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BLOW-UP FOR A SEMILINEAR PARABOLIC EQUATION WITH
NONLINEAR MEMORY AND NONLOCAL NONLINEAR BOUNDARY

Dengming Liu*, Chunlai Mu and Iftikhar Ahmed

Abstract. In this paper, we study a semilinear parabolic equation

ut = Δu+
∫ t

0

upds− kuq, x ∈ Ω, t > 0

with boundary condition u (x, t) =
∫
Ω
f (x, y)ul (y, t)dy for x ∈ ∂Ω, t > 0,

where p, q, l, k > 0. The blow-up criteria and the blow-up rate are obtained
under some appropriate assumptions.

1. INTRODUCTION

The main purpose of this paper is to study the blow-up properties of the nonnegative
solutions for the following semilinear parabolic equation with nonlinear time-integral
source and nonlocal nonlinear boundary condition⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = Δu+
∫ t

0
upds− kuq, x ∈ Ω, t > 0,

u (x, t) =
∫

Ω

f (x, y)ul (y, t)dy, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.1)

where Ω is a bounded domain in RN for N ≥ 1 with C2 boundary ∂Ω, p, q, l
and k are positive parameters, the weight function f (x, y) is nonnegative, nontrivial,
continuous and defined for x ∈ ∂Ω, y ∈ Ω, while the nonnegative nontrivial initial
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data u0 (x) ∈ C2
(
Ω
)
satisfies the compatibility conditions ut (x, 0) = Δu0 (x) − kuq

0

for x ∈ Ω and u0 (x) =
∫
Ω f (x, y)ul

0 (y) dy for x ∈ ∂Ω.
In [1], Bellout studied the following equation

(1.2) ut − Δu =
∫ t

0

(u+ λ)p ds+ g (x) , x ∈ Ω, t > 0

with homogeneous Dirichlet boundary condition, where g (x) ≥ 0 is a smooth function
and λ > 0. The author established the existence and the uniqueness of the local classical
solution, and obtained some criteria for solutions to blow up in a finite time. Moreover,
he obtained some results on the blow-up points under some suitable assumptions. In
[26], Yamada investigated the stability properties of the global solutions of the following
nonlocal Volterra diffusion equation

(1.3) ut − Δu = (a− bu)u−
∫ t

0
k (t− s) u (x, s) ds, x ∈ Ω, t > 0.

In [15], Li and Xie considered the following single equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = Δu+ uq

∫ t
0 u

pds, x ∈ Ω, t > 0,

u (x, t) = 0, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.4)

where p, q ≥ 0. They gave a complete answer to the existence and the nonexistence
of global solutions to problem (1.4) according to the different values of p and q.
Furthermore, under the assumptions:

(1.5) There exists t0 ∈ (0, T ∗) such that ut (x, t0) ≥ 0 for all x ∈ Ω,

and

(1.6) Ω=
{
x ∈ RN : |x| < R

}
, u0 (x)=u0 (|x|)≡u0 (r) , u′0 (r)<0 and u′′0 (0)<0,

they derived the following blow-up rate for the special case p > 1 and q = 0,

(1.7) C1 (T ∗ − t)−
2

p−1 ≤ max
x∈Ω

u (x, t) ≤ C2 (T ∗ − t)−
2

p−1 , t→ T ∗.

It is necessary to point out that assumption (1.5) seems to be reasonable, but unfor-
tunately, the authors of [15] did not give a relationship between u0 and (1.5). The
characterization of the monotonicity condition (1.5) was given by Souplet in [22], he
proved the existence of monotone in time solutions for problem (1.4) and obtained the
blow-up rate (1.7) without assumption condition (1.6).



Blow-up for a Semilinear Parabolic Equation 1355

There have also been many other results for parabolic equations with nonlinear
memory. We refer the readers to [27, 30, 29, 5, 12] and the references therein.
We note also that the nonlocal parabolic equations with space-integral source terms

have been extensively studied by many authors (see [21] and the references therein).
For example, Wang et al. [23] considered the following famous diffusion equation

(1.8) ut = dΔu+
∫

Ω
updx− kuq, x ∈ Ω, t > 0

with homogeneous Dirichlet boundary condition and positive initial data. They con-
cluded that the blow-up occurs for large initial data if p > q ≥ 1, and that all solutions
exist globally if 1 ≤ p < q. In the case of p = q, the issue depends on the comparison
between |Ω| and k.
In [20], Soufi et al. investigated the heat equation with space-integral absorption

of the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ut = Δu+ |u|p − 1

|Ω|

∫
Ω
|u|p dx, x ∈ Ω, t > 0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) ,
∫

