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SOME EXISTENCE RESULTS OF SEMILINEAR SINGULARLY
PERTURBED NONLOCAL BOUNDARY VALUE PROBLEMS

Sheng-Ping Wang

Abstract. By standard barrier solution method associated with Schauder fixed
point theorem, we establish an existence theory for nonlinear second order non-
linear multi-point boundary value problem (1.3), (1.4). Through the pervious ex-
istence theorem, we mainly work out some asymptotic behaviors of solutions for
semilinear singularly perturbed three-point boundary value problem (1.1), (1.2).
Barrier solutions will be constructed explicitly when the boundary or interior layers
occur, respectively.

1. INTRODUCTION

In the past 20 years, extensive researches have come a long way on the existence
and asymptotic estimates of singular perturbation problems. For instance, in 2004,
Bukzhalev [1] establishes an existence theorem of Dirichlet boundary value problems

d2y

dx2
= f(x, y,

dy

dx
), y(a) = y0, y(b) = y1,

when assuming the existence of barrier solutions. By a construction of barrier solutions
explicitly, he justifies an asymptotic representation for a solution of

ε4
d2y

dx2
= ε

dy

dx
A(ε3

dy

dx
, y, x) + B(ε3

dy

dx
, y, x), y(0, ε) = y0, y(1, ε) = y1,

where A and B are functions satisfying some sufficient conditions related with degen-
erate equation. Vrábel’ et. al. [2, 3, 4] investigate the singularly perturbed semilinear
differential equations

εy′′ + ky = f(t, y), k < 0,
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subject to the following nonlocal boundary constraints

y′(a) = 0, y(b)− y(c) = 0, a < c < b.

They consider the right boundary layer phenomenon, that is, the layer occurs at t = b,
and study not only the asymptotic behaviors of solutions but also the estimate of the
derivative. Lin and Liu [5] in 2009 deal with the three-point boundary value problem for
nonlinear differential systems ε2x′′ = f(t, x, x′), 0 < t < 1, together with x(0, ε) = 0,
x(1, ε) = P(η, ε), where x and f are n-dimensional vectors, P =diag(p1, · · · , pn).
Under some sufficient conditions, an asymptotic behavior of solutions in the right
boundary layer case are also obtained. There are other excellent results related with this
technique(barrier method), for example, to consider the third order singularly perturbed
(two-point or nonlocal) boundary value problems [6, 7]. We refer the readers to more
interesting contributions [8, 9, 10, 11, 12, 13, 14, 15, 16, 17] involved with diverse
numerical approaches, method of descent, and so on.

Motivated by the above mentioned, we observe that there still exists many materials
about singular perturbations to study, especially on interior layer phenomena. In this
paper, when the layer occurs at the boundary or interior points, we respectively discuss
the existence and asymptotic behavior of solutions for semilinear singularly perturbed
equation

(1.1) εu′′(t) = f(t, u(t)), t ∈ (0, 1),

with three-point boundary condition

(1.2) u(0) = A0, u(1) = B0 + δu(η),

where A0, B0 ∈ R, 0 < η < 1 and δ ≥ 0. In order to attend the achievement, we first
study the existence of solutions for the following nonlinear boundary value problem

(1.3) u′′(t) = f(t, u(t), u′(t)), t ∈ (0, 1),

(1.4) u(0) = A0 +
n∑

i=1

γiu(ζi), u(1) = B0 +
m∑

j=1

δju(ηj),

where n,m > 0 are integers, 0 < ζ1 < ζ2 < · · ·< ζn < 1, 0 < η1 < η2 < · · ·< ηm <

1, A0, B0 ∈ R and γi, δj ≥ 0 for i = 1, . . . , n and j = 1, . . . , m. In the mathematical
literature a number of works have appeared on multi-point boundary value problems.
This topic recently still engages many researchers and has been studied extensively
via various schemes. The upper and lower solutions approach is a powerful one. Du,
Kong, Khan, Minghe, Wang, Guo, et. al. [18, 19, 20, 21, 22, 23] have lots of essential
contributions by means of this way.
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The layout of this article is as follows. Section 2 contains an existence theorem of
solutions for the multi-point boundary value problem (1.3), (1.4) established by barrier
solutions method with Schauder fixed point theorem. In Section 3, by applying the
previous theorem in Section 2, we construct explicit forms of upper and lower barriers
of (1.1), (1.2) and get some behaviors of solutions when boundary layer occurs. The
interior layer phenomena are considered in Section 4.

