ON THE MINIMUM AREA OF CONVEX LATTICE POLYGONS*

Tian-Xin Cai ${ }^{\dagger}$

Abstract

A convex polygon is a polygon whose vertices are points on the integer lattice with interior angles all convex. Let $a(v)$ be the least possible area of a convex lattice polygon with v vertices. It is known that $c v^{2.5} \leq a(v) \leq(15 / 784) v^{3}+o\left(v^{3}\right)$. In this paper, we prove that $a(v) \geq(1 / 1152) v^{3}+O\left(v^{2}\right)$.

A convex lattice polygon is a polygon whose vertices are points on the integer lattice with interior angles strictly less than π radians. A convex lattice polygon with v vertices is called a v-gon. The least possible area of a v-gon is denoted by $a(v)$. The function $a(v)$ has been studied by Arkinstall [1], Rabinowitz [4], Simpson [5], Colbourn and Simpson [3]. The values of $a(v)$ are known for $v \leq 10$ and $v \in\{12,13,14,16,18,20,22\}$. For example, $a(3)=1 / 2, a(4)=1, a(5)=5 / 4, a(6)=3, \ldots$. For general v, only bounds are known. Rabinowitz [4] proved that $a(2 n) \leq\binom{ n}{3}-n+1$. Simpson [5] established that $a(2 n) \geq\binom{ n}{2}$, and that

$$
\begin{equation*}
[\{a(2 n+2)+a(2 n)\} / 2]+\frac{1}{2} \leq a(2 n+1) \leq a(2 n+2)-\frac{1}{2} \tag{1}
\end{equation*}
$$

These together imply that for all v,

$$
(1 / 8) v^{2}+o\left(v^{2}\right) \leq a(v c) \leq(1 / 48) v^{3}+o\left(v^{3}\right)
$$

In 1992, Colbourn and Simpson [3] proved that

$$
c v^{2.5} \leq a(v) \leq(15 / 784) v^{3}+o\left(v^{3}\right)
$$

[^0]for some positive constant c. Moreover, they conjecture that $a(v)=c_{0} v^{3}+$ $o\left(v^{3}\right)$ for a constant c_{0}.

In this paper, we improve the lower bound on $a(v)$, by proving the following theorem (I announced in [2]).

Theorem. The minimum area of a convex lattice v-gon, $a(v)$, satisfies

$$
a(v) \geq(1 / 1152) v^{3}+O\left(v^{2}\right)
$$

From (1) we need only to treat the cases with v even; therefore, we write $v=2 n$. Now, define an admissible n-sequence V to be a sequence of ordered pairs $\left\{v_{i}=\left(x_{i}, y_{i}\right), 1 \leq i \leq n\right\}$ satisfying

$$
\begin{array}{ll}
y_{i} x_{j}-x_{i} y_{j}>0 & \text { for } 1 \leq i<j \leq n \\
\operatorname{gcd}\left(x_{i}-y_{i}\right)=1 & \text { for } 1 \leq i \leq n \\
y_{i} \geq x_{i}>0 & \text { for } 1 \leq i \leq n
\end{array}
$$

We need the following characterization of $a(2 n)$ in determining new lower bound.

Lemma. [5] One has

$$
\begin{equation*}
a(2 n)=\min \sum_{i=1}^{n} \sum_{j=i+1}^{n}\left(y_{i} x_{j}-x_{i} y_{j}\right) \tag{2}
\end{equation*}
$$

where the minimum is taken over all admissible n-sequences.

Proof of Theorem. Suppose that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an admissible n-sequence. Consider the contribution to equation (2) arising from pairs containing $v_{1}=$ $\left(x_{1}, y_{1}\right)$, let L_{i} be the set of vectors v_{j} whose contribution is i, i.e., $y_{1} x_{j}-x_{1} y_{j}=$ i, and $l_{i}=\left|L_{i}\right|$ be the number of the elements in L_{i}. Then

$$
\begin{equation*}
\sum_{i=1}^{\infty} l_{i}=n-1 \tag{3}
\end{equation*}
$$

Consider the contribution to (2) arising from pairs between v_{1} and the vectors in L_{i}, this is $i l_{i}$. Furthermore, let $\left(x_{0}, y_{0}\right)$ be the least pair of positive integers satisfying $y_{1} x_{0}-x_{1} y_{0}=i$. Then all the vectors in L_{i} are in the form $\left(x_{i}, y_{j}\right)=$ $\left(x_{0}+x_{1} t_{j}, y_{0}+y_{1} t_{j}\right)$, with $t_{j} \geq 0,1 \leq j \leq l_{i}$. If $l_{i} \geq 2$, consider the contribution to (2) arising from pairs among the vectors in L_{i}, this is $i \sum_{t_{j}>t_{j}^{\prime}}\left(t_{j}-t_{j^{\prime}}\right)$. It is easy to see that the above summation is minimized when $t_{j}=1,2, \ldots, l_{i}, 1 \leq$
$j \leq l_{i}$, i.e.,

$$
\begin{aligned}
& i\left\{1\left(l_{i}-1\right)+2\left(l_{i}-2\right)+\ldots+\left(l_{i}-1\right) 1\right\} \\
& \quad=i\left\{l_{i}\left(1+2+\ldots+\left(l_{i}-1\right)\right)-\left(1^{2}+2^{2}+\ldots+\left(l_{i}-1\right)^{2}\right)\right\} \\
& \quad=i l_{i}\left(l_{i}^{2}-1\right) / 6
\end{aligned}
$$

which means that the total contribution to (2) arising from pairs among v_{1} and the vectors in L_{i} is

$$
\begin{equation*}
s_{i} \geq i l_{i}\left(l_{i}^{2}+5\right) / 6 \tag{4}
\end{equation*}
$$