Ω
u0 (x) dx = 0, x ∈ Ω,

(1.9)

where 1 < p ≤ 2. Using the energy method and Gamma-convergence technique, they
proved that all solutions blow up in a finite time if the energy of u0 is nonpositive.
Jazar and Kiwan [14] generalized the above result, and showed that the solution of
problem (1.9) blows up in a finite time for all p > 1 if the initial energy is nonpositive.
As is well known, parabolic equations with nonlocal boundary conditions arise in

various field theories such as the heat conduction within linear thermoelastcity. Day [2,
3] dealt with a heat equation which is subjected to the following boundary conditions

u (−R, t) =
∫ R

−R
f1 (x)u (x, t) dx, u (R, t) =

∫ R

−R
f2 (x)u (x, t) dx.

Friedman [7] generalized Day’s result to a general parabolic equation

(1.10) ut = Δu+ g (x, u) , x ∈ Ω, t > 0,

which is subjected to the following nonlocal boundary condition

(1.11) u (x, t) =
∫

Ω
h (x, y)u (y, t) dy,

and studied the global existence of solutions and its monotonic decay property under
some hypotheses on h (x, y) and g (x, u).
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In addition, parabolic equations with both space-integral source terms and nonlocal
boundary conditions have been studied as well (see [4, 16, 19, 24] and the references
therein). For instance, Lin and Liu [17] considered the problem of the form

(1.12) ut = Δu+
∫

Ω
g (u) dx,

which is subjected to boundary condition (1.11). They established the local existence,
the global existence and the nonexistence of solutions, and discussed the blow-up
properties of solutions. Furthermore, they derived the uniform blow-up estimate for
some special g (u).
In particular, Wang et al. [25] studied the following problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = Δu+
∫

Ω
updx− kuq, x ∈ Ω, t > 0,

u (x, t) =
∫

Ω
ψ (x, y) u (y, t)dy, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.13)

and obtained the conditions for the existence and the nonexistence of global solutions.
Moreover, they established the precise estimate of the blow-up rate under some suitable
hypotheses.
However, as far as we know, there were only few articles which concerned with

the blow-up behaviors of solutions for the parabolic equations coupled with nonlo-
cal nonlinear boundary condition. Recently, Gladkov and Kim [10, 11] considered a
semilinear heat equation as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut = Δu+ c (x, t)up, x ∈ Ω, t > 0,

u (x, t) =
∫

Ω
ϕ (x, y, t)ul (y, t) dy, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.14)

where p, l > 0. In [11], they obtained the uniqueness and the nonuniqueness of the
local solution. And in [10], according to the behavior of the coefficient functions
c (x, t) and ϕ (x, y, t) as t tends to infinity, they gave some criteria for the existence of
global solutions as well as for finite time blow-up solutions.
Mu et al. [18] considered the blow-up properties for the following problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = Δu+
∫

Ω
updx− kuq, x ∈ Ω, t > 0,

u (x, t) =
∫

Ω
φ (x, y)ul (y, t)dy, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.15)
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where p, q, l > 0, and obtained some results as follows.
(i) Assume that p ≤ q and l ≤ 1, then problem (1.15) has global solutions for any

φ and u0.
(ii) Assume that max {p, l} > q ≥ 1. If k is small enough, then for any positive

function φ, u blows up in a finite time for sufficiently large u0. While u exists globally
for sufficiently small u0 provided that

∫
Ω φ (x, y)dy ≤ 1.

Motivated by those of the above works, we consider the semilinear reaction diffusion
Equation (1.1) with time-integral and nonlocal nonlinear boundary condition. In [15],
the authors dealt with the blow-up behavior of Equation (1.4) by constructing some
suitable self-similar subsolutions which blow up in a finite time. But this approach can
not be extended to handle the blow-up property of Equation (1.1) due to the appearance
of the nonlocal nonlinear boundary condition. Meanwhile, our method is very different
from those previously used in [18] because the space-integral source term

∫
Ω u

pdx is
replaced by the time-integral term

∫ t
0 u

pds. The proofs of our blow-up results are based
on a variant of the eigenfunction method (Kaplan’s method). We will show that the
nonlinear memory term