2. EXISTENCE THEOREM OF (1.3), (1.4)

In this section, we establish an existence result of (1.3), (1.4) via the upper and
lower solution method. The first step is to introduce barrier solutions needed as follows:

Definition 2.1. A function α ∈ C[0, 1] is a C2-lower solution of (1.3), (1.4) if

(a) α(0) − ∑n
i=1 γiα(ζi) ≤ A0, α(1)− ∑m

j=1 δjα(ηj) ≤ B0,
(b) for any t0 ∈ (0, 1), either D−α(t0) < D+α(t0) or there exists an open interval

I0 ⊂ (0, 1) with t0 ∈ I0 and a function α0 ∈ C1(I0) such that
(i) α(t0) = α0(t0)and α(t) ≥ α0(t), for any t ∈ I0;

(ii) α′′
0(t0) exists and α′′

0(t0) ≥ f(t0, α0(t0), α′
0(t0)).

Definition 2.2. A function β ∈ C[0, 1] is a C2-upper solution of (1.3), (1.4) if

(a) β(0) − ∑n
i=1 γiβ(ζi) ≥ A0, β(1)− ∑m

j=1 δjβ(ηj) ≥ B0,
(b) for any t0 ∈ (0, 1), either D−β(t0) > D+β(t0) or there exists an open interval

I0 ⊂ (0, 1) with t0 ∈ I0 and a function β0 ∈ C1(I0) such that
(i) β(t0) = β0(t0)and β(t) ≤ β0(t), for any t ∈ I0;

(ii) β′′0 (t0) exists and β′′0 (t0) ≤ f(t0, β0(t0), β′0(t0)).

We note that if D−α(t0) ≥ D+α(t0) for some t0 ∈ (0, 1), from the definition,
there exists α0(t0) ∈ C1(I0) such that α(t0) = α0(t0) and α(t) ≥ α0(t) on I0. It
follows from

D−α(t0) ≤ α′
0(t0) ≤ D+α(t0) ≤ D−α(t0)

that α has a derivative at t0 and α′(t0) = α′
0(t0). Similarly the case D−β(t0) ≤

D+β(t0) can imply β has a derivative at t0 and β′(t0) = β′0(t0).
The main existence theorem for solutions of (1.3), (1.4) is now listed in the fol-

lowing.

Theorem 2.3. Assume α and β ∈ C[0.1] be C2-lower and upper solution of
problem (1.3), (1.4) such that α ≤ β. Define A ⊂ [0, 1] (resp. B ⊂ [0, 1]) to be the
set of points where α (resp. β) is derivable. Let

E := {(t, u, v) ∈ [0, 1]× R × R | α(t) ≤ u ≤ β(t)},
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ψ : R
+ → R be a positive continuous function satisfying∫ ∞

r

s

ψ(s)
ds > max

t
β(t) − min

t
α(t),

where r = max{β(1)−α(0), β(0)−α(1)} and let f is continuous on E which satisfy

∀(t, u, v) ∈ E, |f(t, u, v)| ≤ ψ(|v|),

that is, the Nagumo’s condition (p. 46, [24]). Assume there exists N > 0 such that
for all t ∈ A (resp. for all t ∈ B)

f(t, α(t), α′(t)) ≥ −N, (resp. f(t, β(t), β′(t)) ≤ N ).

Then, the problem (1.3), (1.4) has at least one solution u ∈ C2(0, 1) ∩ C[0, 1] such
that, for all t ∈ [0, 1],

α(t) ≤ u(t) ≤ β(t).

Proof. Choose R > 0 be large enough so that
∫ R

r

s

ψ(s)
ds > max

t
β(t) − min

t
α(t),

and increase the value N if necessary, we can assume N ≥ max[0,R]ψ(v). Consider
the modified problem

(2.1)

{
u′′ = f(t, u, u′) + u− ω(t, u),
u(0) = A0 +

∑n
i=1 γiω(ζi, u(ζi)), u(1) = B0 +

∑m
j=1 δjω(ηj, u(ηj)),

where f := max{min{f(t, ω(t, u), v), N},−N} and ω : [0, 1]×R → R is defined by

ω(t, u) =

⎧⎪⎨
⎪⎩

α(t), if u < α(t),
u, if α(t) ≤ u ≤ β(t),
β(t), if u > β(t).

Step 1. Take the inverse of the operator Lu = (u′′, u(0), u(1)), one can transform
(2.1) into a fixed point problem in C1. By means of Schauder’s fixed point theorem
we can prove existence of a fixed point u, which is also a solution of (2.1).

