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MEROMORPHIC SOLUTIONS OF CERTAIN FUNCTIONAL
EQUATIONS

Mingbo Yang and Ping Li

Abstract. By utilizing Nevanlinna’s value distribution theory, we study the
existence or solvability of meromorphic solutions of functional equations of the
type P (f)f ′P (g)g′ = 1, where P (z) is a polynomial with two distinct zeros
at least. We show that such type of equations have no meromorphic solutions
f and g when P (z) has at least three distinct zeros. Moreover, for some
polynomials P (z) with two distinct zeros only, such type of equations possess
transcendental meromorphic solutions which can be expressed by Weierstrass
℘ function.

1. INTRODUCTION

In this paper, meromorphic functions are always defined in the complex plane
C. Let f(z) be a nonconstant meromorphic function. We shall use the standard
notations in Nevanlinna’s value distribution theory of meromorphic functions such
as T (r, f), m(r, f), N (r, f) and N (r, f) (see, e.g., [4]). We use S(r, f) to denote
the quantity o

(
T (r, f)

)
, (r → ∞, r �∈ E), where the letter E is a set of r ∈ (0,∞)

with finite linear measure. A meromorphic function a(z)( �≡ ∞) is called a small
function with respect to f(z) provided that T (r, a) = S(r, f).

Let f(z) and g(z) be two nonconstant meromorphic functions, and c a finite
complex number. If f(z)−c and g(z)−c have the same zeros counting multiplicity,
then we say that f(z) and g(z) share the value c CM. Let a, b be two constants.
We use N (r, f = a, g = b) to denote the reduced counting function of the common
zeros of f − a and g − b. If

N

(
r,

1
f − a

)
−N(r, f = a, g = a) = S(r, f),
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and

N

(
r,

1
g − a

)
−N(r, f = a, g = a) = S(r, g),

then we say that f and g share the value a CM∗. It is obvious that f and g share
a CM implies that f and g share a CM∗.

Nevanlinna’s value distribution theory has been used to study the Fermat type
of equations of meromorphic functions since 1960s (see e.g. [2, 8]). And we refer
the reader to [3, 5] and [10] for some recent developments of value sharing and
more general type equation P (f) = Q(g) of meromorphic functions, where P,Q
are two polynomials in C[z].

In 1977, C.-C. Yang and X.-H. Hua [9] proved the following theorem.

Theorem A. Suppose that f, g are two nonconstant meromorphic functions and
n ≥ 6 is an integer. If f nf ′gng′ = 1, then g(z) = c1e

cz and f(z) = c2e
−cz , where

c, c1 and c2 are constants satisfying (c 1c2)n+1c2 = −1.

In this paper, by using Nevanlinna’s value distribution theory, we study the
existence or solvability of the meromorphic solutions of functional equations of the
type

(1) P (f)f ′P (g)g′ = 1,

where P is a polynomial with two distinct zeros at least. We shall prove the
following result.

Theorem 1. Suppose that P (z) is a polynomial with three distinct zeros. Then
equation (1) has no meromorphic solutions f and g.

We point out that equation (1) may or may not have meromorphic solutions, if
the polynomial P just has two distinct zeros. In fact, we can prove the following
results.

Theorem 2. Let d be a nonzero constant, k be a positive integer. Then the
functional equation

(2) f2k+1(f − 1)kf ′g2k+1(g − 1)kg′ = d

has no nonconstant meromorphic solution.

Theorem 3. Suppose that c is a nonzero constant, k is a positive integer. Then
the pair (f, g) of nonconstant meromorphic solution of the following equation

(3) (f − 1)k(f + 1)kf ′(g − 1)k(g + 1)kg′ = c
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must be

(4) f = 1 +
(℘− c/2)2

c℘
,

(5) g = − ℘2 + c2/4
(℘− c/2)(℘+ c/2)

,

where ℘ is the ℘-function satisfies

(6) (℘′)2 = ℘(℘− c/2)(℘+ c/2).

As an application of Theorem 1, we prove the following result.

Corollary 1. Suppose that f and g are two nonconstant meromorphic functions.
Let m, n be two relatively prime positive integers satisfying n +m ≥ 18, and a, b
two distinct constants. Let H(z) = (z − a)n(z − b)m. If the derivatives of the two
functions H(f) and H(g) share 1 CM, then

f =
bhm+n + (a− b)hm − a

hm+n − 1
, g =

ahm+n + (b− a)hm − b

hm+n − 1
,

where h is a nonconstant meromorphic function.

2. LEMMAS

The following lemmas will be used in the proofs of our theorems. Lemma 1 can
be derived easily by the lemma of logarithmic derivative, i.e., m(r, f′/f) = S(r, f),
see e.g. [4]. Lemma 2 is well-known.

Lemma 1. Let f(z) be a nonconstant meromorphic function, and let P k(f) be
a polynomial in f of degree k, and a i, i = 1, 2 . . . , n be distinct complex numbers
in C, and j be a positive integer. Let

g =
Pk(f)f (j)

(f − a1) · · · (f − an)
.

If k < n, then m(r, g) = S(r, f).