∫ t
0 u

p (x, s) ds, the weight function f (x, y) and the nonlinear
term ul (y, t) in the boundary condition of problem (1.1) play substantial roles in
determining whether the solution blows up or not. Moreover, we yield the blow-up rate
for the special case p > 1 and q = l = 1 under some appropriate hypotheses.
Before starting the main results, we introduce some notations. Throughout this

paper, we let λ1 be the first eigenvalue and ϕ (x) be the corresponding normalized
eigenfunction of the problem{ −Δϕ (x) = λϕ, x ∈ Ω,

ϕ (x) = 0, x ∈ ∂Ω,
(1.16)

then
λ1 > 0, ϕ (x) > 0 and

∫
Ω
ϕ (x)dx = 1.

Further, for the sake of convenience, we denote

L = max
Ω

ϕ (x) and m = min
∂Ω×Ω

f (x, y) .

The main results of this paper are stated as follows.

Theorem 1.1. Assume that p ≤ q and l ≤ 1, then problem (1.1) has global
solutions for any nonnegative f (x, y) and initial data u0(x).

Theorem 1.2. Assume that p > q ≥ 1 and l > 0, then the solution of problem
(1.1) blows up in a finite time for any nonnegative f (x, y) and initial data u0(x).

Remark 1.1. In [25], the authors showed that the behavior of the solution to
problem (1.13) with p > q ≥ 1 depends on the value of

∫
Ω ψ (x, y)dy and initial data
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u0. Precisely, if
∫
Ω ψ (x, y)dy ≤ 1, then the solution exists globally for sufficiently

small u0, while the solution blows up in a finite time when
∫
Ω ψ (x, y)dy > 1 and u0 is

large enough. But thanks to the critical effect of the time-integral term
∫ t
0 u

p (x, s) ds,
the solution of problem (1.1) fails to exist globally for any nonnegative weight function
f (x, y) and initial data u0 (x) in the case of p > q ≥ 1.

Remark 1.2. For the case p > q ≥ 1, the authors in [18] proved that problem (1.15)
has blow-up solutions in a finite time as well as global solutions. More precisely, if
k is small enough, then for any φ, the solution tends to infinity in a finite time when
u0 is large enough, while u exists globally for sufficiently small u0 provided that∫
Ω φ (x, y)dy ≤ 1. From Theorem 1.2, we know that the property of the solution to
problem (1.1) is very different from that of problem (1.15).

Theorem 1.3. Assume that l ≥ q ≥ p > 1, for any f (x, y) > 0, if mλ1
L > k, then

the solution of problem (1.1) blows up in a finite time provided that the initial data
u0 (x) satisfies

∫
Ω u0 (x)ϕ (x) dx >> 1.

Remark 1.3. Theorems 1.2 and 1.3 are still true when k = 0.

Remark 1.4. In the case of l > 1 and q ≥ p > 1, we can not prove that the
solutions of problem (1.1) exist globally or not for sufficiently small initial data u0(x)
by the methods used in this paper.

Consider problem (1.1) with q = l = 1. In order to obtain the blow-up rate, we
need to add the following assumption (assume that the solution of problem (1.1) blows
up in finite time T ∗).

(H) There exists constant t0 ∈ (0, T ∗) such that ut (x, t0) ≥ 0 for all x ∈ Ω.

Theorem 1.4. Assume that p > 1, q = l = 1 and
∫
Ω f(x, y)dy ≤ 1 for all x ∈ ∂Ω,

assume also that (H) holds, then there exist constants C > c > 0 such that

c (T ∗ − t)−
2

p−1 ≤ max
x∈Ω

u (x, t) ≤ C (T ∗ − t)−
2

p−1 , t→ T ∗.

The rest of this paper is organized as follows. In Section 2, we will establish
the comparison principle and the local existence theorem for problem (1.1). Section 3
is mainly about the global existence of solutions and the proof of Theorem 1.1. The
blow-up results of solutions and the proofs of Theorems 1.2 and 1.3 are given in section
4. Finally, we will estimate the blow-up rate in section 5.