Step 2. The solution u is such that α(t) ≤ u(t) ≤ β(t) on [0, 1]. If u(t0)−α(t0) =
mint(u(t) − α(t)) < 0 for t0 ∈ (0, 1), then

D−α(t0) ≥ D+α(t0).
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Hence, there exists α0 ∈ C1(I0) as in Definition 2.1. It follows that t0 is a minimum
of u − α0, (u − α0)′(t0) = 0 and (u − α0)′′(t0) ≥ 0. We also have α′(t0) = α′

0(t0)
by the note after Definition 2.2. Hence t0 ∈ A and

f(t0, u(t0), u′(t0)) ≤ f(t0, α(t0), α′(t0)) = f(t0, α0(t0), α′
0(t0)).

Thus, we obtain the contradiction

0 ≤ u′′(t0) − α′′
0(t0) = f(t0, u(t0), u′(t0)) + u(t0) − α0(t0) − α′′

0(t0)

≤ f(t0, α0(t0), α′
0(t0)) − α′′

0(t0) + u(t0) − α0(t0) < 0.

If t0 = 0, that is, mint(u(t) − α(t)) = u(0) − α(0) < 0, then

A0 = u(0) −
n∑

i=1

γiω(ζi, u(ζi)) ≤ u(0) −
n∑

i=1

γiα(ζi)

< α(0) −
n∑

i=1

γiα(ζi) ≤ A0,

which is a contradiction. Similar argument for t0 = 1 can be obtained and hence, we
get the desired result in this step. As a consequence, u satisfies

(2.2)

⎧⎪⎨
⎪⎩

u′′ = max{min{f(t, u, u′), N},−N},

u(0) = A0 +
n∑

i=1

γiu(ζi), u(1) = B0 +
m∑

j=1

δju(ηj).

Step 2. The solution u satisfies ||u′||∞ < R. Observe that for all (t, u, v) ∈ E ,

max{min{f(t, u, u′), N},−N} ≤ ψ(|v|).

From Proposition 4.4 (p. 47, [24]), every solution u ∈ [α, β] of (2.2) is such that

||u′||∞ < R.

Therefore, |f(t, u(t), u′(t))| ≤ N and the function u is a solution of (1.3), (1.4).

We here notice that Theorem 2.3 is still crucial although there has already been
plenty of results involving with multi-point boundary value problems. One can compare
it with two essentially recent works. Figueroa[25] considers second order functional
differential equations with very general boundary value conditions which contain (1.4).
However, Theorem 2.3 concludes the existence of classical solutions differing from
their results in weak sense. Secondly, in [26], Graef, Kong, Minhós and Fialho discuss
some general higher order functional boundary value problems by use of upper and
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lower solutions method. Their barrier solutions α or β must belong the class C1[0, 1]
(as n = 2 in Definition 2 of [26]) and their existence theorem depends strongly on
it. This sufficient condition restrict the construction of barrier solutions. The barriers
constructed in section 3 and 4 contain points which are not differentiable.

3. EXISTENCE RESULTS OF (1.1), (1.2): BOUNDARY LAYER PHENOMENA

As mentioned in the introduction, many authors have made significant strides in
studying various singularly perturbed nonlocal boundary value problems via diverse
schemes. In this section and the next, we systematically deal with the singular pertur-
bation equation

(1.1) εu′′(t) = f(t, u(t)), t ∈ (0, 1)

equipped with three-point boundary condition

(1.2) u(0) = A0, u(1) = B0 + δu(η),

where η ∈ (0, 1), A0, B0 ∈ R, and δ ≥ 0, which is not yet considered.
Let u = u0 ∈ C2[0, 1] be a certain solution of the reduced equation

(3.1) f(t, u) = 0, 0 ≤ t ≤ 1,

and

(3.2) F = {(t, u) | 0 ≤ t ≤ 1, |u− u0(t)| ≤ d(t)},

where d(t) is a positive continuous function defined below

(3.3) d(t) :=

⎧⎪⎨
⎪⎩

|A0 − u0(0)|+ μ, for 0 ≤ t ≤ μ
2 ,

μ, for μ ≤ t ≤ 1 − μ

|B0 − u0(1)|+ μ, for 1 − μ
2 ≤ t ≤ 1,

here μ > 0 is a small constant. This section describes the case where boundary layers
take place at boundary points as the following several theorems.

Theorem 3.1. Let q be a nonnegative integer. Assume that u0 ∈ C2[0, 1] is a
solution of the reduced equation (3.1) and there exists m > 0 such that

(3.4) Dj
2f(t, u0(t)) ≡ 0 for 0 ≤ t ≤ 1 and 0 ≤ j ≤ 2q,

and

(3.5) D2q+1
2 f(t, u) ≥ m > 0 in F.