Lemma 2. ([11]). Let f(z) be a nonconstant meromorphic function. If

R(f) =
P1(f)
Q1(f)

=
apf

p + ap−1f
p−1 + · · ·+ a0

bqf q + bq−1f q−1 + · · ·+ b0
,

where P1(f) and Q1(f) are two relatively prime polynomials of degree p and q,
respectively, and all the coefficients a i(z) and bj(z) are small functions of f(z)
with ap(z) �≡ 0, bq(z) �≡ 0, then we have

(7) T (r, R(f)) = max{p, q}T (r, f)+ S(r, f).
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Lemma 3. ([6] or [7]). Suppose that f and g are two nonconstant meromorphic
functions sharing the value 1 CM. If f �= g and fg �= 1, then the following inequality
holds:

(8) T (r, f) ≤ N2(r, f)+N2(r, g)+N2

(
r,

1
f

)
+N2

(
r,

1
g

)
+S(r, f)+S(r, g),

where N2(r, f) = N (r, f) +N (2(r, f).

Lemma 4. ([1] or [2]). Any functions F (z) and G(z), which are meromorphic
in the plane and satisfy F 3 +G3 = 1, have the form

F =
1

2
√

3

√
3 + ℘′(h)
℘(h)

, G =
η

2
√

3

√
3 − ℘′(h)
℘(h)

,

where η is a cube-root of unity, h is a nonconstant entire function, and ℘ is the
℘-function satisfying

(9) (℘′)2 = 4℘3 − 1.

Lemma 5. Let c be a nonzero constant. Then the meromorphic solution of the
equation

(10) (f ′)4 = c2(f − 1)3(f + 1)3,

must be the following function

(11) f = 1 +
(℘− c/2)2

c℘
,

where ℘ is the ℘-function satisfying

(12) (℘′)2 = ℘(℘− c/2)(℘+ c/2).

Proof. Suppose that f is a meromorphic solution of equation (10). It is easily
seen that the function cf(f 2 − 1) − (f ′)2 cannot be identically zero. Let

(13) g =
(c2/2)(f2 − 1)

cf(f2 − 1)− (f ′)2
.

Then we have

(14) (f ′)2 =
(c/2)(f2 − 1)(2fg− c)

g
.
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It follows from (10) and (14) that f2 − 1 = (f − c/(2g))2 . Therefore,

(15) f = 1 +
(g − c/2)2

cg
,

and thus

(16) f ′ =
g′(g − c/2)(g+ c/2)

cg2
.

By (15), we have

(17) 2fg − c = (2/c)(g− c/2)(g+ c/2).

By substituting (15), (16) and (17) into (14), we get (g ′)2 = g(g− c/2)(g+ c/2).
This also completes the proof of Lemma 5.

3. PROOF OF THEOREM 1

Suppose that (f, g) is a pair of nonconstant meromorphic solution of equation
(1), where P (z) has three distinct zeros r1, r2, r3. Let P (z) = (z − r1)k1(z −
r2)k2(z− r3)k3Q(z), where Q(z) is a polynomial of degree p. If z is a r1 point of
f of multiplicity m, then it is a pole of g of multiplicity n, and mk1 +m − 1 =
n(k1 + k2 + k3 + p) + n + 1. Therefore, m ≥ (k1 + k2 + k3 + 3 + p)/(k1 + 1).
Similarly, the multiplicities of all ri points of f are greater than or equal to ni :=
(k1 +k2 +k3 +3+p)/(ki +1), i = 1, 2, 3. If p > 0, then 1/n1 +1/n2 +1/n3 < 1.
By Nevanlinna’s second fundamental theorem, we have

T (r, f) ≤ N

(
r,

1
f− r1

)
+N

(
r,

1
f−r2

)
+N

(
r,

1
f−r3

)
+S(r, f)

≤ 1
n1
N

(
r,

1
f−r1

)
+

1
n2
N

(
r,

1
f−r2

)
+

1
n3
N

(
r,

1
f−r3

)
+S(r, f)

≤
(

1
n1

+
1
n2

+
1
n3

)
T (r, f)+S(r, f),

Therefore, 1/n1 + 1/n2 + 1/n3 ≥ 1, a contradiction. Hence p = 0, i.e., Q(z) is a
nonzero constant. The last inequality above also shows that f has no Nevanlinna
exceptional value. Let mi := (k1 + k2 + k3 + 3)/(ki + 1), i = 1, 2, 3. Then
the multiplicities of all r i points of f are greater than or equal to mi. If m1 is
not an integer, then the multiplicities of all r1 points of f are greater than or
equal to [m1] + 1. Since 1/([m1] + 1) + 1/m2 + 1/m3 < 1, we can still derive a
contradiction by Nevanlinna’s second fundamental theorem. Hence m1 is a positive
integer. Similarly, m2 and m3 are positive integers, too.
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Without loss of generality, we assume m1 ≤ m2 ≤ m3. Since

(18) k1 + k2 + k3 + 3 = mi(ki + 1), i = 1, 2, 3,

we have 3(k1 + k2 + k3 + 3) ≥ m1(k1 + k2 + k3 + 3), that is m1 ≤ 3. Note that

(19)
1
m1

+
1
m2

+
1
m3

= 1.

We have m1 > 1. Therefore, m1 = 2 or m1 = 3.
If m1 = 3, then by m1 ≤ m2 ≤ m3 and (19) we get m1 = m2 = m3 = 3.

