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Abstract. Solutions of the n-th order linear ordinary differential equa-
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n—l n
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0. INTRODUCTION

We have discussed all the solutions of certain third order differential equa-
tions (ordinary or partial) with three regular singular points in the previous
paper [1]. In this paper we carry on the same idea to deal with the non-
homogeneous n-th order differential equations (ordinary of partial) with n
regular points.

0-1. Definition

Let D = {D, ZJ?}, C={C, g} , €' be a curve along the cut joining two
points z and -co+im(z), 9 be a curve along the cut joining two points z and
co+ilm(z), D be a domain surrounded by C, 12 be a domain surrounded by
g. (Here D contains the points over the curve C.)
Moreover, let f = f(z) be a regular function in D (z € D),

fo=(o=e (=020 [ < ) g wez)

27i — z)vtl
(1)-m = Jim (P (m €2,
where
—m <arg(( —2) < for C; 0 <arg(¢ — 2) < 2r for Q’
(#2z, ,z€(C, veR, I': Gamma function.

Then (f), is the fractional differintegration of arbitrary order v (derivatives
of order v for v > 0, and integrals of order —v for v < 0), with respect to z, of
the function f, if |(f).| < oo.

0-2. The set &

We call the function f = f(z) such that |f,|] < co in D as a fractional
differintegrable function by arbitrary order v and denote the set of them with
notation & = { f||f,| < oco,v € R}. Then we have

|fol <oo<= feJ (inD).

In order to discuss the solutions of ordinary and partial differential equations,
we need the following lemmas and properties [1].

Lemma 1. (Linearity property) Let U(z) and V(z) be analytic and one-
valued functions. We have then

(i) (U-a), =al, ;
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(il) (U-a+V-b), =al,+bV,

where U, and V, exist, a and b are constants, z € C, v € R.

Lemma 2. (Index law) If f(z) is an analytic and one-valued function,
then

(fu)v = f;Hrv = (fv)# fO’l" fua fv 7& 0,
F(p+v+1)
Mp+ 1) (v+1)
Lemma 3. (Generalized Leibniz’s Rule) Let U(z) and V(z) be analytic
and one valued functions. If U, and V, exist, then

where p, v €R, z € C and

<00 .

w T(v+1)
u-v), _nZ:OI‘(v—n—Fl)F(n—i—l) ~Uy_p - V,,, wherev €R.

Remark. |T'(—k) |= oo for k € ZT [ J{0}.

For properties we have

Property 1. (e*?),=a"-e**, a#0,2€ C,v ER.
Property 2. (e7**),=e ™ .a" e a#0,2€C,vER.
Property 3. If | I'(v — a)/T'(—«) |< oo, then

F(U B a) a—v
—=2""7", z€(C, veR
I'(-a)

(Za)v — e—ifrv .

1. SOLUTIONS OF A N-TH ORDER LINEAR ORDINARY
DIFFERENTIAL EQUATION

With the help of above lemmas, we have the following one of our main
results of this paper.

Theorem 1. If f\ (# 0) exists, then the non-homogeneous n-th order
linear ordinary differential equation

Lip(z),a1,a9,...,a,_1,b,\, By, Ba, -+, B,]

= (24 b)’ ﬁ(z +ax) - n + Zn: en-i{C{Q(2) 1

k=1 k=1
(1) +C G} = f
{z# —a, (k=1,2,...,n—=1)z# —=b; a; #a; #bif i # j;
n>1, 1>2}
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has a particular solution of the form

wz{[f)\Tﬁ(2+ak)Pk_1(z+b)_leXp({(le(-zg)l} )] ‘
2) - o
e oo (-[25] )}

where

:ZAk.z”*kE (z +b) Hz—i—ak with Ay =1

andn>1, 1>2;

G(—a;)

and P, =

n—l1

(b—a)' T (ax — a:)

k=1
ki

aA1,09,...,0,_1,b,B1, By, ..., B, are arbitrary given constants and
A € R. All the regular singular points ay (k=1,2,...,n—1)
and b are distinct.