Existence Results of Semilinear Singular Perturbation Problems 1077

Then for ε > 0 small enough, there exists a solution uε of (1.1), (1.2) such that

|uε(t) − u0(t)| ≤ wL(t, ε) +wR(t, ε) + Γε(t),

where

wL(t, ε) =
|A0 − u0(0)|[(e−√m

ε − δe−
√

m
ε η)e

√
m
ε t − (e

√
m
ε − δe

√
m
ε η)e−

√
m
ε t

]
Δ

if q = 0,

wL(t, ε) = |A0 − u0(0)|(1 +
σ1|A0 − u0(0)|q√

ε
t
)−1/q if q ≥ 1,

wR(t, ε) =
|B0 − u0(1) + δu0(η)|(e

√
m
ε

t − e
√

m
ε t)

Δ
if q = 0,

wR(t, ε) = |B0−u0(1)+δu0(η)|
(
1+

σ1|B0 − u0(1) + δu0(η)|q√
ε

(1− t))−1/q if q ≥ 1,

Δ = e−
√

m
ε − e

√
m
ε + δ(e

√
m
ε

η − e−
√

m
ε

η), σ1 = q
√

m
(q+1)(2q+1)! and Γε is a function

determined as (3.12).

Proof. We will exhibit, by construction, the existence of the upper and lower
solutions of (1.1) and (1.2) with the required properties as in Definition 2.1 and 2.2
and then, this theorem will follows from Theorem 2.3. For q = 0, we set wR(t, ε) and
wL(t, ε) are the solutions of

(3.6)

{
εw′′ = mw,

w(0) = 0, w(1)− δw(η) = |B0 − u0(1) + δu0(η)|

and

(3.7)

{
εw′′ = mw,

w(0) = |A0 − u0(0)|, w(1) = δw(η),

respectively. For q ≥ 1, we set wR(t, ε) and wL(t, ε) are the solutions of

(3.8)

{
εw′′= m

(2q+1)!w
2q+1,

w(1)= |B0 − u0(1)+δu0(η)|, w′(1)=
√

m
ε(q+1)(2q+1)!

|B0−u0(1)+δu0(η)|q+1

and

(3.9)

{
εw′′ = m

(2q+1)!w
2q+1,

w(0) = |A0 − u0(0)|, w′(0) = −
√

m
ε(q+1)(2q+1)! |A0 − u0(0)|q+1,
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respectively. Thus, the explicit forms of wL and wR are as stated in this theorem in
case q = 0 or q ≥ 1. Moreover, for q ≥ 1, wL (resp. wR) is nonnegative and decrease
to the right (resp. left).

Choose K2 > 0 such that m
(2q+1)!K

2q+1
2 > ||u′′0||∞, K1 > K2, and define k(t) to

be a convex quadratic function on [η, 1] such that k(η) = K1, mint∈[η,1] k(t) = K2

and k(1) ≥ δK1 + 1. We set, for t ∈ [0, 1],

(3.10) α(t, ε) = u0(t) −wL(t, ε)− wR(t, ε) − Γε(t),

and

(3.11) β(t, ε) = u0(t) +wL(t, ε) +wR(t, ε) + Γε(t),

where

(3.12) Γε(t) =

{
ε

1
2q+1 k(t), t ≥ η,

ε
1

2q+1K1, t < η.

For q = 0, from (3.6) and (3.7), it is obvious that α ≤ β,

α(0, ε) ≤ A0 ≤ β(0, ε),

α(1, ε)− δα(η, ε) = u0(1)− δu0(η)− |B0 −u0(1)+ δu0(η)|− ε[k(1)− δk(η)] ≤ B0,

and β(1, ε)− δβ(η, ε) ≥ B0. For q ≥ 1, it follows from (3.8), (3.9) and (3.12) that

α(0, ε) ≤ A0 ≤ β(0, ε),

α(1, ε) − δα(η, ε)

=
(
u0(1) − δu0(η)

)− (
Γε(1)− δΓε(η)

)
− (

wL(1, ε)− δwL(η, ε)
)− (

wR(1, ε)− δwR(η, ε)
)

=
(
u0(1) − δu0(η)

)− ε
1

2q+1
(
k(1)− δk(η)

)
− |A0 − u0(0)|[(1 +

σ1|A0 − u0(0)|q√
ε

)− 1
q − δ

(
1 +

σ1|A0 − u0(0)|q√
ε

η
)− 1

q ]

