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THE SOLVABILITY AND OPTIMAL CONTROLS OF IMPULSIVE
FRACTIONAL SEMILINEAR DIFFERENTIAL EQUATIONS

Xiuwen Li and Zhenhai Liu

Abstract. In this paper, we deal with the impulsive control systems of fractional
order and their optimal controls in Banach spaces. We firstly show the existence
and uniqueness of mild solutions for a broad class of impulsive fractional infinite
dimensional control systems under suitable assumptions. Then by using generally
mild conditions of cost functionals, we extend the existence result of optimal
controls to the impulsive fractional control systems. Finally, a concrete application
is given to illustrate the effectiveness of our main results.

1. INTRODUCTION

The purpose of this paper is to study the following impulsive fractional control
system:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

CDα
t x(t) = Ax(t) + f(t, x(t),

∫ t

0
g(t, s, x(s))ds)+ B(t)u(t),

t ∈ J = [0, b], t �= tk, u ∈ Uad,

Δx(tk) = Ik(x(t−k )), k = 1, 2, . . . , m,

x(0) = x0 ∈ X,

where 0 < α ≤ 1, CDα
t denotes the Caputo fractional derivative of order α with

the lower limit zero. A : D(A) ⊆ X → X is the infinitesimal generator of a
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C0−semigroup {T (t), t ≥ 0} on a Banach space X . f : J × X × X → X, g :
Σ × X → X(where Σ = {(t, s) ∈ [0, b] × [0, b], t ≥ s}) are two given functions
specified later. Ik : X → X are continuous functions, and 0 = t0 < t1 < . . . <

tm < tm+1 = b, Δx(tk) = x(t+k ) − x(t−k ). x(t+k ) and x(t−k ) denote the right and the
left limits of x(t) at t = tk(k = 1, 2, . . . , m) respectively. The control function u is
given in a suitable admissible control set Uad. B is a linear operator from a separable
reflexive Banach space Y into X . The cost functional over the family of admissible
state control pair (x, u) is given by

J (x, u) =
∫

J

L(t, x(t), u(t))dt.

Recently, many authors have studied fractional differential equations from two aspects.
One is the theoretical aspects of existence and uniqueness of solutions. The other is the
analytic and numerical methods for finding solutions. It is known that many physical
system can be represented more accurately through fractional derivative formulation.
There are many fields of applications where we can use the fractional calculus as the
mathematical modelling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of complex medium, viscoelasticity, heat conduction,
electricity mechanics, control theory, and so forth. For more details on this topics, one
can see for instance, [3, 2, 4, 5, 8, 7, 15, 16] and the references therein.

The impulsive differential equations arise from the real world problems to describe
the dynamics of processes in which sudden, discontinuous jumps occurs. Such pro-
cesses are naturally seen in biology, physics, engineering, etc. Due to their significance,
many authors have established the solvability of impulsive differential equations. For
the general theory and applications of such equations, we refer the interested reader to
see the papers [9, 10, 11, 12, 18] and references therein.

Fractional semilinear equations play a pivotal role in electric-circuit analysis and
the activity of interacting inhibitory and excitatory neurons. For this reason, they have
become an active area of investigation by many researchers and impressive progress
have been made in recent years (cf. [3, 5, 18, 19, 20, 21, 22]). In [19], Wang et
al. obtained the existence and continuous dependence of mild solutions and optimal
controls for fractional integro-differential evolution systems with infinite delay. Wang
and Zhou [20] discussed the optimal controls of a Lagrange problem for fractional
evolution equations. In [21], Wei et al. presented the optimal controls for nonlin-
ear impulsive integro-differential equations of mixed type on Banach spaces. Strongly
motivated by these papers, we investigate the solvability and optimal controls for impul-
sive fractional semilinear differential equations with initial value boundary conditions.
Comparing with the literatures [13, 19, 20, 21], some appropriate sufficient hypotheses
are introduced and different techniques are used in our paper to get a priori estimation
of mild solutions, the existence and uniqueness of the mild solutions is discussed under
the cases of the C0-semigroup T (t) is compact or not compact. More details can be
found in our proof. Furthermore, to the best of our knowledge, the optimal controls for
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impulsive fractional semilinear differential equations (1.1) with initial value conditions
are untreated topics in the literature and this fact is the motivation for us to extend the
existing ones and make the new development of the present work on this issue.

The rest of this paper is organized as follows: In section 2, we will present some
basic definitions and preliminary facts, such as definitions, lemmas, theorems and so
on, which will be used throughout the following sections. In section 3, by applying
the well-known fixed point theorem, some sufficient conditions are established for the
existence and uniqueness of mild solutions of the system (1.1). In section 4, we will
study the optimal controls for impulsive fractional semilinear differential equations with
initial value boundary conditions. Finally, we present an example to demonstrate our
main results in section 5.

2. PRELIMINARIES

In this section, we introduce some definitions and preliminaries which are used
throughout the paper. The norm of a space X will be denoted by ‖ · ‖X . Lb(X, Y ) de-
notes the space of bounded linear operators from X to Y and we abbreviate the notation
to Lb(X) when X = Y . Let C(J, X) denote the Banach space of all continuous func-
tions from J = [0, b] into X with the norm ‖x‖C = supt∈J‖x(t)‖X . We also introduce
the Banach space PC(J, X) = {x : J → X : x ∈ C((tk, tk+1], X), k = 0, 1, . . . , m,
and there exist x(t−k ), x(t+k ), k = 1, . . . , m, with x(t−k ) = x(tk)} endowed with the
norm ‖x‖PC = max{supt∈J‖x(t + 0)‖, supt∈J‖x(t − 0)‖}.