2. COMPARISON PRINCIPLE AND LOCAL EXISTENCE

The main goal of this section is to establish the local existence theorem and the
comparison principle for problem (1.1). For simplicity, let us first denote ΩT = Ω ×
(0, T ) and ΩT = Ω × [0, T ] for 0 < T < +∞.
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Theorem 2.1. (Local existence and uniqueness). Assume that p, q and l > 0,
u0 (x) ∈ C2 (Ω) ∩ C

(
Ω
)
satisfies the compatibility condition u0 (x) =

∫
Ω f (x, y)ul

0

(y) dy for x ∈ ∂Ω, then there exists a small T > 0 such that problem (1.1) has a
nonnegative solution u(x, t) ∈ C

(
ΩT

)
∩ C2,1 (ΩT ). Furthermore, assume that the

initial data u0 (x) is strictly positive for the case min{p, q, l} < 1, then the local
solution of problem (1.1) is unique.

Proof. Here we only give the sketch, one can see [1, 13] for more details. We
divide our proof into three cases.

Case 1. We first consider the case that p, q, l ≥ 1. Let G (x, y; t) be the Green’s
function for

Lu = ut − Δu, x ∈ Ω, t > 0,

with boundary condition

u (x, t) = 0, x ∈ ∂Ω, t > 0.

Then u (x, t) is a solution of Equation (1.1) in ΩT if and only if for (x, t) ∈ ΩT ,

u (x, t) =
∫

Ω
G (x, y; t)u0 (y) dy

+
∫ t

0

∫
Ω
G (x, y; t− η)

(∫ η

0
up (y, σ)dσ − kuq (y, η)

)
dydη

−
∫ t

0

∫
∂Ω

∂G (x, ξ; t− η)
∂n

∫
Ω
f (ξ, y)ul (y, η)dydξdη

≡ T u (x, t) .

(2.1)

Notice u0 (x) ∈ C
(
Ω
)
⊂ L∞ (Ω), one can take a subset of L∞ (ΩT ) as follows

BT =
{
u ∈ L∞ (ΩT ) ; ‖u (t) ‖L∞(Ω) ≤ M̂ + 1 for t ∈ (0, T )

}
,

where M̂ = sup
x∈Ω

u0 (x), and prove that T is a strict contraction mapping from BT into

BT for sufficiently small T . As a consequence of the contraction mapping principle,
(2.1) is solvable in L∞ (ΩT ) for small T . Meanwhile, we can show that if v is another
solution, then

sup
ΩT

|v − u| ≤ ρn−1 sup
ΩT

|v − u| ,

where ρ ∈ (0, 1), which yields that v ≡ u.
The continuity of the solution u ∈ C

(
ΩT

)
directly follows from the contraction

mapping principle, and the asserted interior regularity follows from (2.1) and the prop-
erties of G (see [6] for more details).
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Case 2. Now, we consider the case that p, q, l < 1. Since the nonlinearities of
problem (1.1) do not satisfy the Lipschitz condition in this case, we set

φm (z) =

{
zp, if z > 1

m ,[
pm1−pz + 1−p

mp

]+
, otherwise,

ψm (z) =

{
zq, if z > 1

m ,[
qm1−qz + 1−q

mq

]+
, otherwise,

and

ζm (z) =

{
zl, if z > 1

m ,[
lm1−lz + 1−l

ml

]+
, otherwise.

It is clear that φm, ψm and ζm are nondecreasing, locally Lipschitz continuous with
respect to z and monotone decreasing with respect to m, i.e.,

φm ↓
[
|z|p−1 z

]+
, ψm ↓

[
|z|q−1 z

]+
, and ζm ↓

[
|z|l−1 z

]+
as m→ ∞.

Consider the following approximate problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(um)t = Δum +

∫ t

0

φm (um) (s)ds− kψm (um) , x ∈ Ω, t > 0,

um (x, t) =
∫

Ω
f (x, y) ζm (um) (y, t)dy, x ∈ ∂Ω, t > 0,

um (x, 0) = u0 (x) , x ∈ Ω.

(2.2)

Similar to Case 1, we can claim that problem (2.2) admits a unique solution um ∈
C
(
ΩT

)
∩ C2,1 (ΩT ). Notice that φ (0), ψ (0), ζ (0) are nonnegative, we see that

um ≥ 0. Moreover, in view of the comparison principle (see Theorem 2.2), we find
that {um} is monotone decreasing. Hence, there exists a bounded nonnegative function
u = lim

m→∞ um, which corresponds to the continuous solution of problem (1.1).

