TAIWANESE JOURNAL OF MATHEMATICS Vol. 1, No. 2, pp. 127-133, June 1997

STRONGLY CONTINUOUS GROUPS, SIMILARITY AND NUMERICAL RANGE ON A HILBERT SPACE

Ralph deLaubenfels

Abstract. It is shown that iB generates a strongly continuous group of exponential type ω on a Hilbert space if and only if for all $\alpha > \omega$, B is similar to an operator with spectrum and numerical range contained in the horizontal strip $\{z \in \mathbf{C} \mid |Im(z)| < \alpha\}$.

1. INTRODUCTION

It is a well-known result due to Sz-Nagy (see, for example, [5, Theorem 4.8.1]) that, if iB generates a bounded strongly continuous group on a Hilbert space, then B is similar to a self-adjoint operator. This is equivalent to saying that B is similar to an operator whose spectrum and numerical range are contained in the real line. In this paper, a similar result for generators of arbitrary strongly continuous groups on a Hilbert space is proven. It is shown that iB generates a strongly continuous group of exponential type ω if and only if for all $\alpha > \omega$, B is similar to an operator whose spectrum and numerical range are contained in the horizontal strip $\{z \in \mathbf{C} \mid |Im(z)| < \alpha\}$ (Theorem 2.4).

These results are closely related to Halmos's conjecture about operators that are similar to a contraction; see Remark 2.5. The paper concludes with some open questions.

Throughout, all operators are linear, on a Hilbert space H, with inner product $\langle \rangle$. Denote by $\mathcal{D}(G)$ the domain of the operator G, by $\rho(G)$ its resolvent set, and by $\sigma(G)$ its spectrum. The space of bounded operators from H to itself will be written as B(H).

Received September 16, 1996

Communicated by S.-Y. Shaw.

¹⁹⁹¹ Mathematics Subject Classification: 47A05, 47A12, 47D03, 47A60.

Key words and phrases: Groups of operators, numerical range, H^{∞} functional calculi.

^{*}I am indebted to Khristo Boyadzhiev for discussions about this paper.

An operator B is similar to an operator G if there exists $S \in B(H)$, with $0 \in \rho(S)$, such that $B = SGS^{-1}$.

Definition 1.1. The numerical range of an operator G is

 $\{ < Gx, x > | x \in \mathcal{D}(G), ||x|| = 1 \}.$

Definition 1.2. If Ω is an open subset of the complex plane, whose closure is not the entire plane, all eigenvalues of the operator A are contained in Ω and $\sigma(A) \subseteq \overline{\Omega}$, then an $H^{\infty}(\Omega)$ functional calculus for A is a continuous algebra homomorphism, $f \mapsto f(A)$, from $H^{\infty}(\Omega)$ into B(H), such that $f_0(A) = I$ $(f_0(z) \equiv 1)$ and $(z \mapsto (\lambda - z)^{-1})(A) = (\lambda - A)^{-1}$, for all $\lambda \notin \overline{\Omega}$.

Of particular interest in this paper will be horizontal strips

$$H_{\alpha} \equiv \{ z \in \mathbf{C} \mid |Im(z)| < \alpha \}$$

and sectors

$$S_{\alpha} \equiv \{ r e^{i\phi} \mid |\phi| < \alpha, r > 0 \},\$$

for $\alpha > 0$.

Definition 1.3. If A generates a strongly continuous group (semigroup), it will be denoted by $\{e^{tA}\}_{t \in \mathbf{R}}(\{e^{tA}\}_{t \geq 0})$. See [7], [10] or [11] for basic material on strongly continuous semigroups.

A strongly continuous group $\{e^{tA}\}_{t \in \mathbf{R}}$ is of exponential type ω if, for all $\alpha > \omega$, there exists a constant M_{α} such that

$$||e^{tA}|| \le M_{\alpha} e^{|t|\alpha}, \ \forall t \in \mathbf{R}.$$

Definition 1.4. Suppose *iB* generates a strongly continuous group of exponential type $\omega < \frac{\pi}{2}$. As in [2] and [3, Chapter XXII] (see also [4, Example 4.1]), define $-e^B$ to be the generator of the regularized semigroup

$$W(t) \equiv \int_{\partial H_{\gamma}} e^{-te^{w}} (w - B)^{-1} \frac{dw}{2\pi i (i\frac{\pi}{2} - w)^{2}} \ (t \ge 0),$$

where $\omega < \gamma < \frac{\pi}{2}$. Note that the integral converges because $||(w - B)^{-1}||$ is bounded in $|Im(w)| \ge \gamma$. See [2] or [3] for basic material on regularized semigroups.

