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ORLICZ SPACES THAT ARE UNIFORMLY ROTUND IN THE
DIRECTION OF WEAKLY COMPACT SETS

Zhongrui Shi*

Abstract. Sufficient and necessary condition of Orlicz spaces equipped with
Orlicz norm that are uniformly rotund in the direction of weakly compact sets
using only conditions on generated function of the space are given.

1. INTRODUCTION

Let X be a Banach space and let S(X) and B(X) be the unit sphere and the
unit ball of X. X is said to be uniformly rotund in the direction of weakly compact
sets (URWC) if kxnk ! 1, kynk ! 1, kxn + ynk ! 2, and xn ¡ yn

w! z (in weak
topology) imply that z = 0 [7]. X is said to be uniformly rotund in every direction
(URED) if kxnk ! 1, kynk ! 1, kxn + ynk ! 2, and xn ¡ yn ! z (in norm
topology) imply that z = 0. X is said to be uniformly weak* rotund (W*UR) if
kxnk ! 1, kynk ! 1, and kxn + ynk ! 2 imply that xn ¡ yn

w! 0. X is said to
be rotund (R) if kxk = 1, kyk = 1, and kx + yk = 2 imply that x = y. Clearly,

W*UR =) URWC =) URED =) R:

Banach spaces with these types of rotundity were studied in [7], [8] and have
been applied to fixed point theory. For Orlicz spaces with Luxemburg norm, W*UR
is equivalent to R. But for Orlicz spaces with Orlicz norm, W*UR and URED have
much different criteria [11], [12]. All known characterizations of URWC for Orlicz
spaces with Orlicz norm have been described by reference both to elements in the
Orlicz space and to the generated function M [5], [10], [14]. Up to now, no
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characterization of URWC by using only conditions on the generated function M
has been given. As stated in [9], “some new methods and techniques are needed to
solve this kind of difficult problems.” In this paper, we give a characterization of
URWC by using only conditions on the generated function M . As a consequence,
we show that no criterion of URWC for Orlicz spaces with Orlicz norm can be
obtained by using only the classical conditions of M , such as M 2 UC, M 2 ¢2,
and M 2 r2. The proof of our result is relatively complicated.

In the sequel, let < be the set of all real numbers. A function M : < !
<+ is called an N-function if M is convex and even, limu!0

M(u)
u = 0, and

limu!1
M(u)

u = 1. The complemented function N of M is defined in the sense
of Young by

N(v) = sup
u2<
fuv ¡M(u)g:

It is known that if M is an N-function, then its complemented function N is also
an N-function. Let p and q be the derivatives on the right-hand of M and N ,
respectively. M is said to be strictly convex (SC) if M(u+v

2 ) <
M(u)+M (v)

2 for u 6=
v. M is said to be uniformly convex if for every " > 0, there exists ± > 0 such that
for given u and v, if ju¡ vj ¸ " max(juj; jvj), then M(u+v

2 ) < (1¡ ±)M (u)+M(v)
2

.
M is said to satisfy the ¢2 condition for large u (M 2 ¢2) if for some u0 > 0
there exists K > 0 such that for all u ¸ u0, M(2u) ∙ KM(u). M is said to
satisfy the r2 condition (M 2 r2) if N 2 ¢2. Let G be a bounded set in <n

and let (¹; §; G) be a finite atomless measure space. For a real-valued measurable
function x(t) on G, let ½M(x) =

R
G M(x(t)) d¹, called the modular of x. The

Orlicz function space LM generated by M is the Banach space

LM = fx(t) : ½M(¸x) < 1 for some ¸g;

equipped with the Orlicz norm

kxkM = sup
½N(y)∙1

Z
G

x(t)y(t) d¹ = inf
k>0

1

k

³
1 + ½M (kx)

´
:

See [3], [6] for references to Orlicz function spaces.
We firstly state several lemmas.

Lemma 1. ([3, 13]) For x 2 LM and for k 2 K(x) = [K?; K??], where
K? = inffk : ½N (p(kx)) ¸ 1g and K?? = supfk : ½N (p(kx)) ∙ 1g, the Orlicz
norm kxkM is given by

kxkM =
1

k

³
1 + ½M(kx)

´
:
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Lemma 2. ([11]) Suppose 2 ¸ kxnkM = 1
kn

³
1 + ½M (knxn)

´
(n = 1; 2; : : : )

and kn !1. Then xn(t) is convergent to zero in measure.