Moreover, u0 (x) > 0 tells us that u (x, t) is strictly positive in ΩT . In fact, from
ut − Δu −

∫ t
0 u

pds + kuq ≥ 0 and the strong maximum principle, it follows that u
can not take its minimum at an interior point of Ω, that is, the minimum point (x0, t0)
must lie on the parabolic boundary. Since f (x, y) is nontrivial for all x ∈ ∂Ω, y ∈ Ω,
we have u (x, t) > 0 for x ∈ ∂Ω, t ∈ (0, T ]. Therefore, u (x, t) > 0 in ΩT . Up to
now, we can immediately obtain the uniqueness of the local solution by combining the
comparison principle with the strict positivity of the local solution.

Case 3. If p < 1, or q < 1, or l < 1. Based on Cases 1 and 2, we can obtain our
result easily. The proof of Theorem 2.1 is completed.

Next, we will give the following version of the comparison principle which plays
a crucial role in our later proof.
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Theorem 2.2. (Comparison principle). Let u, u ∈ C
(
ΩT

)
∩ C2,1 (ΩT ) be a

nonnegative subsolution and supersolution of problem (1.1), respectively. In addition,
assume that u (x, t) > 0 in ΩT if min{p, q, l} < 1. If u (x, 0) ≤ u (x, 0) for x ∈ Ω.
Then u ≤ u in ΩT .

Proof. The proof of Theorem 2.2 is similar to that of Theorem 2.1 in [11], we
omit it here.

3. GLOBAL EXISTENCE OF SOLUTION

In this section, we discuss the global solvability of problem (1.1), and give the
proof of Theorem 1.1. Our approach is a combination of the comparison principle and
a supersolution technique.

Proof of Theorem 1.1. Let T be any positive number. In order to prove our con-
clusion, according to Theorem 2.2, we only need to construct a suitable explicit global
supersolution of problem (1.1) in ΩT . Remember that λ1 is the first eigenvalue and
ϕ is the corresponding normalized eigenfunction of −Δ with homogeneous Dirichlet
boundary condition. We choose δ and ε ∈ (0, 1) to satisfy

(3.1) M

∫
Ω

1
δϕ (y) + ε

dy ≤ 1,

where
M = max

∂Ω×Ω
f (x, y) .

Now, let v(x, t) be defined as

v (x, t) =
ceγt

δϕ (x) + ε

with

(3.2) c = sup
Ω

(u0 + 1) (δϕ+ ε) , γ = max

{
1
kp
, λ1 + sup

Ω

2δ2 |∇ϕ|2

(δϕ+ ε)2

}
.

A direct computation shows

Pv ≡ vt − Δv −
∫ t

0
vpds+ kvq

= γv− v

(
λ1δϕ

δϕ+ ε
+

2δ2 |∇ϕ|2

(δϕ+ ε)2

)
−
∫ t

0

cpepγs

(δϕ+ ε)pds+
kcqeqγt

(δϕ+ ε)q

= γv− v

(
λ1δϕ

δϕ+ ε
+

2δ2 |∇ϕ|2

(δϕ+ ε)2

)
+

kcqeqγt

(δϕ+ ε)q +
cp

γp (δϕ+ ε)p − cpepγt

γp (δϕ+ ε)p

≥ γv− v

(
λ1δϕ

δϕ+ ε
+

2δ2 |∇ϕ|2

(δϕ+ ε)2

)
+

kcqeqγt

(δϕ+ ε)q − cpepγt

γp (δϕ+ ε)p .
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From (3.2), it follows that

(3.3) Pv ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v

[
γ−
(
λ1δϕ

δϕ+ε
+

2δ2 |∇ϕ|2

(δϕ+ε)2

)]
+vp

(
k− 1

γp

)
≥ 0, if p=q,

v

[
γ−
(
λ1δϕ

δϕ+ε
+

2δ2 |∇ϕ|2

(δϕ + ε)2

)]
+vp

(
kc(q−p)e(q−p)γt

(δϕ+ε)q−p − 1
γp

)
≥0, if p<q,

and

v (x, 0) =
c

δϕ(x) + ε
≥

sup
Ω

(u0 (x) + 1) (δϕ (x) + ε)

δϕ(x) + ε
> u0 (x) .(3.4)

On the other hand, for any (x, t) ∈ ∂Ω× (0, T ), (3.1), v(x, t) > 1 and l ≤ 1 guarantee

v (x, t) =
ceγt

ε
> ceγt ≥

∫
Ω

f (x, y)
ceγt

δϕ (y) + ε
dy =

∫
Ω

f (x, y) v (y, t) dy

≥
∫

Ω

f (x, y) vl (y, t) dy.
(3.5)

Combining now from (3.3) to (3.5), we know that v (x, t) is a supersolution of
problem (1.1) in ΩT and the solution u (x, t) < v (x, t) by the comparison princi-
ple. Consequently, problem (1.1) has global solutions. The proof of Theorem 1.1 is
completed.