By [4, Example 4.1(7)], e^B is injective.

2. MAIN RESULTS.

The proof of Theorem 2.4 is short, relying on two results. First, Le Merdy recently showed ([8]) that a strongly continuous holomorphic semigroup is similar to a semigroup of contractions if and only if the generator has an $H^{\infty}(-S_{\theta})$ functional calculus, for some $\theta < \frac{\pi}{2}$. Second, it is shown in [2] that the generator of a strongly continuous group of exponential type ω automatically has an $H^{\infty}(iH_{\alpha})$ functional calculus, for any $\alpha > \omega$. Finally, the exponential function, as in Definition 1.4, allows us to switch from strips H_{α} to sectors S_{α} .

The following result is actually stated in terms of bounded imaginary powers; see [9] for the equivalence with H^{∞} functional calculi.

Lemma 2.1([8, Theorem 1.1]) Suppose -A is injective and generates a bounded strongly continuous analytic semigroup $\{e^{-tA}\}_{t\geq 0}$. Then $\{e^{-tA}\}_{t\geq 0}$ is similar to a semigroup of contractions if and only if A has an $H^{\infty}(S_{\frac{\pi}{2}})$ functional calculus.

Lemma 2.2 The following are equivalent, if $\omega \geq 0$.

- (a) *iB* generates a strongly continuous group of exponential type ω .
- (b) B has an $H^{\infty}(H_{\alpha})$ functional calculus, for all $\alpha > \omega$.

If $\omega < \frac{\pi}{2}$, then these are equivalent to

(c) e^B has an $H^{\infty}(S_{\alpha})$ functional calculus, for all $\alpha > \omega$.

Then

$$f(e^B) \equiv (f \circ g)(B) \ (f \in H^{\infty}(S_{\alpha})),$$

where $g(z) \equiv e^z$.

Proof: The equivalence of (a) and (b) is in [2, Theorem 3.5]. The equivalence of (b) and (c) is in [2, Corollary 2.9], and its proof.

The following is well known (in fact, the growth condition at infinity may be removed); a simple proof is included for completeness, and to introduce Remark 2.5.

Lemma 2.3. Suppose -A generates a strongly continuous semigroup of contractions. Then A has an $\mathcal{A}(S_{\frac{\pi}{2}})$ functional calculus, with

$$\|f(A)\| \le \|f\|_{H^{\infty}(S_{\frac{\pi}{2}})} \quad \forall f \in \mathcal{A}(\mathcal{S}_{\frac{\pi}{\epsilon}}),$$

129

Ralph deLaubenfels

where

$$\mathcal{A}(S_{\frac{\pi}{2}}) \equiv \{ f \in H^{\infty}(S_{\frac{\pi}{2}}) \cap C(\overline{S_{\frac{\pi}{2}}}) \mid \lim_{|z| \to \infty, z \in \overline{S_{\frac{\pi}{2}}}} f(z) \text{ exists } \}.$$

Proof: Let $T \equiv (A-1)(A+1)^{-1}$. Then T is a contraction, thus by Von Neumann's inequality (see, for example, [1, Proposition X.1.7]) has an $\mathcal{A}(\mathcal{D}) \equiv \mathcal{H}^{\infty}(\mathcal{D}) \cap \mathcal{C}(\overline{\mathcal{D}})$ functional calculus, where D is the unit disc, with

$$\|h(T)\| \le \|h\|_{\mathcal{A}(D)} \quad \forall h \in \mathcal{A}(D)$$

Let $k(z) \equiv (1+z)(1-z)^{-1}$, mapping D onto $S_{\frac{\pi}{2}}$. Then $A = k(T) \equiv (1+T)(1-T)^{-1}$, so

$$f(A) \equiv (f \circ k)(T) \ (f \in \mathcal{A}(S_{\frac{\pi}{2}}))$$

defines an $\mathcal{A}(S_{\frac{\pi}{2}})$ functional calculus for A, with

$$||f(A)|| = ||(f \circ k)(T)|| \le ||(f \circ k)||_{\mathcal{A}(D)} = ||f||_{\mathcal{A}(S_{\frac{\pi}{2}})},$$

for all $f \in \mathcal{A}(S_{\frac{\pi}{2}})$, as desired.

Theorem 2.4. The following are equivalent, if $\omega \geq 0$.