Lemma 3. ([11]) Suppose M 2 ¢2, and kxnkM = 1
kn

³
1+½M (knxn)

´
! 1,

kynkM = 1
hn

³
1 + ½M(hnyn)

´
! 1 (n ! 1), with fkng and fhng bounded. If

kxn + ynkM ! 2 then knxn(t)¡ hnyn(t)
¹! 0 in measure.

Lemma 4. ([11]) Let kxnkM = 1
kn

³
1 + ½M (knxn)

´
! 1, kynkM = 1

hn

³
1 +

½M(hnyn)
´
! 1 (n !1), with fkng and fhng bounded. For vn 2 LN , ½N (vn) ∙

1 and
R

G (xn(t) + yn(t)) vn(t) d¹ ! 2, then there hold uniformly for all sets
Gn 2

P
,

lim
n!1

Z
Gn

³
knxn(t)¡hnyn(t)

´
vn(t) d¹= lim

n!1

Z
Gn

³
M(knxn(t))¡M(hnyn(t))

´
d¹:

Next, we prove some lemmas with elementary arguments.

Lemma 5. If M 2 SC, then 0 < ¸ < 1, Á(t) =
M(¸u+(1¡¸)t)

¸M (u)+(1¡¸)M (t)
is

increasing on [0; u].

Proof. Because M 2 SC, p(u) is increasing on [0;1), we get

Á0(t) = (1¡¸)
p
³

¸u+(1¡¸)t
´³

¸M(u)+(1¡¸)M(t)
´
¡M

³
¸u+(1¡¸)t

´
p(t)

[¸M(u)+(1¡¸)M(t)]2

> 0

Lemma 6. For " 2 (0; 1), ¸ 2 [®; ¯] ½ (0; 1), and u in <, let

x =

M

µ
u + (1¡ ")u

2

¶
M(u) + M((1¡ ")u)

2

and

y =
M

¡
¸u + (1¡ ¸)(1¡ ")u

¢
¸M(u) + (1¡ ¸)M((1¡ ")u)

:

Then

lim
x!1

y = 1 uniformly for ¸ 2 [®; ¯] if and only if lim
y!1

x = 1:
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Proof. Let f(¸) = M
³

¸u+(1¡¸)(1¡")u
´
¡¸M(u)¡(1¡¸)M

³
(1¡")u

´
.

By [6], f (¸) is convex and for ¸0; ¸00 2 [®; ¯], ¸0 < ¸00,

¸00

¸0
f(¸0) ∙ f(¸00) ∙ 1¡ ¸00

1¡ ¸0
f(¸0):

Thus

¸00

¸0
h
M

³
¸0u + (1¡ ¸0)(1¡ ")u

´
¡ ¸0M(u)¡ (1¡ ¸0)M

³
(1¡ ")u

´i
∙ M

³
¸00u + (1¡ ¸00)(1¡ ")u

´
¡ ¸00M(u)¡ (1¡ ¸00)M

³
(1¡ ")u

´
∙ 1¡¸00

1¡¸0
h
M

³
¸0u+(1¡¸0)(1¡")u

´
¡ ¸0M(u) + (1¡ ¸0)M

³
(1¡ ")u

´i
:

Hence

¸00

¸0
h
¸0M (u)+(1¡ ¸0)M

³
(1¡ ")u

´ih M
³

¸0u+(1¡ ¸0)(1¡ ")u
´

¸0M(u)+(1¡ ¸0)M
³

(1¡ ")u
´ ¡ 1

i

∙
h
¸00M(u)+(1¡¸00)M

³
(1¡")u

´ih M
³

¸00u+(1¡¸00)(1¡")u
´

¸00M(u)+(1¡¸00)M
³

(1¡")u
´¡1

i

∙ 1¡¸00

1¡¸0
h
¸0M(u)+(1¡¸0)M

³
(1¡")u

´ih M
³

¸0u+(1¡¸0)(1¡")u
´

¸0M(u)+(1¡¸0)M
³

(1¡")u
´¡1

i

and so

¸00

¸0
h
¸0 + (1¡ ¸0)