4. BLOW-UP OF SOLUTION

In this section, we turn our attention to the blow-up properties of problem (1.1).
Due to the complication of the nonlocal nonlinear boundary condition, the approaches
used in [15, 30] can not be extended to handle the blow-up behaviors of solutions of
Equation (1.1). The proofs of Theorems 1.2 and 1.3 rely on the modified eigenfunction
method combined with the properties of some special differential inequalities.

Proof of Theorem 1.2. We will use a modification of an argument in the proof of
Theorem 5.1 in [21] to prove our blow-up result of the case p > q ≥ 1. Let u (x, t) be
the unique solution to problem (1.1). We first define two auxiliary functions as follows

J1 (t) =
∫

Ω
ϕ (x)u (x, t) dx and J2(t) =

∫ t

0

∫
Ω
up(x, s)ϕ(x)dxds, 0 ≤ t < T.

Taking the derivative of J1 (t) with respect to t, and using Green’s formula we could
obtain
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J1
′ (t)

=
∫

Ω
ϕ

(
Δu+

∫ t

0
upds− kuq

)
dx

= J2(t) +
∫

∂Ω

∂u

∂n
ϕdS −

∫
Ω
∇ϕ · ∇udx− k

∫
Ω
ϕuqdx

= J2(t) +
∫

Ω
uΔϕdx−

∫
∂Ω

∂ϕ

∂n
udS − k

∫
Ω
ϕuqdx

= −λ1J1(t) + J2(t) −
∫

∂Ω

∂ϕ

∂n

(∫
Ω

f (x, y)ul (y, t) dy
)
dS − k

∫
Ω

ϕuqdx,

(4.1)

where n denotes the unit outer normal vector on ∂Ω. Moreover, we have ∂ϕ
∂n < 0 for

all x ∈ ∂Ω, and ∫
∂Ω

∂ϕ

∂n
dS = −λ1

∫
Ω
ϕdx = −λ1.

It follows immediately from (4.1) that

(4.2) J1
′ (t) ≥ −λ1J1(t) + J2(t) +

mλ1

L

∫
Ω

ϕuldx− k

∫
Ω

ϕuqdx.

By (4.2) and Jensen’s inequality, we have{
J2

′ (t) ≥ Jp
1 (t) ,

J1
′ (t) ≥ −λ1J1(t) + J2(t)− k (J2

′ (t))
q
p .

(4.3)

By virtue of Lemma 5.3 in [21] with r = q
p and α = 1, we can easily conclude that

there exist T ∈ (0,∞) and positive constants c1 and c2 such that

(4.4) lim
t→T

χ (t) = lim
t→T

(
c1J

ξ
2 (t) + c2J1 (t)

)
= ∞,

where ξ ∈ (0, 1), which implies that u (x, t) blows up in a finite time for any nonneg-
ative nontrivial initial data u0 (x). The proof of Theorem 1.2 is completed.

Proof of Theorem 1.3. The first part of the arguments is the same as in Theorem
1.2. Since l ≥ q ≥ 1, we know that

(4.5) ul + 1 > uq.

Employing this inequality into (4.2), we obtain

(4.6) J1
′ (t) ≥ −λ1J1(t) +

(
mλ1

L
− k

)∫
Ω
ϕuldx− k.
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Further, since l > 1 and mλ1
L − k > 0, Jensen’s inequality can be used to (4.6) to get

(4.7) J1
′ (t) ≥ −λ1J1 (t) +

(
mλ1

L
− k

)
J l

1 (t) − k.

Since the function f (J1) = J l
1 is convex, then there exists η > 1 such that(
mλ1

L
− k

)
J l

1 ≥ 2 (λJ1 + k)

holds for J1 ≥ η.
It follows easily that if J1 (0) > η, then J1 (t) is increasing on its interval of the

existence and

(4.8) J1
′ (t) ≥ 1

2
J l

1.