− |B0 − u0(1) + δu0(η)|[1− δ
(
1 +

σ1|B0 − u0(1) + δu(η)|q√
ε

(1 − η)
)− 1

q ]

=
(
u0(1) − δu0(η)

)− |B0 − u0(1) + δu0(η)| − O(ε
1

2q+1 ) + o(ε
1

2q+1 ) ≤ B0,

and β(1, ε)− δβ(η, ε) ≥ B0 similarly.
We now show that εα′′ ≥ f(t, α). By Taylor’s theorem, (3.4) and (3.5), we have
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f(t, α(t, ε))= f(t, α(t, ε))− f(t, u0(t))

=
2q∑

n=1

1
n!
Dn

2f(t, u0(t))[α(t, ε)− u0(t)]n

+
1

(2q + 1)!
D2q+1

2 f(t, ξ(t))[α(t, ε)− u0(t)]2q+1

= − 1
(2q + 1)!

D
2q+1
2 f(t, ξ(t))[wL +wR + Γε]2q+1,

where (t, ξ(t)) is some intermediate point between (t, α(t, ε)) and (t, u0(t)) which lies
in F for sufficiently small ε. Since wL, wR and Γε are positive functions, we have

−f(t, α(t, ε)) ≥ m

(2q + 1)!
(
w2q+1

L +w2q+1
R + Γ2q+1

ε

)
.

Hence, for t < η,

εα′′ − f(t, α(t, ε)) ≥ εu′′0 − εw′′
L − εw′′

R +
m

(2q + 1)!
(
w2q+1

L + w2q+1
R + Γ2q+1

ε

)
≥ −ε||u′′0||∞ +

m

(2q + 1)!
εK2q+1

1 > 0.

and for t > η,

εα′′ − f(t, α(t, ε)) ≥ εu′′0 − εw′′
L − εw′′

R +
m

(2q + 1)!
(
w2q+1

L + w2q+1
R + Γ2q+1

ε

)
≥ −ε||u′′0||∞ − εε

1
2q+1 k′′(t) +

m

(2q + 1)!
ε(k(t))2q+1 > 0

≥ −ε||u′′0||∞ − o(ε) +
m

(2q + 1)!
εK2q+1

2 > 0.

Moreover, as t = η,

D−α(η, ε) = u′0(η)−w′
L − w′

R < u′0(η)− w′
L − w′

R − k′(η−) −D+α(η, ε)

because of the convexity of k(t) on [η, 1]. One can also follow the above steps to prove
that εβ′′ ≤ f(t, β) in (0, 1) and therefore, α and β defined as (3.10) and (3.11) are
lower and upper solutions of (1.1), (1.2), respectively. By means of Theorem 2.3, we
complete this proof.

If A0 ≥ u0(0) and B0 ≥ u0(1)− δu0(η), we define

(3.13) F1 := {(t, u) | 0 ≤ t ≤ 1, 0 ≤ u − u0(t) ≤ d(t)},

where d(t) is as (3.3) and have the following conclusion.
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Theorem 3.2. Let n ≥ 2. Assume that u0 ∈ C2[0, 1] is a solution of the reduced
equation (3.1), A0 ≥ u0(0), B0 ≥ u0(1) − δu0(η), u′′0 ≥ 0 in (0, 1) and there exists
m > 0 such that

(3.14) Dj
2f(t, u0(t)) ≥ 0 for 0 ≤ t ≤ 1 and 1 ≤ j ≤ n − 1,

and

(3.15) Dn
2f(t, u) ≥ m > 0 in F1.

Then for ε > 0 small enough, there exists a solution uε of (1.1), (1.2) such that

0 ≤ uε(t) − u0(t) ≤ wL(t, ε) + wR(t, ε) + Δε(t),

where

wL(t, ε) = |A0 − u0(0)|(1 +
σ2|A0 − u0(0)|n−1

2√
ε

t
)− 2

n−1 ,

wR(t, ε) = |B0 − u0(1) + δu0(η)|
(
1 +

σ2|B0 − u0(1) + δu0(η)|n−1
2√

ε
(1− t)

)− 2
n−1 ,

σ2 = (n− 1)
√

m
2(n+1)! and Δε is a function determined as (3.18).

Proof. The proof of this theorem follows in the same manner the proof of
Theorem 3.1 once we notice that wR ≥ 0 is now the solution of{

εw′′ = m
n!w

n,

w(1) = B0 − u0(1) + δu0(η), w′(1) =
√

2m
ε(n+1)!