M
³

(1¡ ")u
´

M(u)

ih M
³

¸0u + (1¡ ¸0)(1¡ ")u
´

¸0M(u) + (1¡ ¸0)M
³

(1¡ ")u
´ ¡ 1

i

∙
h
¸00 + (1¡ ¸00)

M
³

(1¡ ")u
´

M(u)

ih M
³

¸00u + (1¡ ¸00)(1¡ ")u
´

¸00M(u) + (1¡ ¸00)M
³

(1¡ ")u
´ ¡ 1

i

∙ 1¡¸00

1¡¸0
h
¸0+(1¡¸0)

M
³

(1¡")u
´

M(u)

ih M
³

¸0u+(1¡¸0)(1¡")u
´

¸0M(u)+(1¡¸0)M
³

(1¡ ")u
´ ¡ 1

i
:

Note that ® < ¸0 + (1 ¡ ¸0)M((1¡")u)
M(u) < 1, ® < ¸00 + (1 ¡ ¸00)M((1¡")u)

M(u) < 1,
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®
¯ ∙

¯̄̄
¸00
¸0

¯̄̄
∙ ¯

®
, 1¡¯

1¡® ∙
¯̄̄

1¡¸00
1¡¸0

¯̄̄
∙ 1¡®

1¡¯
. Hence,

M
³

¸0u+(1¡ ¸0)(1¡ ")u
´

¸0M(u)+(1¡ ¸0)M
³

(1¡ ")u
´ !1 ()

M
³

¸00u+(1¡ ¸00)(1¡ ")u
´

¸00M (u)+(1¡ ¸00)M
³

(1¡ ")u
´ !1:

Replacing ¸00 by 1
2

and ¸0 by ¸, respectively, leads to the conclusion.

Lemma 7. Let u > 0. If
M(u)+M((1¡")u)

2

M
³

u+(1¡")u
2

´ ∙ 1+´, then there exists, (1¡ "
2)u ∙

t ∙ u such that

p(t¡ "

2
u) ¸

³
1¡ 2´

2¡ "

"

´
p(t):

Proof. From
M(u)+M((1¡")u)

2

M
³

u+(1¡")u
2

´ ∙ 1 + ´, we have

2´M
³

(1¡ "

2
)u

´
¸ M(u) + M

³
(1¡ ")u

´
¡M

³
(1¡ "

2
)u

´
¡M

³
(1¡ "

2
)u

´
=

Z u

(1¡ "
2

)u
p(s) ds¡

Z (1¡ "
2

)u

(1¡")u
p(s) ds

=

Z u

(1¡ "
2

)u
[p(s)¡ p(s¡ "

2
u)] ds

¸ "

2
u[p(t)¡ p(t¡ "

2
u)]

where (1¡ "
2 )u ∙ t ∙ u. From (1¡ "

2 )up
³

(1¡ "
2 )u

´
¸M

³
(1¡ "

2)u
´

, we have

4´

"
(1¡ "

2
)p(t) ¸ p(t)¡ p(t¡ "

2
u):

Hence

p(t¡ "

2
u) ¸

³
1¡ 2´

2¡ "

"

´
p(t):

In [11], necessary and sufficient conditions of URED are given in terms of
derivatives of M . In Lemma 8, necessary and sufficient conditions of URED in
terms of M directly are given.

Lemma 8. ([11]) LM is URED if and only if
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(i) M 2 SC;

(ii) Let [®; ¯] ½ (0; 1), and "; "0 2 (0; 1) , there exists u0 > 0 , D = D("; "0) > 0
and ° = °("; "0) > 0 such that for all ¸ 2 [®; ¯], and for all juj ¸ u0, if
¸M(u) + (1¡ ¸)M

³
(1¡ ")u

´
∙ (1 + °)M

³
¸u + (1¡ ¸)(1¡ ")u

´
, then

M(u) ∙ D("; "0)
M ("0u)

"0
:

Proof. By [11], it is enough to show that (ii) is necessary. Otherwise, for
some " > 0 there exist sequences un % 1 and ¸n 2 [®; ¯] such that M(un) ¸
2nn

