are called Ahlfors—David regular

(AD-regular for short). The exact definition is as follows.

Definition. Let U be an open subset of R4, A nice measure y is called AD regular
in U with lower regularity constant ¢>0 if for every x€supp uNU and every >0 such
that B(x,r)CU, we have u(B(z,r))>crd.

The simplest example of a good AD-regular measure p in Rt is the d-dimensional
Lebesgue measure my, on an affine hyperplane LCR*!. The next section is devoted to

the properties of the Riesz transform with respect to this measure.

6. The Riesz transform of a smooth measure supported on a hyperplane

Throughout this section, L is a fixed affine hyperplane in R4t! and H is the hyperplane
parallel to L passing through the origin.

The main results of this section are the explicit bounds for the L*°-norm and the
Lipschitz constant of the H-restricted Riesz transform RHv of a measure v=fmy with

compactly supported C? density f with respect to my,.

If we are interested in the values of R,,, sf on the hyperplane L only, we may just

as well project the kernels K5 to H and define

THX

H —
s ) = (s Jaly e
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where 7 is the orthogonal projection from R?*! to H. The corresponding operators Rf
will just miss the orthogonal-to-H component of the difference x—y in the convolution
definition. However, for x,y€ L, this component vanishes anyway.

Note that everything that we said about the full Riesz transform R and its adjoint
R* in the previous section applies to the restricted Riesz transform RY as well, except
in the identities relating the adjoint operator (R”)* to the operator R¥ itself where an
orthonormal basis ey, ...,eq of H should be used instead of an orthonormal basis in the
whole space R+,

The theory of the d-dimensional Riesz transform on a hyperplane L in R4+! is
mainly just the classical theory of the full-dimensional Riesz transform in R¢. The facts
important for us (which can be found in any decent harmonic analysis textbook) are the
following.

The operators Rfib s are uniformly bounded in every LP(my) (1<p<oo). Moreover,
they have a strong limit as §—0+, which we will denote by R .- This operator is also
bounded in all LP(mp), is an isometry in L?(myz) (up to a constant factor), and

(R )*RIY =—cld
for some ¢>0. Here, (RﬁL)* stands for the adjoint operator to the operator R,,,. Note
that (RZ )" can also be defined as the strong limit of the pointwise defined operators

(R, 5)".

mr,

LEMMA 1. Suppose that f is a C?-smooth compactly supported function on L. Then
the functions RE(fmy) converge to some limit RY (fmy) uniformly on the entire space
Rt as §—=0+, and RY(fmy) coincides with RﬁLf almost everywhere on L with re-
spect to mrp. Moreover, R¥(fmyp) is a Lipschitz function in R4 harmonic outside

supp(fmr), and we have

sup |[R™ (fmy)| < CD?sup |V, f|
L

and

IR (fme)|Lip < CD sup V31,

where D is the diameter of supp(fmyr) and Vg is the partial gradient involving only

the derivatives in the directions parallel to H.

Note that the second differential V% f and the corresponding supremum on the
right-hand side are considered on L only (the function f in the lemma does not even
need to be defined outside L) while the H-restricted Riesz transform RY(fmp) on the
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left-hand side is viewed as a function on the entire space R%*! and its supremum and
the Lipschitz norm are also taken in R%+1!.

It is very important that we consider here the H-restricted Riesz transform R
instead of the full Riesz transform R. The reason is that the component of R(fmp)
orthogonal to H has a jump discontinuity across L at the points of L where f=£0. This
switch to the restricted Riesz transform is rather crucial for our proof and is somewhat
counterintuitive given the way the argument will develop later, when we use the bound-
edness of the Riesz transform R, in L?(u) to show, roughly speaking, that almost flat
pieces of u parallel to H must be aligned. It would seem more natural to do exactly
the opposite and to concentrate on the orthogonal component of R for that purpose.
However, the price one has to pay for its discontinuity is very high and we could not

make the ends meet in that way.

Proof. The statement about the harmonicity of R¥ (fmy) follows from the obser-
vation that K (z)=cVyE(x), where E(z) is the fundamental solution for the Laplace
operator in R™1 ie., E(x)=clog |z| when d=1 and E(z)=—c|z|~(*~") when d>1. Thus,
K*H is harmonic outside the origin together with E, so R v is harmonic outside supp v
for every finite signed measure v (and so is the full Riesz transform Rv).

To prove the other statements of the lemma, note that its setup is translation- and

rotation-invariant, so we may assume without loss of generality that
L=H={zcR¥" 24, =0}

We shall start with proving the uniform bounds for the regularized Riesz transforms

RE(fmy). Since RY(fmy) is a Lipschitz function in the entire space, it is enough to

estimate its value and its gradient at each point x€R?*!. By translation invariance and

symmetry, we may assume without loss of generality that x1=...=24=0 and z441=t>0.
We have

[RE (fmu))(x) = / KH (2 —y) f(y) dmy (y) = / . / L

Note that, for |y|>D, the integrand is bounded by D~%maxy |f| and the mz measure
of the support of f on L is at most CD?, so

T2 < Cmax|f].

To estimate I, note first that

[ K-y dm) o
LNB(0,D)
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so we can replace f(y) by f(y)—f(0) and use the inequalities
If(y)—f(O)Ks%pIVHfl\yl and  |z—y| >yl

to get
dmg(y)

LNB(0,D) |y|d-1

|Il|<S%P|VHf| <CDSl£p|VHf|.

Adding these bounds and using the inequality sup; | f|<Dsup; |V f|, we get

sup |RY (fmp)|<CD s%p IV fl.

Note that we have not used that f€C?(L) here, only that feC*(L).
Now we will estimate [VRY (fmr)](z). Note that the partial derivatives 9/9z; for
j=1,...,d that are taken along the hyperplane L can be passed to f, so we have

81[35 (fme)] =Ry ( L‘)af } ”“)'

J

Applying the above estimate to 0f/9x; instead of f, we immediately obtain
sup [VaR§' (fmg)| <CD sup IV f].

To get a bound for the remaining vertical derivative 9/0x 441, note that

0

KH(z—y)=0
I 5 (z—y)

for all x,y€ L, so the case t=0 is trivial. Assuming t>0, we write

[aRf(me)] (x)—/L[Ka (xy)}f(y) dmg(y)

0441
:/ + / :Il +IQ.
LNB(0,D) L\B(0,D)

For ye L, we can use the inequalities

t

0
|z —y|*+?

— KH(z—y)|<C
T Kl )

and |z—y|>t and note that the integrand in I» is bounded by sup; |f|D~(@*Y. Since

the my, measure of the support of f on L is at most C D%, we arrive at the bound

|L | <CD’1s%p\f|'
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To estimate I7, note that we still have the cancellation property

0
— K (z—y)dm 0,
/LnB(o p) 0ar1 ° (o) dmaly) =

so we can replace f(y) by f(y)—f(0) and use the inequalities

If(y)—f(O)lés%pIVHfllyl and [z—y| > |y

to get

tdm
|Il|<csup|va|/ L|d+)1 Csup |V f1.

Adding these bounds, we get

sup Rf;q(me)

0
<CD!supfl+Dsup [V ).
0% g1 L L

To get only sup;, |V% f| on the right-hand sides of our estimates, it remains to note that

sup|f| < Dsup |V f] <D? sup Vi fl.

As the estimates obtained are uniform in 6>0 and as R (fmy,) coincides with R (fm,)
outside the strip of width § around L, we conclude that R (fmy) converges uniformly
to some Lipschitz function in the entire space R?! and the limiting function satisfies
the same bounds. Since they also converge to RﬁL fin L%(mp), this limiting function

must coincide with RZ . f almost everywhere with respect to the measure mp. O

7. The toy flattening lemma

The goal of this section is to prove the result that is, in a sense, the converse to Lemma, 1.
We want to show that if R,IZL f is smooth in a large ball on L, then f itself must be
(slightly less) smooth in the four times smaller ball. The exact version we will need is

the following.

LEMMA 2. Let feL>®(mg)NL*(my). Assume that z€L and R f coincides with
a C? function F almost everywhere (with respect to mp,) on LNB(z,4A) for some A>0.
Then f is Lipschitz on LNB(z, A) (possibly, after a correction on a set of my, measure 0)

and the norm | f||lLip(LnB(z,4)) i dominated by

AN fl oo (mp) HIVEF| Lo (LB (2,44) FAIVEF| Loo (LAB(2,44))

up to a constant factor.
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We will refer to this lemma as the “toy flattening lemma”. By itself, it is rather
elementary but, combined with some weak limit techniques, it will eventually yield the
full flattening lemma for measures that are not necessarily supported on a hyperplane,

which will play a crucial role in our argument.

Proof. Write
[ =IXB(za4)+[XL\B(z,44) = f1+ f2.

Note that R f, is smooth in LNB(z,3A4), and

IVaRE follLe(rnp(z3ay) < CA™ | fll o (my)

and
IVEHRE foll Lo (2nB(z,34) < CA™2(| fll Lo (my)-

To see this, just recall the estimate (1) and note that for k>1 and x€ B(z,3A), we have
F)ldma(y) .
an - SCEfllpeem) A"
/L\B(z,4A) |z —y|dthk (R)ILfIl (mr)

Thus, RZL f1 is C%-smooth on LN B(z,3A) as the difference of F' and RﬁL f2. Moreover,

we have

IVuRE fillie@nesay < CA| fllLe ) HIVEF || Lo (Lap(s,4))

and

IVERE, fill L wnpzsay) SCAT2FllLoe o) HIVEF L (nB(=aa))-

Observe also that, by the L?(mz,) boundedness of RﬁL, we have

‘/W&hPMM<C/UﬁMM<CMWﬁmmm

whence there exists a point in LNB(z,3A4) such that |RE fi|<C| fllLo(m,) at that

point. Combining this with the estimate for the gradient, we conclude that

IRE . fill e (zaBz34) SO fll 2o (me) F ANV HE || 1o (nB(2,a4))] -

Let now g be a C2-smooth function in R?*! supported on B(0,3) such that 0<py<1
and ¢ is identically 1 on B(0,2). Put ¢(z)=po((x—2)/A). Then |V*p|<C(k)A~F. We
have

—cfi= (R, ) Ry, fr =Ry, ) leRy, fil+ (R, ) [(1=9) Ry, ful-



252 F. NAZAROV, X. TOLSA AND A. VOLBERG

However, o R , f1is a compactly supported C? function on L, the diameter of its support
is not greater than 6A and, using the above estimates and the Leibniz formulae for the

derivative of a product, we see that its second gradient V%[ngﬁL f1] is dominated by

A2 fllzoo(me) + AT NV EF | Lo (LnB(2,a4) H IVEF| Lo (LB (2,44))

up to a constant factor. Thus, by Lemma 1, (RY )*[¢RE fi] is Lipschitz on L with
Lipschitz constant dominated by the quantity in the statement of the lemma to prove.
To finish the proof of the toy flattening lemma it just remains to observe that,
since (RE )*[(1—¢)RE fi] is a Riesz transform of a function supported outside the
ball B(z,2A) (or, rather, a finite linear combination of such Riesz transforms), it is

automatically smooth on B(z, A). Moreover, using (1) again, we see that

Vu(Ry, ) (A=) Ry, fi]]
<|VRT) (A=) (R, fr)mu]]

1
< g [RE fi(y)| dmi(y)
/L\B(z,ZA) | —y|d 1 Tme

L\B(z,24) |[T—y[*** L\B(2,24)

<[CA-@DR2[oAd f|2 ., Y
— CA |l .

1/2

8. Weak limits

This section has two main goals. The first one is to define the Riesz transform operators
R, (and their H-restricted versions Rf) in L2(u) for arbitrary good measures y as weak
limits of the regularized operators R, s as 6—0+. The second one is to show that when
a sequence of uniformly good measures i tends weakly (over the space of compactly
supported continuous functions in R to some other measure p in R4, then the
limiting measure p is also good and for all compactly supported Lipschitz functions f
(scalar-valued) and g (vector-valued) in R*™1, we have [(R,, f,g)dux— [(R.f,g) du.

Our starting point is to fix two compactly supported Lipschitz functions f and ¢ in
R4+ where f is scalar-valued and g is vector-valued, and to use the antisymmetry of

the kernels K to write the scalar product (R, sf,g), as

L(f,g) = / / (Ka(z—9) f (1), 9(2)) du(z) du(y) = / / (K (w—y), H (z,y)) du(z) du(y).
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where

H(z,y) = 5[f(y)g(x)—f(x)g(y)].

The vector-valued function H (z, y) is compactly supported and Lipschitz on R4+ x RI+1,
so the integral Is(f, g) converges absolutely as an integral of a bounded function over a
set of finite measure for every §>0 and every locally finite measure pu. Moreover, since

H vanishes on the diagonal x=y, we have

|H(x,y)| <C(f,9)|z—yl|

for all ,yeRI*!,

If i is nice, then

/ dwy) o
B

(z,r) |x_y|d71 h

for all z€R¥*! and r>0. Therefore, denoting supp fUsupp g by S, we get

M s st [([ gl ) ato

<C(f,9)u(S)r.

In particular, taking r=diam S here, we conclude that the full integral

Since |K (z)|=|z| and |Ks(2)— K (z)|<|z|"%x5(0,5) (), we infer that the integral

I(f,g)= / / (K (2—y), Hz,y)) du(z) du(y)

converges absolutely and, moreover, there exists a constant C' depending on f, g, and
the growth constant of p only such that |I5(f,g)—I(f, g)|<C¢ for all §>0.

This already allows one to define the bilinear form

<Ruf7 g>M:I(fvg)

and to establish the existence of the limit operator R, =lims_,0+ R, s as an operator from
the space of Lipschitz functions to its dual for every nice measure p.

However, if i is good, we can say much more. Indeed, in this case the bilinear forms

<Ru,6f79>u:/<Ru,6fvg> d.UJ
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make sense and satisfy the inequality

(Rusf 9)ul < CllFll 29l L2 )

for all f,g€L?(uu). Since the space of compactly supported Lipschitz functions is dense
in L?(u), we can write any L?(u) functions f and g as f1+f2 and g1 +go, where f; and
g1 are compactly supported Lipschitz functions in R%t!, and f, and go have as small

norms in L?(p1) as we want. Splitting

(Rusf, @)= (Rusfi,91)n+[(Rusfr, 92) ut+(Rpsfo 9)ul;

we see that (R, 5f,9), can be written as a sum of the quantity (R, 5f1,91),=15(f1,91),
which converges to a finite limit I(f1,¢1) as §—0+ and another quantity that stays as
small as we want as 6— 0+ if the L?(u) norms of f and g, are chosen small enough. From
here we conclude that the limit of (R, sf,g), as —0+ exists for all f, g€ L?*(p). More-
over, this limit is a bilinear form in L?(x) and it is still bounded by C/||f|| 2 [l9llL2()-
By the Riesz-Fischer theorem, there exists a unique bounded linear operator 12, in L?(u)

such that this bilinear form is equal to (R, f, g),. The convergence

<Rﬂa5fvg>lt—><RHf7g>p, as 0 — 0+

can be restated as the weak convergence of the operators R, s to R,,.

Similarly, one can consider the duality coupling of LP(u) and L4(u), where p,g>1
and p~14¢7t
tablish the existence of the weak limit of the operators R, 5 in LP(u) as §—0+. Note that,
if feLP*(u)NLP?(u), then for every ge L™ (n) with p(supp g) <oo, the value (R, sf, g),

can be computed using the pointwise integral definition of R, sf as Rs(fu), so it does

=1, and use the uniform boundedness of the operators R,, 5 in L? () to es-

not depend on whether f is considered as an element of LP* (1) or an element of LP2(u).
Thus

<R;tf7 g>u = 61_1)%1+<RM,6JC’ g>u

also does not depend upon that (note that g€ L9 ()N L% (1), so the left-hand side makes
sense in both cases). Since g is arbitrary here, we conclude that R, f (as a function defined
p-almost everywhere) is the same in both cases.

Another important observation is that if the pointwise limit lims_o4+ R, 5 f exists on
a set E with p(E)>0, then R, f coincides with that limit p-almost everywhere on E.
To prove it, just observe that, by Egorov’s theorem, we can exhaust E by sets of finite u
measure on which the convergence is uniform.

At last, if R, s converges strongly in L?(u), then the limit is still the same as the

weak limit we constructed.
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The analogous theory can be built for R, R*, and (R")*. We built it only for
the full operator R because projecting everything to H is trivial and R* does not really
require a separate theory due to relation (3), which shows that, at least in principle,
we can always view R* just as a fancy notation for the right-hand side of (3). From
now on, we will always understand R(fu) on suppp as R, f whenever p is good and
feLP(u) for some pe(1,00). As we have shown above, this convention is consistent with
other reasonable definitions in the sense that when some other definition is applicable
somewhere on supp p as well, the value it gives coincides with R, f except, maybe, on a
set of zero p measure.

The idea of defining R, as a weak limit of R, s goes back to Mattila and Verdera
[MV]. They prove its existence in a slightly more general setting and their approach is
somewhat different from ours. They also show that R, f can be defined pointwise by
some formula that is almost the expression for the principal value

lim K(z—y)f(y)du(y)

6—0+ yilo—y|>d

but not quite. Note that Mattila, Preiss, and Tolsa showed that the existence of the
principal value p-almost everywhere is strong enough to imply the rectifiability of u (see
[MP] and [T1]), so for a while there was a hope that the Mattila—Verdera result would
eventually lead to the proof of the rectifiability conjecture. However, as far as we can
tell, nobody still knows how to get a proof in this way and we will use a different route
below.

We have just attained the first goal of this section: the construction of the limiting
operator R, for one fized good measure p. We now turn to the relations between the
operators R,, corresponding to different measures p.