Therefore, there exists a positive integer k such that ki = k, i = 1, 2, 3.
If m1 = 2, then we have k1 = k2 +k3 +1, by (18) and m1 ≤ m2 ≤ m3, we get

2(k1+k2+k3+3) ≥ m2(k2+k3+2). Therefore, 4(k2+k3+2) ≥ m2(k2+k3+2),
and thus m2 ≤ 4. From (19), it is easily seen that m2 �= 2. Hence we have m2 = 3
or m2 = 4. If m2 = 3, then we have m3 = 6. Thus there exists a positive integer
k such that k1 = 3k + 2, k2 = 2k + 1, k3 = k. If m2 = 4, then we have m3 = 4,
Thus there exists a positive integer k such that k1 = 2k+1, k2 = k, k3 = k. Hence
equation (1) becomes one of the following three equations:

(20) (f−r1)k(f−r2)k(f−r3)kf ′(g−r1)k(g−r2)k(g−r3)kg′ = d;

(21) (f−r1)2k+1(f−r2)k(f−r3)kf ′(g−r1)2k+1(g−r2)k(g−r3)kg′ = d;

(22) (f−r1)3k+2(f−r2)2k+1(f−r3)kf ′(g−r1)3k+2(g−r2)2k+1(g−r3)kg′ = d,

Since all rj points (j = 1, 2, 3) of f are poles of g. By Nevanlinna’s second
fundamental theorem, we have T (r, f) ≤ T (r, g) + S(r, f). Symmetrically, we
have T (r, g)≤ T (r, f) + S(r, g). Hence T (r, f) = T (r, g)+ S(r), where S(r) :=
S(r, f) = S(r, g). By the above discussion, we see that the multiplicities of all ri

points of f are greater than or equal to mi. By Nevanlinna’s second fundamental
theorem, we have

T (r, f) ≤ N

(
r,

1
f−r1

)
+N

(
r,

1
f−r2

)
+N

(
r,

1
f−r3

)
+S(r)

≤ 1
m1

N

(
r,

1
f−r1

)
+

1
m2

N

(
r,

1
f−r2

)
+

1
m3

N

(
r,

1
f−r3

)
+S(r)

≤ T (r, f) + S(r),

which implies that

N

(
r,

1
f−ri

)
= miN

(
r,

1
f−ri

)
+ S(r) �= S(r), i = 1, 2, 3.
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Therefore, “almost all” ri points of f have multiplicity mi, and thus “almost all”
poles of g are simple. Symmetrically, “almost all” ri points of g have multiplicity
mi, and “almost all” poles of f are simple. The above equation also shows that ri

and ∞ cannot be the exceptional values of f and g.
In the following, we study the three functional equations (20), (21) and (22),

respectively.

3.1. Solution of equation (20)

By a transformation, we need to study equation

(23) fk(f−r1)k(f−r2)kf ′gk(g−r1)k(g−r2)kg′ = d

only, where d, r1, r2 are nonzero constant, and r1 �= r2. Suppose that f and g
are nonconstant meromorphic functions of the equation. Then the multiplicities of
“almost all” zeros, r1 points and r2 points of f and g are 3, and “almost all” the
poles of f and g are simple. Let

ϕ1 =
(f ′)3

f2(f−r1)2(f−r2)2 , ϕ2 =
(g′)3

g2(g−r1)2(g−r2)2 .(24)

Then we have ϕi �≡ 0 and N (r, ϕi) = S(r), i = 1, 2. We can rewrite the first
equation in (24) as

ϕ1 =
f ′

f(f − r1)
· f ′

f(f − r2)
· f ′

(f − r1)(f − r2)
.

By Lemma 1, we get m(r, ϕ1) = S(r). Therefore, T (r, ϕ1) = S(r). Similarly, we
have T (r, ϕ2) = S(r). By rewriting the first equation in (24) as

f =
1
ϕ1

f ′

f

(
f ′

(f − r1)(f − r2)

)2

,

and by Lemma 1, we get m(r, f) = S(r). Similarly, we have m(r, g) = S(r). Let

ϕ = f(f − r1)(f − r2)g(g− r1)(g − r2).(25)

It is obvious that ϕ �≡ 0. From (23), we see that poles of f must be zeros of
g2(g − r1)2(g − r2)2g′. The second equation in (24) tell us that zeros of g ′ must
be zeros of ϕ2 provided that they are not the zeros of g2(g− r1)2(g − r2)2. Hence
“almost all” poles of f are zeros of g2(g − r1)2(g − r2)2. Symmetrically, “almost
all” poles of g are zeros of f2(f − r1)2(f − r2)2. This investigation shows that
N (r, ϕ) = S(r). Hence T (r, ϕ) = S(r). By equation (23), we get

(26) ϕkf ′g′ = d.
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Suppose that z1 is a zero of g of multiplicity 3. Then z1 must be a simple pole
of f . We have the following Laurent expansions in a neighborhood of z1,

f(z) =
A1

z − z1
+O(1), g(z) = A2(z − z1)3 +O((z − z1)4),

where A1 and A2 are nonzero constants. By taking derivatives in the above expan-
sions, we get

f ′(z) =
−A1

(z − z1)2
+O(1), g′(z) = 3A2(z − z1)2 + O((z − z1)3).