M("un)
" and

¸nM(un) + (1¡ ¸n)M
³

(1¡ ")un

´
∙ (1 +

1

n
)M

³
¸nun + (1¡ ¸n)(1¡ ")un

´
:

By Lemma 6, there exists (1 ¡ "
2 )un ∙ tn ∙ un so that p(tn ¡ "

2un) ¸
³

1 ¡
2´ 2¡"

"

´
p(tn). Since the function f(¸) in the proof of Lemma 5 is convex, we

can get that M ("tn)
"M (tn) ! 0. If necessary passing to a subsequence, we have that

tnp(tn) ¸ M(tn) > 2nnM("tn)
" ¸ 2nnp( "tn

2 ) "tn
2"

. It leads a contradiction from the
proof of Theorem in [11].

Remark 1. ([11]) By the proof of Lemma 6, we have LM is URED if and
only if

(i) M 2 SC;

(ii) for 0 < "; "0 < 1 there exist positive number D("; "0) < 1, and u0 > 0

and ° = °("0) > 0 so that for all juj ¸ u0 with M(u) + M
³

(1 ¡ ")u
´
∙

(1 + °)2M
³

(1¡ "
2 )u

´
, we have

M(u) ∙ D("; "0)
M ("0u)

"0
:

For conveniece, we let D("; "0) be the infimum over the above inequality,
i.e.,D("; "0) = inffK > 0 : M(u) ∙ K M ("0u)

"0 g. Then we have

Lemma 9. If LM is URWC then for 0 < " < 1 there exists D("), 0 < D(") <
1, such that for all "0 2 (0; 1),

D("; "0) ∙ D(")

where D("; "0) is defined as in (ii) of Remark 1.
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Proof. Define D(") = sup D("; "0) where "0 taken over all (0; 1). Because of
M (v)

v < M (u)
u

as 0 < v < u, it is follows that D("; "0) is decreasing with respect
with "0. Suppose D(") = 1. Then there exist "n & 0 with D("; "1) < D("; "2) <
¢ ¢ ¢ < D("; "n) %1. Define

<n =

8><>:u ¸ n;

M(u) + M((1¡ ")u)

2

M
³u + (1¡ ")u

2

´ < 1 +
1

n
: M(u) > D("; "n¡1)

M
³

"nu
´

"n

9>=>;
where D("; "0) = 0. Then <1 \ <2 6= ;. In fact, suppose that <1 \ <2 = ;, i.e.,

<c
1 [<c

2 = <, we have that for all u ¸ 2,
M(u)+M((1¡")u)

2

M
³

u+(1¡")u
2

´ < 1 + 1
2
, and

M(u) ∙ D("; "0)
M

³
"1u

´
"1

= 0;
or

M(u) ∙ D("; "1)
M

³
"2u

´
"2

:

Thus for all u ¸ 2,
M(u)+M((1¡")u)

2

M
³

u+(1¡")u
2

´ < 1 + 1
2

and

M(u) ∙ D("; "1)
M

³
"2u

´
"2

:

Hence D("; "2) ∙ D("; "1), a contradiction with the fact that D("; "1) < D("; "2).
In general, assume that

<1 \<2 \ ¢ ¢ ¢ \ <n 6= ;;

then <1 \ <2 \ ¢ ¢ ¢ \ <(n+1) 6= ;. Indeed, if <1 \ <2 \ ¢ ¢ ¢ \ <(n+1) = ;, i.e.,

<c
1 [<c

2 [ ¢ ¢ ¢ [ <c
(n+1) = <, we get that for all u ¸ n,

M(u)+M((1¡")u)
2

M
³

u+(1¡")u
2

´ < 1 + 1
n

,

M(u) ∙ D("; "1)
M

³
"2u

´
"2

;
or

M(u) ∙ D("; "2)
M

³
"3u

´
"3

;
or
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: : : ; : : : ;
or

M(u) ∙ D("; "n)
M

³
"(n+1)u

´
"(n+1)

:

Then we have one of the following contradictions:

D("; "2) < D("; "1) ∙ D("; "2);

D("; "3) < D("; "2) ∙ D("; "3);

: : : ; : : : ;

D("; "n+1) < D("; "n) ∙ D("; "(n+1)):