We start with the case when a positive measure v has a bounded Borel measurable
density p with respect to a good measure p. Since v(B(x,7))<||p|| oo (yu(B(z,1)), we see
that v is nice. To show that v is good, note that for every fe€L?(v), we have pf e L?(u).

Moreover, we have the identity

Rs(fv)=Rs(pfn)

pointwise in R4, whence

[R5t dv= [ 1Ros)pdie< Clllley [ 19512 i< il [ 17 a0

due to the goodness of . Thus, both operators R, and R, exist. Now take any f, g€
L?(v) and write

(Rusfig)v=(R.s(f),pg) -
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Passing to the limit on both sides as d —0+, we conclude that

<Rufa g>V = <Ru(pf)apg>u = <Rl»b<pf)’g>u

(note that the function R, (pf) is defined p-almost everywhere, so it is also defined v-
almost everywhere). However, the mapping f—R,(pf) is a bounded linear operator
from L2(v) to L?(u)C L?(v), so we conclude that

R,f=R,(pf) wv-almost everywhere.

This identity is, of course, by no means surprising. Still, since we will use it several
times without mentioning, we decided it would be prudent to include a proof. The next
property we need is a bit subtler.

Suppose that pg (k>1) is a sequence of uniformly nice measures that converges to
some locally finite measure p weakly over the space Co(R9!) of compactly supported
continuous functions in R41. We shall start with showing that p is also nice. Indeed,
take any ball B(x,r). Then u(B(z,r)) can be found as the supremum of all integrals
[ f dp with continuous functions f such that 0< f<1 and supp f C B(z,r). However, for

every such f, we have
[ tau= i [ 1d <sup B ) <t
— 00 k

where C is the uniform growth constant of 1%, so we have the same bound for p(B(z,r)).
Fix two compactly supported Lipschitz functions f and g. The bilinear form

<R,ufa g>lt

can be defined as I(f, g) for every nice measure . Once we know that p is nice, we can

say that
Ry s 9 = By f 9) i | < CO
for all £>1 and also
[(Rusfs 9)p—(Ruf,9)ul <CO

with some C'>0 depending only on f, g, and the uniform growth constant of ug. Note,
however, that for every fixed §>0,

(R 52 9)mn = / / (Ks(z—9) F(0), 9(2)) dak () dai ()

and the integrand is a compactly supported Lipschitz function in R4 xR¥*1 which is

more than enough to ensure that

<R,uk,5fa g>llk — <R,u,5f7 g>u
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for every fixed 6>0 as k—o0o. Since the convergence (R, sf, 9)u, — (Ruy fr 9) s as =0+

is uniform in k, we conclude that

<RM1€ [ 9>Mk - <Ruf7 g)#

as well.
It remains to show that if py are uniformly good, then p is also good, so all the
bilinear forms in question can be also interpreted as L*(u) couplings. Return to the

regularized operators R,, 5 and note that the uniform C-goodness of y, implies that

|<thk,6f7 g>Hk| < C||fHL2(Mk)HgHL2(Mk)'

Since | f|? and |g|? are compactly supported Lipschitz functions, we can pass to the limit

on both sides and get
[(Rusf, 90 ul SCIfll2 191l L2 0)-

However, the operators R, sf are well defined pointwise for every feL?(u) and are
bounded from L?(u) to L3

loc
bounded open set U, the space of Lipschitz functions compactly supported inside U is

(1) as soon as u is merely nice. Using the fact that, for every

dense in L?(U, ) and this a-priori boundedness, we conclude that || Ry, 5| 2 r2(v,) <C
regardless of the choice of U. The monotone convergence lemma then shows that
(R

|2 (u)—r12(u) <C as well, finishing the story.

9. The flatness condition and its consequences

Throughout this section, we shall fix a linear hyperplane HCR 1. Let zeR%+! and
let A,«,0>0 (we view A as a large number, « as a small number, and ¢ as a scale
parameter). We will be interested in the situation when the measure p is close inside
the ball B(z, A¢) to a multiple of the d-dimensional Lebesgue measure my, on the affine

hyperplane L containing z and parallel to H.

Definition. We say that a measure p is geometrically (H, A, «)-flat at the point z
on the scale ¢ if every point of supp uNB(z, A¢) lies within distance af from the affine
hyperplane L containing z and parallel to H and every point of LNB(z, A¢) lies within
distance af from supp p.

We say that a measure p is (H, A, «)-flat at the point z on the scale ¢ if it is
geometrically (H, A, «)-flat at the point z on the scale ¢ and, in addition, for every
Lipschitz function f supported on B(z, A¢) such that || f||Lip<¢~! and [ fdmp=0, we

have

‘/fdu’ <al?,
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Note that the geometric (H, A, a)-flatness is a condition on supp p only. It does not
tell one anything about the distribution of the measure p on its support. The latter is
primarily controlled by the second, analytic, part in the full (H, A, a)-flatness condition.
These two conditions are not completely independent: if, say, u is AD-regular, then the
analytic condition implies the geometric one with slightly worse parameters. However,
it will be convenient for us just to demand them separately.

One may expect that, for nice enough functions, (H, A, a)-flatness of p at z on scale
¢ would allow one to switch from the integration with respect to p to that with respect to
my, in various integrals over B(z, A¢) making an error controlled by «. This is, indeed,
the case and the following lemmata provide all the explicit estimates of this type that

we will need in the future.

LEMMA 3. Let p be a nice measure. Assume that p is (H, A, «)-flat at z on scale
£ with some A>5 and a€(0,1). Let ¢ be any non-negative Lipschitz function supported
on B(z,50) with [¢dmp>0. Put

—1
a= </gadmL) /gpdu and v=apmy,.
Let W be any function with ||¥|Lip(supp o) <00. Then

< Ca£d+2 H\Ij”Lip(Spr ©) ||90||Lip'

’/ Y d(pp—v)

As a corollary, for every p>=1, we have

—1
< C(p)a€d+2||\ll||ll)/oo(supp ) H\IIHLip(supp ©) HLPHLiP'

] [1ep du-v)

LEMMA 4. Assume in addition to the conditions of Lemma 3 that ¢€C?, i is nice

and that the ratio of integrals a is bounded from above by some known constant. Then

’/ \IJQD[RH(SDM_V)] dﬂ‘ < Cal/(d+2)£d+2 [H\IJHL‘X’(Supp ¢)+€||\I]||Lip(supp Lp)} ||90||iip7

where C>0 may, in addition to the dependence on d, which goes without mentioning,

depend also on the growth constant of p and the upper bound for a.

Note that we can use both scalar- and vector-valued functions ¥ in both lemmata
(the product in Lemma 4 should be replaced by the scalar product in the vector-valued
version) and it is enough to prove only the scalar versions because the vector case can

be easily obtained by considering each coordinate separately.
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Though we have combined all powers of £ into one wherever possible to shorten the
formulae, the reader should keep in mind that the scaling-invariant quantities are in fact
|-z and £]| - ||Lip, so all inequalities actually compare the integrals on the left with /7.

Although we require ¢€C? in Lemma 4, only the Lipschitz norm of ¢ enters the
estimates. The additional smoothness will matter only because we will use Lemma 1 to
show that the integral on the left-hand side can be made sense of.

At last, we want to emphasize that only the norm of ¢ is global and all norms of ¥
in the bounds are computed on supp ¢ only. We can even assume that ¥ is not defined
outside supp ¢ because only the product ¥y matters anywhere (do not forget that v

contains the factor ¢ in its definition too).

Proof of Lemma 3. As the signed measure ou—v is balanced (i.e., [ d(pu—v)=0),
when proving the first estimate, we may subtract any constant from W, so without loss
of generality we may assume that [ dv=[ Vo dmp=0.

Note now that

IWellLip < W lLip(supp o) 0]l 2o+ Lo supp ) |42 l|Lip-

Indeed, when estimating the difference |¥(z)p(x)—¥(y)p(y)|, it is enough to consider
the case when at least one of the points = and y belongs to supp ¢ because otherwise the
difference is 0. By symmetry, we may assume without loss of generality that z&supp .
Write

W (2)p(x) = (y)p(y)| <[V ()] |p) —py)[+ ¥ (@) =¥ ()] lp(y)]-

The first term is, clearly, bounded by || V|| 1o (supp o) [|¢llLip|z—¥|. If y&supp ¢, then the
second term is 0. Otherwise, it is bounded by || V|| 1ip(supp o)l L [2 =]

The definition of (H, A, «)-flatness at z on scale ¢ now implies that

’/ Y d(pp—v)

_ ‘ / \Ilcpdu’ <l W]
<at™t! 1 ipgeupp o) |l oe + 1 o supp ) Pl ]

To get rid of the L> norms, recall that ¢ is supported on a ball of radius 5¢. Thus
ol L <5||¢||Lip (Within the distance 5¢ from any point z€RT! we can find a point
where ¢ vanishes).

Since [ Wy dm=0 and the diameter of supp ¢ does not exceed 10¢, we have

”\IJ”L“’(supp ¢) S 10£||\I'||Lip(supp ®)*

Plugging these bounds in, we obtain the first estimate.
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The second estimate immediately follows from the first one and the elementary
inequality
-1
|||\I/‘pHLip(suppr) <p”\IJ”ZI)zOC’(suppcp)H\IIHT-JP(SUPP<P)'

Lemma 3 is thus fully proved. O

Proof of Lemma 4. First of all, we need to ensure that the integral on the left can
be understood in some reasonable sense at all. To this end, split it as [ Wp[RH (ou)] du—
f\I/<p[RH1/] dp. Since Rfv=RH (apmy) and ¢€C? and is compactly supported, RHv
is well defined and can be viewed as a Lipschitz function on the entire space R*t!
by Lemma 1. Thus, integrating it against a compactly supported finite measure Vppu
presents no problem. However, if y is merely nice, the first integral may fail to exist as an
integral of a pointwise defined function. Still, by the discussion in the weak limits section
(§8), we can define it at least as the bilinear form (ng@, V), =I(p, Yy) because both
¢ and Wy are compactly supported Lipschitz functions in the entire space R%T!, and
this definition agrees with any reasonable stronger definition whenever the latter makes
sense too.

To show that the estimate holds, fix §>0 to be chosen later and split

RH = RE +R" —RI).

Note now that the kernel K} is Lipschitz on the entire space and satisfies the estimate
||K§Z||Lip§5_(d+1)€_(d+l). Thus,

IR5L (o) [lip < G Lip Wl £t 1
<O5™ VDN Lo upp ) |2l L (B2, 50))
<SC5 W] oo (oupp ) 10l £
<5 Y| Lo (eupp ) | 2lILip-

Note that the niceness of y was used here to bound pu(B(z,5¢)) by C¢4.

Now using the antisymmetry and Lemma 3, we get
/‘Ptp[Rﬂ(w—V)] dp| = ’—/Rﬁé(@w) d(pu—v)

< Cal™ | RE(Yoop)||Lipll el Lip

g Caéi(d+1)€d+2||¢’||L°°(supp Lp) ||<)0||%1p

Next observe that (again, by Lemma 1) (R — RH)v is the uniform limit of (RY — RH)v as
A—0+. The kernel KX — K g is a continuous function dominated by |=|~¢ and supported
on the ball B(0,¢) for every A€(0,3¢). Moreover, the cancellation property

/L[KE*Kg](I*y) dmy(y)=0
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holds for all z€R*!. Thus, for 0< A< ¢, we can write

g -rgmi)<a [ O dn4) < Cotlelh

Passing to the limit as A— 0+, we conclude that the same estimate holds for (R — R)v,

SO

\ JRECEAY du’ <IR"~ REW||, - el o

SO @lLip 1| oo (supp o) P | oo (B (2, 5¢))
<C'(%CH_Z||‘I]||L°<7(suppnp)H(p”iip'
Finally, to deal with the integral [Wo[(R” —RL)(op)] du, we will use the same trick

as in the weak limits section and use the antisymmetry to interpret it as the absolutely

convergent integral

1

3 [[ =K =) (0(w) -0 (w)pl@)ely) ) duty).

Since the domain of integration here can be trivially reduced to supp ¢ xsupp ¢ and since

(KH —K&) (z—y)|<|le—y|"XB0,50)(x—Yy), we get

[ el R | < 1 o el [[ IR

,yESUpp ¢ |z —y|¢
|z—y|<de
< C(Sed+3||\ll||Lip(supp ®) ”‘p”%ip‘

Bringing these three estimates together, we finally conclude that
‘/ \IIQDRH(@:LL*V) dﬂ" < C(aéi(d+1)+5)€d+2 [”\II”L“’(supp ¢)+EH\IIHLip(supp ga)] HSOHI%IP

To get the estimate of Lemma 4, it just remains to choose d=a/(4+2), O

10. Tangent measures and geometric flattening

Fix some continuous function y: [0, 00)—[0,1] such that 1p=1 on [0, 1] and y=0 on
[2,00). For zeR¥*! 0<r<R, define

Vzr,r(T) =¢0<|x;3z|> _w0(|w;z|>.

The goal of this section is to prove the following result.
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LEMMA 5. Fiz five positive parameters A, «, 3, ¢, C'>0. There ezists 0>0 depending
only on these parameters and the dimension d such that the following implication holds.

Suppose that p is a CN'—good measure on a ball B(x, R), centered at a point x€supp p,
that is AD-regular in B(x, R) with lower regularity constant é. Suppose also that

[[R(¢=.5r,ar1)](2)| < B

for all 0<6<A<3 and all z€ B(z, (1-2A)R) such that dist(z,supp p)<1dR.
Then there exist a scale £>oR, a point z€ B(x, R—(A+«)f), and a linear hyperplane
H such that p is geometrically (H, A, «)-flat at z on the scale L.

Proof. Replacing u by R~%u(z+R-) if necessary, we may assume without loss of
generality that x=0 and R=1. We will start by showing that the absence of geometric
flatness and the boundedness of [R(¢,s5an)](2) are inherited by weak limits. More
precisely, let v, be a sequence of 6—g00d measures on B(0,1) and AD-regular there
with lower regularity constant é. Assume that v is another measure on B(0,1) and
v —v weakly in B(0,1) (i.e., [Fdvy— [ Fdv for every continuous function F with
supp FCB(0,1)). We have seen in §8 that then v is also 5—g00d and AD-regular in
B(0,1) with the same lower regularity constant ¢. Our first task will be to prove the

following result.

CLAIM. e Suppose that for some A’>A and 0<o/ <, the measure v is geometri-
cally (H, A’,a/)-flat on the scale £>0 at some point z€ B(0,1—(A'+a)l). Then for all
sufficiently large k, the measure vy is geometrically (H, A, a)-flat at z on the scale £.

e If for some 0<6<A<% and some z€B(0,1-2A) with dist(z,suppu)<i6, we
have ’[R(wz75,Ay)](z)’>ﬂ, then for all sufficiently large k, we also have dist(z,supp vy)<
36 and ’[R(wz75,Ayk)](z)}>ﬁ.

Proof. The reason is, of course, that we can check both conditions in question by
looking at integrals of finitely many continuous functions. It is completely obvious for

the second claim because
[R(¢2,5,A1)](2) :/dez lim [ Fdy,= lim [R(¢, 5aVk)](2),
k—o0 k—o0

where F(z)=K(z—x)¢,s5a(x). Note that F' is compactly supported in B(0,1) and
continuous because 1, 5a(x)=0 whenever |x—z|<d or |r—z|>2A. To ensure that
dist(z, supp vy) <14, take F(z)=max{1d—|x—z[,0}. Then [ Fdv>0,so [ F dv,>0 for
all sufficiently large k, but the latter is possible only if B(z, ic?) Nsupp v, £J.
Expressing the geometric flatness condition in terms of integrals of continuous func-

tions is only slightly more difficult. To test that B(z, A¢)Nsupp v is contained in the
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strip of width af around the affine hyperplane L containing z and parallel to H, con-
sider any continuous function F:R4*!1—[0,1] such that F(z)=0 whenever |z—z|> A"/
or dist(z, L)<a/l, and F(z)=1 whenever |z—z|<3(A+A’)¢ and dist(z, L)>1(a+a/)L.
Note that supp FCB(0,1) and [ F dv=0. Thus [ F dv,<&(el)? for all sufficiently large
k, where e=2 min{A’'— A, a—a'}. However, for all € B(z, Al) such that dist(z, L) >a/,
we have F'=1 on the ball B(x,ef). On the other hand, if any such x were contained in
supp vg, we would have [ F dvy,>vi(B(z,el))>¢(el)? by the AD-regularity of v.

At last, to check that every point of LNB(z, Af) lies within distance o/ from supp v,
take any finite 1 (a—a/)¢-net Y in LNB(z, A¢) and for every y€Y choose any continuous
function Fy(z) that vanishes for |z—y|>1(a+a/)¢ and is strictly positive for |z—y|<
%(a—i—a’)f. Then [ F,dv>0 for all y€Y and, thereby, for all sufficiently large k, all
the integrals [ F, dvy are positive as well. Take any z€LNB(z, A¢). Choose y€Y so
that |[z—y|<3(a—a/)l. Since [ F,dvy>0, there exists 2’/ Esupp vy such that |2/ —y|<
1(a+a’)l. But then |z—2'|<al. O

Our next aim is to prove the following result.

ALTERNATIVE. If v is any good measure on B(0,1) that is AD-regular there, then
either for every A, a>0 there exist a scale £>0, a point z€ B(0,1—(A+a){), and a linear
hyperplane H such that v is geometrically (H, A, «)-flat at z on the scale ¢, or

sup  [[R(¢z 5,a0)](2)| = o0.
0<6<AK1/2
2€B(0,1—2A)
dist(z,supp v)<d/4

Proof. We will employ the technique of tangent measures developed by Preiss in [P].

Definition. Let v be any finite measure on B(0,1). Let 2€B(0,1). The measure
v A(E)=A"%u(2+AE) (ECB(0,1)), which is well defined as a measure on B(0, 1) when-
ever A<1—|z|, is called a A-blow-up of v at z. A tangent measure of v at z is just any
measure on B(0,1) that can be obtained as a weak limit in B(0,1) of a sequence of
A-blow-ups of v at z with A—0+.