From (26), we get

(27) ϕk(z1)(−3A1A2) = d.

From (25), we get

(28) ϕ(z1) = A3
1A2r1r2.

On the other hand, from the first equation in (24), we get

(29) ϕ(z1)ϕ1(z1) = −A2r1r2.

Therefore,

A3
1 = − 1

ϕ1(z1)
, A2 = −ϕ(z1)ϕ1(z1)

r1r2
.

From (27) and the above two equations, we obtain

(30) ϕ3k(z1)
(
− 27
ϕ1(z1)

ϕ3(z1)ϕ3
1(z1)

r31r
3
2

)
= d3.

It follows that

(31) 27ϕ3k+3(z1)ϕ2
1(z1) = −(dr1r2)3,

which means that z1 is a zero of the function 27ϕ3k+3ϕ2
1 + (dr1r2)3. Note that

this function is small with respect to f and g. If 27ϕ3k+3ϕ2
1 �≡ −(dr1r2)3, then we

get N (r, 1/g) = S(r). This means that 0 is an Nevanlinna exceptional value of g,
which is impossible. Hence

(32) 27ϕ3k+3ϕ2
1 = −(dr1r2)3.

Similarly we have

(33) 27ϕ3k+3ϕ2
2 = −(dr1r2)3.
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Therefore, ϕ1 = ϕ2 or ϕ1 = −ϕ2.
By (23), (24), (25) and (26), we deduce that

(34) ϕ3k+2ϕ1ϕ2 = d3.

From (32) and (34), we obtain

(35) ϕ = −ϕ2

ϕ1

(r1r2
3

)3
.

Note that ϕ1 = ϕ2 or ϕ1 = −ϕ2. The above equation implies that ϕ is a nonzero
constant, and thus by (32) and (33) we see that both ϕ1 and ϕ2 are nonzero constants.

Taking the derivative in equation (25) yields

(36)
f ′L(f)

f(f − r1)(f − r2)
+

g′L(g)
g(g − r1)(g − r2)

= 0,

where L(z) is a polynomial defined by

(37) L(z) = 3
(
z2 − 2

3
(r1 + r2)z +

r1r2
3

)
.

Note that zeros of f ′ are poles of g, and zeros of g′ are poles of f . By (36), we see
that L(f) and L(g) share 0 CM.

We distinguish two cases below:

Case (a). r2
1 − r1r2 + r22 �= 0.

In this case, the equation L(z) = 0 has two distinct roots denoted by a1 and a2.
Therefore, L(z) = 3(z − a1)(z − a2). Eq. (36) implies that f and g share the set
S = {a1, a2} CM, i.e., f−1(S) = g−1(S) counting multiplicities. Note that

a1(a1 − r1)(a1 − r2) = a1(a2
1 − (r1 + r2)a1 + r1r2)

= a1

(
2
3
(r1 + r2)a1 − r1r2

3
− (r1 + r2)a1 + r1r2

)

=
2
3
r1r2a1 − 1

3
(r1 + r2)a2

1

=
2
3
r1r2a1 − 1

3
(r1 + r2)

(
2
3
(r1 + r2)a1 − r1r2

3

)
.

We obtain

(38) a1(a1 − r1)(a1 − r2) = −2
9
(r21 − r1r2 + r22)a1 +

r1r2(r1 + r2)
9

.

Similarly we can get

(39) a2(a2 − r1)(a2 − r2) = −2
9
(r21 − r1r2 + r22)a2 +

r1r2(r1 + r2)
9

.
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If both N (r, f = a1, g = a1) �= S(r) and N(r, f = a1, g = a2) �= S(r)
hold, then by (25), we have ϕ =

(
a1(a1 − r1)(a1 − r2)

)2 and ϕ = a1(a1 −
r1)(a1 − r2)a2(a2 − r1)(a2 − r2). It follows that a1(a1 − r1)(a1 − r2) = a2(a2 −
r1)(a2 − r2). From (38) and (39), we get a1 = a2, a contradiction. Similarly,
N(r, f = a1, g = a1) �= S(r) and N (r, f = a2, g = a1) �= S(r) cannot hold
simultaneously. Therefore, the condition N (r, f = a1, g = a1) �= S(r) implies
N(r, f = a1, g = a2) = S(r) and N(r, f = a2, g = a1) = S(r). Accordingly, f
and g share the value a1 and a2 CM∗. Hence the following function

α =
f − a1

g − a1

g − a2

f − a2

satisfy N (r, α) = S(r) and α �≡ 0, 1. From (24) and by Lemma 1, we have
m(r, 1/f − a2) = S(r) and m(r, 1/g− a2) = S(r). Therefore m(r, α) = S(r).
Hence T (r, α) = S(r). It follows from the above equation that

g = a1 +
(a1 − a2)(f − a1)

(α− 1)f + a1 − αa2
=

(αa1 − a2)f + (1 − α)a1a2

(α− 1)f + a1 − αa2
.

And thus

g − ri =

(
αa1 − a2 − (α− 1)ri

)
f + (1− α)a1a2 − ri(a1 − αa2)

(α− 1)f + a1 − αa2
, i = 1, 2.