- (a) *iB* generates a strongly continuous group of exponential type ω .
- (b) For any $\alpha > \omega$, B is similar to an operator B_{α} such that iB_{α} generates a strongly continuous group with $||e^{itB_{\alpha}}|| \le e^{\alpha|t|}, \forall t \in \mathbf{R}$.
- (c) For any α > ω, B is similar to an operator whose spectrum and numerical range are contained in H_α.
- (d) B has an $H^{\infty}(H_{\alpha})$ functional calculus, for all $\alpha > \omega$.

Proof: It is well known (see [7], [10] or [11]) that (b) and (c) are equivalent, and it is clear that (b) \rightarrow (a). The equivalence of (d) and (a) is in Lemma 2.2. All that remains is (a) \rightarrow (c).

Since spectrum is preserved under similarity, it is sufficient to show that, for any $\alpha > \omega$, B is similar to an operator B_{α} with numerical range contained in $\overline{H_{\alpha}}$.

Fix $\alpha > \omega$, and let $r \equiv \frac{\pi}{2\alpha}$. Then i(rB) generates a strongly continuous group of exponential type $r\omega$. Since $r\omega < \frac{\pi}{2}$, by Lemma 2.2 there exists $\phi < \frac{\pi}{2}$ such that e^{rB} has an $H^{\infty}(S_{\phi})$ functional calculus. By Lemma 2.1, there exists $S_{\alpha} \in B(H)$ such that $0 \in \rho(S_{\alpha})$ and

$$\|S_{\alpha}e^{-te^{rB}}S_{\alpha}^{-1}\| \le 1, \quad \forall t \ge 0.$$

130

Lemma 2.3 implies that e^{rB} has an $\mathcal{A}(\mathcal{S}_{\frac{\pi}{2}})$ functional calculus, with

$$||S_{\alpha}f(e^{rB})S_{\alpha}^{-1}|| \le ||f||_{H^{\infty}(S_{\frac{\pi}{2}})}, \ \forall f \in \mathcal{A}(S_{\frac{\pi}{2}}).$$

Define iB_{α} as the generator of the strongly continuous group

$$e^{itB_{\alpha}} \equiv S_{\alpha}e^{itB}S_{\alpha}^{-1} \ (t \in \mathbf{R}).$$

For $\lambda \in \mathbf{R}$, with $|\lambda| > \alpha$, define

$$g_{\lambda}(z) \equiv r(ir\lambda - \ln z)^{-1} \ (z \in S_{\frac{\pi}{2}}).$$

Then

$$\begin{aligned} |(i\lambda - B_{\alpha})^{-1}|| &= ||S_{\alpha}r(ir\lambda - rB)^{-1}S_{\alpha}^{-1}|| \\ &= ||S_{\alpha}\left((z \mapsto r(ir\lambda - z)^{-1})(rB)\right)S_{\alpha}^{-1}|| \\ &= ||S_{\alpha}g_{\lambda}(e^{rB})S_{\alpha}^{-1}|| \\ &\leq ||g_{\lambda}||_{H^{\infty}(S_{\frac{\pi}{2}})} \\ &= r(r|\lambda| - \frac{\pi}{2})^{-1} = (|\lambda| - \alpha)^{-1}. \end{aligned}$$

This implies that the numerical range of B_{α} is contained in $\overline{H_{\alpha}}$, as desired.

Remark 2.5. Halmos's sixth problem ([6]) asks if every polynomially bounded operator is similar to a contraction. An operator T is *polynomially bounded* if there exists a constant M such that

$$||p(T)|| \le M \sup_{z \in D} |p(z)|,$$

for all polynomials p, where D is the unit disc.

By Von Neumann's inequality, the converse is true. Note that T is polynomially bounded if and only if T has an $\mathcal{A}(\mathcal{D}) \equiv \mathcal{H}^{\infty}(\mathcal{D}) \cap \mathcal{C}(\overline{\mathcal{D}})$ functional calculus.

As mentioned in the proof of Lemma 2.3 (see also the assertion before Lemma 2.3), by applying the Cayley transform $k(z) \equiv (1+z)(1-z)^{-1}$, Halmos's problem is equivalent to asking if, whenever A is densely defined and has an $H^{\infty}(S_{\frac{\pi}{2}}) \cap C(\overline{S_{\frac{\pi}{2}}})$ functional calculus, is -A similar to an operator that generates a strongly continuous semigroup of contractions? See [8] for a strong result in this direction.

By Lemma 2.2, and some additional argument, Halmos's problem may be reformulated in a third way, as follows. If B has an $H^{\infty}(H_{\alpha}) \cap C(\overline{H_{\alpha}})$ functional calculus, is B similar to an operator G such that

$$||f(G)|| \le ||f||_{\mathcal{A}(H_{\alpha})}, \ \forall f \in H^{\infty}(H_{\alpha}) \cap C(\overline{H_{\alpha}})?$$

This, and Theorem 2.4, suggest many open questions.