From the above inequality it follows that

(4.9) lim
t→T−

0

J1 (t) = +∞,

where
T0 =

2
(l − 1)J l−1

1 (0)
.

Then by the assumption on the initial data in Theorem 1.3, the solution u (x, t) becomes
infinite in a finite time. The proof of Theorem 1.3 is completed.

5. BLOW-UP RATE ESTIMATE

In this section, we will derive the blow-up rate of the blow-up solution for the
following special case of problem (1.1),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = Δu+
∫ t

0
up(x, s)ds− ku, x ∈ Ω, t > 0,

u (x, t) =
∫

Ω
f (x, y) u (y, t)dy, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

(5.1)

where p > 1. By Theorem 1.2, for any nonnegative nontrivial initial data u0, u blows
up in a finite time. In the next, we will first follow the general idea in [8] to estimate
an upper bounder of the blow-up rate near the blow-up time.
Let T ∗ < ∞ be the maximal time of the existence of a blowing up solution. We

have the following Lemma.
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Lemma 5.1. Suppose that
∫
Ω f(x, y)dy ≤ 1 for all x ∈ ∂Ω and assumption (H)

holds, then for any t1 ∈ (t0, T ∗), the blow-up solution of problem (5.1) satisfies

(5.2) u (x, t) ≤ C (T ∗ − t)−
2

p−1 , t1 < t < T ∗,

where C > 0 is a constant.

Proof. Let v = ut, then it is easy to verify that v satisfies the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vt = Δv + up − kv, x ∈ Ω, t ∈ (0, T ∗) ,

v (x, t) =
∫

Ω
f (x, y) v (y, t)dy, x ∈ ∂Ω, t ∈ (0, T ∗) ,

v (x, 0) = Δu0 (x) , x ∈ Ω.

(5.3)

Further, thanks to u0 (x) ∈ C2
(
Ω
)
, one can prove that v is actually in C2,1 (ΩT ∗) ∩

C
(
ΩT ∗

)
. Let

J(x, t) = ut − δ

∫ t

0

upds for (x, t) ∈ Ω × (t1, T ∗) ,

where δ is a sufficiently small positive constant, then we have J ∈ C2,1 (Ω × (t1, T ∗))∩
C
(
Ω × (t1, T ∗)

)
. A straightforward computation yields

Jt − ΔJ

= utt − δup − Δut + δp

∫ t

0
up−1Δuds+ δp(p− 1)

∫ t

0
up−2|∇u|2ds

≥ (1− δ)up − kut + δp

∫ t

0
up−1

(
us −

∫ s

0
updτ + ku

)
ds

= δp

∫ t

0
up−1

(
us −

∫ s

0
updτ

)
ds− k

(
ut − δ

∫ t

0
upds

)
+ (1 − δ)up + kδ (p− 1)

∫ t

0
upds

≥ p

∫ t

0
up−1

(
us − δ

∫ s

0
updτ

)
ds− k

(
ut − δ

∫ t

0
upds

)
+ (1 − δ)up − p (1 − δ)

∫ t

0
up−1usds

= p

∫ t

0
up−1Jds − kJ + (1 − δ)up

0

≥ p

∫ t

0
up−1Jds − kJ.

(5.4)
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For fixed (x, t) ∈ ∂Ω × (t1, T ∗), we have

J(x, t) = ut − δ

∫ t

0
upds

=
∫

Ω
f(x, y)ut(y, t)dy − δ

∫ t

0

(∫
Ω
f(x, y)u(y, s)dy

)p

ds.

By using ut(y, t) = J(y, t) + δ
∫ t
0 u

pds, we have∫
Ω
f(x, y)ut(y, t)dy − δ

∫ t

0

(∫
Ω
f(x, y)u(y, s)dy

)p

ds

=
∫

Ω
f(x, y)

(
J(y, t) + δ

∫ t

0
upds

)
dy − δ

∫ t

0

(∫
Ω
f(x, y)u(y, s)dy

)p

ds

=
∫

Ω
f(x, y)J(y, t)dy+δ

∫ t

0

[∫
Ω
f(x, y)up(x, s)dy−

(∫
Ω
f(x, y)u(y, s)dy

)p]
ds.