By substituting the above equation into (25), we get

ϕ = f(f − r1)(f − r2)
(αa1 − a2)f + (1 − α)a1a2

(α− 1)f + a1 − αa2

·
(
αa1 − a2 − (α− 1)r1

)
f + (1 − α)a1a2 − r1(a1 − αa2)

(α− 1)f + a1 − αa2

·
(
αa1 − a2 − (α− 1)r2

)
f + (1 − α)a1a2 − r2(a1 − αa2)

(α− 1)f + a1 − αa2
.

By Lemma 2 and the above equation, we deduce that ϕ is not constant, a contra-
diction.

Similarly, if N(r, f = a2, g = a2) �= S(r), then we can deduce that f − a1 and
g − a2 share the value 0 in the sense CM∗, and f − a2 and g − a1 share 0 CM∗.
And thus we can show that the following function

β =
f − a1

g − a2

g − a1

f − a2

satisfy T (r, β) = S(r) and β �≡ 0. By a similar argument as above, we can also
deduce a contradiction. Hence Eq. (23) has no nonconstant meromorphic solution
in Case (a).
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Case (b). r21 − r1r2 + r22 = 0.
In this case, the equation L(z) = 0 has a multiple root r = (r1 + r2)/3, and

L(z) = 3(z− r)2. By (36), we see that f and g share the value r CM. Note that r
cannot be the exceptional value of f and g. By (25), we get

(40) ϕ =
(
r(r − r1)(r − r2)

)2 =
(r1r2

3

)3
= r6.

Combining with (35), we obtain ϕ2 = −ϕ1. It follows from (32) that

(41) ϕ2
1 = − d3

r6(3k+2)
.

By (24) and (36), we get

f ′

ϕ1(L(f))2
=

g′

ϕ2(L(g))2
.

Since L(z) = 3(z − r)2 and ϕ1 = −ϕ2, the above equation becomes

f ′

(f − r)4
= − g′

(g − r)4
.

This and (26) yield

(f ′)2

(f − r)4
= − f ′g′

(g − r)4
= − d

ϕk(g − r)4
.

And thus

(42)
f ′

(f − r)2
=

A

(g − r)2
,

where A is a constant satisfying A2 = −d/ϕk. By the above equation and the first
equation in (24), we get

A3

(g − r)6
=

(f ′)3

(f − r)6
=
ϕ1f

2(f − r1)2(f − r2)2

(f − r)6
.

It follows that

(43)
1

(g − r)3
= M

f(f − r1)(f − r2)
(f − r)3

,

where M is a constant satisfying M2 = ϕ1/A
3. On the other hand, by ϕ = r6 and

z(z − r1)(z − r2) = (z − r)3 + r3, Eq. (25) can be rewritten as

1
(g − r)3

= − 1
r3
f(f − r1)(f − r2)

(f − r)3
.
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Therefore, M = −1/r3. And thus A3 = ϕ1r
6. Combining with M2 = ϕ1/A

3, we
get A = −r6ϕ1ϕ

k/d. By (42) and (43), we get

(44) g = r + B
f ′(f − r)

f(f − r1)(f − r2)
,

where B = d
r3ϕ1ϕk = d

r6k+3ϕ1
.

So, if f is a solution of the equation

(45) (f ′)3 = ϕ1f
2(f − r1)2(f − r2)2

and g is the function in (44), then (f, g) is a pair of solution of (23). Now we prove
that Eq. (45) has no meromorphic solution. Since r1 and r2 satisfy r21−r1r2+r22 = 0
in the present case, we can rewrite (45) as(

f ′

cr

)3

+
(
r − f

r

)3

= 1,

where r = (r1 + r2)/3, and c is a constant satisfying c3 = ϕ1. By Lemma 4, there
exists a cube-root η of unity, and a nonconstant entire function h such that

(46)
f ′

cr
=

1
2
√

3

√
3 + ℘′(h)
℘(h)

,
r − f

r
=

η

2
√

3

√
3 − ℘′(h)
℘(h)

,

where ℘ is the function satisfying (9). Taking derivative in both side of the second
equation in (46), we get

(47)
f ′

r
=

−ηh′
2
√

3
· ℘

′′(h)℘(h) +
√

3℘′(h) − (℘′(h))2

℘2(h)
.

By (9), we have ℘′′ = 6℘2. It follows that

f ′

r
=

−ηh′
2
√

3
6℘3(h) +

√
3℘′(h) − (℘′(h))2

℘2(h)

=
−ηh′
2
√

3

3
2 [(℘′(h))2 + 1] +

√
3℘′(h) − (℘′(h))2

℘2(h)

=
−ηh′
4
√

3

(
℘′(h) +

√
3

℘(h)

)2

.

Combining with the first equation in (46), we get f ′ = c2r
√

3
3ηh′ , which implies that

f ′ has no zero. And thus by (45), we see that 0, r1 and r2 are exceptional values
of f. This is impossible. Hence Eq. (23) has no meromorphic solution.
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3.2. Solution of equation (21)

The arguments in this section and the next section are very similar to that in
Section 3.1, we just state the main steps and omit some of the details. In the present
case, by a transformation, we need to study the equation

(48) f2k+1(f − r1)k(f − r2)kf ′(g2k+1(g − r1)k(g − r2)kg′ = d

only, where d, r1, r2 are nonzero constant and r1 �= r2. Suppose that f and g are
nonconstant meromorphic functions satisfying Eq. (48). Then the multiplicities of
“almost all” zeros of f, g are 2, the multiplicities of “almost all” r1 points and r2

points of f, g are 4, and “almost all” poles of f, g are simple. Let

(49) φ1 =
(f ′)4

f2(f − r1)3(f − r2)3
, φ2 =

(g′)4

g2(g − r1)3(g − r2)3
.