Note that if v is C-good and AD-regular in B(0,1) with lower regularity constant c,
then so are all blow-ups of v and all tangent measures of v. Note also that in this case,
if zesuppv, then all blow-ups and tangent measures of v at z have the origin in their
supports. At last, the observations above imply that the (quantitative) negation of either
condition in the alternative we are currently trying to establish for v is inherited by all
tangent measures of v (because it is, clearly, inherited by all blow-ups by simple rescaling

and we have just shown that we can pass to weak limits here).
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Now assume that a good AD-regular in B(0,1) measure v containing the origin
in its support satisfies neither of the conditions in the alternative. Since v is finite
and AD-regular in B(0,1), its support is nowhere dense in B(0,1). Take any point
z'GB(O, %) \suppv. Let z be a closest point to z’ in suppv. Note that, since 0€supp v,
we have |z—2'|<|Z/|, so |2]<2|2'|<1. Also, the ball B=B(z,|z—2'|) does not contain
any point of suppv. Let n be the outer unit normal to B at z. Consider the blow-ups
v, x of vat z. As A—0, the supports of v, y lie in smaller and smaller neighborhoods of
the half-space S={z€R%*!:(x,n) >0} bounded by the linear hyperplane H={zcR*!:
(x,n)=0}. So, every tangent measure of v at z must have its support in S. On the
other hand, such tangent measures do exist because the masses of v,y are uniformly
bounded. At last, the origin is still in the support of every tangent measure of v at z.
Thus, starting with any measure v that gives a counterexample to the alternative we are
trying to prove, we can modify it so that it is supported on a half-space. So, we may
assume without loss of generality that v was supported on such a half-space S from the
very beginning.

Now fix A<% and note that under this assumption,

—([R(t0.5.a0)](0), ) > /B . %dv(x).

Since the quantity on the left should stay bounded as §—0, we conclude that

/B {@n) dv(z) < oo

(0,4 |2]2+1

and, thereby,

{z,n)
dv(z)—0 as A—0.
/B(O,)\) \1‘|d+1

Let now F(z)=(z,n)(1—-2|z|) for |z|<i and (z,n)>0, and F(z)=0 otherwise. Then F
is a continuous function supported inside B(0,1) and

Fdugr=x" [ F(X)a g/ f.m)
/ Vo, / <>\> v N v(z),

so the integral of F' with respect to any tangent measure of v at 0 must vanish. Since

those tangent measures are still supported on S, this is possible only if they vanish on
B(0, %)\H . Taking a %—blow up of any such tangent measure at 0, we see that we can
just as well assume that our counterexample v is supported on H.

If we had HﬂB(O,%)Csupp v, then for any A,a>0, v would be geometrically
(H, A, a)-flat at the origin on the scale £=1/2(A+«), which contradicts the assump-
tion that the first part of the alternative does not hold for v.
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Thus, we can find 2'€ (B((), %)ﬁH)\supp v. Again, let z be the closest point to 2’
of suppv, and let n’ be the outer unit normal to the boundary of the ball B(z/,|z—2/|)
at z. Note that n’€ H. Now repeat all the above steps with this new choice of z. The
condition supp ¥ C H will be preserved at each step but by the end of the whole process
we will also restrict the support of v to some other linear hyperplane H’ with the unit
normal n’. Since n’ is perpendicular to n, the support of v is now restricted to the (d—1)-
dimensional linear plane HNH'. However a (d—1)-dimensional linear plane cannot carry
a non-zero measure v satisfying the growth bound v(B(z,r))<Cr¢. This contradiction

finishes the proof of the alternative. O

Now we are ready to prove Lemma 5 itself. Suppose that such g does not exist. Then
for each 9>0, we can find a 5—good measure (i, on a ball B(0,1) that is AD-regular in
B(0,1) with lower regularity constant é and which satisfies 0€supp p, and

Rz 5.01))(2)| <8

for all 9<6<A<3 and all z€ B(z,1—2A) with dist(z, supp p,) <6, but is not geometri-
cally (H, A, a)-flat at z on any scale £>p at any point z€ B(z, 1—(A+a){) for any linear
hyperplane H.

Then we can find a sequence g, —0 so that the measures p,, converge weakly to

some limit measure v in B(0,1). This limit measure would satisfy

[[R(¥2.5av)](2)| <8

for all 0<§<A<1 and all z€ B(z,1—2A) with dist(z, supp ») <18 but would not be geo-
metrically (H, A, o)-flat on any scale £>0 at any point z€ B(z,1—(A+«)¥) for any linear
hyperplane H. But this combination of properties clearly contradicts the alternative we
have just proved. O

11. The flattening lemma

The goal of this section is to present a lemma that will allow us to carry out one of the
major steps in our argument: the transition from the absence of large oscillation of R
on supp p near some fixed point z on scales comparable to ¢ to the flatness of ; at z on

scale /.

PROPOSITION 6. Fix four positive parameters A, a, ¢, and C. There exist numbers
A’ o' >0 depending only on these fized parameters and the dimension d such that the

following tmplication holds.
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Suppose that H is a linear hyperplane in R, 2eRI¥*TY L is the affine hyperplane
containing z and parallel to H, ¢>0, and p is a C~'—good finite measure in R4 that
is AD-regular in B(z,5A'¢) with the lower regularity constant ¢. Assume that p is
geometrically (H,5A’,a’)-flat at z on the scale £ and, in addition, for every (vector-
valued) Lipschitz function g with supp gCB(z,5A4'0), ||gllLip<f~', and [ gdu=0, one
has

(RIT1, g}, <a'ec.

Then u is (H, A, a)-flat at z on the scale £.

Before proving this proposition (which we will call the “flattening lemma” from now
on), let us discuss the meaning of the assumptions. In what follows, we will apply this
result to restrictions of a fixed good AD-regular measure u to open balls at various scales
and locations. The restriction of a good AD-regular measure to a ball may easily fail
to be AD-regular in the entire space R%t!, which explains why we have introduced the
local notion of Ahlfors—David regularity. Every restriction of a good measure to any set
is, of course, good with the same goodness constant as the original measure.

The first step in proving the rectifiability of a measure is showing that its support
is almost planar on many scales in the sense of the geometric (H,5A’, o’)-flatness in the
assumptions of the flattening lemma implication. This step is not that hard and we will
carry it out in §15. The second condition involving the Riesz transform means, roughly
speaking, that Rf 1 is almost constant on supp pNB(z, A’¢) in the sense that its “wavelet
coefficients” near z on the scale ¢ are small. There is no canonical smooth wavelet
system in L?(;) when p is an arbitrary measure, but mean-zero Lipschitz functions serve
as a reasonable substitute. The boundedness of R in L?(p) implies that R/f1€L?(y)
(because for finite measures u, we have 1€ L?(y1)), so an appropriate version of the Bessel
inequality can be used to show that large wavelet coeflicients have to be rare and the
balls satisfying the second assumption of the implication should also be viewed as typical.

Finally, it is worth mentioning that the full (H, A, «)-flatness condition is much
stronger than just the geometric one in the sense that it allows one to get non-trivial
quantitative information about the Riesz transform operator Rf . The flattening lemma
thus provides the missing link between the purely geometric conditions like those in the

David—Semmes monograph and analytic conditions needed to make explicit estimates.

Proof. Note that the geometric (H, A, «)-flatness of u is ensured by the geometric
(H,5A’, o/)-flatness assumption of the flattening lemma implication as soon as A’>A
and o’ <a. The real problem is to prove the analytic part of the flatness condition.

To this end, note first that the setup of the flattening lemma is invariant under

translations and dilations, so, replacing the measure p and the test functions f and g by
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0=z +L-), f(z+£-), and g(z+£-), respectively, we may always assume without loss of
generality that z=0 and ¢/=1.

Now fix A’>A. Since the set L of all Lipschitz functions f with Lipschitz constant 1
supported on B(0, A) and having zero integral with respect to mj is pre-compact in
Co(RI*1Y), for every 3>0, we can find a finite family F in £ so that every function f€L
is uniformly [-close to some f'€F. As we have the a-priori bound M(E(O,A))géAd,

this (-closeness implies that
’/fdu‘ < ‘/f du’mAdﬁ,

so choosing ﬂ<%6~'_1A_da, we see that in the proof of the (H, A, a)-flatness, we can
consider only test functions f €F if we do not mind showing for them a stronger inequality
with a replaced by %a. Since F is finite, we see that if the flattening lemma is false, we can
find one fixed test function f and a sequence of measures py satisfying the assumptions
of the flattening lemma implication with our fixed A’ and o/ =1/k such that [ f duj > %a
for all k.

Split each ui as

Mk = XB(0,5A7) kT XRA+1\ B(0,5A") ok = Vi + 1k -

Note that vy are still é—good and AD-regular in B(0,5A") with lower AD-regularity
constant ¢. Moreover, suppvy lies within distance 1/k from L and every point in
LNB(0,5A"—1/k) lies within distance 1/k from suppry. Passing to a subsequence,
if necessary, we may assume that v, converge weakly to some measure v. By the re-
sults of the weak limits section (§8) this limiting measure v is C-good and, obviously,
supprCLNB(0,54").

Fix a point we LNB(0,5A") and r>0 such that B(w,r)CB(0,54"). Take any r’ <r
and consider a continuous function h:R4*1—[0,1] that is identically 1 on B(w,r’) and
identically 0 outside B(w,r). Since we B(0,5A’—1/k) for all sufficiently large k, we can
find a sequence of points wy€supp vy so that |w—wg|<1/k for all sufficiently large k.
Note, however, that B(wy, ' —1/k)C B(w,r’), so for all large k, we have

d
[z ) (8w -1 ) ) ze(v-1 ).

Passing to the limit, we conclude that v(B(w,r))> [ hdv>é(r')?. Since this inequality
holds for all 7’ <r, we must have v(B(w,r))>¢r?. Combining this with the upper bound
v(B(w, T))<5rd and the inclusion supp vC L, we see that, by the Radon—-Nikodym the-

orem applied to v and myp, the limiting measure v can be written as v=pmy, for some
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Borel function p on L satisfying w;légpgwcjlé’ almost everywhere with respect to mp,
on LNB(0,54’), where w, is the d-dimensional volume of the unit ball in R%.

Fix some non-negative Lipschitz function h with supp hC B(0,4A’) and f hdv>0.
Take any Lipschitz vector-valued function g supported on B(0,4A’) with ||g||rip <1 and
J gdv=0. Since [hdvy— [hdv>0 as k— oo, the integrals [ hdyj, stay bounded away
from 0 for sufficiently large k.

Put .
arp = </hdl/k) /gduk and gpr=g—ah.

The functions g, are well defined for all large enough & and satisfy

/g;C dpig, :/gk dvy=0 and suppgir C B(0,44").
As [ gdvy— [ gdv=0, we conclude that a;,—0 as k— o0, so

llgrllLip <1

for large enough k.

Since py satisfies the assumptions of the flattening lemma implication, we must have

1
|<RZ1agk>#k| < %

for large k. Taking into account that supp g C B(0,4A’), we can rewrite this as

1
‘<Ri179k>uk+<RH77kagk>vk| < %

Note that
<R1{{k17gk>ljk = <Ri17 g>l’k - <R1{{k17 akh’>”k

and that R{}Ll and RM1 coincide with Rﬁigp and RY ¢, respectively, for any compactly

supported Lipschitz function ¢ that is identically 1 on B(0,5A’), say. Thus, by the

results of the weak limits section (§8), we get

(RI1,9)0, = (RE 0, 9)0, = (RF 0, 9)0 = (RI'1, g),.

Similarly,
(RI'1, he),, — (R]'1, he),

for every vector e€ H. Since

<Ri17akh>vk = <ak’ej><Ri1ahej>Vk

d
=1

J
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for every orthonormal basis eq, ...,eq in H, and ay—0 as k— o0, we conclude that

(RE 1, axh),, —0

k

and, thereby,
<R£1k 1, gk>Vk — <RzI/{17 g>1/

as k—o0.
Note now that the measure 7y is supported outside B(0,5A"). Together with the
cancellation property [ gi dvy=0, this yields

<RH77k7 gk>l’k = <Uk?7 gk>l/k7

where
v = R — (R i) (0)

is a C°° function in B(0,4A’) satisfying v (0)=0 and

dly) _ CH)C
o —y| T+ (A7)

|(V7or)(2)| < C

whenever z€ B(0,4A4’) and j>0.

Since the set of functions vanishing at the origin with three uniformly bounded
derivatives is compact in C?(B(0,4A")), we may (passing to a subsequence again, if
necessary) assume that vy —v in C?(B(0,4A")), which is more than enough to conclude
that

<Uka gk>z/;c — <U7 g>l/

(all we need for the latter is the uniform convergence (v, gr)— (v, g)). Thus, we have
found a C? function v in B(0,4A’) such that

<R£{179>V = _<'Uvg>u
for all Lipschitz functions g with supp gC B(0,4A4’) and [ g dv=0. Moreover,

: cC
V70| Lo (B(0,241)) < i

for j=1,2. The condition ||g||rip<1 can be dropped now because both sides are linear

in g. This equality can be rewritten as

(R p,pg)my =—(v,29)m.,
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for all Lipschitz functions g with supp gC B(0,4A’) satisfying fL pgdmp=0. Since p is
bounded from below on LNB(0,4A’), the set of such products pg is dense in the space
of all mean-zero functions in L?(LNB(0,44"),my) and we conclude that RY p differs
from —v only by a constant on LNB(0,4A4"). By the toy flattening lemma (Lemma 2)
applied with A’ instead of A, this means that p is Lipschitz in LNB(0, A’) and

cC
IPllLip(znB(0,47)) < T

But then for the test function f&€F introduced at the beginning of the proof, we have

fre

if A’ was chosen large enough. On the other hand, we have

'/fduk :‘/fduk

/fdz/k—>/fdz/ as k — oo.

This contradiction finishes the proof. O

CC A%+
<—
A’

= ‘/f(pp(o)) dmp,

«o
2

0]
=)

for all £ and

12. David—Semmes lattices
Let o be a d-dimensional AD-regular measure in RT!. Let E=supp pu.

The goal of this section is to construct a family D of sets Q CRIT! with the following
properties:

e The family D is the disjoint union of the families Dy (of level-k cells), k€Z.

o If Q',Q"€Dy, then either Q'=Q" or Q'NQ"=2.

e Each Q' €Dyy1 is contained in some Q €Dy, (necessarily unique due to the previous
property).

e The cells of each level cover E, i.e., UQEDk QDFE for every k.

e For each Q€Dy, there exists zg€QNE (the “center” of Q) such that

B(zq,27"*7%) CQC B(zq,27*?).
e For each Q€Dy, and every €>0, we have
p{a € Q: dist(w, RT\Q) <227} < Ce7pu(Q),

where C,v>0 depend on d and the constants in the AD-regularity property of p only.
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274k it will be convenient to

Since all cells in Dy, have approximately the same size
introduce the notation £(Q)=2"%* where k is the unique index for which Q€D},. This
notation, of course, makes sense only after the existence of the lattice D has been estab-
lished. We mention it here just for the readers who may want to skip the construction
and proceed to the next sections where this notation will be used without any comment.

We will call D a David—-Semmes lattice associated with p. Its construction can be
traced back to the papers of David [D1] and Christ [C]. There are several different ways
to define them, some ways being more suitable than other for certain purposes. The
presentation we will give below is tailored to the Cantor-type construction in our proof,
where it is convenient to think that the cells are “thick” sets in R¢*!, not just Borel
subsets of E, so they can carry C? functions, etc. We use the name “David-Semmes”
for this lattice because it is short enough and emphasizes the link between this paper
and their monograph. However, if one wants to be historically accurate, the full name
for this construction (as well as the title of this section) should include the surnames of
a few other mathematicians as well, of which that of Michael Christ would be the first
to add.

Despite our ultimate goal being to construct the cells @, we will start with defining
their centers. The construction makes sense for an arbitrary closed set F and the only
place where p will play any role is the last property asserting that small neighborhoods
of the boundaries have small measures.

For each k€Z, fix some maximal 2~*#-separated set Z, CE. Clearly, Zj, is a 2~**-net
in E (i.e., each point in E lies in the ball B(z,27%) for some z€ Z;). For each z€ Zj,
define the level-k Voronoi cell V, of z by

V.= {x €E:|lz—z|= zI’Iélgk |zfz’|}.

Note that |J V.=E, V.CB(z,27*), and

dist <z7 U VZ/) 22‘4k—1.

2/ €Zi\{=}

The first property follows from the fact that every ball contains only finitely many points

2EZ}

of Zy, so every point z€Z; has only finitely many not completely hopeless competi-
tors 2’/ €Zy, for every given point x€E and, thereby, the minimum min, ¢z, |[z—2/| is
always attained. The second property is an immediate consequence of the inequality
min, ez, |x—z’|<2*4k, which is just a restatement of the claim that Zj is a 24k _net
in E. The last property just says that, if |z —z|<27**~! for some z€ 7}, then, for every

other 2’ € Zy, we have

le—2'| > |z—2|—|z—x| =27 2741 =94kl 5 15|,
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so the inclusion x €V, is impossible.

Observe also that for each z€Zj there are only finitely many we Z;_; such that
V.NVyu# (here, of course, V,, is a level-(k—1) Voronoi cell constructed using Zj_1).
Indeed, if |z —w|>2"*F +274(*=1) then even the balls B(z,27**) and B(w, 2 4*~1) are
disjoint. However, only finitely many points in Zj_; lie within distance 24k 4-2-4(:—1)
from z.