Noticing that 0 < F (x) =
∫
Ω f(x, y)dy ≤ 1 for x ∈ ∂Ω, we can apply Jensen’s

inequality to the last integral in the above inequality,∫
Ω
f(x, y)up(x, s)dy −

(∫
Ω
f(x, y)u(y, t)dy

)p

≥ F (x)
(∫

Ω
f(x, y)u(y, t)

dy

F (x)

)p

−
(∫

Ω
f(x, y)u(y, t)dy

)p

≥ 0.

Here, we used p > 1 and 0 < F (x) ≤ 1 in the last inequality. Hence,

(5.5) J(x, t) ≥
∫

Ω
f(x, y)J(y, t)dy

holds for all (x, t) ∈ ∂Ω × (t1, T ∗).
On the other hand, the assumption condition (H) implies that

(5.6) J(x, t1) = ut (x, t1) − δ

∫ t1

0
up (x, s) ds ≥ 0 in Ω.

Since f and u are nonnegative bounded continuous for (x, t) ∈ Ω× (t1, T ∗), it follows
from (5.4), (5.5) and (5.6) that J (x, t) ≥ 0 for (x, t) ∈ Ω × (t1, T ∗), which means

(5.7) ut ≥ δ

∫ t

0
up(x, s)ds.



Blow-up for a Semilinear Parabolic Equation 1367

Multiplying both sides of the inequality (5.7) by up and integrating over (t1, t), we
have

(5.8) up (x, t) ≥ [δ (1 + p)]
p

1+p

(∫ t

t1

up (x, s) ds
) 2p

1+p

, t1 < t < T ∗.

Dividing both sides of (5.8) by
(∫ t

t1
up (x, s)ds

) 2p
1+p and integrating above inequality

from t to T ∗, we deduce that

(5.9)
∫ t

t1

up (x, s) ds ≤ [δ(1 + p)]−
p

p−1 (T ∗ − t)−
p+1
p−1 , t1 < t < T ∗.

Taking a special t′ = T ∗+t
2 and applying ut ≥ 0 for t ∈ [t0, T ∗), we see that from (5.9)

T ∗ − t

2
up (x, t) ≤

∫ t′

t
up(x, s)ds ≤

∫ t′

t1

up(x, s)ds

≤ [δ(1 + p)]−
p

p−1
(
T ∗ − t′

)−p+1
p−1

≤ [δ(1 + p)]−
p

p−1

(
T ∗ − t

2

)−p+1
p−1

,

which yields

(5.10) u (x, t) ≤ C (T ∗ − t)−
2

p−1 , t1 < t < T ∗.

where C =
[

4
δ(1+p)

] 1
p−1 . The proof of Lemma 5.1 is completed.

Remark 5.1. If one can show that the solution u (x, t) to problem (5.1) blows up
everywhere under some suitable hypotheses, that is, total blow-up phenomenon occurs,

then Lemma 5.1 can be proved for all l ≥ 1 by using the fact lim
t→T ∗

(
inf
x∈Ω

u (x, t)
)

= ∞.

Proof of Theorem 1.4. Let M (t) = max
x∈Ω

u (x, t), then by the similar manners as

in the proof of Theorem 4.5 in [8], we know that M (t) is Lipschitz continuous, and
thus it is differential almost everywhere. Moreover, the following estimate holds for
0 < t < T ∗,

M ′ (t) ≤
∫ t

0

Mpds− kM ≤
∫ t

0

Mpds.

By the analogous way as for (5.9), we get

(5.11)
∫ t

0
Mp (x, s)ds ≥ c1 (T ∗ − t)−

p+1
p−1 , 0 < t < T ∗.



1368 Dengming Liu, Chunlai Mu and Iftikhar Ahmed

For t1 ≤ η < t < T ∗, by exploiting (5.10), (5.11) and M being nondecreasing on
[t1, T ∗), we obtain

c1 (T ∗ − t)−
p+1
p−1 ≤

∫ η

0
Mpds+

∫ t

η
Mpds ≤ C1 (T ∗ − η)−

p+1
p−1 + (t− η)Mp (t) .

For t close enough to T ∗, taking η = ρt + (1 − ρ)T ∗ with ρ =
(

2C1
c1

) p−1
p+1

> 1, we
deduce that

(5.12) M (t) ≥ c (T ∗ − t)−
2

p−1 ,

which proves the lower estimate. Combining it with Lemma 5.1, we obtain the blow-up
rate estimate. The proof of the Theorem 1.4 is completed.
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