Obviously, we have T (r, φi) = S(r) and φi �≡ 0, i = 1, 2. The first equation in
(49) can be rewritten as

f =
1
φ1

f ′

f

(
f ′

(f − r1)(f − r2)

)3

.

By Lemma 1, we have m(r, f) = S(r). Similarly, we have m(r, g) = S(r). Let

(50) φ = f2(f − r1)(f − r2)g2(g − r1)(g − r2).

Like the arguments in Section 4.1, we can get T (r, φ) = S(r) and φ �≡ 0. Combin-
ing with (48), we get

(51) φkff ′gg′ = d.

By considering the Laurent expansions in the neighborhood of a zero with mul-
tiplicity 2 of f and g, respectively, we can obtain

(52) φ1 = φ2 =
4d2

(r1r2)2φ2k+1
.

On the other hand, by considering the Laurent expansions in the neighborhood of a
r1 point with multiplicity 4 of f , we can get

(53) φ2k+1φ1 =
16d2

(r1 − r2)2r21
.

From (52) and (53), we get r1 = 3r2 or r1 = −r2. By the symmetry of r1 and r2,
we get r1 = −r2. Let r := r1 = −r2. From (49), (50) and (51), we get

(54) φ4k+3φ1φ2 = d4.
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From (52) and (54), we get φ = r8

16 which is a nonzero constant, and thus φ1 is a
nonzero constant, too.

Taking φ = r8

16 and r1 = −r2 = r into (50), we get

(55) f2(f2 − r2)g2(g2 − r2) =
r8

16
.

Let h = fg. Then by (55), we get

f2 + g2 =
h4 − r4h2 − r8

16

r2h2
.

Hence

(56) (f + g)2 =
h4 + 2r2h3 − r4h2 − r8

16

r2h2
,

(57) (f − g)2 =
h4 − 2r2h3 − r4h2 − r8

16

r2h2
.

Since r is a nonzero number, equation z4 +2r2z3−r4z2− r8

16 = 0 and z4−2r2z3−
r4z2 − r8

16 = 0 have no multiple roots, and all of the roots of the two equations
are pairwise distinct. Thus by (56) and (57), we deduce that h has eight multiple
values. By Nevanlinna’s second fundamental theorem, we know that a nonconstant
meromorphic function has four multiple values at most. Therefore, h must be a
constant. Thus both f + g and f − g are constants, which implies that f and g are
constants, a contradiction. Hence equation (48) has no nonconstant meromorphic
solution.

3.3. Solution of equation (22)

In this case, we need to consider the equation

(58) f3k+2(f − r1)2k+1(f − r2)kf ′g3k+2(g − r1)2k+1(g − r2)kg′ = d

only, where d, r1, r2 are nonzero constant and r1 �= r2. Suppose that f and g are
nonconstant meromorphic functions satisfying this equation. Then the multiplicities
of “almost all” zeros of f and g are 2, the multiplicities of “almost all” r1 points of
f and g are 3, the multiplicities of “almost all” r2 points of f and g are 6, “almost
all” poles of f and g are simple. Let

(59) ψ1 =
(f ′)6

f3(f − r1)4(f − r2)5
, ψ2 =

(g′)6

g3(g − r1)4(g − r2)5
.

It is easily seen that T (r, ψi) = S(r) and ψi �≡ 0, i = 1, 2. By Lemma 1, we have
m(r, f) = S(r) and m(r, g) = S(r). Let
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(60) ψ = f3(f − r1)2(f − r2)g3(g − r1)2(g − r2),

Similar to Section 4.1, we have T (r, ψ) = S(r) and ψ �≡ 0. Taking (60) into (58),
we get

(61) ψkf2(f − r1)f ′g2(g − r1)g′ = d.

Suppose that z4 is a zero of f of multiplicity 2. Then it is a simple pole of g.
By considering the Laurent expansions of f and g in a neighborhood of z4, We can
obtain

(62) ψ =
(r1r2

2

)6
,

and

(63) ψ1 = ψ2 =
(dr1r2)3

(−2ψk+1)3
.

Therefore, ψ, ψ1 and ψ2 are nonzero constant.
Suppose that z5 is a r1 point of f of multiplicity 3. Then it is a simple pole of

g. By considering the Laurent expansions of f and g in a neighborhood of z5, we
can get

(64) ψ =
(
r1(r1 − r2)

3

)6

,

and

(65) −ψ3k+1 = d3

(
r1(r1 − r2)

3

)3 1
ψ2
.

Combined with (63), we obtain

(66)
(r2

2

)3
=
(
r1 − r2

3

)3

.

Suppose that z6 is a r2 point of f of multiplicity 6. We see that z6 is a simple
pole of g. By considering the Laurent expansions of f and g in a neighborhood of
z6, we can deduce that

(67) ψ =
(
r2(r2 − r1)

6

)6

,

and

(68) −ψ3k+1 = d3

(
r2(r2 − r1)

6

)3 1
ψ2
.
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Combined with (63), we get

(69)
(r1

2

)3
=
(
r2 − r1

6

)3

.