I'(n+1)
'n+1-r)(r+1)

wo=, Cf =1and C]' =

Remark 1. Equation (1) has the [-th order regular singular point at
z = —b.

Remark 2. When [ = 1, equation (1) is reduced to the one which is
discussed in our previous paper [10].

Proof. Let ¢ = W,, it yields ¢ = Witx, w2 = Woin, ..., 0n = Wiy,
n—lI
Z Ap- 2% = (2 +b) H = Q(2)

with Ay =1 and G(z

M:
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We consider the following function

{ (z+0b) 1:[ (z + ag } + {AWn1G(2) }a

0 o () e ()
:anAk-(W- A+ZBk W,y - 2",

By Generalized Leibniz’s Rule

o0

(5) (Wn . ank))\ = Wn+>\ . ank + ZC;\(W)\)n_j(Znik)j.

Jj=1

So

ZAk(Wn-z Ia= Wy - {ZAk " }

k=0
(6) +ZZCf (W )ny - Ar - (2"75);
k=0 j=1
= n+A -’ Q +ZZC>\ Wkn —J Ak ( )]'
k=0 j=1

n

Since (2"7%); =0for j > n—Fkand {Q(2)}; = ZAk-(znfk)j. (6) becomes

k=0

ZAk‘(Wn‘Znik)/\— nia - Q(z +ZCA Wi)n ZA

k=0 7j=1

20 Q) + 0 CHAE), - oo

Similarly

(Wor - 2" )= (Wa)p1 - 2" % + Zcf(WA)n—l—j (2"

ZBk(Wn 12” k )\— W)\ <ZBkZ >

(7) +! e
+Z_:z_: (W)n-1-3Br(z"");
(W) G(2) + 2_: i CM W )ors Bul ).
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Note that
G(z) :ZBk'znfk and (2"7%); =0for j >n— k.
k=1

Since

(7) becomes

n

;Bk (Wt - 2"7F),
= (W)t Gl +z@w (Wi
zggmazhmwwkmsz{a@bsz>
:g?mamWMJ<m@h=mm:m.

Substituting (6) and (8) into (4), we have

{ “(z+0b) ﬁz+ak + W,_1G(z )}

A

) =%.z+2@m@hww+§@wwthﬁ

Q2) + D ens {CHQE)Y + Ci{G(2)}1) = f,
or equivalently
(10) (z+0b) 1:[,z+ak + WoeiG(2) = fo

The equation (10) has a sloution of the form

o weeo([88] )= (= ((55] ) &),

where Q(z) = (2 + b)’ n]—_ll(z + ay).
k=1
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Let
G(z) G(2)
Q(2)  (z+ar) (2 +au)(z +0)
P] Pn,l R(Z)
— e _|_ ,
Gra) T Gra) TGy
then we obain
G —(li)
H: n—1i (121727 ,TL—Z),
(b—a)t || (ar — a;)
o

and R(z) satisfies
(12)

n—I

O 5> Do B m(-p) =

Q(2) — z+a, (2+D)

n

where G(z) = Z Bz"F

k=1

Thus (11) becomes

vt o255 )

Harren(-[29] )

or equivalently

:[{f_A;ijj(z+ak)P’“ (z+b)" exp< f_i(_zg )}
w Herwre (L))

where (z # —ai, (K =1,2,. n—l z# —=by a;#a; #b

dif i+ 5, n>1).

Conversely, if (13) holds, since ¢ = W), we have
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z+ CLk '71

anl{f
I:fz—l—a exp<

(14) —f)\HZ-i-ak (z4+0)" {

P <[<R izﬂ ) }
. {H< ) e <_ = Zg)l]‘)} |

W, | = {f_/\ :H:(z +ap) 7z +b)Lexp <[(ZR4(_Z2)Z] 1) }_ '
;i:[i(z + ap) " exp <_ [(f—(kzz)l] _1> '

Substituting (14) and (15) into L.H.S of (10) yields

oo ([
)1

z—i—ak k Z+b

(15)

Woe 40 TG+ ) + 7,460

k=1

:{fAH (z+0)7"