Let now z€Zy, and we Z,, £>k. We say that w is a descendant of z if there exists a
chain zg, 2ky1, ..., 2¢ such that z;€Z; for all j=k,....{, zp=2, zg=w, and V, NV, #O
for j=k,...,f—1. Note that each z€Z, is its own descendant (with the chain consisting
of just one entry z) according to this definition. Let D(z) be the set of all descendants
of z. Put

V.= |J Ve

weD(z)

Note that ‘72 contains V. and is contained in the 2, . 2_4‘3:%2_4k-neighborhood of
V.. Thus,

> 2
dist (,z, U Vz/) 22—4k—1_1752—4k S 9—dk—2
z'eZp\{z}

Our next aim will be to define a partial order < on | J, o, Zx such that each Z is linearly
ordered under < and the ordering of Zj,1 is consistent with that of Zj in the sense
that if 2/, 2"’ € Zp41 and 2’ <2”, then for every w’ € Z such that V,, NV, £, there exists
w' € Zy, such that V,»nNV,»#2& and w’<w”. In other words, the ordering we are after
is analogous to the classical “nobility order” in the society: for A to claim being nobler
than B (which would correspond to B<A in our notation), he should, at least, be able
to show that his noblest parent in the previous generation is at least as noble as the
noblest parent of B. Only if the noblest parents of A and B have equal nobility (which,
in the case of linear orderings can happen only if they coincide), the personal qualities of
A and B may be taken into account to determine their relative nobility. This informal
observation leads to the following construction.

First, we fix ko €Z and construct such an order inductively on | J k> ko Z. Start with
any partial order - that linearly orders every Zj (the “personal qualities” order). On
Zyy, put <=-. If < is already defined on Z, for each z€Zy 1, define w(z)€Z;, as the
top (with respect to <) element of Zj, for which V,,NV,#@. Note that w(z) always exists
because V, intersects at least one but at most finitely many Voronoi cells V., with we Z.
Now we say that 2’ <z" if either w(z")<w(z"), or w(z’)=w(z") and z’Hz". It is easy to
check that the order < defined in this way is a linear order on Zj; consistent with the

order defined on Zj.
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To define an order on the full union J, ., Zk, consider any sequence <y, of orders
on | K>k, Zk defined above. Since the set of comparisons defining an order on Urez 2k is
countable, we can use a diagonal process to extract a subsequence of <y, with kg——o0
so that for every finite set ZC|J; o, Zk, the ordering of Z by <y, is defined and does not
depend on ky if ko <K (Z). Now just define < as the limit of <j,. Note that the linearity
and the consistency conditions are “finite” ones (i.e., they can be checked looking only
at how certain finite subsets of |J; ., Zx are ordered), so they will be inherited by the
limit order.

At this point everything is ready to define the David—Semmes cells. For z€ Zj, we
just put

E.=V\ |J Vo

2'€Z
z<z'

It is clear that F., and E,. are disjoint for 2/, 2" € Zy, 2’#2". Also, the remarks above
imply that
B(z,27 % )NE C E, C B(z,27 1)

for all z€ Z.

Since U, ¢ 5, V. DU.cz, V2D F and each point z€ E is contained only in finitely many
V., we have UZ€ Z E.=F (x is contained in E, with the top z among those for which
x€V,). Thus, for each fixed k€Z, the sets E,, z€ Zy, tile E.

Now fix an element z€Z;11 and let w be the top element of Z; among those for
which V.NV,,#@. Clearly, D(z)CD(w), so V.CV,. Take any w'€Z;, with w<w'. Let
Ch(w")=D(w')NZky1 be the set of “children” of w’. The consistency of < implies that
2=z for all z/€Ch(w’). But then Ch(w’)C{z'€Zy11:2<2"}, so

U o U W
2'€Zk41 z'€Ch(w’)
z=<z'

However, we clearly have

Dw)={w'}u [J D)

z'€Ch(w’)
and
vwe | we U v,
z'eCh(w’) z'eCh(w’)
SO
Vwc |J Vec | Ve
z'€Ch(w’) 2/ €241

z=<z'
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Thus,
U vwc U v,
w!'€Zy, 2'€ZKk+1
w<w’ 2=z’

so E,CFE,.

This shows that the tiling at each level is a refinement of the tiling at the previous
level and we have a nice dyadic structure on E (except that the e cell sizes are powers of
16 instead of the customary powers of 2). We will now expand the cells E, CF to spatial
cells Q,CRI*! by adding to each cell E, (2€Z},) all points z€R**1\ E that lie in the
2~4*_neighborhood of E, and are closer to E, than to any other cell E,, with 2'€Zj.
Note that @), defined in this way are disjoint at each level, Q.NE=F,, and we have
Q. CQyw whenever E,CE,,, 2€Z;4+1, wEZ. To see the last property, just note that the
2-4(k+1) peighborhood of E, is contained in the 2~**-neighborhood of E,, and if z¢ F is
closer to FE, than to any other level-(k+1) cell, then it is closer to E,, than to any other
level-k cell as well (every level-k cell is a finite union of level-(k+1) cells). Moreover, for
every z€ Z, we have

B(z,27"7%) C Q. C B(z,27%*?).

The right inclusion follows immediately from the inclusion E, C B(z,2~4+1) while the left

~4k=2) does not intersect

one follows from the fact mentioned above that the ball B(z,2
any cell E,, with 2/ €Zy, 2/ #z.

The construction of the David—Semmes lattice D is now complete and all that re-
mains to prove is the “small boundary” property. Assume that p is a C-nice measure
that is AD-regular in the entire R4 with the lower regularity constant & and that
E=supp pu. We shall use the notation Dy, for the family of the level k cells @ and the
notation £(Q) for 274 where Q€D), from now on. We will also write z=2¢ instead of
Q=@Q., so from this point on, the David—Semmes cells will be viewed as primary objects
and all parameters related to them (like size, center, etc.) as the derivative ones.

Since p is AD-regular and the cells @) are squeezed between two balls centered at

zg € E=supp p of radii comparable to ¢(Q), we have

cl(Q)* < (@) <CUQ)Y,

where ¢, C'>0 depend only on d, ¢, and C. We will now use the induction on m>0 to
show that

p(Bm(Q)) < (1-)" (@),

where

B (Q) ={z € Q:dist(z, R\ Q) < 1672™¢(Q)}
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for some ¢>0. This will yield the small boundary property with

_ log(1—c)
2log 16
The base m=0 is trivial regardless of the choice of c€(0,1). To make the induction
step from m—1 to m>1, consider the cell Q' that is two levels below @ and contains zg.
Its diameter does not exceed SE(Q'):%E(Q). Since B(zq, %E(Q)) CQ, the whole cell Q'

2

lies at the distance at least (é—g%)Z(Q)>16*2m€(Q) from the complement of ). Thus,
B,,(Q)NQ'=a. For every other cell Q” that is two levels down from @ and contained

in @, we, clearly, have
Bm (Q) QQN C Bm—l (QH)'

Hence, applying the induction assumption, and taking into account that those cells Q"

are disjoint and contained in Q\Q', we get

m— m— Q/
PBm(Q) <Y i(Bm1(Q")) <(1=0)™ > u(Q") < (1—¢) 1<1— ) Q).
Q// Q// M(Q)
However, (Q")>cl(Q")?=cl(Q)?>cu(Q) (all three ¢ here are different but depend on d,
¢, and C only). If we choose ¢ in the statement to be the last ¢ in this chain, we will be

able to complete the induction step, thus finishing the proof.

13. Carleson families

From now on, we will fix a good AD-regular in the entire space R4t! measure p and a
David—Semmes lattice D associated with it. All constants that will appear in this and
later sections will be allowed to depend on the goodness and the lower AD-regularity
constants of p in addition to the dependence on the dimension d. This dependence will
no longer be mentioned explicitly on a regular basis though we may remind the reader
about it now and then.

Definition. A family FCD is called Carleson with Carleson constant C>0 if, for
every PeD, we have

> @) <Cu(P),

QEFp
where
Fp={QeD:QCP}.

Note that the right-hand side can be replaced by C¢(P)? because pu(P) is comparable
to £(P)? for every P€D. The main goal of this section is the following property of non-

Carleson families.
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LEMMA 7. Suppose that F is not Carleson. Then, for every MeN and n>0, we
can find a cell PEF and M+1 finite families Ly, ..., Lay CFp so that the following are
true:

o Lo={P}.

e No cell appears in more than one of the families Lg, ..., Lps.

e The cells in each family L., (m=0,..., M) are pairwise disjoint.

e Each cell Q' €L,, (m=1,...,M) is contained in a unique strictly larger cell Q€
Lon—1.

* > oecy, HQ)Z(L=n)u(P).

We will usually refer to these £,,, as non-Carleson layers.

Proof. Note, first of all, that, when checking the Carleson property of F, it is enough
to restrict ourselves to cells PeF. Indeed, suppose that the inequality

> @) <Cu(p)

QEFp
holds for every PeF. Take any P€D and consider the family Fy p of maximal cells
in Fp (i.e., the cells that are not contained in any other cell from Fp). Then the cells
P’'eFy p are disjoint and }"p:UP/e}-O)P Fpr. Thus

Sou@= > D w@Q<Cc D wP)<CouPp),
QEFp P'eFo,p QeEFps P eFo,p
so we automatically have the desired estimate for all cells P€D with the same constant.
Next, observe that if every finite subfamily 7' C F is Carleson with the same Carleson
constant C, then the entire family F is Carleson with the same constant. Indeed, if

> (@) >Cu(P)
QEFp
for some P€D, then we can restrict the sum on the left to a finite one and still preserve
the inequality.

Now fix M and 7, and assume that F is not Carleson. Then we can find some finite
subfamily F'CF whose Carleson constant is as large as we want (note that every finite
family is Carleson with some Carleson constant).

Take any P€F" and define the families F,, p of cells inductively as follows: F{ p=
{P} and, if F} p are already defined for k<m, then F), p is the set of all maximal cells
in Fp\Up<pm Fr.p- Observe that for every m=>0, we have

m—1

Fo=UFArv U T

k=0 PeF], p
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and that, for each m, the cells in on,P are pairwise disjoint and (if m>0) each of them is
contained in some unique cell from .7-'7/”_17 p- Thus, the families .7-";,% p have all properties
of the non-Carleson layers £,, except, maybe, the last one. If we can find a starting cell
PeF’ so that
> (@) =1-n)u(P),
QEFy p

we are done. Let C(F’) be the best Carleson constant of F’' (it exists because, to
determine the Carleson constant of F’, we only need to look for the best constant in
finitely many inequalities corresponding to all cells P€F’ ). Take P€F’ for which this

Carleson constant is attained and write

M-—1
CFWP)= D w@<Y. D w@+ >, > wQ).

QEF, k=0 QeF} » P'eF}y p QEFY,
However, the first sum on the right is at most M u(P) and the second one can be bounded
by
C(F) Y. uP)

P eFyp
using the Carleson property of F'. Thus,

> wP)= (1— C%/))”(P) > (1=n)u(P),

P'eFy p

provided that F’ was chosen so that C(F")>Mn~". O

It is worth mentioning that although we stated and proved our lemma only in one
direction (non-Carlesonness of a family implies the existence of non-Carleson layers in
that family for arbitrary M,7n>0), it is actually a complete characterization of non-
Carleson families. We leave it to the reader to formulate and to prove the converse

statement (which we will not use in this paper).

14. Riesz systems and families

Let 1 (Q€D) be a system of Borel L?(x) functions (either scalar- or vector-valued, as

usual).

Definition. The functions ¢ form a Riesz family with Riesz constant C'>0 if

‘Zw/}@ <Cag

QeD L2 () QeD
for any real coefficients ag, only finitely many of which are non-zero.

2
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Note that if the functions g form a Riesz family with Riesz constant C, then for

every f€L?(u), we have
> K 6@)ul <Ol I3

QeD

Indeed, let FCD be any finite collection of David-Semmes cells. Let ag=(f, ¥q),

for Q€F. Put g=> e raqiq. Then

QEF QEF

SO

QeEF

Since F was arbitrary here, the same inequality holds for the full sum over D.

> Fe)n = 9u<IFl2algllz2 < I Fllz2 {C > ()

Assume next that for each cell Q€D we have a set W of L?(x) functions associated

with Q.

Definition. The family U (Q€D) of sets of functions is a Riesz system with Riesz

constant C>0 if for every choice of functions ¥g€ V¢, the functions g form a Riesz

family with Riesz constant C.

The goal of this section is to present two useful Riesz systems: the Haar system

\Ilg(N) and the Lipschitz wavelet system \I!fQ(A), and to show how Riesz systems can be

used to establish that certain families of cells are Carleson.

We shall start with the second task. Suppose that W is any Riesz system. Fix any

extension factor A>1. For each Q€D, define

§Q) = inf sup p(Q) 2 [(Ruxm, ¥)ul-
E '(ZJE\I/Q
B(zq,AL(Q))CE
n(E)<oco

Then, for every §>0, the family F={Q&€D:£(Q)>d} is Carleson.
Indeed, if P€D is any cell, then the set

E=B(zp, (4+ A)(P))
satisfies B(zq, A(Q))CE for all cells QCP. Choosing ¢g€¥q so that

(RuXE,VQ)ul > $0u(Q)?

(4)
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and recalling that p is good and AD-regular, we see that

2\ -
> 1@< (3) X Whxevahl? <ol
QEFp QeD
Qcp

SO0 2|xE L) S CO 2 (A+)U(P)! < CT 2 (A+4)u(P),
so F is Carleson with Carleson constant C'6~2(A+4)%.

Let now N be any positive integer. For each Q €D, define the set of Haar functions
\I/}é(N ) of depth N as the set of all functions ¢ that are supported on @, are constant
on every cell Q' €D that is N levels down from @, and satisfy [ ¢ du=0 and [ ? du<C.
The Riesz property follows immediately from the fact that D can be represented as a
finite union of the sets D(j):Uk:kEj mod N Pk (7=0, ..., N—1) and that for every choice
of dJQG\I/}é(N ), the functions ¢¢g corresponding to the cells @) from a fixed DU form a
bounded orthogonal family.

In the Lipschitz wavelet system, the set \IIfQ(A) consists of all Lipschitz functions v
supported on B(zq, A(Q)) such that [ dp=0 and |91, <CU(Q)~%/?~1. Since y is
nice, we automatically have [ [¢|> du<C(A)(Q)™u(Q)<C(A) in this case.

The Riesz property is slightly less obvious here. Note, first of all, that if Q,Q'€D
and £(Q")<{(Q), then, for any two functions 1q € U5 (A) and ¢ €5, (A), we can have
(¥, ¥vg),#0 only if B(zg, A(Q))NB(zg, Al(Q'))#2, in which case

n1d/2+1
|<wQ,le>u|<c<A>[“Q)} |

€(Q)
Now take any coefficients ag (Q€D) and write

2
‘Z“QW) <2 > agllag (g, o)l

QeD L2(p) Q,Q' €D
2(QH<L(Q)
éQ’ d/2+1
<o) 3 [ j@;] jaglag|
Q,Q'eD

£(Q)<UQ)
B(2q,ALQ))NB(2q/,ALQ'))#2

U™ e U@
s Py ([5@] ot +5Graer)

£(Q<U(Q)
B(z2q,ALQ))NB(2q/,ALQ))#D

It remains to note that the sums

4(@')}“1 and “Q)
>l P
2Q)<UQ) 2(Q)<Q)

B(zq,ALQ))NB(2q,ALQ"))#2 B(zq,ALQ))NB(2q/,ALQ"))#2
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are bounded by some constants independent of @ and Q’, respectively.

15. Abundance of flat cells

Fix A, a>0. We shall say that a cell Q€D is (geometrically) (H, A, «)-flat if the measure
p is (geometrically) (H, A, a)-flat at zg on the scale £(Q).

The goal of this section is to show that there exists an integer N, a finite set 'H of
linear hyperplanes in R4 and a Carleson family FCD (depending on A and «) such
that, for every cell PED\F, there exist HEH and an (H, A, a)-flat cell QCP that is at

most N levels down from P.

We remind the reader that the measure p has been fixed since §13 and all constants
and constructions may depend on its parameters in addition to any explicitly mentioned
quantities.

Fix A’>1, o/€(0,1), and >0 to be chosen later. We want to show first that if
N>Ny(A' o/, 3), then there exists a Carleson family F; CD and a finite set H of linear
hyperplanes such that every cell P€D\F; contains a geometrically (H,5A4’, a’)-flat cell
QCP at most N levels down from P for some linear hyperplane H € H that may depend
on P.

Let R=--((P). According to Lemma 5, we can choose 0>0 so that either there is
a scale £>pR and a point z€ B(zp, R—16[(5A4’+5)+3a’|{) C P such that p is geometri-
cally (H',16(5A'+5), a/)-flat at z on the scale ¢ for some linear hyperplane H’', or there
exist A€(0,1), 6€(0,A), and a point z€B(zp, (1-2A)R) with dist(z,supp ) <16R
such that |[R(¢. sr,art)](2)|>0, where ¢, sr ar is the function introduced in the be-
ginning of §10.

In the first case, take any point 2z’ €supp p such that |z—z'\<%a’€ and choose the
cell @ with ¢(Q)€[¢,160) that contains z’. Since z'CB(zp, R)C P and £(Q)<{(P), we
must have QCP. Also, since |2g—2'|<44(Q), we have |z— 2| <40(Q)+ /1 <5((Q).

Note now that, if p is geometrically (H,16A4, a)-flat at z on the scale ¢, then it is
geometrically (H, A, a)-flat at z on every scale ¢’ €[¢, 16¢).