From (66) and (69), we get r32 + 8r31 = 0. Therefore, we have r2 = −2r1 or
r22 = 2r1r2 − 4r21. In both cases, we get r1 = 0 from (66), which contradicts the
assumption. Hence Eq. (58) has no nonconstant solution. This also completes the
proof of Theorem 1.

4. PROOF OF THEOREM 2

Suppose that (f, g) is a pair of nonconstant meromorphic solution of (2). Then
all zeros of f and all 1-points of f are poles of g, and poles of f come from zeros,
1-points of g, or from zeros of g′. By Nevanlinna’s second fundamental theorem,
we have

T (r, f) ≤ N

(
r,

1
f

)
+N

(
r,

1
f − 1

)
+N(r, f) + S(r, f)

≤ N (r, g)+N

(
r,

1
g

)
+N

(
r,

1
g − 1

)
+N

(
r,

1
g′

)
+ S(r, f)

≤ 5T (r, g)+ S(r, f).

Similarly, we have T (r, g) ≤ 5T (r, f) + S(r, g). Therefore, S(r, f) = S(r, g) :=
S(r).

Suppose that z0 is a zero of f with multiplicity n. Then from (2), z0 is a pole
of g with multiplicity p. Since the right-hand side of (2) is a nonzero constant, we
have 2(k+ 1)n− 1 = (3k+ 2)p+ 1. If p = 1, then 2(k+ 1)n = 3(k+ 1)+ 1, and
thus 1 is divisible by k+ 1. This is impossible. Therefore, p ≥ 2, and 2(k+ 1)n ≥
2(3k + 2) + 2 = 6(k + 1). Hence n ≥ 3. This means that all zeros of f have
multiplicities ≥ 3. Similarly, all zeros of g have multiplicities ≥ 3. By a similar
argument, we can see that all 1-points of f and g have multiplicities ≥ 6. And
all poles of f have multiplicities ≥ 2 if they are not zeros of g′. All poles of g
have multiplicities ≥ 2 if they are not zeros of f ′. Denote by N ′(r, f) the counting
function of those poles of f which are zeros or 1-points of g, and by N′′(r, f) the
counting function of those poles of f which are not zeros and 1-points of g. Then
N (r, f) = N ′(r, f)+N ′′(r, f) and N ′′(r, f) ≤ N(r, 1/g′). The notations N ′(r, g)
andN ′′(r, g) are defined similarly. Using Nevanlinna’s second fundamental theorem
to the function f and g, respectively, we get

T (r, f) ≤ N
′(r, f)+N′′(r, f)+N

(
r,

1
f

)
+N

(
r,

1
f−1

)
−N0

(
r,

1
f ′

)
+S(r),

T (r, g) ≤ N
′(r, g)+N′′(r, g)+N

(
r,

1
g

)
+N

(
r,

1
g−1

)
−N0

(
r,

1
g′

)
+S(r),
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where N0(r, 1/f ′) is the counting function of those zeros of f ′ which are not
zeros and 1-points of f. The notation N0(r, 1/g′) is defined similarly. Note that
N

′′(r, f) ≤ N0(r, 1/g′) and N
′′(r, g) ≤ N0(r, 1/f ′). By adding the above two

inequalities together, we get

T (r, f) + T (r, g) ≤ N
′(r, f)+N

(
r,

1
f

)
+N

(
r,

1
f−1

)

+N
′(r, g)+N

(
r,

1
g

)
+N

(
r,

1
g−1

)
+ S(r)

≤ 1
2
N ′(r, f)+

1
3
N

(
r,

1
f

)
+

1
6
N

(
r,

1
f−1

)

+
1
2
N ′(r, g)+

1
3
N

(
r,

1
g

)
+

1
6
N

(
r,

1
g−1

)
+ S(r)

≤ T (r, f)+ T (r, g)+ S(r).

The above inequalities show that “almost all” poles of f and g have multiplicities
2, “almost all” zeros of f and g have multiplicities 3, and “almost all” 1-points of
f and g have multiplicities 6. Let

(70) α1 =
(f ′)6

f4(f − 1)5
, α2 =

(g′)6

g4(g − 1)5
.

Then α1 and α2 are small functions of f and g, and α1α1 �≡ 0. The above equations
imply m(r, f) = S(r) and m(r, g) = S(r). Let

(71) α = f2(f − 1)g2(g − 1).

Then α is also a small function of f and g, not identically zero. By considering
the Laurent expansion of f at a zero of f with multiplicity 3, we can show that
α1
α2

= ( 3
2)6α. Similarly, by considering the Laurent expansions of g at a zero of g

with multiplicity 3, we get α2
α1

= ( 3
2)6α. Therefore, α1 = α2 or α1 = −α2, and

α =
(

2
3

)6 α1

α2
.

On the other hand, by considering the Laurent expansion of f at a 1-point of f with
multiplicity 6, we can obtain α = (1/3)6α1

α2
, which contradicts the above equation.

Hence equation (2) has no nonconstant meromorphic solutions.

