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BOUNDEDNESS OF OPERATORS ON HARDY SPACES

Kai Zhao and Yongsheng Han

Abstract. In [1], the author provided an example which shows that there is a

linear functional bounded uniformly on all atoms in H1(Rn), and it can not
be extended to a bounded functional on H1(Rn). In this note, we first give
a new atomic decomposition, where the decomposition converges in L2(Rn)
rather than only in the distribution sense. Then using this decomposition, we

prove that for 0 < p ≤ 1, T is a linear operator which is bounded on L2(Rn),
then T can be extended to a bounded operator from Hp(Rn) to Lp(Rn) if
and only if T is bounded uniformly on all (p, 2)-atoms in Lp(Rn). A similar
result from Hp(Rn) to Hp(Rn) is also obtained. These results still hold for
the product Hardy space and Hardy space on spaces of homogeneous type.

1. INTRODUCTION

It is important to verify boundedness for many important classes of operators

defined on Hp spaces. And the atomic decompositions of Hardy spaces play an

important role in the boundedness of operators on Hardy spaces. The best known

example of a class with this property are Calderón-Zygmund operators. As we

know, usually, it is indeed sufficient to check that atoms are mapped into bounded

elements of quasi-Banach spaces. Recently, in [1], M.Bownik gave an example of a

linear functional defined on a dense subspace of Hardy space H1(Rn), which maps
all atoms into bounded scalars, but it can not be extended to a bounded functional

on the whole space H1(Rn). As a consequence of his example, it implies that to
prove the boundedness of an operator from Hardy space Hp(Rn), 0 < p ≤ 1, to
some other quasi-Banach space, in general it does not suffice to just verify that this

operator maps atoms into bounded elements of this quasi-Banach space. Therefore,
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it should be very carefully to do this. Maybe this problem is based on the atomic

decomposition of Hardy spaces. Since Calderón-Zygmund operators are bounded on

L2(Rn) spaces, the atomic decompositions are converged in the distribution sense
(not converged in L2(Rn) ). So, the operators should not be put into each one atom
in the series.

In this paper, using the Calderón reproducing formula, we give a new atomic

decomposition of a dense subspaceHp(Rn)∩L2(Rn) of the Hardy spacesHp(Rn),
where the decomposition converges also in L2(Rn) rather than only in the distribu-
tion sense. Then, using this atomic decomposition, we can prove the boundedness

of linear operators on Hardy spaces by T is bounded uniformly on all atoms.
The main result of this note is to prove the following Theorem.

Theorem 1.1. Fix 0 < p ≤ 1. Let T be a linear operator which is bounded on
L2(Rn). (i) T can be extended to a bounded operator from Hp(Rn) to Lp(Rn) if
and only if ‖Ta‖p ≤ C for all (p, 2)-atoms, where the constant C is independent

of a; (ii) T can be extended to a bounded operator from Hp(Rn) to Hp(Rn) if and
only if ‖Ta‖Hp ≤ C for all (p, 2)-atoms, where the constant C is also independent
of a.

This theorem is achieved by the following new atomic decomposition.

Theorem 1.2. Let f ∈ L2(Rn) ∩Hp(Rn). Then there is a sequence of (p, 2)-
atoms {aj} and a sequence of scalars {λj} with

∑
j
|λj |p ≤ C‖f‖p

Hp such that

f =
∑
j
λjaj , where the series converges to f in L

2(Rn).

2. PROOF OF THEOREMS

We recall some basic definitions and results.

Let ψ(x) be a radial Schwartz function supported in the unit ball and satisfying

the conditions
∞∫
0

|ψ̂(tξ)|2 dt
t = 1 for all ξ ∈ Rn \ {0}, and

∫
Rn

ψ(x)xαdx = 0 for all

nonnegative multi-indexes α with |α| ≤ [n(1
p − 1)].

Definition 2.1. Suppose that f ∈ S ′(Rn), the space of tempered distributions.
Let ψ be a function as above. The Lusin function of f, S(f), is defined by

(1) S(f)(x) =





∞∫

0

∫

|y−x|<t

|ψt ∗ f(y)|2dydt
tn+1





1
2

,
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where ψt(x) = t−nψ(x
t ).