(
B0 − u0(1) + δu0(η)

)n+1
2 ,

and wL ≥ 0 is now the solution of{
εw′′ = m

n!w
n,

w(0) = A0 − u0(0), w′(0) = −
√

2m
ε(n+1)!

(
A0 − u0(0)

)n+1
2 .

We then choose K2 > 0 such that m
n!K

n
2 > ||u′′0||∞, K1 > K2, and define k(t) to be

a convex quadratic function on [η, 1] such that k(η) = K1, mint∈[η,1] k(t) = K2 and
k(1) ≥ δK1 + 1. For t ∈ [0, 1], set

(3.16) α(t, ε) = u0(t),

(3.17) β(t, ε) = u0(t) + wL(t, ε) +wR(t, ε) + Δε(t),
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where

(3.18) Δε(t) =

{
ε

1
nk(t), t ≥ η,

ε
1
nK1, t < η.

All details to show that α(t, ε) and β(t, ε) are barriers of (1.1), (1.2) are much similar
to the demonstration in the proof of Theorem 3.1. Hence, we omit them except noting
that the convexity of u0 implies εα′′ − f(t, α) = εu′′0 − f(t, α) = εu′′0 ≥ 0.

The next theorem is the analog of Theorem 3.2 when the solution u0 of the reduced
equation (3.1) satisfies A0 ≤ u0(0) and B0 ≤ u0(1) − δu0(η).

Theorem 3.3. Let n ≥ 2. Assume that u0 ∈ C2[0, 1] is a solution of the reduced
equation (3.1), A0 ≤ u0(0), B0 ≤ u0(1) − δu0(η), u′′0 ≤ 0 in (0, 1) and there exists
m > 0 such that

(3.19) D
jo(je)
2 f(t, u0(t)) ≥ 0 (≤ 0) for 0 ≤ t ≤ 1 and 1 ≤ jo, je ≤ n− 1,

where jo(je) denotes an odd (even) integer, and

(3.20) Dn
2 f(t, u) ≤ −m < 0 (≥ m > 0) in F2, if n is even (odd),

where

(3.21) F2 := {(t, u) | 0 ≤ t ≤ 1, −d(t) ≤ u− u0(t) ≤ 0}.

Then for ε > 0 small enough, there exists a solution uε of (1.1), (1.2) such that

−wL(t, ε) −wR(t, ε)− Δε(t) ≤ uε(t)− u0(t) ≤ 0,

where wL, wR and Δε are the same as in Theorem 3.2.

Proof. We set that the lower and upper barriers of (1.1), (1.2) are, for t ∈ [0, 1],

(3.22) α(t, ε) = u0(t) −wL(t, ε)− wR(t, ε) − Δε(t),

(3.23) β(t, ε) = u0(t),

and the rest is similar to the proof of Theorem 3.2.

Remark. Notice that in Theorem 3.1, 3.2 and 3.3, the solution uε(t) of (1.1),
(1.2) tends to u0(t) as ε → 0, uniformly on every compact subset of (0, 1). The
convergence is however nonuniform at the endpoint t = 0 and t = 1. This is boundary
layer phenomena of solution uε.
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4. EXISTENCE RESULTS OF (1.1), (1.2): INTERIOR LAYER PHENOMENA

The previous section deals with problem (1.1), (1.2) when the solution u0 = u0(t)
of reduced equation (3.1) is twice continuously differentiable in [0, 1]. In fact, the
smoothness restriction imposed on u0 can be weakened without alternating the validity
of those results in Section 3.

Theorem 4.1. Let q be a nonnegative integer. Assume that the reduced equation
(3.1) has a solution u0 = u0(t) of C2[0, 1], except at t∗ ∈ (0, 1) where u′0(t−∗ ) �=
u′0(t

+∗ ) and |u′′0(t±∗ )| < ∞. Furthermore, there exists m > 0 such that f and u0

satisfy (3.4) and (3.5). Then for ε > 0 small enough, there exists a solution uε of
(1.1), (1.2) such that

|uε(t) − u0(t)| ≤ wL(t, ε) +wR(t, ε) + vI(t, ε) + Γε(t).

Here wL, wR, Γε are as given in Theorem 3.1,

vI(t, ε) =
1
2

√
ε

m
|u′0(t+∗ ) − u′0(t

−
∗ )|e−

√
m
ε
|t−t∗| if q = 0,

and
vI(t, ε) = τ1

(
1 + q

√
m

ε(2q + 1)!
τ q
1 |t− t∗|

)− 1
q if q ≥ 1,

where τ q+1
1 = 1

2 |u′0(t+∗ ) − u′0(t
−∗ )|

√
m

ε(2q+1)! .