Open Questions 2.6. Consider the following, for $\omega > 0$, $\mathcal{D}(B)$ dense.

- 1. The operator iB generates a strongly continuous group such that $||e^{itB}|| = O(e^{\omega|t|})$.
- 2. The operator iB generates a strongly continuous group, and there exists $S \in B(H)$ such that $0 \in \rho(S)$ and

$$||Se^{itB}S^{-1}|| \le e^{\omega|t|}, \quad \forall t \in \mathbf{R}.$$

- 3. The operator B has an $H^{\infty}(H_{\omega}) \cap C(\overline{H_{\omega}})$ functional calculus.
- 4. The operator B has an $H^{\infty}(H_{\omega}) \cap C(\overline{H_{\omega}})$ functional calculus, and there exists $S \in B(H)$ such that $0 \in \rho(S)$, and

$$||Sf(B)S^{-1}|| \le ||f||_{H^{\infty}(H_{\omega})} \quad \forall f \in H^{\infty}(H_{\omega}) \cap C(\overline{H_{\omega}}).$$

What are the relationships between (1)-(4)? It is straightforward to show that $(3) \rightarrow (1)$ and $(4) \rightarrow (2)$.

Does (1) imply (2)? By Theorem 2.4, (1) implies that, for any α greater than ω , there exists S_{α} such that

$$||S_{\alpha}e^{itB}S_{\alpha}^{-1}|| \le e^{\alpha|t|} \quad \forall t \in \mathbf{R}.$$

But now we are asking for sharp boundary behaviour.

As I commented before, $(3) \rightarrow (4)$ is equivalent to Halmos's conjecture about polynomially bounded operators being similar to a contraction.

For $\omega \leq \frac{\pi}{2}$, assertion (4) is equivalent to e^B being sectorial; thus (2) \rightarrow (4) would be a numerical range mapping theorem; that is, it would be stating that, if the numerical range of B is contained in H_{ω} , then the numerical range of e^B is contained in $e^{H_{\omega}} = S_{\omega}$. Note in particular that (4), with $\omega = \frac{\pi}{2}$, is equivalent to e^B having numerical range and spectrum contained in $S_{\frac{\pi}{2}}$, which is equivalent to $-e^B$ generating a strongly continuous semigroup of contractions.

Does (2) imply (3), or, better yet, (4)? Note that, for $\omega \leq \frac{\pi}{2}$, the sectorial analogue of (2) does imply the sectorial analogue of (4); by "sectorial analogue" I mean, in (4), replace H_{ω} with S_{ω} , and replace (2) with

(2') -A generates a strongly continuous analytic semigroup $\{e^{-zA}\}_{z\in S_{(\frac{\pi}{2}-\omega)}}$ such that

 $||Se^{-zA}S^{-1}|| \le 1 \ \forall z \in S_{(\frac{\pi}{2}-\omega)},$

(for $\omega < \frac{\pi}{2}$); or

(2') -A generates a strongly continuous semigroup of contractions (for $\omega = \frac{\pi}{2}$).

References

- 1. B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland, Amsterdam, New York, Oxford, Tokyo, 1988.
- K. Boyadzhiev and R. deLaubenfels, Spectral theorem for generators of strongly continuous groups on a Hilbert space, *Proc. Amer. Math. Soc.* **120** (1994), 127-136.
- R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Springer-Verlag Lecture Notes in Mathematics, Vol. 1570, 1994.
- R. deLaubenfels, Automatic extensions of functional calculi, *Studia Math.* 114 (1995), 237-259.
- 5. H. R. Dowson, Spectral Theory of Linear Operators, London Mathematical Society Monographs No. 12, Academic Press, London, 1978.
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 176 (1970), 887-933.
- J. A. Goldstein, Semigroups of Operators and Applications, Oxford, New York, 1985.
- 8. C. Le Merdy, The similarity problem for bounded analytic semigroups on Hilbert space, Semigroup Forum, to appear.
- A. McIntosh, Operators which have an H[∞] functional calculus, Miniconference on Operator Theory and Partial Differential Equations, Proc. Center Math. Analysis, ANU, Canberra 14 (1986), 210-231.
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
- J. A. van Casteren, Generators of Strongly Continuous Semigroups, Research Notes in Mathematics 115, Pitman, Boston, 1985.

Scientia Research Institute P. O. Box 988, Athens, Ohio 45701 e-mail: 72260.2403@compuserve.com