Definition 2.2. The Hardy space Hp(Rn), 0 < p ≤ 1, is defined by

(2) Hp(Rn) = {f ∈ S ′(Rn) : S(f) ∈ Lp(Rn)}.

If f ∈ Hp(Rn), the norm of f is defined by ‖S(f)‖p. It was known that the
definition 2.2 is independent of the choice of the function ψ.

The usual atomic decomposition of Hp(Rn) is as follows (cf. [2, 4, 6] etc.).

Theorem 2.3. Let f ∈ Hp(Rn). Then there is a sequence of (p, 2)-atoms {aj}
and a sequence of scalars {λj} with

∑
j
|λj |p ≤ C‖f‖p

Hp such that f =
∑
j
λjaj ,

where the series converges to f in the sense of tempered distributions. Conversely,

if f is a tempered distribution such that f =
∑
j
λjaj in the sense of tempered

distributions with
∑
j
|λj |p <∞, and the aj’s being (p, 2)-atoms, then f ∈ Hp(Rn)

and ‖f‖p
Hp ≤ C

∑
j
|λj |p.

Here a function a(x) is said to be an (p, 2)-atom of Hp(Rn), 0 < p ≤ 1, if
a(x) is supported in a cube Q; ‖a‖2 ≤ |Q|

1
2
− 1

p ; and finally,
∫
a(x)xαdx = 0 for

all nonnegative multi-indexes α with |α| ≤ [n(1
p − 1)].

We first prove Theorem 1.2.

Proof of Theorem 1.2. Let ψ be a function mentioned above. Then the following
Calderón reproducing formula holds

(3) f(x) =

∞∫

0

ψt ∗ ψt ∗ f(x)
dt

t
,

where the integral converges in L2(Rn).
Now, suppose f ∈ L2 ∩ Hp. Let Ωk = {x ∈ Rn : S(f)(x) > 2k} and

Bk = {Q : dyadic cubes such that |Q ∩ Ωk| > 1
2 |Q| and |Q ∩ Ωk+1| ≤ 1

2 |Q|}. For
each dyadic cube Q, denote Q̂ = {(y, t) : y ∈ Q and

√
n`(Q) ≤ t < 2

√
n`(Q)},

where `(Q) is the side length of Q. We claim that

(4) f(x) =
∑

k

∑

Q̃∈Bk

∑

Q⊆Q̃∩Bk

∫

Q̂

ψt(x− y)ψt ∗ f(y)
dydt

t
,

where Q̃ ∈ Bk are maximal dyadic cubes inBk , and the series converges in L
2(Rn).
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To prove the claim, it suffices to show that for any positive integer N,
∥∥∥∥∥∥∥

∑

k>N

∑

Q∈Bk

∫

Q̂

ψt(x− y)ψt ∗ f(y)
dydt

t

∥∥∥∥∥∥∥
2

tends to zero as N goes to infinity.

First let Ω̃k = {x ∈ Rn : M(χΩk
)(x) > 1

2}, where M is the Hardy-Littlewood

maximal function. Then Ωk ⊆ Ω̃k , and by the maximal theorem, |Ω̃k| ≤ C|Ωk|.
Let χ(x, y, t) be the characterization of {(x, y, t) : x ∈ Ω̃k\Ωk+1, |x− y| < t}. For
any x ∈ Q ∈ Bk , since |Q∩Ωk| ≥ 1

2 |Q|(by the definition of Bk), one has x ∈ Ω̃k,

thus if (y, t) ∈ Q̂, then
∫

Rn

χ(x, y, t)dx ≥ |Q∩ (Ω̃k\Ωk+1)|

= |Q ∩ Ω̃k| − |Q ∩ Ωk+1| ≥ |Q| − |Q|
2 = C ′tn.

Therefore

(5)

C22k |Ωk| ≥ 22k|Ω̃k| ≥
∫

Ω̃k\Ωk+1

(Sf)2(x)dx

=
∫

Rn

∞∫

0

∫

Rn

|ψt ∗ f(y)|2χ(x, y, t)
dydtdx

tn+1

≥
∑

Q∈Bk

∫

Q̂

∫

Rn

|ψt ∗ f(y)|2χ(x, y, t)
dydtdx

tn+1

≥ C ′
∑

Q∈Bk

∫

Q̂

|ψt ∗ f(y)|2dydt
t
.