We note that u0 = u0(t) of C2[0, 1] except t∗ ∈ (0, 1), |u′′0(t±∗ )| < ∞ implies
||u′′0||∞ <∞. Hence, the function Γε as (3.12) is still well-defined.

Proof. We can suppose first that u′0(t−∗ ) < u′0(t
+∗ ). Then, for t ∈ [0, 1], we

define

(4.1) α(t, ε) = u0(t) −wL(t, ε)− wR(t, ε) − Γε(t),

(4.2) β(t, ε) = u0(t) +wL(t, ε) +wR(t, ε) + vI(t, ε) + Γε(t).

Claim 1. α(t, ε) is a lower barrier solution of (1.1), (1.2).
The boundary constraints α(0, ε) ≤ A0, α(1, ε)− δα(η, ε) ≤ B0 are still valid be-

cause the form (4.1) is the same as (3.10). If t∗ = η, the function α is not differentiable
at t = t∗ = η since

D−α(η, ε) = u′0(t
−
∗ ) − w′

L − w′
R < u′0(t

+
∗ ) −w′

L −w′
R − k′(t+∗ ) = D+α(η, ε).

If t∗ �= η, the function α are not differentiable at t∗ and η because of
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D−α(t∗, ε) = u′0(t
−
∗ )−w′

L−w′
R−Γ′

ε(t∗) < u′0(t
+
∗ )−w′

L−w′
R−Γ′

ε(t∗) = D+α(t∗, ε)

and

D−α(η, ε) = u′0(η)− w′
L − w′

R < u′0(η)− w′
L − w′

R − k′(η+) = D+α(η, ε).

The rest discussions of differential inequality εα′′ ≥ f(t, α) on (0, 1)\{t∗, η} are similar
to the corresponding part in the proof of Theorem 3.1.

Claim 2. β(t, ε) is a upper barrier solution of (1.1), (1.2).
We first consider the boundary constraints when q = 0 or q ≥ 1 respectively. For

q = 0, it is obvious that β(0, ε) ≥ A0 and

β(1, ε)− δβ(η, ε) =u0(1)− δu0(η) + |B0 − u0(1)− δu0(η)|+ ε
(
k(1)− δk(η)

)
+

1
2

√
ε

m
|u′0(t+∗ )− u′0(t

−
∗ )|(e−√m

ε
|1−t∗| − δe−

√
m
ε
|η−t∗|)

=u0(1)− δu0(η) + |B0 − u0(1)− δu0(η)|+O(ε) + o(ε) ≥ B0.

For q ≥ 1, we have β(0, ε) ≥ A0 easily and

β(1, ε)− δβ(η, ε)

=
(
u0(1)− δu0(η)

)
+

(
Γε(1)− δΓε(η)

)
+

(
vI(1, ε)− δvI(η, ε)

)
+

(
wL(1, ε)− δwL(η, ε)

)
+

(
wR(1, ε)− δwR(η, ε)

)
=

(
u0(1)− δu0(η)

)
+ ε

1
2q+1

(
k(1)− δk(η)

)
+ τ1[

(
1 + q

√
m

ε(2q + 1)!
τ q
1 |1 − t∗|

)− 1
q − δ

(
1 + q

√
m

ε(2q + 1)!
τ q
1 |η − t∗|

)− 1
q ]

+ |A0 − u0(0)|[(1 +
σ1|A0 − u0(0)|q√

ε

)− 1
q − δ

(
1 +

σ1|A0 − u0(0)|q√
ε

η
)− 1

q ]

+ |B0 − u0(1) + δu0(η)|[1− δ
(
1 +

σ1|B0 − u0(1) + δu(η)|q√
ε

(1 − η)
)− 1

q ]

=
(
u0(1)− δu0(η)

)
+ |B0 − u0(1) + δu0(η)|+ O(ε

1
2q+1 ) + o(ε

1
2q+1 ) ≤ B0.

Before focusing on differential inequality of β, we note that vI is the solution of
εv′′ = m

(2q+1)!v
2q+1 in (0, t∗) ∪ (t∗, 1) which satisfies

vI(t−∗ , ε) = vI(t+∗ , ε) = τ1,

and
v′I(t

−
∗ , ε) = −v′I(t+∗ , ε) =

1
2
|u′0(t+∗ )− u′0(t

−
∗ )|.
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We also observe that if t∗ = η, the function β is not differentiable at t∗ since

D−β(t∗, ε) =
1
2
|u′0(t+∗ ) + u′0(t

−
∗ )|+ w′

L + w′
R

>
1
2
|u′0(t+∗ ) + u′0(t

−
∗ )|+ w′

L + w′
R + k(t+∗ ) = D+β(t∗, ε).