5. PROOF OF THEOREM 3

Suppose that (f, g) is a pair of nonconstant meromorphic solution of (3). By an
argument similar to that in the proof of Theorem 2, we can prove that “almost all”
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1-points and −1 points of f and g have multiplicities 4, and “almost all” poles of
f and g have multiplicities 2. Let

(72) β1 =
(f ′)4

(f − 1)3(f + 1)3
, β2 =

(g′)4

(g − 1)3(g + 1)3
.

Then β1β2 �≡ 0. Both β1 and β2 are small functions of f and g. Let

(73) β = (f − 1)(f + 1)(g − 1)(g + 1).

Then β is also a small function of f and g, and β �≡ 0. By considering the Laurent
expansions of f at a 1-point, and a −1-point of f , respectively. We can show that
β1 = β2 = c2, and β = 1. Then f is a solution of the following equation:

(74) (f ′)4 = c2(f − 1)3(f + 1)3,

and

(75) g = −1
c

f(f ′)2

(f − 1)2(f + 1)2
.

By Lemma 5, we get f = 1 + (℘−c/2)2

c℘ , where ℘ is the ℘-function satisfies (6).
Hence the conclusion can be proved easily.

6. PROOF OF COROLLARY 1

Let F = H(f) = (f − a)n(f − b)m and G = H(g) = (g− a)n(g− b)m. Then
we get F ′ = (n+m)(f − c)(f−a)n−1(f − b)m−1f ′ and G′ = (n+m)(g− c)(g−
a)n−1(g − b)m−1g′, where c = (ma+ nb)/(m+ n). We have

(76) N2(r, F ′) = 2N(r, f) ≤ 2T (r, f), N2(r, G′) = 2N(r, g) ≤ 2T (r, g),

(77)
N2

(
r, 1

F ′
)≤2N

(
r,

1
f−a

)
+2N

(
r,

1
f−b

)
+N2

(
r,

1
f−c

)
+N0

(
r,

1
f ′

)

≤4T (r, f)+N0

(
r,

1
f ′

)
+N2

(
r,

1
f−c

)
+O(1),

and

N2

(
r,

1
G′

)
≤ 4T (r, g)+N0

(
r,

1
g′

)
+N2

(
r,

1
g − c

)
+ O(1),(78)

where N0(r, 1/f ′) is the counting function of those zeros of f ′ that are not zeros
of (f − a)(f − b)(f − c). Note that F ′ and G′ share the value 1 CM. If F ′ �= G′

and F ′G′ �= 1, then by Lemma 3 and inequalities (76), (77) and (78), we have
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(79)
T (r, F ′) ≤ 6T (r, f) +N0

(
r,

1
f ′

)
+N2

(
r,

1
f − c

)
+ 6T (r, g)

+N0

(
r,

1
g′

)
+N2

(
r,

1
g − c

)
+ S(r, f)+ S(r, g).

Since

m

(
r,

1
F

)
≤ m

(
r,

1
F ′

)
+m

(
r,
F ′

F

)
+ O(1),

we have

T (r, F )−N

(
r,

1
F

)
≤ T (r, F ′) −N

(
r,

1
F ′

)
+ S(r, f),

which implies

(n+m)T (r, f) ≤ T (r, F ′) +N

(
r,

1
f − a

)
+N

(
r,

1
f − b

)

−N

(
r,

1
f − c

)
−N0

(
r,

1
f ′

)
+ S(r, f).

From this and (79), we get

(n+m− 8)T (r, f)≤ 9T (r, g)+ S(r, f)+ S(r, g).

Symmetrically, we have

(n+m− 8)T (r, g) ≤ 9T (r, f)+ S(r, f)+ S(r, g).

These two inequalities yield

(n+m− 17)(T (r, f)+ T (r, g))≤ S(r, f) + S(r, g),

which is impossible when n+m ≥ 18. Hence F ′G′ = 1 or F ′ = G′.
By Theorem 1, we can rule out the case F ′G′ = 1. Therefore, we have F ′ = G′,

and thus there exists a constant C such that H(f) = H(g)+C, i.e., (f − a)n(f −
b)m = (g − a)n(g − b)m + C. This implies T (r, f) = T (r, g) + O(1). If C �= 0,
then by the second fundamental theorem, we get

T (r, H(f))≤ N (r, H(f))+N
(
r,

1
H(f)

)
+N

(
r,

1
H(f)−C

)
+ S(r, H(f)),

which yields

(n+m)T (r, f) ≤ N (r, f)+N
(
r,

1
f−a

)
+N

(
r,

1
f−b

)

+N

(
r,

1
g−a

)
+N

(
r,

1
g−b

)
+S(r, f).
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From the above inequality, we get n + m ≤ 5, which contradicts the assumption.
Therefore, C = 0. It follows that (f − a)n(f − b)m = (g − a)n(g − b)m, i.e.,(

f − a

g − a

)n

=
(
g − b

f − b

)n

.

Since m and n are relatively prime, there exist two integers u and v such that
um + vn = 1. Let h = [(f − a)/(g − a)]u[(g − b)/(f − b)]v. It follows from the
above equation that (f − a)/(g− a) = hm, (g− b)/(f − b) = hn. From these two
equations, we see that h is not constant and

f =
bhm+n + (a− b)hm − a

hm+n − 1
, g =

ahm+n + (b− a)hm − b

hm+n − 1
,

which completes the proof of Corollary 1.
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