Now by duality argument and Hölder’s inequality, we have

(6)

∥∥∥∥∥∥∥

∑

k>N

∑

Q∈Bk

∫

Q̂

ψt(x− y)ψt ∗ f(y)
dydt

t

∥∥∥∥∥∥∥
2

= sup
‖g‖2≤1

∣∣∣∣∣∣∣
<

∑

k>N

∑

Q∈Bk

∫

Q̂

ψt(x− y)ψt ∗ f(y)
dydt

t
, g >

∣∣∣∣∣∣∣

≤ sup
‖g|2≤1

∑

k>N

∑

Q∈Bk

∫

Q̂

|ψt ∗ g(y)ψt ∗ f(y)|dydt
t
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≤ sup
‖g‖2≤1





∑

k>N

∑

Q∈Bk

∫

Q̂

|ψt ∗ g(y)|2
dydt

t





1
2





∑

k>N

∑

Q∈Bk

∫

Q̂

|ψt ∗ f(y)|2dydt
t





1
2

≤ sup
‖g|2≤1





∫

Rn+1
+

|ψt ∗ g(y)|2
dydt

t





1
2




∑

k>N

∑

Q∈Bk

∫

Q̂

|ψt ∗ f(y)|2dydt
t





1
2

≤ C





∑

k>N

∑

Q∈Bk

∫

Q̂

|ψt ∗ f(y)|2dydt
t





1
2

,

where the last inequality follows from the L2 estimates of the Littlewood-Paley

square function





∫

Rn+1
+

|ψt ∗ g(y)|2
dydt

t





1
2

≤ C‖g‖L2(Rn).

Then the estimate in (5) implies that

‖
∑

k>N

∑

Q∈Bk

∫

Q̂

ψt(x− y)ψt ∗ f(y)
dydt

t
‖2 ≤ C(

∑

k>N

22k|Ωk|)
1
2 .

The last term tends to zero as N goes to infinity is because of

∑

k

22k|Ωk| ≤ C‖S(f)‖2
2 ≤ C‖f‖2

2 <∞.

Thus (4) hold, and the series converges in L2(Rn).
Moreover, (4) gives an atomic decomposition ofHp(Rn). To see this, we denote

bQ̃(x) =
∑

Q⊆Q̃∩Bk

∫

Q̂

ψt(x− y)ψt ∗ f(y)
dydt

t
,
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then it is easy to see that b
Q̃
(x) is supported in 5Q̃(the same center and 5 times

side length of Q̃ ). By Hölder’s inequality,

(7)

‖bQ̃(x)‖p
p =

∥∥∥∥∥∥∥

∑

Q⊆Q̃∩Bk

∫

Q̂

ψt(x− y)ψt ∗ f(y)
dydt

t

∥∥∥∥∥∥∥

p

p

≤ |5Q̃|(1−
p
2
)

∥∥∥∥∥∥∥

∑

Q⊆Q̃∩Bk

∫

Q̂

ψt(x− y)ψt ∗ f(y)
dydt

t

∥∥∥∥∥∥∥

p

2

.

Using duality argument again, we obtain

∥∥∥∥∥∥∥

∑

Q⊆Q̃∩Bk

∫

Q̂

ψt(x− y)ψt ∗ f(y)
dydt

t

∥∥∥∥∥∥∥
2

= sup
‖g‖2≤1

∣∣∣∣∣∣∣
<

∑

Q⊆Q̃∩Bk

∫

Q̂

ψt(x− y)ψt ∗ f(y)
dydt

t
, g >

∣∣∣∣∣∣∣

≤ sup
‖g‖2≤1

∑

Q⊆Q̃∩Bk

∫

Q̂

|ψt ∗ g(y)ψt ∗ f(y)|dydt
t

≤ sup
‖g‖2≤1





∑

Q⊆Q̃∩Bk

∫

Q̂

|ψt ∗ g(y)|2
dydt

t





1
2

·





∑

Q⊆Q̃∩Bk

∫

Q̂

|ψt ∗ f(y)|2dydt
t





1
2

≤ C





∑

Q⊆Q̃∩Bk

∫

Q̂

|ψt ∗ f(y)|2dydt
t





1
2

,

where the last inequality also follows from the L2 estimate of the Littlewood-Paley

square function as the same as in (6) used.