-

+{f Hz+a “Hz+b)” em([ R<z>)] )}1

AR O
R(z)

3 >f1

n—l1

-{H(Z+ak) 'exp( [

k=1

(z+
%—{fA'ri:[l(ZH-ak)P'c Hz+0)" ({

;ijj(z +ay) P exp(— [(f—i(-zlz)l} 1>G(2)
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ahs

+b
}Z+b H Z+ak

k=1

— 1 {fAHZ+a )Pz + b) exp<[

k=1

([ s en(-(235) )

n—I

(2
|
+H(z+ak)PkeXp<_{(z+b } > }

k=1

{[ic-romom (- (255) )] Jeror e oo
+ﬁ(z +ax) " exp (- [ R(Zg)l]l> G(z) =0,

k=1

this completes the proof of Theorem 1.
From Theorem 1, we obtain the following.

Corollary 1. The homogeneous n-th order linear ordinary differential
equation

(= +b) ﬂ (2 + @) pu+ 3 Pu dCHQE N + G G b} =0

k=1

has a particular solution of the form

a1 e =K nH<Z+ak>Pkexp(ﬂ(ffﬁ)ll)l |

k=1
where
n n—I
Q(z) =Y A" "= (z+0) [[(z+ax) with Ay =1andn>1,1>2;
k=0 k=1

G(z) & P R(2) G(—b)
= + ith R(—b) = ,
Q(z =zt a z+b n—l
(2) (z+0) U (0 — 1)
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and P, = G(=a) (i=1,2,...,n—1),
n—I
(b—a)t || (ar — a;)
foon
a1,02,...,0,_1,b,B1, By, ..., B, are arbitrary given constants, K is an arbi-
trary constant. All the regular singular points aj, (k = 1,2,....,n—1) and b

are distinct.

I'(n+1)
'n+1-7r)T(r+1)

o=, C§ =1and C}' =

2. SOLUTIONS OF A N-TH ORDER PARTIAL DIFFERENTIAL EQUATION

Theroem 2. A partial differential equation of the n-th order

— an n— 1an k
(2 +b) H ) fj+za oML
) *u o
(18) +C {G(2) }ia} + ap(z,t) = MatQ N@t

(z# —ar, (k=1,2,....,n—1) z2# =b; a; #a; #b
ifitjin>1122)

has solutions of the forms

(a) M #0

w(z,t) =K [ﬁ(z + ai) P exp <— {(f_i(_zg)z})] B

k=1

(19) .
_exp{—Ni VN +4M(a—5)t}7

2M
(b) M =0and N #0

p(z,t) =K [ﬁ(z + ay,) " exp <_ {(ffz)l} 1)] -

(20) k=1 5
-exp{a]:r t},
where 6 = a— MB*— NS = CMQ(2)}n + C)_{G(2)}n1, Bi(i = 1,...,n),

ap(k=1,...,n—=1),b,a, M, N, X are given constants, K is an arbztmry con-
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stant,
B - - I'(n+1)
Po=p Cr =1, 0= F(n+1—r)(r+1)
G(z) = P R(z)
Q) ~Zrra G
P = (n a:) (i=1,2,---,n—1) forG(z):inznfk,
(b —a;)’ H (ar — a;) =1

k=1
ki

and ay,b are distinct.

Proof. Let u(z,t) = ¢(2) - €’ (3 # 0) be a solution of (18).

o Bt “u 2
ou s 0w o " st
PR C g PPC C e P

Then (18) becomes

n—1

> ek {CHQUN + O {G ()i )

k=1

+p(a—MpB* - NB) =0.