Note also that the geometric flatness is a reasonably stable condition with respect
to shifts of the point and rotations of the plane. More precisely, if p is geometrically
(H', A+5, a)-flat at z on the scale ¢, then it is geometrically (H, A, 2a+ Ae)-flat at 2z’ on
the scale ¢ for every 2’ € B(z, 5¢)Nsupp p and every linear hyperplane H with unit normal
vector n such that the angle between n and the unit normal vector n’ to H' is less than e.
To see this, it is important to observe first that, although the distance from z to 2z’ may

be quite large, the distance from z’ to the affine hyperplane L’ containing z and parallel
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to H' can be only af, so we do not need to shift L’ by more than this amount to make
it pass through z’. Combined with the inclusion B(z’, A¢)C B(z, (A+5)¥), this allows us
to conclude that u is (H', A, 2«)-flat at 2’ on the scale £. After this shift, we can rotate
the plane L' around the (d—1)-dimensional affine plane containing z’ and orthogonal
to both n and n’ by an angle less than e to make it parallel to H. Again, no point of
L'NB(z, Af) will move by more than Aef and the desired conclusion follows.

Applying these observations with ' =0(Q), z’=zq, e=a’/3A, and choosing any finite
e-net Y on the unit sphere, we see that p is geometrically (H,5A4’, a’)-flat at zg on the
scale £(Q) with some H whose unit normal belongs to Y. Note also that the number of
levels between P and @ in this case is log;4(¢(P)/4(Q))<log5 0~ +C.

In the second case, let 2’ be a point of supp y such that |z—z'|<1§R. Note that 2’ €
B(zp,2R)CP. Let now @ and Q' be the largest cells containing z’ under the restrictions
that £(Q) <55 AR and £(Q')<350R. Since both bounds are less than ¢(P) and the first
one is greater than the second one, we have Q' CQCP.

Now take any set EDB(z,2R) with u(E)<oo and consider the difference of the
averages of R, xg over @ and Q' with respect to the measure f.

We can write Xp=1. sr,.ar+ f1+f2, where |fi|,|f2|<1, supp f CB(z,206R), and
supp foNB(z, AR)=0.

Note that

/ |f1l? dpe < p(B(2,26R)) < C(6R)? < CUQ')* < Cu(Q') < Cu(Q),

so we have the same bound for [ |R),fi|?dp, whence the averages of R, f1 over @ and
Q' are bounded by some constant.

Note also that QCB(2',8((Q))CB(2', sAR)CB(z, §AR), so the distance from Q
to supp fs is at least %AR>€(Q). Thus,

HR(fQNJ)HLIp(Q) < CE(Q)ila

so the difference of any two values of R(f2pt) on @Q is bounded by a constant and, thereby,
so is the difference of the averages of R, f> over @ and Q.

To estimate the difference of averages of R, sr AR, note first that

IRt 5kaRlT2 ) < Cllzsr,aR72() < CAR)T < CUQ) < Cu(Q),

so the average over @) is bounded by a constant. On the other hand,

Q' CB(,8((Q")) C B(#',15R) C B(z,16R).
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Since the distance from B(z, %5]%) to supp ¥ sr,AR is at least %6R, we have

|R(V2.58,a R0 |ILip(B(2,5r/2)) < C(OR) ™.

Thus, all values of R,%, sr AR oD Q’CB(Z, %5]%) can differ from [R(, sr.arp)|(z) only
by a constant and the average over Q' is at least 3—C in absolute value.

Bringing all these estimates together, we conclude that the difference of averages
of R,xg over Q and Q' is at least §—C' in absolute value for every set EDB(z,2R)
and, thereby, for every set EDB(zp,5¢(P)). Observe now that this conclusion can be

rewritten as
1(P) V2 Rux e, ¥p)ul = co™?(B-C),

where

¥p = [ol(P)]? <M(1Q)XQ - M(;,)XIQ>

and that wa\I/g(N), where, as before, U4 (N) is the Haar system of depth N, with

N =logg f((é;)) <logg0 ' +C
(the normalizing factor %2 in the definition of ¥p is just enough to make the norm
1¥pllz2(y) bounded by a constant and all the other properties of a Haar function are
obvious).

Thus, we conclude that for such P, the quantity {(P) defined by (4) using the Haar
system of depth N and the extension factor 5 is bounded from below by a fixed positive
constant, provided that § has been chosen not too small. Consequently, the family F;
of such cells P is Carleson.

As we have seen, for P¢F;, we can find a geometrically (H,5A4’, o/)-flat cell QC P
at most log;s 071 +C levels down from P with H from some finite family H of linear
hyperplanes (depending on the choice of A" and o/, of course). If we use the parameters
A’ and o determined by the flattening lemma (Proposition 6), then the only case in
which we cannot conclude that this cell is (H, A, «)-flat is the case when for every set
EDB(zg, (A+a+5A"+a/)0(Q)) with u(E)<oco, we can find a mean-zero (with respect
to p) Lipschitz function g supported on B(zq,5A¢(Q)) with ||g||Lip <€(Q) ! such that
HRuxEs 9)ul =By uul, @) xmul>'€(Q)¢ (otherwise the flattening lemma is applicable to
the measure ygpp whose (H, A, o)-flatness at zg on the scale ¢(Q) is equivalent to the
(H, A, o)-flatness of p itself).

However the last inequality can be rewritten as

M(P)71/2|<RMXE7 7/’P>;L| > ng+10/’
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where
bp=ol(P)"?g.

Note that ||%p]|Lip, <CU(P)~%2~1 and
supp ¥ p C B(zq,5AU(Q)) C B(zq, R) C B(zp,5((P)),

so we see that in this case we again have £(P) bounded from below by a fixed constant,
but now with respect to the Lipschitz wavelet system \116(5) and the extension factor
A+a+5A"+a’+5, say. Thus the family F» of such exceptional cells is Carleson as well,

and it remains to put F=F,UF; to finish the proof of the main statement of this section.

16. Alternating non-BAUP and flat layers

Recall that our goal is to prove that the family of all non-BAUP cells P€D is Carleson. In
view of the result of the previous section, it will suffice to show that we can choose A, «>0
such that for every fixed linear hyperplane H and for every integer N, the corresponding
family F=F (A, a, H, N) of all non-BAUP cells P€D containing an (H, A, a)-flat cell Q
at most N levels down from P is Carleson. The result of this section can be stated as

follows.

LEMMA 8. If F is not Carleson, then for every positive integer K and every n>0,
there exist a cell PEF and K+1 alternating pairs of finite layers P, QA CD (k=
0,...,K) such that

o Po={P}.

Br CFp for all k=0,..., K.

o All layers Qy consist of (H, A, «)-flat cells only.

Each individual layer (either Py or Q) consists of pairwise disjoint cells.
If Qefy, then there exists P'€Py such that QC P’ (k=0,..., K).

If P'€PBri1, then there exists QE€Qy such that P'CQ (k=0,..., K—1).

> gea MQ)=(1=n)u(P).

In other words, each layer tiles P up to a set of negligible measure and they have

the usual Cantor-type hierarchy (due to this hierarchy, it suffices to look only at the very
bottom layer to evaluate the efficiency of the tiling for all of them). The construction
in this section is rather universal and does not depend on the meaning of the words
“non-BAUP” in any way. All that we need to know here is that some cells are BAUP
and some are not. Note that we do not exclude here the possibility that the same cell is

used in several different layers. This will never really happen because the non-BAUPness
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condition is, in fact, just a particular quantitative negation of the flatness condition, so,
when finally choosing our parameters, we will ensure that no non-BAUP cell can be an
(H, A, a)-flat cell as well, thus guaranteeing that we always go down when moving from
each layer to the next. Also our construction will be done in such a way that no two
different P layers can contain the same cell. However, the disjointness of layers is not
a part of the formal statement we have just made and the results of this and the next
sections remain perfectly valid even if all layers we construct here consist of the single

starting cell P, which, in that case, must be simultaneously non-BAUP and (H, A, a)-flat.

Proof. Suppose F is not Carleson. By Lemma 7, for every ' >0 and every positive
integer M, we can find a cell Pe€F and M +1 non-Carleson layers Ly, ..., L3y CFp that
have the desired Cantor-type hierarchy and satisfy > p/c . p(P')=(1=n")u(P) (see §13
for details).

We shall start with describing the main step of the construction, which will allow us
to go from each layer By, to the next layer Py creating the intermediate layer Qi on the
way. Let m be much smaller than M, so that there are as many available non-Carleson
layers down from m as we may possibly need. Fix a large integer S>0.

Let £/ CL,,. We shall call a cell P"€L,, sy (s=1,...,5) exceptional if it is con-
tained in some cell P'€ L) but there is no (H, A, a)-flat cell Q€D such that P"CQCP’.
We claim that for each s=1, ..., 5, the sum of u-measures of all exceptional cells in £+ sy
does not exceed (1—c16=N9)sy(P).

The proof goes by induction on s. To prove the base s=1, just recall that every cell
P'eLl], CL,, contains some (H, A, a)-flat cell Q(P')eD at most N levels down from P’.
Since every cell P’ €L,y that is contained in P'€ L/ must be at least N levels down
from P’ (the non-Carleson layers constructed in §13 cannot have repeating cells), we
conclude that every cell P”€L,, n contained in P’ is either contained in Q(P’) or
disjoint to Q(P’). In the first case P” is, certainly, not exceptional, so the sum of the

measures of all exceptional cells in £,,, v that are contained in P’ is at most
p(P)=p(Q(P")) < (1—c16~ ) u(P"),
whence the total sum of measures of all exceptional cells in £, is at most

(1=c16™N) Y~ p(P) < (1—cl6~ N u(P).
PeLs,

To make the induction step, assume that we already know that the claim holds
for some s. Note that every exceptional cell P”€L,, (s41)n is contained in some cell
P"eLmisn. We claim that P’ must be exceptional as well. Indeed, let P’ be the cell
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in £/ containing P”. Then P"NP'+#@, which, due to the hierarchy of the non-Carleson
layers, is possible only if P"CP'. If there had been any (H, A, a)-flat cell @ satisfying
P"CQC P, we would also have P’ CQC P’, so the cell P” would not be exceptional. Now
it remains to note that P” must also be disjoint to Q(ﬁ" ) and to repeat the argument
above to conclude that the sum of measures of all exceptional cells in L, (s41)n is at
most (1 —cl6—N d) times the sum of measures of all exceptional cells in £, +sn. It remains
to apply the induction assumption and to combine two factors into one.

Now let E;,HSN CLpy+sn be the set of all cells in L,,1 sy that are contained in
some cell from L], but are not exceptional. Then, for every cell P"€L] ¢y and the
corresponding cell P'€L!  containing P”, there exists an (H, A, a)-flat cell Q€D such
that P”"CQCP’. Let Q be the set of all cells ) that can arise in this way and let Q* be
the set of all maximal cells in 9 (i.e., cells that are not contained in any larger cell from
). Then the cells Q€Q* are pairwise disjoint and form an intermediate layer between
L, and L] oy in the sense that every Q€Q* is contained in some cell P'€ L], and
every P"€L; | sy is contained in some cell Q€Q*.

Moreover,
1
PO COE TP D DD )
PreL] isn PreLmysn PreLmysn PreLmysn

P P’ for any P’€L! ~ P’ is exceptional

> (= ulP)- [u(P)= 3 P~ (-ets ) ucr)
PeL!,

= 3 wlP) =l (1167 (P,
Pec,
Now assume that M >(K+1)SN. Then we can start with £{=Lo={P} and apply
this construction inductively with m=0, SN,25N, ..., KSN. The resulting layers L) ¢y
(k=0, ..., K) will satisfy all properties of 85, and the intermediate layers Q* (one of those
will arise during each step) will satisfy all properties of £, except, perhaps, the measure
estimate.

However, since L{, covers P completely and during each step the total measure loss
is bounded by [+ (1—c16~N4)5];(P), we have

Souw@= > Pz uP)—(K+1)'+(1—-c16~ )5 u(P)

Qe PIELs i 1ysn

and it remains to note that for any fixed K, we can always make
(K+1)[y +(1—c167 )]

less than 7 if we choose 7’ small enough and S large enough. O
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17. Almost orthogonality

From now on we will assume that the family F defined in the previous section is not
Carleson, and so we have a cell P€D and alternating layers 2By, Qk CD as in the previous
lemma. We will eventually show that this leads to a contradiction.

Fix K. Choose €>0, A,a>0 and 7>0 in this order and run the construction of
the previous section. In this section we will be primarily interested in the flat layers Qg
ignoring the non-BAUP layers ), almost entirely.

For a cell Q€D and t>0, define

Q¢ ={z € Q dist(z, R\ Q) > t4(Q)}.

Note that u(Q\Q:) <Ct"u(Q) for some fixed v>0 (see §12). Let o be any C° function
supported on B(0,1) and such that [ ¢gdm=1, where m is the Lebesgue measure in
R4+, Put

1 .
PQ = XQac * P ( )
©TReT (@) T \eQ)
Then pg=1 on Q3. and supp v CQ.. In particular, the diameter of supp ¢ is at most
84(Q). In addition,

and  [[V?pqllz~ < =5

~ <1, \V4 o < .
||80Q||L [ ‘PQ”L £20(Q)?

el(Q)’

From now on, we will be interested only in the cells @ from the flat layers Q. With each
such cell ) we will associate the corresponding approximating plane L(Q)) containing zq
and parallel to H and the approximating measure vg=aqpqQmr(q), Where aq is chosen
so that

vo(RT) = / P dp.

Note that, since B(zq, (%735)6(62)) CQ3: and QCB(zq,44(Q)), both integrals

/@QdmL(Q) and /@Qdu

1
48>

malizing factors ag are bounded by some constant.
Define

are comparable to £(Q)%, provided that &< say. In particular, in this case, the nor-

Gv=Y_ ¢oR"[pqu-rq), k=0,..K.
Qe

We remind the reader of our convention to understand R¥ (pqu) as R} pq on supp p

(see §8) and of Lemma 1 that shows that R¥vg can be viewed as a Lipschitz function
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in the entire space R, In what follows, we will freely integrate various expressions
including both R (pqou) and R¥vg with respect to u, which makes sense in view of
what we just said. However, we will be very careful with the integration of expressions
involving RY (pou) with respect to v and always make sure that for each point z in
the integration domain, x is not contained in the support of any function g for which
RH (pou) in the integrand is not multiplied by some cutoff factor vanishing in some
neighborhood of z.
Now put

Fk:Gk—Gk+1 fOI"k:O,...,K—]. and FK:GK.

Note that
K
Z F,=Gy.
m=k

The objective of this section is to prove the following result.

1

15 A>5, and a<e®, we have

PROPOSITION 9. Assuming that €<
[(Fi, Grt1)| < o(e, a)u(P)
for all k=0, ..., K—1, where o(e,a) is some positive function such that

28, 5, 06 ) =0

In plain English, the double limit condition on o(e, ) means that we can make
o(e,a) as small as we want by first choosing e>0 small enough and then choosing a>0
small enough. The exact formula for o(e, a)) will be of no importance for the rest of the
argument, so we do not even mention it here despite it being explicitly written in the
end of the proof.

The assumptions < ﬁ and A>5 are there to ensure that all the results of §9 can be
freely applied with (g in the role of ¢ and vq in the role of v. The assumption a<ed is
just used to absorb some expressions involving a and ¢ into constants instead of carrying
them around all the time.

Several tricks introduced in this section will be used again and again in what follows
so we suggest that the reader goes over all details of the proof because here they are
presented in a relatively simple setting unobscured by any other technical considerations
or logical twists. Also, there is a technical lemma in the body of the proof (Lemma 10)
that will be used several times later, despite the fact that it is not formally proclaimed

as one of the main results of this section.
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Proof. We start with showing that, under our assumptions, ||Gk||ZL)p(#) <Cu(P) for
p=2,4 and all k=0, ..., K. Since

Gr="Y_ poR"[pon—vq]
QeQy

and the summands have pairwise disjoint supports, it will suffice to prove the inequality

leQR™ (pou—r) 70, <CHQ)

for each individual Q€9 and then observe that > 5 g, u(Q)<pu(P).
Since we shall need pretty much the same estimate in §20, we will state it as a

separate lemma here.
LEMMA 10. Let p=2 or p=4. For each k=0,..., K and for each cell Q€Qy, we
have

||QOQRHVQ||I[),P(H) < HXQRHVQHI/;p(m <Cu(Q).

As a corollary, we have

leQR™ (pou=r)7s (0 <IIXQR™ (0au=1)|7, () < Cr(Q)-

Proof. As we have already mentioned in §5, Rﬁl is bounded in both L?(u) and L*(u),

So we even have
IRE 0012, < Clleal, o < CH(Q)

for both values of p we are interested in and the cutoffs pg and x¢ can only diminish the
left-hand side. Thus, we only need to prove the first chain of inequalities in the lemma.

The left inequality is trivial because o < x g pointwise. To prove the right inequality,
fix any Lipschitz function @p: R4+ — [0, 1] such that py=1 on B(0,4) and ¢ =0 outside

B(0,5), put
~ ~ l‘—ZQ
P \T)=vYo\| -7~ |
a(@) °(£<Q>)
and write
IR vl 1y = /Q R du< [ GolRM vl di.
Let

—1
agQ = </ ®Q dmL(Q)) /SZQ dp.