Hence it holds that

<1 \<2 \ ¢ ¢ ¢ \ <n 6= ;:

Take un 2 <1 \<2 \ ¢ ¢ ¢ \ <n with un ¸ n, and
M(un)+M((1¡")un)

2

M
³

un+(1¡")un
2

´ < 1 + 1
n , and

M(un) > D("; "k¡1)
M

³
"kun

´
"k

; 0 ∙ k ∙ n:(1)

By Lemma 7, there exists (1¡ "
2)un ∙ tn ∙ un with

p(tn ¡ "

2
un) ¸

³
1¡ 2

n

2¡ "

"

´
p(tn):(2)

Choose two disjoint measurable subsets G and F and c > 0 satisfying ¹G = ¹F
and

N
³

p(c)
´

¹G = 1 = N
³

p(c)
´

¹F:

Let E ½ F such that

N
³

p(c)
´

¹E =
1

2
:

Let Gn ½ G such that

(1¡ "

2
)tnp

³
(1¡ "

2
)tn

´
¹Gn =

1

2
;
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and E ½ En ½ F

N
³

p
³

(1¡ "

2
)tn

´´
¹Gn + N

³
p(c)

´
¹En = 1:

Define

kn = cp(c)¹En + tnp(tn)¹Gn;

hn = cp(c)¹En + (1¡ "

2
)tnp

³
(1¡ "

2
)tn

´
¹Gn;

xn =
1

kn
(cjEn

+ tnjGn
);

yn =
1

hn
(cjEn

+ (1¡ "

2
)tnjGn

);

vn = p(c)jEn
+ p

³
(1¡ "

2
)tn

´¯̄̄
Gn

):

Then

½N (vn) = 1;

hn ∙ kn ∙ cp(c)¹F +
2

2¡ "

1

(1¡ 2
n

2¡"
" )

1

2
∙ cp(c)¹F +

2

2¡ "
;

kn ¡ hn ¸ "

2
tnp

³
(1¡ "

2
)tn

´
¹Gn

¸ "

4
:

On the other hand, by the Theorem 1.29 of [6], we have

kynkM = hvn; yni = 1;

and

kxnkM ∙ 1

kn

³
1 + ½M(knxn)

´
=

1

kn

³
½N (vn) + M(c)¹En + M(tn)¹Gn

´
∙ 1

kn

³
cp(c)¹En + tnp(tn)¹Gn

´
∙ 1;

but
hvn; knxni = cp(c)¹En + tnp

³
(1¡ "

2
)tn

´
¹Gn

¸ cp(c)¹En +
1

(1¡ 2
n

2¡"
" )

tnp(tn)¹Gn



352 Zhongrui Shi

¸ 1

(1¡ 2
n

2¡"
" )

kn:

hence hvn; xn + yni ! 2 (n !1), kxn + ynkM ! 2 and

M(un)¹Gn ∙ D("; ")
M("un)

"
¹Gn ∙ D("; ")

M((1¡ "
2 )tn)

"
¹Gn ∙ D("; ")

2"
:

Without loss of generality, assume " > "1, then for arbitrary ¿ > 0, let 1
D(";"I ) <

¿ 2"
D(";")

and take k0 such that for all k ¸ k0, sup1∙i∙I
M ("kui)¹Gi

"k
< ¿ , so we have

sup
1∙i

M("kui)¹Gi

"k

∙ max

(
sup

1∙i∙I

M("kui)¹Gi

"k

; sup
I<i<k

M("kui)¹Gi

"k

; sup
k∙i

M("kui)¹Gi

"k

)

∙ max

(
sup

1∙i∙I

M("kui)¹Gi

"k

; sup
I<i<k

M("iui)¹Gi

"i

; sup
k∙i

M(ui)¹Gi

D("; "k¡1)

)

∙ max

(
sup

1∙i∙I

M("kui)¹Gi

"k

; sup
I<i<k

M (ui)¹Gi

D("; "k¡1)
; sup

k∙i

M(ui)¹Gi

D("; "k¡1)

)
< ¿:

By [1], funjGn
g1n=1 is relatively weakly compact, but

hÂE; xn ¡ yni =
³ 1

kn
¡ 1

hn

´
c¹E 6¡! 0 (n !1);

a contradiction to that LM is URWC.