Hence, together with the cancellation conditions of ψ, it is easy to see that if

we set

a
Q̃
(x) = C|5Q̃|(

1
2
− 1

p
){

∑

Q⊆Q̃∩Bk

∫

Q̂

|ψt ∗ f(y)|2dydt
t

}−
1
2

×
∑

Q⊆Q̃∩Bk

∫

Q̂

ψt(x− y)ψt ∗ f(y)
dydt

t
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for a suitable constant C, then a
Q̃
(x) is an (p, 2)-atom.

Finally, by (5), we obtain

∑

k

∑

Q̃∈Bk

|λQ̃|
p =

∑

k

∑

Q̃∈Bk

|5Q̃|(1−
p
2
)





∑

Q⊆Q̃∩Bk

∫

Q̂

|ψt ∗ f(y)|2dydt
t





p
2

≤ C
∑

k

|Ωk|(1−
p
2
)2kp|Ωk|

p
2 ≤ C‖S(f)‖p

p = C‖f‖p
Hp .

Therefore, we have the new atomic decomposition of Hp(Rn)

(8) f(x) =
∑

k

∑

Q̃∈Bk

λQ̃aQ̃(x)

which converges in L2(Rn).
This ends the proof of Theorem 1.2.

Now, by Theorem 1.2, we can prove Theorem 1.1.

Proof of Theorem 1.1. We only need to prove the “if” parts of the theorem.

Suppose that a linear operator T is bounded on L2(Rn) and ‖T (a)‖p ≤ C uniformly

on all (p, 2)−atoms. By Theorem 1.2, for any f ∈ Hp(Rn) ∩ L2(Rn), 0 < p ≤ 1,
we obtain

‖Tf‖p
p =

∥∥∥∥∥∥∥

∑

k

∑

Q̃∈Bk

T




∑

Q⊆Q̃∩Bk

∫

Q̂

ψt(· − y)ψt ∗ f(y)
dydt

t




∥∥∥∥∥∥∥

p

p

≤ C
∑

k

∑

Q̃∈Bk

|5Q̃|(1−
p
2
)





∑

Q⊆Q̃∩Bk

∫

Q̂

|ψt ∗ f(y)|2dydt
t





p
2

≤ C
∑

k

|Ωk|(1−
p
2
)2kp|Ωk|

p
2 ≤ C‖S(f)‖p

p = C‖f‖p
Hp ,

where the equality follows from the fact that theL2 convergence of the series implies

the convergence for almost everywhere, and the first inequality then follows from

the uniform boundedness of T on all (p, 2)-atoms in Lp(Rn) and the same estimate
as (7).

Similarly, since the decomposition in (4) (or in (8)) converges in L2(Rn), as
a consequence, it also converges in S ′. Applying Lusin function and taking the
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pth-power of Lp norm to both sides in (4) yield

‖Tf‖p
Hp ≤

∑

k

∑

Q̃∈Bk

∥∥∥∥∥∥∥
T




∑

Q⊆Q̃∩Bk

∫

Q̂

ψt(· − y)ψt ∗ f(y)
dydt

t




∥∥∥∥∥∥∥

p

Hp

.

Using the fact that T is bounded uniformly on all (p, 2)-atoms in Hp and repeating

the same estimate above give

‖Tf‖p
Hp ≤ C

∑

k

∑

Q̃∈Bk

|5Q̃|(1−
p
2
)





∑

Q⊆Q̃∩Bk

∫

Q̂

|ψt ∗ f(y)|2dydt
t





p
2

≤ C
∑

k

|Ωk|(1−
p
2
)2kp|Ωk|

p
2 ≤ C‖S(f)‖p

p = C‖f‖p
Hp .

Since L2 ∩Hp is dense in Hp(Rn), the “if” parts of Theorem 1.1 are proved,
and hence the proof of Theorem 1.1 is complete.

Remark. The proof of the theorems above depends only on the Calderón

reproducing formula on L2 and the characterization of Hp space by the Lusin

function. This formula and characterization still hold for product domains and

spaces of homogeneous type (cf. [3] and [5]). Therefore, the theorems still hold

for these setting.
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