Note that both integrals in the definition of g are comparable to £(Q)?, so ag<C'. Put

vQ =aQmr(Q)-
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Since RgL(Q) is bounded in LP(my,q)), we have

/|RHVQ|pdﬁQ<C/|RHVQ‘pdmL(Q)<CH<PQ||I£p(mL(Q))gC((Q)dgcﬂ(Q)'

On the other hand, the C?-estimates for ¢ in the beginning of this section combined
with Lemma 1 imply that

C C
RH o < )
R vl 20(Q)

- and IR vg||Lip <

In addition, we clearly have ||¢q||Lip <C/€(Q). Thus, when a<e®<1, Lemma 3 immedi-
ately yields

1 1 1
H P ~ y < d+2 _ —2p d <
for p=2,4, so
[ Bolr vl du= [ R vl d(Gan)
:/ R wq P d5Q+/|RHVQ|pd(55QM*'7Q)<Cu(Q),

as required. O

Now represent Fj as

Fk:( Z ‘pQRf‘pQ_ Z @QRg@Q)— Z poR™vo+ Z woR"vg
Qe QEQk+1 QEQ Q€11

—FV-FP+F®.
Note that
IR (pa=x@) 7o) < Cllee —xQll s < CrQ\Qse) < C7n(Q)

for p=2,4. Also

1(eQ—x@) R xal72( <llva—xellTigm I RE xQlI74(
<Clleg —xellTanIxelliag
<COn(Q\Qs)?u(@Q)Y?
<C2u(Q).
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Thus,

leaRL 0o —xRE xoll72(u <2l RE (0o —XxQ)I72 (0 +I(Po—x@) R xall 72 ()]
<CE"+e%u(Q) < Ca7*p(Q).

If we now set

ﬁé”‘( > xeRixe— > XQRfXQ>»

QEN QENk+1

we immediately see that
=1 1
|5 =F ) < C2u(P).
Combined with the estimate [|Gr+1172(,)<Cu(P), this yields
EV -k G <|EN —EV G <M (P
[(Fy " =F s Grar)ul < IF " = F 2 |Grall 2y < O u(P).
Now we can write

=(1 H H H
(B, Gran)u= Y (xoRixa—xo B! xq s po R (0o n—vq))
QEN
Q'€Qk41
Q'CQ
because all other scalar products correspond to pairs of functions with disjoint supports,
and, thereby, evaluate to 0.
Fix Q€Qy. For each Q'€Qy 1 contained in @), we have xyo=x¢'=1 on supp ¢qr,
so, when writing the scalar product as an integral, we can leave only the factor ¢¢g/ in
front of the product of Riesz transforms, which allows us to combine two of them into

one and represent the scalar product as

H H
(B (xQuor ), par BY (0@ —vqr)) -
The next estimate is worth stating as a separate lemma.

LEMMA 11. Suppose that F is any bounded function and Q€Qy. Then

> UR" (xou@ i), por R (pqr—vg))ul < Cat/ e8| F| o (o) 1(Q).
Q' €Qk+1
Q'CQ
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Proof. Let W =RH (x@\@'Fp). By Lemma 4, we have
(Toreq, R (porn—vq )l
< Cal/(d+2)€(Q/)d+2[”‘I’Q’ ||L°°(supp wQI)+€(Q/)|‘\I’Q’ ”Lip(SUPP @Qz)]”‘PQ’ ||iip'
Note now that, by (2),

. «_ ClFl~@  _ClIFll=~@
HP(ep 200 dist(supp o, Q\Q')  eA(Q')

(N2

and
C

!’ 1 < —_— .
H‘)OQ ||L1P EE(Q/)

Thus, in our case, the bound guaranteed by Lemma 4 does not exceed
d+2 d_.—2 1
Oal/( * )E(Q,) € [||\IJQ/||L°°(supp<pQ/)+€ ||FHL°°(Q)]a
so, taking into account that £(Q")?<Cu(Q’), we get

Y UR"(x\o F)svq R (vqrn—vo)ul

Q' EQR41
Q' CQ
<CaV2e=2 N (|| W0 || oo supp ) TE I Flloo (@) 1(Q')
Q' €Qk+1
QCQ
gcal/(d+2)672 871||F||L°°(Q),U(Q)+ Z ||WQ/|LW(suppr/)u(Q/)] :
Q' €EQr41
QCQ

Since the L norm of a Lipschitz function on a set does not exceed the average of the
absolute value of the function over the set plus the product of the Lipschitz norm of the

function on the set and the diameter of the set, we have

-1 1/2
”\I,Q’HL“’(suppth/) < CE_lHFHLoc(Q)+ l:(/ wQ! dﬂ) /|‘I’Q'|2(‘0Q’ d/J':|

=Ce M|F || pee(g)+J(Q).
However,
[ v dnzet@)'z (@)

and
[ wolagdn<z| [ IRAEPXQR dis | IR Py P
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Since R/ is bounded in L?(u), we have

/Q R (Px@)P du < O F X 3 < O F (@)
for each Q' CQ, and

> /Q, Rf(FXQ)IQdué/QIRf(FXQ)IQdu<CIIFXQI%Z(M)écllF%m(Q)ﬂ(Q)-
Q' E€EQr41
@cQ

So we get

S J@Q) (@) S CIF | o) (@Q).
Q' EQr41
Q'CQ

Now it remains to apply Cauchy—Schwarz inequality to conclude that
> HQHMQ) S CIIF 1o m(Q),
Q' EQR41
Q'CqQ
thus completing the proof of the lemma.
Applying this lemma with F'=1, we immediately get
> R (xouo'i)s par R (pqri—vg)ul < Cal/ 273 1(Q).

Q' €Qk+1
QCQ

It remains to sum these bounds over ) €, and to combine the result with the previously

obtained estimate for (13]51) fF,EU, Gr41)p to conclude that
(Y, Gr)ul S O 4t/ D=2)(P).
To estimate (F]EQ), Gr+1)u, note once more that by Lemma 1, R¥ v is a Lipschitz func-

tion in R4 with ||REvg| ~<C/e? and [|[R¥vglLip<C/e%(Q). Since for any two

Lipschitz functions f and g one has

1fgllze <[ fllzllgllLe  and [[fgllip <[ fllLipllglze +[1fllzllgllLip,

we get
C

e34(Q)

C
leqR vl < = and  [pqR"vq|Lip <
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Using Lemma 4 again and taking into account that £(Q")<4(Q) for Q' CQ, we get

1 1 1Y
|<<pQRHl/Q, @Q/RH(QOQ/M*VQ/»H‘ < C'Ozl/(d+2)€(Q')d+2 E2+£(Q/)E3£@] <E€(Q/)>

< OO{l/(d+2)€_5€(Ql)d < C(Xl/(d+2)€_5/.l/(Q/).
. @)
Writing (F,™, Gry1), as

> (R vg, po R (0o n—vg)u
QENK
Q' €Qk+1
Q'CQ
(all other scalar products correspond to functions with disjoint supports) and summing

the corresponding upper bounds for the absolute values of summands, we get
(F, Gl < Call/ (D (),
. . (3)
Finally, we can write (F},”, Gy11), as

> (e RMvg, 0o R (0q n—vo))u-
Q' EQr4+1

The argument we used to estimate (F ,52)7 Gr41)u can be applied here as well. The only
essential difference is that we will now have £(Q’) instead of ¢(Q) in the denominator
of the bound for |¢oo R vg ||Lip, so instead of the lax cancellation ¢(Q')/¢(Q)<1 in
the main bound for individual summands, we will have to use the tight cancellation
£(Q")/0(Q")=1. The final inequality

‘<Fk(;3)7 Gk+1>,u| § Cal/(d+2)575'u,(P)

has exactly the same form and it remains to bring all three inequalities together to finish

the proof of the desired almost orthogonality property with

o(e, ) =Cle"/ 44t/ 442 5], O

18. Reduction to the lower bound for ||Fk||i2(“)

At this point, we need to know that the non-BAUPness condition depends on a positive
parameter 0. We will fix that § from now on in addition to fixing the measure p. Note

that despite the fact that we need to prove that the family of non-BAUP cells is Carleson
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for every §>0, the David—Semmes uniform rectifiability criterion does not require any
particular rate of growth of the corresponding Carleson constant as a function of .
We have the identity

K-1

K _
= Z ||Fk||%2(u)+2 Z <Fk77 Gk+l>u-
L2(p) k=0 k=0

2
IGolZ2 ) =

K
Sh
k=0

As we have seen, ||G0||2Lz(#) <Cp(P) under the conditions of Proposition 9 and the scalar
products can be made arbitrarily small by first choosing >0 small enough and then
taking a sufficiently small a>0 depending on . So we will get a contradiction if we
are able to bound ”FkH%z(u) for k=0, ..., K—1 from below by 72u(P), with some 7=
7(6)>0 (as usual, the dependence on the dimension d and the regularity constants of p
is suppressed) under the assumptions that A> Ay (d), e<eg(d), n<no(e), and a<ag(e, d).
We will call any set of such bounds “restrictions of admissible type”. Note that we may
impose any finite number of such restrictions and we will still be able to choose some
positive values of parameters to satisfy all of them.

Assuming that we have this lower bound, we will start with choosing K so that
K72 is very large. Then we will fix A> Ag(8) and choose e <eo(8) and a<ag(e,d) in this
order to make sure that the sum of the scalar products is significantly less than K72, for
which it would suffice to make each individual scalar product much less than 72. If we
are allowed to choose € first and « afterwards, the restrictions e<eo(d) and a<ag(e,d)
can never cause us any trouble. Finally, we can choose n<yg(e), thus completing the
formal choice of parameters.

Since the constructions of §15 and §16 can be carried out with any choices of K, A,
«, and 7 under the only assumption that the family of non-BAUP cells is not Carleson,
we will end up with a clear contradiction.

The proof of the uniform lower bound for ”Fk”QLQ(u) is rather long and technical and
will be done in several steps. We shall start with an elementary reduction that will allow
us to restrict our attention to a single cell Q €9y, that is tiled with its subcells Q' €Qy11
almost completely.

19. Densely and loosely packed cells

Fix k€{0,1,..., K —1}. We can write the function Fj, as

Fp= Z F@,

QENy

where



UNIFORM RECTIFIABILITY AND THE RIESZ TRANSFORM 295

FO=0qR  (pou-vg)— Y. ¢oR"(pqu-vg).
Q' EQR41
Q'CQ
We shall call a cell Q€ densely packed if ZQ’EQk+1Q/cQ w(@)=(1—e)u(Q). Other-
wise we shall call the cell Q loosely packed. The main claim of this section is that the

loosely packed cells constitute a tiny minority of all cells in 9y, if n<e2. Indeed, we have

o @) <e! Zu(@\ U Q’>=a—1[2u<®— > u(@’)]

QEN QENy Q' EQk+1 QEN Q'€0k+1
Q is packed loosely Q'CQ
_ n
<= ¥ @) < 2upy<entr)
Q' EQR41

We can immediately conclude from here that

> @)= > nQ)- > 1(Q)

QENy QEN QEQ
Q is densely packed Q is loosely packed

z (L=n)u(P)—en(P) = (1-2¢)u(P).

From now on, we will fix the choice n=c¢?

. We claim now that to estimate HFkH%z(#)
from below by 72u(P), it suffices to show that for every densely packed cell Q€Qy, we

have ||F@||%,, ,=>272u(Q). To see this, just write

L2 (p) =
1|72y = Z 17912, = Z 179172,
Qe QEeNy
Q@ is densely packed
> Y 2%u(Q) > 201-2)r(P) > ru(P),
QEQ

Q@ is densely packed

provided that e< i.

20. Approximating measure

From now on, we will fix k€{0, ..., K—1} and a densely packed cell Q€. We denote
by 9 the set of all cells Q' €Qp11 that are contained in the cell Q. We will also always
assume that the assumptions of Proposition 9 are satisfied.

The goal of this section is to show that there exists a subset Q' of Q such that

> ul@)=(1-Ce)u(Q)

Qe
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and
IF L2y = S IR (v=vQ)l L2 vy — (e, )V 1(Q),

where v=3,cq Vo and o(e,a) is some positive function such that

lim lim o(e,a)=0.
e—=0+ a—0+

Proof. The proof is fairly long and technical, so we will split it into several steps.
Step 1. The choice of L.
For Q' €9, define

E(Q//) :|d+1
D@,Q" |

9(@)="Y_

Q”EQ

where
D(Q", Q") =4(Q")+£(Q")+dist(Q", Q")

is the “long distance” between @’ and Q.

We have
! ! " Q"
9(@)u(Q) = “Q )d+1#
QIZ;Q QC;EQ D(Q’, Q")+t
1yd+1 du(x)
gCQ',;eQZ(Q ) /Q’ [0(Q)+dist (x, Q)]+
1m\d+1 du(l‘)
<CQ2€:D€(Q ) / [0(Q") +dist(x, Q)] a+1
<C Z 0Q"
Q"en
<C ) @)
Qe
<Cu(Q).

Let Q.={Q'€Q:9(Q")>c "'} and Q'=9Q\Q.. Then, by Chebyshev’s inequality,

> @) <Cen(Q),

Q' EN.

SO

> @)= (1-Cou@),

Qe

as required.
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Put

Step 2. The first modification of F?: from ¢ to x.

Our next aim will be to show that

IF9 L2y = 1F9 120 — C*V/u(Q),

where
FO=3R®— > xqRlvo+ Y xqo.R"vg—xqR"vq.
Qe Q'esy
Recall first that, by Lemma 10, we have
leq R (0q 1—vo )72 < IIB™ (0qr =10 122 (o) < OH(Q')

for all Q'€Q. Thus,

2

= > e R (v n—vo)32
L2(k)  Qren.

<C Y Q)< Cep(Q).

Q'eN.

H > po R (pqn—vg)
Qen.

This allows us to drop the terms g R (pg p1—v¢) corresponding to Q' €9, in the
definition of F'? at the cost of decreasing the L?() norm by at most Ce'/2\/u(Q).
Next we bound the norm ||<pQR£Ig0Qf<i>Rf<I)||L2(H). First, note that, for p>1, we

have

o=l <n@@tu(@\ U @)+ U @)

Qe Qe (5)

<CQ)+Cep(Q)+Ce™ Y | p(Q)<Cn(Q),
Qe

and the same estimate holds for ||<pQ—<i>||§p (u)- Using the boundedness of Rﬁl in LP(p)
for p=2,4, we get

lpQRL (@ —®)|172(,y < Cllpg—®lI72( < Ce™(Q)
and

[ (vq _‘i)Rf‘I’”QL?(M) <llpg _‘i)”QL‘l(u) ||R£I‘I’||2L4(,L)
<Cllpg=PlI7 40174y < Ce?pu(Q).
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Bringing these two estimates together and using the triangle inequality, we get

leoR! pq— PRI ®||12(,) < C*/(Q).

This allows us to replace the term @QRH (pou) in the definition of F Q@ by the term
i)Rf ® appearing in the definition of F@ at the cost of decreasing the L?(p) norm by at
most Ce?/4/u(Q).

Next note that for every Q'€£’, we have

Ixa R (pq n—ro )| 1a(y <CmQ)

by Lemma 10, so

1(eqr —xqu) R (vqrn—vo )72 < llea —xa:lI7a 0 Ix@ RY (po =)0
<Op(@Q\Q5.)?u(@)'? <Ca Q).

Thus,

2

= Y llvo—x0.)R* (parn—vo)ll72
LQ(,U,) Qen’

<C? 3" (@) <CPu(Q).
Qe

> (o —xq ) R (pqru—vq)
Q'en’

This allows us to replace all the remaining terms pg R¥ (oo p—vg) (Q'€Q’) in the
definition of F? by the terms XQr RH (pg i—v¢) appearing in the definition of FQ at
the cost of decreasing the L?(p) norm by at most Ce?/ 4\/@ again.

At last, using the bound ||XQRHVQ||%4(#)<CM(Q) (the same Lemma 10), we get

I(ee—x@) R vq 1724 < @ —XQll7awIXa R vQ) T4
<Ou(Q\Qao) 2 u(@)? < C?(Q).

So, we can make the final replacement of g R vg with xo R v at the cost of decreasing
the L?(u) norm by at most Ce?/4/u(Q).

Step 3. The second modification of F: from R¥ (o) to R v.

Recall that we finally want to switch from g to the measure

V= Z vQr.

Qe
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Our next goal will be to show that
|FQ—(®R"v—xqR" 1) 12(u) < Cae™®73/1u(Q).
Note first of all that
ORIIO— > xo RFvg = xo R (®qp),
Qeq’ Qreq’

where

Oor= ), o

Q//GD/
QA

Fix some Q'€£Y’. Let z€Q.. Then, for every Q" €Q'\{Q'}, we have

R (pqumii—vgn))(z) = / W, dpgnu—vor).

where ( )
k(g @y

\I/l(y)_K (J}—y)— |x_y|d+1'

Since |z —y|>eD(Q’, Q") for all yesupp pgr CQY, we have

C
H‘I’w”Lip(SUPP wqrr) < et D(Q!, QM)A+

whence, by Lemma 3,

’ / w, d(son/u—VQ//)’ < Cab(@" )| W nipaupp o 907 lip

_aa[ UQY) r“
<Cae [D(Q’,Q”) .

Therefore, for every Q' €Q’, we have

RH(®grp)— Z R vgn| <Cae™2g(Q") < Cac™473
Q//EQ/
QA

on @’. Thus, making a uniform error of at most Cae~%¢=3, we can replace

ORIIO— > xoRIeq =Y xo.R"(®qp)
Qe Qe

299
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by

H H
> XQ/E( > R ”Q”> = D xqR(v-vg).
QIED/ QIIED/ Q,EQI

Q#Q!
Combining each term in this sum with the corresponding term yq: R7yq, we get the
sum

Z XQIERHI/ =dRy.
Q/GQ/

It remains to note that the uniform bound we got is stronger than the L?(u) bound we

need.
Step 4. The final effort: from L?(u) to L?(v).

It remains to compare
@R v—xoR"vgllL2(y  with [[RT(v—vq)llL2()-
Since 0<®<1 and both ® and X¢q are identically equal to 1 on supp @, we trivially have
10 R v— xR vall 2w = |9R v = xR v | 12 (0 = | BT (v =1Q) | 12 (a)-

To make the transition from L?(®u) to L?(v), we will use the following comparison

lemma.

LEMMA 12. Let F be any Lipschitz function and let p>1. Then

[ i au-v)

<O@)ac [IF I w0+ | 33 AQIF lnipioupn e | #(Q)].