Theorem 1. An Orlicz space LM equipped with Orlicz norm is URWC if and
only if

(i) M 2 SC;

(ii) for [®; ¯] ½ (0; 1) and for 0 < " < 1 there exist 1 > D = D("), and
u0 > 0, such that for all "0, 0 < "0 < 1, we can find ° = °("0) > 0 so that
for all ¸, ¸ 2 [®; ¯], and all u ¸ u0, with ¸M(u) + (1¡ ¸)M

³
(1¡ ")u

´
∙

(1 + °)M
³

¸u + (1¡ ¸)(1¡ ")u
´

, we have

M(u) ∙ D
M("0u)

"0
:
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Proof. Necessity. Since URWC implies Rotundity, we get (i) M 2 SC.
By Lemma 6, we have

M (u)+M((1¡")u)
2

M
³

u+(1¡")u
2

´ ! 1 () ¸M(u) + (1¡ ¸)M((1¡ ")u)

M
³

¸u + (1¡ ¸)(1¡ ")u
´ ! 1

and by Lemma 9, (ii) follows.
Sufficiency. If we suppose that LM is not URWC, there exist sequences fxng

and fyng satisfying kxnkM = 1
kn

³
1 + ½M (knxn)

´
! 1, kynkM = 1

hn

³
1 +

½M(hnyn)
´
! 1 (n !1), kxn + ynkM ! 2 but xn ¡ yn ´ zn

W! z 6= 0.

If xn
¹! 0 (yn

¹! 0) in measure, set x0n = xn + zn
4

, y0n = xn + 3zn
4

. It is easy to
see that kx0nkM ! 1, ky0nkM ! 1, kx0n + y0nkM ! 2 and x0n ¡ y0n ´ z0n = zn

2

LN!
z
2 6= 0. Hence z0n = zn

2

W! z
2 6= 0 (n ! 1). Clearly x0n 6 ¹! 0. So we assume that

xn 6 ¹! 0 and yn 6 ¹! 0 if necessary replacing fxng and fyng by fx0ng and fy0ng. By
Lemma 2, we get that fkng and fhng are bounded, assume kn ! k, hn ! h by
passing to a subsequence if necessary.

Lemma 3 yields that knxn¡hnyn
¹! 0, i.e, (kn¡hn)xn¡hnzn

¹! 0. If k = h

it follows that zn
¹! 0, so zn

w¤! 0, a contradiction with z 6= 0. Hence k 6= h,
assume k > h and kn > hn, passing to a subsequence if necessary. We can do the
same in the case of k < h. Define ¸n = hn

kn+hn
∙ 1

2 . Since fkng and fhng are
bounded we deduce that ¸n 2 [®; ¯] for some [®; ¯] ½ (0; 1).

Since knxn(t)¡ hnyn(t)
¹! 0 and z 6= 0, by N. Riesz Theorem, there exists a

subset G0 ¾ G such that on G0 there uniformly hold

knxn(t)¡ hnyn(t) ! 0;(3)

zjG0
6= 0:(4)

For arbitrary " > 0.
Since fzng is weakly compact, then fzng is LN weakly compact. From [1], we

take 0 < "0 < 1 such that

½M("02kzn)

"0
<

"2

4D
(5)

By (ii), there is ° > 0 such that for all ¸; ¸ 2 [®; ¯], and all u; v, max(juj; jvj) ¸ u0,
ju¡vj ¸ " max(juj; jvj), with ¸M(u)+(1¡¸)M(v) ∙ (1+°)M (¸u+(1¡¸)v),
by Lemma 5, we have

M(u) ∙ D
M("0"u)

"0"
:(6)
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By (3) and (4)

½M (
hz

k ¡ h

¯̄̄
G0

) > 0(7)

For each n, split G into the following parts:

An = ft 2 G nG0 : max(jknxn(t)j; jhnyn(t)j) < "g;
Bn = ft 2 G nG0 nAn : jknxn(t)¡ hny(t)j < " max(jknxn(t)j; jhnyn(t)j)g;

Hn = ft 2 G nG0 nAn nBn : (1 + °)M
³ knhn

kn + hn
(xn(t) + yn(t))