Using (3) we have

$$
\sum_{l_{i} \geq 1} \frac{1}{\sqrt{i}} \leq 2 \sqrt{n}
$$

This together with (3), (4) and Hölder's inequality gives us

$$
\begin{aligned}
n-1 & =\sum_{i=1}^{\infty} l_{i}=\sum_{l_{i} \geq 1}\left(i^{-\frac{1}{3}}, i^{\frac{1}{3}} l_{i}\right) \\
& \leq\left(\sum_{l_{i} \geq 1} i^{-\frac{1}{2}}\right)^{\frac{2}{3}}\left(\sum_{i=1}^{\infty} i l_{i}^{3}\right)^{\frac{1}{3}} \\
& \leq 2^{\frac{2}{3}} n^{\frac{1}{3}}\left(6 \sum_{i=1}^{\infty} s_{i}\right)^{\frac{1}{3}} .
\end{aligned}
$$

Therefore

$$
S_{1}=\sum_{i=1}^{\infty} s_{i} \geq(1 / 24) n^{2}\left(1-\frac{1}{n}\right)^{3}=(1 / 24) n^{2}+O(n)
$$

Similarly, we consider the contribution to (2) arising from pairs containing $v_{k}=\left(x_{k}, y_{k}\right), k \geq 2$ and $v_{j}=\left(x_{i}, y_{j}\right), k<j \leq n$. Since $\left\{v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ is also an admissible $n-k+1$-sequence, the total contribution to (2), S_{k}, is

$$
\begin{equation*}
S_{k} \geq(1 / 24)(n-k+1)^{2}+O(n-k+1) \tag{5}
\end{equation*}
$$

Let L_{i}^{k} be the set of vectors $v_{j}(j>k)$ whose contribution with v_{k} are i, i.e., $y_{k} x_{j}-x_{k} y_{j}=i$. Then

$$
\begin{equation*}
\left|L_{j}^{k} \cap L_{j^{\prime}}^{k^{\prime}}\right| \leq 1 \tag{6}
\end{equation*}
$$

In fact, if there are $1 \leq k<k^{\prime}<a<b \leq n$ such that

$$
\begin{align*}
& \left\{\begin{array}{l}
x_{a} y_{k}-x_{k} y_{a}=j \\
x_{b} y_{k}-x_{k} y_{b}=j
\end{array}\right. \tag{7}\\
& \left\{\begin{array}{l}
x_{a} y_{k}^{\prime}-x_{k}^{\prime} y_{a}=j^{\prime} \\
x_{b} y_{k}^{\prime}-x_{k}^{\prime} y_{b}=j^{\prime}
\end{array}\right. \tag{8}
\end{align*}
$$

from (7) and (8), we obtain, respectively,

$$
\frac{x_{a}-x_{b}}{y_{a}-y_{b}}=\frac{x_{k}}{y_{k}}, \frac{x_{a}-x_{b}}{y_{a}-y_{b}}=\frac{x_{k}^{\prime}}{y_{k}^{\prime}}
$$

which means that

$$
\frac{x_{k}}{y_{k}}=\frac{x_{k}^{\prime}}{y_{k}^{\prime}}
$$

This is impossible. From (6) we conclude that in the preceding way the contribution to (2) arising from any two fixed pairs is at most twice in $S_{1}+S_{2}+$ $\cdots+S_{n-1}$. Summing (5) over $1 \leq k \leq n-1$, one has

$$
\begin{aligned}
& \sum_{i=1}^{n} \quad \sum_{j=i+1}^{n}\left(y_{i} x_{j}-x_{i} y_{j}\right) \geq \frac{1}{2} \sum_{k=1}^{n-1} S_{k} \\
& \quad \geq \frac{1}{48} \sum_{k=1}^{n-1}(n-k+1)^{2}+O\left(\sum_{k=1}^{n-1} n-k+1\right) \\
& \quad=\left(\frac{1}{144}\right) n^{3}+O\left(n^{2}\right)
\end{aligned}
$$

By the Lemma, we complete the proof of the Theorem.

References

1. J. R. Arkinstall, Minimal requirements for Minkowski's theorem in the plane I, Bull. Austral. Math. Soc. 22 (1980), 259-274.
2. Cai Tian-Xin, On the lower bound of the minimum area of convex lattice polygons, Adv. in Math. 23 (1994), 466.
3. C. J. Colbourn and R. J. Simpson, A note on the bounds on the minimum area of convex lattice polygons, Bull. Austral. Math. Soc. 45 (1992), 237-240.
4. S, Rabinowitz, On the number of lattice points inside a convex lattice n-gon, Congr. Numer. 73 (1990), 99-104.
5. R. J. Simpson, Convex lattice polygons of minimum area, Bull. Austral. Math. Soc. 42 (1990), 353-367.

Department of Mathematics, Hangzhou University
Hangzhou, China

[^0]: Received March 1, 1997; revised April 24, 1997. Communicated by E. Eie. 1991 Mathematics Subject Classification: 11H06, 52C05. Key words and phrases: convex lattice polygons, minimum area, admissible n-sequence. ${ }^{\dagger}$ Project 19671023 supported by NNSFC and project supported by NSF of Zhejiang Province. * Presented at the International Mathematics Conference '96, National Changhua University of Education, December 13-16, 1996. The Conference was sponsored by the National Science Council and the Math. Soc. of the R.O.C.