P’I“OOf. Set M:maXQ/eQ/ E(Q,)”F”Lip(supp ©or) S(Q/)ZHFHLoo(S,Jpp o) We have

[1rrd@n-n= 3 [1rrieon-vo).

Qe

By Lemma 3,

\ J 1P dlen-re)| < CwIatQ) 5@ P s lve
< C(p)asS(Q' )" MUQ))!
<C(p)ac ' S(QNP ' MuQ")

<C(p)ac™ ' [S(Q)"+M7u(Q")
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for each Q'€Q’. Thus,

<Clp)ac™ Y7 [S(Q)+M?|u(Q)

Qe

<Clpac i@+ Y s@ru@)].

Qen’

\ [ @)

It remains to note that, for each Q’'€Q’, we have [ g du>cl(Q")?>cu(Q’) and

@y <[ min [FI+86@ )| Fllipeup ogn] <C®)[( min [F}+M7],

Supp ¢ g Supp ¢ g

SO

> s@ru@)<cE Y (L min [FYu@)+CmM Y w(@)

SUpp g/

Qeq’ Qeq’ Qe
P
<o 3 (min |FI) [ vo dutCOMMQ)
Gen supp g
<C) [ PP d@w+CEMH@). =

Thus, we need to get a decent bound for the Lipschitz norm of R¥(v—vg) on

supp ¢¢q’. We already know (Lemma 1) that

c __c
e2(Q) ~ 2(Q')

C
e2(Q")

IR vg||Lip < and  ||R™vg||Lip <

Now note that

RMv-vg)= - [ dvonty)

QNGQ/
Q#Q!

where W, (v)=K (z—y). As |z—y|>eD(Q’, Q") for all z€supp g and all yEsupp o,

we have

v < ¢
| y”Lip(Supp Por) 8d+1D(Q/)QN)d+1
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for all yesupp vg~. Thus

HRH(V_VQ/)||Lip(suppgoQ/) /”\I’ ||L1p(bupprQ/) dVQ”( )
Q//GQ/
Q#Q’

UQ// Q//)
<C E
d+1 / myd+1
oren € D(Q, Q")

QAQ!

—C Z Q")
d+1 / myd+1
QHEQ/ € D(Q 7Q )
QUAQ

—d—1 du(y)
sCe / [E(Q") +dist(y, Q)¢+
<Ce Q)

Bringing these three estimates together, we conclude that

E(Q/)||RH(V_VQ)HLip(supp vgqr)
SUQIRT (v 1) Lip(supp vo) T IR™ v IILip(supp v T IR vq|Lip(supp )
< CE_d_l

for all Q" €£)’. Lemma 12 applied with p=2 and F=R (v—vg) now yields
1B ) )| < G 1R - r0) B +C= Pl
<Cae™ | R (v =vQ) |2 (@, +Cae 212 u(Q),
whence

IRT (v—vq)|I22() < (1+Cac™ )[R (v—vq)I[72 (g, +Cac > u(Q)
<(1+Cas ™[ R7 (v=vqQ)l| 2@, + Catl2e™ CHI/2/u(@) .

Assuming that Cas~!<3, which is a restriction of the type a<ag(g), and taking the

square root, we finally get
IR (v—=vQ)ll2 (@ = 5IIRY (v—rQ) || 2 () —Cal2e™ G2 /u(Q).

Combined with the bounds from steps 2 and 3, this yields the result stated as the objective

of this section with

o(e, ) =CleV/ 44l /2e(2d43)/2 4 nc=d=3), O
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21. The reflection trick

For A>0 to be chosen below, fix a hyperplane L parallel to H at the distance 2A4(Q)
from supp pN@Q. The reader should think of A as small compared to € and large compared
to a. Let S be the (closed) half-space bounded by L that contains supp pN@Q. For z€ S,
denote by z* the reflection of x about L. Define the kernels

and denote by RHE the corresponding operator. We will assume that a<A, so the ap-
proximating hyperplanes L(Q") (Q'€Q’) and L(Q), which lie within the distance af(Q)
from supp pN@Q are contained in S and lie at the distance Al(Q) or greater from the
boundary hyperplane L.

The goal of this section is to show that, for some appropriately chosen A=A(«,e)>0,

and under our usual assumptions about €, A, and «, we have
IR (v —vQ)llL20) = 1R V| 12 () — 0 (e, 0)V/ 1(Q),
where, again, o(e, ) is some positive function such that

8 5B, 05 ) =0

Thus, if [|R¥ (v—vgq)l|12(,) is much smaller than \/x(Q) and € and « are chosen so
that o(e, o) is small, then ||]§HV||L2(D) must also be small. Again, the exact formula for
o(e, a) is not important for the rest of the argument.

Note that the correction kernel K (z*—y) is uniformly bounded as long as z or y
stay in S away from the boundary hyperplane L, so it defines a nice bounded operator in
L?(pg), where ug=xqH, and we can define the operator fif@ with the kernel I?H(x, y) as
the difference of the operator REQ and the integral operator T with the kernel K (z* —y).

Our first observation is that the norm of the operator Rf@ in L?(ug) is bounded
by some constant depending only on the dimension and the goodness parameters of p.

Indeed, all we need is to bound the norm of the integral operator T'. Note however that

K (a*—y) :ng(Q)(x—y)+[KH($*—y)—ng(Q)(m—y)]-

The first term on the right corresponds to the operator RfQ NG whose norm is bounded
by some constant independent of A according to our definition of a good measure. On

the other hand, we have

CAUQ)

H % H
(K7 (2" —y) = Ky (e =yl < [ALQ)+ |z —y[Jd+
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for all z,yeS with dist(z, L), dist(y, L) € (AL(Q),4A4(Q)), and all points x, yEsupp fq

satisfy this restriction, provided that a<A. Since this bound is symmetric in z and y

Al(Q)
/ [AL(Q)+ |z —y[]dt+? du(y) <C

independently of the choice of A, we conclude that the norm of the operator correspond-

and since

ing to the second term in the decomposition of K (z* —y) in L?(uq) is bounded by some
fixed constant as well.

Note now that I?H(x, y)=0 whenever z€ L or y€ L. We also have the antisymmetry
property

K" (y,2)=—K"(x,y).
At last IN(H(I, y) is harmonic in each variable as long as x,y€S, v#y.
The next important thing to note is that the correction term K (z* —) is uniformly
bounded and Lipschitz in €S as long as y€S and dist(y, L) >Al(Q). More precisely,
for all such y,
1

IEP (=)l e(s) < ATOY and  [|K™(-*—y)|lLip(s

<o
AdHTY(Q)d+1

To pass from the smallness of ||[R¥ (v—vg)||12(,) to that of [|R7v|z2(,, it suffices to
estimate the norm ||R¥vg—Tv| 12(,).

We start with showing that R vg—Tvg is uniformly bounded by CAe~2 on S.
Indeed, using the identities K (z*—y)=KH (z—y*) (z,y€S) and y*=y—2z (yeL(Q)),
where z is the inner normal vector to the boundary of S of length 2dist(L(Q), L)<
6AL(Q), we get

(Tv)(o) = [ KM ey ) dvoly) = [ K (a-+2-y) dvo(y) = (R vol(+2),

whence, by Lemma 1,

(R vq)(x) = [Twol(x)| = |[R"vql(z) ~ [RM vol (z+2)| < | R vo luip 2| < C;TA-

Now we will estimate || Tvg—Tv/| r2(,). Note that

ITCo=lips) < sup KT (=) s (/R g (R))
yEsupp rvUsupp vqQ
¢ C

< Wﬂ(@) < ATI(Q)
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Similarly,
[T (v —v)|lL=(s) < sup K =y) | oo (5) (R +vg(RT))
y€(supp vUsupp vq)
C C
< ——— < —.
=~ AdE(Q)du(Q) ~ Ad
Thus, by Lemma 3,

1 1 1

/\d+2
< CO[E(Q ) * FAd+1£(Q) EK(Q’)
< CCYA_Qd_IE_lf(Q/)d < CQA_Qd_lé"_l,U,(Q/).

[ 1o dteqru-ve)

Summing over Q' €', we get
[ 1rwe-nPiv< [ [Two-v)? d@u) +Cas 2 1e (@),

SO
||T(VQ —I/) HL2(U) < ||T(VQ —l/) ||L2(<I>;L) +CO[1/2A_(2d+1)/28_1/2 /N(Q)
On the other hand, applying Lemma 3 again, we see that, for every x&supp nqg,

[T (pqu—ro))(@)| = \ [0 = iean-va)

<Cal(Q?| KM (2" = )llipes) llvallLip
1 1

<Ol @™ samggym =)

<CaA~0 171,

because o
Hy/ .*

HK (z"— ')”Lip(S) < Ad"'lf(Q)d"'l

as long as €S and dist(z, L) > Al(Q) (this is the same inequality as we used before only

with the roles of z and y exchanged).
Similarly, for every Q' €', we have

[T u—ve))(x) = \ [ = dtoan-va)

<Cal(@) 2K (@ = )llipes) e i

\d+2 1 !
<Cal(Q) AdFLY(Q)A+L e0(Q")
—d—1 —1£(Ql)d
<CaA € 0(Q)?
wQ")

<CaA~ 3171 .
wQ)
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Summing these inequalities over Q'€9Q’, we get
[T(@p—v)](z)| < Car™"le™!

for all zesupp pq.

Relaxing the L™ bounds to the L? ones, we conclude that

1T (e =v)ll2@p S IT((pQ =)l L2 (ue) HIT (o —vQ)ll L2 (ug) T IT(Pp =) L2 (ug)
<IT((po =)l L2 (ug) +CaA™ e/ u(Q).

However, since the operator norm of 7" in LQ(MQ) is bounded by a constant, we have

IT((po=®)i)l22(ug) < Clipg =@l < C72V/u(Q)

by (5). Thus, we finally get

IR (v—v) 2wy
> | R v 2y —Cle"? + A2 4/ 2 A~ RHD/2e =12 L g A=47171] /(Q).

Putting A=e3, say, we obtain the desired bound with

o(e,a)=C[e" 2 +e+al /273472 qe 3474,

22. The intermediate non-BAUP layer

Until now, we worked only with a flat cell Q €9y, and the family Q' of flat cells Q' €Qp11
contained in @), completely ignoring the non-BAUP layer y41. At this point, we finally
bring it into the play. We will start with the definition of a §-non-BAUP cell.

Definition. Let §>0. We say that a cell P€D is é-non-BAUP if there exists a point
x€PNsupp p such that for every hyperplane L passing through x, there exists a point
y€ B(x,£(P))NL for which B(y, ¢(P))Nsupp u=2.(*)

Note that in this definition the plane L can go in any direction. In what follows, we
will only need planes parallel to H but, since H is determined by the flatness direction of
some unknown subcube of P, we cannot fix the direction of the plane L in the definition
of non-BAUPuness from the very beginning. For every non-BAUP cell P’ €Pjy11, we will
denote by xp: the point x from the definition of the non-BAUPness for P’ and by yp/
the point y corresponding to x=xp: and L parallel to H.

(%) The reader should compare this definition with Definition 3.14 in §3.2 (p.139) of [DS] where
the BAUP (Bilateral Approximation by Unions of Planes) condition is introduced.
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The goal of this section is to show that under our usual assumptions (e is sufficiently
small in terms of 6, A is sufficiently large in terms of 6, « is sufficiently small in terms
of € and §), there exists a family P' CPry1 such that

e cvery cell P'CP’ is contained in Q. and satisfies ((P') <28~ 14(Q);

i ZP/eq:v p(P") Zep(Q);

o the balls B(zp:, 104(P")), P e, are pairwise disjoint;

e the function

) N d+1
H= 2 L(P/)erist(xa P')

satisfies ||h||p~<C.

Proof. We start with showing that every d-non-BAUP cell P’ contained in Q) has
much smaller size than (). Indeed, we know that supp uNB(zg, A¢(Q)) is contained in
the af(Q)-neighborhood of L(Q) and that

B(y, ab(Q))Nsupp p# &
for every y€ B(zg, A0(Q))NL(Q). Suppose that P'CQ is 6-non-BAUP. If A>5, then
B(zp,l(P")) C B(zg,5((Q)) C B(zq, A4(Q)).
Moreover, since ypr —xpr € H, we have
dist(ypr, L(Q)) = dist(zpr, L(Q)) < al(Q).
Let yp, be the projection of yps to L(Q). Then
lyp —yp | <al(Q) and  |yp —2q| <|yp —zq| < AUQ).

Thus, the ball B(yps,206(Q))DB(y}:, f(Q)) intersects supp u, so 00(P')<2a(Q), i.e.,
(P <2067 1(Q).
Let now P={P’ €Pj+1:P'CQ}. Consider the function

" LGONN
o= 3 o
€¥

(the same function as the one we used in §20, only corresponding to the family 3 instead
of ). The same argument as in §20 shows that

S g(P)u(P') < Cup(Q)

Pep
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for some C7>0 depending on the dimension d and the goodness parameters of p only.
Define
P ={P eP:P' CQ. and g(P') <3C1}.

Note that
DoouP)= Y wP)= Y wPh= > wP).
Pleﬁp* Plem Plem Ple{p
P'ZQ- g(P")>3C1
However,

douP)z > w@)=1-e)u(Q).
Pep Qe
Further, since the diameter of each P’ € is at most 8¢(P') <8ad~14(Q), every cell P’ &P
that is not contained in Q. is contained in Q\Qa2., provided that a<§5(5. Thus, under
this restriction,
> n(P) < p(Q\Qae) <C(Q).

Pep
P'ZQc

Finally, by Chebyshev’s inequality,

S oy <MY

Pep 3
g(P")>3C,
Bringing these three estimates together, we get the inequality - p/cgp- (P =iu@),
provided that A, € and « satisfy some restrictions of the admissible type.
Now we will rarefy the family P* a little bit more. Consider the balls B(zp/, 10¢(P’)),
P'eP*. By the classical Vitali covering lemma, we can choose some subfamily P’ CJ3*
such that the balls B(zp, 106(P’)), P'€’, are pairwise disjoint but

U BGe,300P)> () Bz, 104P)> | P

P/em/ P/esp* P/Esp*

Then we will still have

DowP)ze Y UP) =e Y w(Blzp,30(P) 2e Y p(P) = en(Q).

P’EEB’ P/em/ P/eq:;/ P/eq:;*

It only remains to prove the bound for the function h. Take any x€R!. Let P’ be a

nearest-to-z cell in P’. We claim that for every cell P” €', we have

dist(z, P")+£(P") > 1D(P', P").
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Indeed, if P'=P", the inequality trivially holds even with % in place of 1. Otherwise,
the disjointness of the balls B(zp/, 10¢(P’)) and B(zpr, 106(P")) implies that

dist(P’, P") > |zpr —zpn | —4(L(P")+£(P"))
> 10(L(P")+L(P")) =4(L(P")+L(P")) = 6(£(P") +L(P")),
0
D(P', P") =dist(P', P")+£(P")+£(P") < 2dist(P’, P").
On the other hand,
dist(P’, P") < dist(z, P")+dist(x, P") < 2dist(x, P").

Thus

dist(z, P")+£(P") > dist(z, P") > LD(P', P").

Now it remains to note that

opP") d+ 40Py 1+
ha)= D [z<p~>+dist<x P/,J <) |pEpn| <CaP)<C O
P//em/ ? P//qu ’

23. The function n

Fix the non-BAUPness parameter 6 € (0, 1). Fix any C'* radial function 79 supported in
B(0,1) such that 0<7o<1 and no=1 on B(0, 3). For every P'€P’, define

1 1
e (x) Tlo((wp,)(ﬂﬂwp/)) no<wp,)(wyp/))-
Note that nps is supported in the ball B(zp/,6¢(P’)). This ball is contained in @,
provided that 12ad~1<e (recall that £(P')<2a0~14(Q) and P'CQ.). Also np>1 on
B(:cp/, %5€(P’)) and the support of the negative part of nps is disjoint with supp p. Put
n= Z np:.
Prep
Since even the balls B(zps,10¢(P’)) corresponding to different PP’ are disjoint, we
have —1<n<1.

The goal of this section is to show that, under our usual assumptions, we have
suppnC.S, dist(suppn, L) > AL(Q)=e*£(Q), and

/ ndv > o(d)u(Q)

with some ¢(§)>0 (we remind the reader that we suppress the dependence of constants

on the dimension d and the goodness parameters of the measure p in our notation).
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Proof. The first part of our claim is easy because, for every P’ e’ we have
suppnpr C B(zps, 6((P"))
and
dist(zpr, L) —6(P") = 2A0(Q) — 1206 14(Q) = AL(Q),
as long as 12a<5A=6e3.
To get the second part, recall that, by Lemma 3, for every Q'€£’, we have

/nd(@Q/u—VQf)

< CQK(QI)(H_Q ||77||Lip(supp LPQ/) HQOQ' ||Lip

g Cag_llu/(Q/)g(Ql) HnHLip(supp L,OQ/)'

So our first step will be to show that, for every Q' €Q’, we have
C

||77‘|Lip(supp<pQ/) < 5200
Since the building blocks np/ (P'€P’) of the function n have disjoint supports, it suffices
to check this inequality for each nps separately.

Since ||np/||Lip <C/JE(P"), the inequality is trivial if 20(P’)>e4(Q"). Otherwise, we
cannot have Q'CP’, so we must have Q'NP'=g. However, suppnps is contained in
the 2¢(P")-neighborhood of P’ so it cannot reach supp pg- CQ~ and, thereby, npr=0 on
supp ¢ in this case.

Now, we get

/T]dl/: Z /ndl/Q/

Q’EQ/
> >

QIGQ/

On the other hand, since suppnC@Q and suppn_Nsupp p=&, we have

/nd(%):/m d(@u)>/m du—/(XQ—‘I’) dp.