(21) (2 + ) 1;[z+ak)+

Choose 3 such that

(22) d=a—-MB —NB=CHQ(2)} + Cp_{G(2)}n-1,
that is
~N+ /NZ+4M(a —9) for 1 £0
(23) B= 2M
O‘J;‘S for M =0 and N # 0,

then (21) becomes
(2 +b)' f[ (= + ax) son+zson dCMQEN + O G} =0,

By Corollary 1, its solution is given by

509
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(1) e =K Tﬁ<z+ak>P'“exp<_[<ffz>l}1” |

k=1
where
:ZAkz”_k = ( z—l—b H z+ag) with Ag =1 and n > [,
= Z By.2""* and R(z) satisfies the relation,
k=1
n—l1
P, G(-b
z k () Gith R(-b) l(),
z) = zt+a  (2+D) no
[1(aw —b)
k=1
G Uy
andP— Elilcl) (’[/:1’2’.. ’n_l)’
(b—a;) I_I(CL;C —a;)
fon
G1,0Q2, - ,0an_1,b, By, By, -+ and B, are arbitrary given constants, K is
arbitrary constant. All the regular singular points a; (kK =1,2,---,n—1)

and b are distinct.
I'(n+1)
F'n+1-—r)T(r+1)

Thus for M # 0, the solution of (18) is given by

u(z,t) =K [Tﬁ(z +a;) " exp <— {(zR—i(—zz)l} 1)] e

k=1

—N£4/N24+4M(a—0)
exp { i to.

wo=¢, C=1and C} =

(25)

Moreover, for M = 0 and N # 0, the solution of (18) is given by

n-l p R(z
p rens|Teraren(-[E5] )]
-1 A—n+1

k=1
exp { °5°t},

where

S=a—MB*—NB=CMQ(2)}n +C>_{G(2)}n_1,



Fractional Calculus 511

Bi(i=1,...,n),a, (k=1,...,n=1), b, a, M, N, X are given constants,
I'(n+1)

K is an arbitrary constant, ¢y = ¢, C' =1, C' = T+ 1—rCr+1)

Gz _& B )

z) Sz tar (2+40)
G—ai .
P, = Eﬁl ) (i1=1,2,...,n—=1) for G(z ZBkz ,
(b—ai)lH(ak—a)
iz

and ay, b are distinct.

Conversely, for M # 0, we shall show that (25) satisfies (18). Let

p(z)=K ﬁ(z )" exp <_ [(ffg)l] —1)1 .

k=1
—N + /N? +4M(a —9)
oM '

6=

Then (25) becomes pu(z,t) = ¢(z) - €’ (8 # 0). Since

op Bt aQH 2 Bt
a_goﬂe 7ﬁ_@ﬂ e,
O _ e On ot o' _
82_(701 € ) 822 =@2-€ R azn_gon e .

The L.H.S of (5.1)
— n—I
= % |y, - (2 + b)! H Ztar) + ) o {CHQ(2)
k=1 k=1

+C 1 {G(2) b} + ap(2)

=P —p- (CHQ()}n + C)_{G(2)}n1) + ] (By Corollary 1)
=e’(a—0)p (By (22))

Bt 292 82 o
=e’p[M?3 + Nf] = @—i_N(‘)t

Thus the solution of the form (8) satisfies (2). The proof of (9) is obvious.
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3. EXAMPLES

Example 1. The nonhomogeneous fourth order linear ordinary differential
equation of the form

22(z+1)(2 + 2)ps +(162% + 3627 + 162)p3 + (7222 + 108z + 24) ¢,

27
(21) (962 + 7T2)¢1 4 240 = 1202 (2 #0,-1,-2)

has a particular solution

3
T DY

Let b =0, ap = 1, a; = 2 and f = 1202, Q(z) = 22(z + 1)(z + 2) =
z* + 32% + 222, Comparing (27) with Theorem 1, we have

AN+ By =16, A6A—6+3B;) =72, AA—1)(4\—8+3B;) = 96,

9N+ By =36, A(9N—9+2B,y) =108, A —1)(3\ — 6 + B,) = 72,

AN+ B3 =16, A2A\—2+Bs) =24, AXA—1)A=2)(A+1) =24,
B4 — 0

For their common solution, we get A\=3, By =4, B, =9, B3 =4, B, =0=
P,=1,P, =1, P;=2, P, =0. Thus from (2), the particular solution is given
by

o= |(z+1)(z+2)" 1272 /(z +1)%(z + 2)°2%72e79%(1202) _3dz
0
=(z+1)" Y z+2)" 1272 / 5z4dz