If t∗ �= η, β is differentiable at t∗, indeed,

β′(t−∗ , ε) = β′(t+∗ , ε) =
1
2
|u′0(t+∗ ) + u′0(t

−
∗ )| +w′

L +w′
R + Γ′

ε(t∗)

and is not differentiable at η with D−β(η, ε) > D+β(η, ε). One can show that εβ′′ ≤
f(t, β) on (0, 1)\{t∗, η} by similar arguments in the proof of Theorem 3.1. α and β
defined as (4.1) and (4.2) are respective lower and upper barrier solutions of (1.1),
(1.2).

As u′0(t−∗ ) > u′0(t
+∗ ), we set, for t ∈ [0, 1],

(4.3) α(t, ε) = u0(t) −wL(t, ε)− wR(t, ε) − vI(t, ε)− Γε(t),

(4.4) β(t, ε) = u0(t) +wL(t, ε) +wR(t, ε) + Γε(t),

and follow the same manner mentioned above. Thus, we complete this proof by ap-
plying Theorem 2.3.

Theorem 4.2. Let n ≥ 2. Assume that the reduced equation (3.1) has a solution
u0 = u0(t) of C2[0, 1], except at t∗ ∈ (0, 1) where u′0(t−∗ ) < u′0(t+∗ ) and |u′′0(t±∗ )| <
∞. Assume also that A0 ≥ u0(0), B0 ≥ u0(1) − δu0(η), u′′0 ≥ 0 in (0, t∗) ∪ (t∗, 1)
and there exists m > 0 such that f and u0 satisfy (3.14) and (3.15). Then for ε > 0
small enough, there exists a solution uε of (1.1), (1.2) such that

0 ≤ uε(t) − u0(t) ≤ wL(t, ε) + wR(t, ε) + vI(t, ε) + Δε(t).

Here wL, wR, Δε are as given in Theorem 3.2,

vI(t, ε) = τ2
(
1 +

n− 1
2

√
m

εn!
τ

n−1
2 |t− t∗|

)− 2
n−1 ,

where τn+1
2 = εn!|u′

0(t+∗ )−u′
0(t−∗ )|2

4m .

Proof. This conclusion follows from similar steps of proof of Theorem 4.1 to
show that

α(t, ε) = u0(t)

and
β(t, ε) = u0(t) +wL(t, ε) + wR(t, ε) + vI(t, ε) + Δε(t)

are corresponding lower and upper barriers of (1.1) and (1.2). We also note that
the function Δε(t) as (3.18) is well-defined because u0 = u0(t) ∈ C2[0, 1], except
t∗ ∈ (0, 1) with |u′′0(t±∗ )| <∞ will implies ||u′′0||∞ <∞.
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Theorem 4.3. Let n ≥ 2. Assume that the reduced equation (3.1) has a solution
u0 = u0(t) of C2[0, 1], except at t∗ ∈ (0, 1) where u′0(t−∗ ) > u′0(t

+∗ ) and |u′′0(t±∗ )| <
∞. Assume also that A0 ≤ u0(0), B0 ≤ u0(1) − δu0(η), u′′0 ≤ 0 in (0, t∗) ∪ (t∗, 1)
and there exists m > 0 such that f and u0 satisfy (3.19) and (3.20). Then for ε > 0
small enough, there exists a solution uε of (1.1), (1.2) such that

−wL(t, ε) −wR(t, ε)− vI(t, ε)− Δε(t) ≤ uε(t)− u0(t) ≤ 0.

Here wL, wR, vI and Δε are as given in Theorem 4.2.

Proof. This conclusion follows from similar steps of proof of Theorem 4.1 to
show that

α(t, ε) = u0(t) − wL(t, ε) −wR(t, ε)− vI(t, ε)− Δε(t)

and
β(t, ε) = u0(t)

are corresponding lower and upper barriers of (1.1) and (1.2).

Remark. (i) In Theorem 4.1, 4.2 and 4.3, the solution uε(t) of (1.1), (1.2)
tends to u0(t) as ε → 0, uniformly on every compact subset of (0, 1). In this case
an interior layer in the derivative u′ε takes place at points t∗ where the derivative u′0
is discontinuous. (ii) These results(Theorem 4.1-4.3) can be extended to the case of
finitely many points of nondifferentiability of the reduced solution u0.
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