[ nitequ-cas @) > [nawn) - casie (@),

However,

[reduze 3 @upyzat S uP)z @),
Plem/ P/egpl
while, as we have seen in the beginning of step 2 in §20,

(o= du=lIxo=lluig <Cu(@.

So, we end up with

/ ndv > [c6l—C(e+ad e )]u(Q) > c6'u(Q),

provided that we demand that £>0 is small in terms of §, and a>0 is small in terms of

0 and e, as usual. O
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24. The vector field @
Let m denote the Lebesgue measure in R4 1,

The goal of this section is to construct a Lipschitz compactly supported vector field
1 such that

. '(/J:ZP,Em, Ypr, suppy CS and dist(supp ), L) > AL(Q)=c3(Q);

e Yps is supported in the 20(P’)-neighborhood of P’ and satisfies

C
= N~ < d (p e < <ross
/1/}13 07 HU)P ||L (SK(P/) an HU)P ||LP §2£(P/)2

J 1l dm< O~ u(Q);
(R7)* (¥m)=n;
”T* (¢m) ||L°°(supp v) <0a5—2€—3d—3;

IR ([¢m)l| 2 () SCS~V/1(Q).

Proof. Fix P'eQ’. Let epr be the unit vector in the direction ypr —xp,. Note that
KH—=_c,;VyU, where U is the fundamental solution of the Laplace operator in R4+,

so for every C§° function v in R+, we have
K75 (Au) = —c,V[U*(Au)] = —cqV gu.

In particular,

<RH [(Au)m}v 6P> = _cdvepu-
Note that for every reasonable finite vector-valued measure o, we have
d
(R o == (R"(0,¢)),¢)),
j=1
where e, ..., e4 is any orthonormal basis in H. If we apply this identity to

o=—c; (Au)epm,

and choose the basis eq, ..., eq so that e;=ep:, we will get

(RH)* [fcg1 (Au)eprm] = fcgl (RE[(Au)m],ep) =V, ,u

€pr .

We will now define a function up € C§° for which V., u=np,. To this end, we just put

0
uP/(a:):/ np(x+tep)dt.

— 00
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Since the restriction of nps to any line parallel to eps consists of two opposite bumps,
the support of up: is contained in the convex hull of B(xp:,d4(P’)) and B(yp:,00(P)).
Also, since ||Vinp:| L <C(5)[0¢(P")]~7 and since supp nps intersects any line parallel to
epr over two intervals of total length 464(P") or less, we have

V@< [ (Fneaten)lde< =D
P S np P S [00(P i1

— 00
for all 7>0. Define the vector fields
Ypr=—c; (Aup)ep and 1= Z Ypr.

Pey’

Then, clearly, (R)*(¢prm)=n and we have all other properties of the individual vector
fields ¥ ps we need (the mean-zero property holds because the integral of any Laplacian of
a compactly supported C*° function over the entire space is 0 and the support property
holds because even the balls B(zps, 6¢(P’)) lie deep inside S). We also have

/Id)ldm: > /Ilﬂp/ldméc > [P m(B(zpr, 66(P')))

Pleq}/ P/em/

<O > UPYI<esT Y (P <O Q).

P’ e;p/ P’ em/

To get the uniform estimate for T (1ym), note that for every vector-valued Lipschitz

function F in S and every P’ €', we have

<O1F hip(sy £P) [ o] dim < €5 [Pl (P
Since the kernel of T is still antisymmetric, we have

[T (Wpm)](z)| = ’/(KH(JJ* —),¥pr) dm‘ SCSHIE (2 =) lLipes) (P

WPV ul(P)
— 2 < Cad *A
QT S 1(Q)

for every z€suppv (we remind the reader that ¢(P’)<2ad~14(Q)). Adding these esti-

mates up and recalling our choice A=e3, we get

< C(s—lA—d—l

n(P")
wQ)

HT*’l/)”LOC(Supp v) < Cad= 27343 < Cab= 27343,

Prep/
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It remains to bound R¥ (|yh|m) in L2(v). As usual, we will prove the L2(x) bound first
and then use the appropriate Lipschitz properties to switch to the L?(v) bound.
Recall that for every P'€’, we have [ |[¢p/| dm<Co~1¢(P")®. Hence, we can choose

constants bps € (0, C6~1) so that |¢p/|m—bp/xpr is a balanced signed measure, i.e.,

/|1/Jp/|dm:bp//Xp/ d‘LL

f= Z bp xpr-

Pey’
Note that ||fH%2(M)<C'5_2,u(Q). For each P’e€¥’, denote by V(P’) the set of all points
r€RI! such that dist(z, P')<dist(x, P”) for all P”€%. Note that the sets V(P’) are

closed and cover the entire space R%T1, possibly, with some overlaps. Introduce some

Let

linear order < on the finite set 8’ and put

V/(P)y=V(P)\ | vEP).
Pl/em/
PP’
Then the Borel sets V/(P')CV (P') form a tiling of RI+1.
Let x€V'(P’). We have
[RY (|[elm—f)](x)
= [R"([pr[m)](@) = [R" (bprxp ) @)+ D[R ([pr|m—bprxprp))(@).
PI/GGB/
Pl/#Pl

We have seen in §22 that for every P”ePB’'\{P’}, we have
dist(z, P") > 1D(P', P") > Lu(P").
Thus,
[[R™ (s m— b x| ()| = ] JRSE d<|wp~|m—bp~><p~u>]
—| [ )= K ozl =t )

< 2||KH(x_ .)—KH(J)_ZPII)”LOQ(P//) / |¢Pu| dm
cep”)

S5 5,07

dist(x, P"")d+1

- 06—1 Z(P”) d+1
s (P +dist(z, P7)|

571€(P”)d
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and the same estimate (with the same proof) holds for [T'(|¢pr|m—bprx pru)](x).

Hence,

Z |[ﬁH(llﬁp//|m*bp//XP//ILL)](.T)| g C(Silh(.%) é 0571
P//e(p/
P//#P/

for all zeV’(P’) (here h is the function introduced in §22).
Note also that
IRH (Jtopr[m) || <O

(this is just the trivial bound C¢(P’) for the integral of the absolute value of the kernel
over a set of diameter 12¢(P’) multiplied by the bound C/§¢(P’) for the maximum of

[Yp]).

Thus, we have the pointwise (or, more precisely, p-almost everywhere) estimate

[R™ (|lm)| S Co7 +[R™ (f)l+ Y xvr(pn | R (bprxp ),
Plem/

which converts into

IR (j9|m) |72 < C |8 2@+ 720+ D IbPIXPfIIizw)] <C672p(Q).
Prep’

Due to Lemma 12, it only remains to bound the quantities
g(QI)”RH(‘qu)||Lip(supprQ/)7 QIEQ/7

by some expression depending on § and & only (plus, of course, the dimension and the
goodness constants of y, which go without mentioning).
Note first of all that for every P’ eP’, we have

1BH ([pr[m) i < CO20(P) 7,

because |V|¢p|

another estimate

<|Vp |<C3724(P")~2 and suppp CB(zp,6¢(P")). We also have

Cs1e(P')?
dist(Q~, supp ¥ p )41’

IR (I pr[m)l|ip(@r) <

because [ |¢p|dm<CS~H (P2
To estimate ||]§H(|z/1|m)HLip(Q/E), we fix Q'€Q’ and split

R (Jp|m) = > R (|yppr|m)+ > R (| pr|m).

P:Q.NB(zp:,80(P'))£2 P:QLNB(2p:,80(P'))=2
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Notice that each P’ in the first sum satisfies ¢(P’)>£el(Q’). Indeed, if £(P")<((Q"),
then we must have P'NQ'=@ and zp: ¢ Q" whence 8¢(P')>dist(zp, QL) 2el(Q’). On the
other hand, if the cell P’ in the first sum satisfies £(P’) >2((Q’) then zg € B(zp/, 10¢(P")).
However, the balls B(zp/,10¢(P’)) are pairwise disjoint, so there may only be one cell
P’ in the first family with this property. Thus, the total number of cells P’ in the first
sum is bounded by Ce~?. Since each corresponding function RH (| pr|m) has Lipschitz
norm at most C§~24(P")~1<C6 27 1(Q’)~, we conclude that the Lipschitz constant
of the first sum on @’ is bounded by Ce=4-1§-2¢(Q")~*.

For each P’ in the second sum, we have

Co~tu(P)  _ Co'u(P)
dist(Q~, supp p )4+t = [eD(Q’, P")]d+1"

IR (|4bpr |m)||Lip(qr) <

Thus, the Lipschitz constant of the first sum on Q. is bounded by

. du(x) 1 - N
coe (dﬂ)/ O T e g SO0 U D

25. Smearing of the measure v

The goal of this section is to replace the measure v by a compactly supported measure v
that has a bounded density with respect to the (d+1)-dimensional Lebesgue measure m in
RI*L. More precisely, for every x>0, we will construct a measure ¥ with the following
properties:

e U is absolutely continuous and has bounded density with respect to m;

e supprCS and dist(supp v, L) 2 AL(Q);

o 7(S)=u(S)<p(Q);
[ndo=[ndv—s;
JIRH ([p|m)|* dir< [ | RH (job|m)|* dv-+3;
[|RF512do< [ |RFv|? dv+ .

It is important to note that this step is purely qualitative. The boundedness of the
density dv/dm will be used to show the existence of a minimizer in a certain extremal
problem and the continuity of the corresponding Riesz potential but the bound itself will
not enter any final estimates.

Fix some radial non-negative C* function ¢ with supp ¢4 CB(0,1) and [ @1 dm=1.
For 0<s<1, define

—d—1

ps(r)=s""""p1(s 7 a)

and

Vs =V* Q.
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Clearly, all the supports of the measures v, are contained in some compact set and v,
converge to v weakly as s—0+. If s is much less than A¢(Q), we have supp v, CS and
dist(supp vs, L) >AL(Q). Also, the total mass of v, is the same as the total mass of v for
all s.

Note that both 7 and |§H (|1/J|m)|2 are continuous functions in S, so the weak con-
vergence is enough to establish the convergence of the corresponding integrals. What is
less obvious is that the integrals [ |RHv,|? dv, also converge to the integral [ |RFv|? dv
because formally it is a trilinear form in the measure argument with a singular kernel.

Note, however, that for every finite measure o, we have RHo=RH (o0—0*), where
o* is the reflection of the measure o about the boundary hyperplane L of S, that is,
o*(E)=0(E*), with E*={z*:x€E}. Moreover, R commutes with shifts and, since
is radial (all we really need is the symmetry about H), we have (vxp,)*=v**ps.

Hence,

Ry = R [vxps—v"xp,] = R¥[(v—v") v o] = [R™ (v—v")] %o

However, by Lemma 1, R (v—v*) is a bounded Lipschitz function, so the convergence
[RE (v—v*)]*ps— RY (v—v*) as s—0+ is uniform on compact sets and so is the conver-
gence |[RH (v—v*)]*ps|?—|RH (v—v*)|2. Thus, despite all the singularities in the kernel,
|RH |2 converges to |REv|? uniformly, which is enough to ensure that

/|ﬁHI/S|2 dz/s—>/\1§Hl/\2dV

as s—0+. So, we can take v=v, with sufficiently small s>0.

26. The extremal problem

Fix A=A(d)€(0,1) to be chosen later (as usual, the dependence on the dimension and

the goodness parameters of u is suppressed) and assume that

/ IR )2 dv < A\u(Q).

Then, choosing a sufficiently small s2>0, we can ensure that the measure & constructed

in the previous section, satisfies

[P <xuQ). [ ndo=0u@) and  [|R(uim) do < 0u(Q),

where 6,©>0 are two quantities depending only on § (plus, of course, the dimension d

and the goodness and AD-regularity constants of p).
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Our aim is to show that if A=A(6)>0 is chosen small enough, then these three
conditions are incompatible.

Then, since the last two inequalities hold, the first one
should fail, that is, we must have

/ BRIV dv> 2 Q).

We can next deduce from the estimates in §21 that

IR™ (v =vQ)l[72(s) = A =0 (e, )]n(Q).-

Combining this inequality with the results from §20, we obtain the estimate

1F9 2 = [3A—0(e, )] u(@Q) = 27°1(Q)

for every densely packed cell Q€£y, where the last identity is the definition of the
constant 7. As explained in §18 and §19, this finishes the proof of our theorem. So, the
rest of the paper will be devoted just to the proof of the incompatibility in question.

For non-negative a€ L>°(m), define 7, =av and consider the extremal problem

=(a) = Mi(@Q)all 1 gy + / |RY 5,247, — min

under the restriction [ ndr, >0p(Q). Note that since 7 is absolutely continuous and has

bounded density with respect to m, the measure 7, is well defined and has the same
properties.

The goal of this section is to show that the minimum is attained and for every
minimizer a, we have ||al|pe(m)<2 and

IR 5,2+ 2(RM)* [(RM 54) 7] <60
everywhere in S.

Take any minimizing sequence aj € L°°(m). Note that we can assume without loss
of generality that [|a||Le(m)<2 because otherwise Z(ax)>2Au(Q)>

E(1). Passing to a
subsequence, if necessary, we can also assume that ar—a weakly in L°°(m) (considered
as L*(m)*).

Then RH Va,, —RH U, uniformly on supp 7, because the set of functions

~ dv
KH(z—-
(@=-)-—
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(x€supp ) is compact in L'(m) as it is the image of the compact set supp 7 under the

continuous map

~ d
SBZEF—)KH(I*')ﬁELl(m).

Thus
/|§Hﬂak|2dﬂak—>/|§Hﬂa|2dﬂa.

Also a=0, ||al| e () <Uminfy o0 |ar]|Loo (m), and [ 7 die, — [ 1 do,.
Combining these observations, we see that a satisfies all restrictions of the extremal
problem and

Z(a) <liminf =(ag).
k—o0

As ap was a minimizing sequence, we conclude that a is a minimizer of the functional =.
Note that for every (admissible) a in the domain of minimization, the function RH 7,
is continuous in S. Moreover, its maximum and modulus of continuity are controlled by
llal| o (m) (although the exact constant in this control can be very large).
Let UCRY*! be any Borel set with #,(U)>0. For t€(0,1), consider the function
ar=(1—txy)a. In general, it is not admissible, but it is still non-negative and satisfies

lla || Lo (m) < llal| Los (m) -
Note that

/ |R i, |2 dirg,
:/§H9a|2daa—tuj |}~3Hf/a|2d17a+2/(EHDQ,I:EH(XU%»df/a +O#)
= [R5, —t [ [R5 2R (R 7)) do+O(F)
as t—0+. For small ¢t>0, consider

()

Since a is admissible and n<1, we have

/"dtd”:mﬁ%(/”dﬁa‘fﬁndﬁa)

(@) 45 _
> ok | 6(@) -9, ) | = 0u(Q)

Hence, a; is admissible. On the other hand,

~ DG(C ) .
el < 1- m
HatHL (m) ( t@ (Q)) Ha||L°°( )
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and
BHE 245 —(1— 7 (U) - BHE 12 di
/|R vg,|“d at—(l t@,u(Q)) /|R a|” AVa, -
Thus,
i e
<o) +i{3E(@ 5 - [ 1R P42 ()] a7 | +O(E)
as t—0+.

Since a is a minimizer, the coefficient at ¢ must be non-negative:

32(a) ) )< Q) i
0(Q) o(U) < 0u(Q) o(U) S6A0™ 10 (U).

As this inequality holds for every set U of positive 7, measure, we conclude that

/ [|RY 5|2+ 2(R7)* (R 5) 0] divg <
U

|RP 5|2+ 2(R™)* [(RT 7)) 0] <61

almost everywhere with respect to the measure 7,. However, the left-hand side is a
continuous function (another use of the fact that the density of 7 with respect to m is
bounded), and, thereby, the last estimate extends to supp#, by continuity. Since the
left-hand side is subharmonic in S\supp #,, vanishes on the hyperplane L, and tends to
zero at infinity, the classical maximum principle for subharmonic functions allows us to

conclude that the last inequality holds everywhere in the half-space S.

27. The contradiction

Integrate the last inequality against |1|dm, where 1) is the vector field constructed in
§24. We get

SR ol dme2 [(R) (R ,)5) ] dm <6307 [ 0]dm < 030715 u(Q).
Rewrite the second integral on the left as
[ R B ol d
Then, by the Cauchy—Schwarz inequality,

@ (@ )0 o] dm < { JER daa}l/z [ 1 uim) daa}

<Z(a)'/? [ / IEH<|w|m>\2daa]1/2.

1/2
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Recall that [|a|| e () <2, so we can replace 7, by 7 in the last integral losing at most a

factor of 2. Taking into account that

J1R Q] ar<0p(@).

we get
\ JE @z dm\ < CPO12u(Q).

Thus,
[ 1R 0 dm < CON Q).

Using the Cauchy—Schwarz inequality again, we obtain

[@5spams | [ R0 dm]m | |¢|dm}1/2 <CON(Q).

However, the integral on the left equals

[y wmyaz, = [ @y @m) dia— [ 1 @m) doa> [ ndn,-o(e,0)(8)

(see §24). This yields

/(RH)*(%/W) dve = 0p(Q) = (e, )0 (S) = [0 =20 (&, )] u(Q) = S 1(Q),

if € and « are chosen small enough (in this order). Thus, if A has been chosen smaller
than a certain constant depending on § only (so that 0(6))\1/4<%9, i.e., the upper
bound for [ (]le Va, ) dm is less than the lower bound for the same quantity), we get a

contradiction. This completes the proof of the main theorem of this paper.

There, still, may be some other results one can obtain using these and some addi-
tional (yet unknown) ideas, more wonderful than any you can find in this paper; but
now, when we try to get a clear view of those, they are gone before we can catch hold of
them. Even though we part with even the most patient and the most faithful readers at
this point, it is not really Good-bye, because, as it was once said at the end of another
much better known tale, the Forest will always be there ... and anybody who is Friendly

with Bears can find it.
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