23

(z+1)(z+2)

Example 2. The nonhomogeneous fifth order linear ordinary differential
equation of the form

22(z = 1)(z + 1)(z + 2)¢5 + [242* + 3823 — 142 — 182]p4
(28) +[1842% 4 21622 — 52z — 323 + [52822 + 4082 — 48],
+[504z +192]py + 960 =96 (2 #1,0,—1,—2)
has a particular solution

Z3

z—1)(z+1)(2+2)

7
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Let b=10, ay = —1, ap =1, a3 = 2 and f = 96, and Q(z)

1)(z+2) = 2° + 22" — 2% — 222

5A+ B, =24,

8\ + B, = 38,

=3\ + B3 = —14,

—4X+ By = —18,

B; =0,

A(A=1)(8X — 16 + 3B;) = 408,
A= 1)(A—

2)(5A—15 + 4B,) = 504,

513

=22(z-1)(z +

. Comparing (28) with Theorem 1, we have

A(10X — 10 +4B;) = 184,
A(12X — 12 + 3B;) = 216,
A=3X+3 + 2B;) = —52,
A(—=2X+2+ By) = —32,

A(A = 1)(10A—20 + 6B,) = 528,
AA=1) (=X + 2+ B;) = —48,
AA—

1)(A—2)(2A—8 + By) = 192,

AA=1)(A=2)(A=3)(A — 4+ B;) = 96.
For their common solution, we get A\ = 4, B, = 4, By = 6, By = —2,
By=-2, Bs=0=P =1, ,=1, =1, P,=1, P =0.

Thus from (2), the particular solution is given by

o = (=1t 1) (2 +2) 'z 1/z1(96)_4dz]

=(z—1)"(z+1)"

2’3

(z=1(z+1)(z+2)

et [

0
4z3dz

Example 3. The fourth order partial differential equation of the form

2 I 3 2 o
2 (z+1)(z + 2)@ + (1627 + 362° + 162)

o Pu ou
2)—/— + 16y = — —
+(96z + 7 )a 6p = ETE +68t
has solutions
H(Zat) = K- (Z+1)
or
)U“(th) =K- (Z =+ 1)_

H 2 P p
5.5 + (722" + 108z + 24)@

(z#0,-1,-2)
(Z+2) 1 —2 —2t

(Z—|—2) 1 —2 —4t

Take a1 =1, as =2, b=0, a = 16, M =1, N = 6 in Theorem 2. It’s
similar to Example 1, we have A\ =3, By =4, B, =9, B3 =4, B, =0, P, =1,

P,=1, Py =2, P, =0. And we obtain 6 = C2Q,(z) +

From Theorem 2. The solutions are

wzt) =K -[(z+1)"'(z+2)""2

513

CT)L\—lanl (Z) = 24.

—6 £ /6% +4(16 — 24
2zo]o.exp{ 6+ /6 _’2_ (16 )t}
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Thus

Example 4. The fifth order partial differential equation of the form

5 4
20z —1)(z+ 1)(z + 2)‘2—“ +[242% +382° — 1422 — 182]2 £
Pu 8§,u
+[1842° + 21622 — 52z — 32]ﬁ + (5282 + 4082 — 48] 7 &
o ~Ou
15042 + 192155 + 90u(z,t) = 67 (24 1,0,-1,-2)

has solution
pz,t) =K-e'(z—1)""z+ 1) (z+2)""27".

Take a; = -1, apo =1, a3 =2, b=0, a =90, M =0, N = —6 in Theorem
2. It’s similar to Example 2, we have A =4, By =4 B, =6, B3 = -2, B, =
-2, Bs =0, P =1, P, =1, P, =1, P, =1, Ps = 0. And we obtain
§=C Q. (2) + C) G, _1(z) = 96. From Theorem 2, the solution is

p(zt)= K - [(2 = )7 (2 + 1) (2 4 2) 712160y - exp { 226t
=K-e(z—=1)"z+1)(z+2)" 1271
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