´
<

hn

kn + hn
M

³
knxn(t)

´
+

kn

kn + hn
M

³
hnxn(t)

´
g;

In = ft 2 G nG0 nAn nBn nHn : jxn(t)j < jyn(t)jg;
Qn = ft 2 G nG0 nAn nBn nHn n In : jzn(t)j < "jxn(t)jg;
Tn = G nG0 nAn nBn nHn n In nQn

= ft 2 G nG0 : max(jknxn(t)j; jhnyn(t)j) ¸ ";

jknxn(t)¡ hny(t)j ¸ " max(jknxn(t)j; jhnyn(t)j);

(1 + °)M
³ knhn

kn + hn
(xn(t) + yn(t))

´
¸ hn

kn + hn
M

³
knxn(t)

´
+

kn

kn + hn
M

³
hnxn(t)

´
;

jzn(t)j ¸ "jxn(t)j and jxn(t)j ¸ jyn(t)jg:
Pick vn 2 B(LN) such that [xn(t) + yn(t)]vn(t) ¸ 0 and

hvn; xn + yni ! 2:

Then

hvn; xni ! 1; hvn; yni ! 1;

thus

k ¡ h = lim
n

(kn ¡ hn) = lim
n

Z
G

[knxn(t)¡ hnyn(t)]vn(t) d¹:

In the following, we estimate the integrals over the above subsets.
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(a) On G0. Since knxn(t)¡hnyn(t) ! 0 uniformly on G0, for n large enough,Z
G0

¯̄̄³
knxn(t)¡ hnyn(t)

´
vn(t)

¯̄̄
d¹ < "kÂGkM :

(b) On An. Clearly, by Hölder Inequality,Z
An

¯̄̄³
knxn(t)¡ hnyn(t)

´
vn(t)

¯̄̄
d¹ < 2"kÂGkM :

(c) On Bn. Z
Bn

¯̄̄³
knxn(t)¡ hnyn(t)

´
vn(t)

¯̄̄
d¹

∙ "

Z
Bn

³
jknxn(t)j+ jhnyn(t)j

´
jvn(t)j d¹

∙ "(kn + hn):

(d) On Hn. Notice

°

1 + °

h hn

kn + hn
½M

³
knxnjHn

´
+

kn

kn + hn
½M

³
hnynjHn

´i
∙ 2¡ kxn + ynkM ! 0;

we get that for n large enough, by Lemma 4Z
Hn

¯̄̄³
knxn(t)¡ hnyn(t)

´
vn(t)

¯̄̄
d¹ < ":

(e) On In. For jxn(t)j < jyn(t)j.
When xn(t)yn(t) ¸ 0, by [xn(t)+yn(t)]vn(t) ¸ 0, we have xn(t)vn(t) ¸ 0 and

yn(t)vn(t) ¸ 0, so xn(t)zn(t) = xn(t)[xn(t) ¡ yn(t)] < 0, then zn(t)vn(t) ∙ 0.
Hence

[knxn(t)¡ hnyn(t)]vn(t) = (kn ¡ hn)xn(t)vn(t) + hn[xn(t)¡ yn(t)]vn(t)

= (kn ¡ hn)xn(t)vn(t) + hnzn(t)vn(t)

∙ (kn ¡ hn)xn(t)vn(t):

When xn(t)yn(t) < 0, by jxn(t)j < jyn(t)j, we have yn(t)vn(t) ¸ 0 and
xn(t)vn(t) ∙ 0, by zn(t) = xn(t)¡ yn(t), then zn(t)vn(t) ∙ 0. Hence

[knxn(t)¡ hnyn(t)]vn(t) = (kn ¡ hn)xn(t)vn(t) + hn[xn(t)¡ yn(t)]vn(t)

= (kn ¡ hn)xn(t)vn(t) + hnzn(t)vn(t)

∙ (kn ¡ hn)xn(t)vn(t):
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We have Z
In

[knxn(t)¡ hnyn(t)]vn(t) d¹ ∙
Z

In

(kn ¡ hn)xn(t)vn(t) d¹:

Notice

1

kn
½M

³
knxnjG0

´
¸ ½M

³
xnjG0

´
! ½M

³ h

k ¡ h
z
¯̄̄
G0

´
and

1 Ã kxnkM =
1

kn

h
1 + ½M

³
knxnjG0

´
+ ½M

³
knxnjGnG0

´i
¸ kxnjGnG0

kM +
1

kn
½M

³
knxnjG0

´
¸

Z
GnG0

jxn(t)vn(t)j d¹ + ½M

³ h

k ¡ h
z
¯̄̄
G0

´
;

we have that for n large enoughZ
GnG0

jxn(t)vn(t)j d¹ ∙ 1¡ ½M

³ h

k ¡ h
z
¯̄̄
G0

´
:

Combining In ½ G nG0Z
In

jxn(t)vn(t)j d¹ ∙ 1¡ ½M

³ h

k ¡ h
z
¯̄̄
G0

´
:

(f) On Qn. For jzn(t)j ∙ "jxn(t)j. From jyn(t)j ∙ jxn(t)j and [xn(t) +
yn(t)]vn(t) ¸ 0, we get xn(t)vn(t) ¸ 0 and zn(t)vn(t) ¸ 0,

[knxn(t)¡ hnyn(t)]vn(t) = (kn ¡ hn)xn(t)vn(t) + hnzn(t)vn(t)

∙ (kn ¡ hn)xn(t)vn(t) + "hnxn(t)vn(t):

Thus Z
Qn

[knxn(t)¡ hnyn(t)]vn(t) d¹

∙ (kn ¡ hn + "hn)

Z
Qn

xn(t)vn(t) d¹

∙ (kn ¡ hn + "hn)
h
1¡ ½M

³ h

k ¡ h
z
¯̄̄
G0

´i
:
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(g) On Tn. For t 2 Tn,

maxfjknxn(t)j; jhnyn(t)jg ¸ ";

jknxn(t)¡ hnyn(t)j ¸ " maxfknjxn(t)j; jhnyn(t)jg;

¸nM
³

knxn(t)
´

+ (1¡ ¸n)M
³

hnyn(t)
´

M
³

¸nknxn(t) + (1¡ ¸n)hnyn(t)
´ ∙ 1 + °:

By "jxn(t)j ∙ jzn(t)j, from (6) and Lemma 5, we get that for t 2 Tn

M
³

knxn(t)
´
∙ D

M
³

"0"knxn(t)
´

"0"
∙ D

M
³

"02kzn(t)
´

"0"
:

Hence, by (5)

½M(knxnjTn
) ∙ D

½M("02kznjTn
)

"0"
∙ D"2

D"
= ":

Since jxn(t)j > jyn(t)j and kn > hn, we have jknxn(t)j > jhnyn(t)j, so ½M (hnynjTn
) ∙

".
Since " > 0 is arbitrary, from (a) to (g), this leads to a contradiction:

k ¡ h ∙ (k ¡ h)
h
1¡ ½M

³ h

k ¡ h
z
¯̄̄
G0

´i
< k ¡ h:

By Lemma 6 and Theorem 1, we have the following:

Remark 2. LM is URWC if and only if

(i) M 2 SC;

(ii) for 0 < " < 1 there exist D = D("), and u0 > 0 such that for all "0,
0 < "0 < 1, we can find ° = °("0) > 0 so that for all juj ¸ u0 with
M(u) + M

³
(1¡ ")u

´
∙ (1 + °)2M

³
(1¡ "

2 )u
´

, we have

M(u) ∙ D
M("0u)

"0
:

Example The Young function defined by

M(u) =

½
Au2 as juj ∙ 2;
B exp juj as juj > 2;
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where A and B are constants, satisfies the condition (ii) in Theorem 1 and Remark
2. The condition (ii) for URWC in Theorem 1 and Remark 2 cannot be expressed
by using classical conditions of M , such as convexity, M 2 ¢2, and M 2 r2.
The condition (ii) for URED in Lemma 8 can be described as saying that, in this
context, a non-uniform ‘point’ (‘sequence’) is a ¢2 ‘point’ (‘sequence’). By an
example in [11], the condition (ii) for URED in Lemma 8 is not equivalent to the
¢2 condition. The condition (ii) for URWC in Theorem 1 is strictly stronger than
the condition (ii) for URED in Lemma 8.
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