Firstly, let us recall the following definitions from fractional calculus. For more
details, one can see [7, 15]:

Definition 2.1. The integral

(2.1) Iα
t f(t) =

1
Γ(α)

∫ t

0
(t − s)α−1f(s)ds, α > 0, t > 0,

is called Riemann-Liouville fractional integral of order α, where Γ is the gamma
function.

Definition 2.2. For a function f(t) given in the interval [0,∞), the expression

(2.2) LDα
t f(t) =

1
Γ(n − α)

(
d

dt
)n

∫ t

0
(t − s)n−α−1f(s)ds, t > 0,

where n = [α] + 1, [α] denotes the integer part of number α > 0, is called the
Riemann-Liouville fractional derivative of order α.

Definition 2.3. Caputo derivative for a function f : [0,∞) → R can be written as

(2.3) CDα
t f(t) = LDα

t [f(t) −
n−1∑
k=0

tk

k!
f (k)(0)], n = [α] + 1, t > 0.
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Remark 2.4.
(i) The Caputo derivative of a constant is equal to zero.
(ii) If the function f (n)(t) ∈ C[0,∞), then we can get

CDα
t f(t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1f (n)(s)ds = In−α

t f (n)(t), n = [α] + 1.

(iii) If f is an abstract function with values in X , then integrals which appear in
Definition 2.1 and 2.2 are taken in Bochner’s sense.

Now, let us recall the useful nonlinear impulsive Gronwall inequality with Caputo
singular kernel which will be used in the sequel:

Lemma 2.5. (Lemma 3.4 of [18]). Let x ∈ PC(J, X) satisfy the following
inequality

‖x(t)‖ ≤ c1 + c2

∫ t

0
(t − s)β−1‖x(s)‖ds +

∑
0<tk<t

hk‖x(t−k )‖,

where c1, c2, hk ≥ 0 are constants. Then

‖x(t)‖ ≤ c1(1 + H∗Eβ(c2Γ(β)tβ)kEβ(c2Γ(β)tβ) for t ∈ (tk, tk+1],

where H∗ = max{hk : k = 1, 2, · · · , m}.
Next, we collect two well-known theorems including Krasnoselskii’s fixed point

theorem and PC−type Arzela−Ascoli theorem as follows:

Theorem 2.6. (Krasnoselskii’s fixed point theorem). Let V be a bounded closed
and convex subset of a Banach space X and let A and B be two operators of V into
X such that

(i) Ax + By ∈ V whenever x, y ∈ V ;
(ii) A is a contraction mapping;
(iii) B is a completely continuous.

Then there exists a z ∈ V such that z = Az + Bz.

Theorem 2.7. (PC−type Arzela−Ascoli theorem, Theorem 2.1 of [21]). Let X
be a Banach space and W ⊂ PC(J, X). If the following conditions are satisfied:

(i) W is a uniformly bounded subset of PC(J, X);
(ii) W is enquicontinuous in (tk, tk+1)(k = 0, 1, · · · , m) where t0 = 0, tm+1 = b;
(iii) W(t) = {x(t) : x ∈ W , t ∈ J \ {t1, · · · , tm}}, W(t+k ) = {x(t+k ) : x ∈ W} and

W(t−k ) = {x(t−k ) : x ∈ W} are all relatively compact subsets of X .



The Solvability and Optimal Controls of Impulsive Fractional Semilinear Differential Equations 437

Then W is a relatively compact subsets of PC(J, X).

3. EXISTENCE OF MILD SOLUTIONS

In this section, we mainly investigate the existence and uniqueness results for impul-
sive fractional semilinear differential equations with initial value boundary conditions.

In what follows, we will make the following hypotheses:
H(1) {T (t), t > 0} is a compact semigroup such that M := supt∈[0,∞)‖T (t)‖Lb(X) <

∞.
H(2) The function f : J × X × X → X satisfies:

(i) f(·, v, w) : J → X is measurable for all (v, w) ∈ X×X and f(t, ·, ·) : X×X →
X is continuous for a.e. t ∈ J .

(ii) There exist functions φ(t), μ1(·) ∈ L
1
β (J, R+), β ∈ (0, α) and a continuous

function μ2(·) such that

‖f(t, x, y)‖ ≤ φ(t) + μ1(t)‖x‖+ μ2(t)‖y‖, for a.e. t ∈ J, ∀x, y ∈ X.

(iii) There exist constants L1, L2 > 0, such that

‖f(t, x1, x2) − f(t, y1, y2)‖ ≤ L1‖x1 − y1‖ + L2‖x2 − y2‖,
for a.e. t ∈ J, ∀xj, yj ∈ X, j = 1, 2.

H(3) There exist constants hk > 0(k = 1, 2, · · · , m) such that

‖Ik(x) − Ik(y)‖ ≤ hk‖x− y‖, ∀x, y ∈ X.

H(4) For each (t, s) ∈ Σ = {(t, s) ∈ [0, b] × [0, b], t ≥ s}, the function g(t, s, ·) :
X → X is continuous and for each x ∈ X , g(·, ·, x) : Σ → X is strongly
measurable. Moreover, there exists a function a : Σ → R+ with

∫ t
0 a(t, s)ds :=

a∗(t) ∈ L∞(J) such that

‖g(t, s, x)‖ ≤ a(t, s)‖x‖, for a.e. (t, s) ∈ Σ, ∀x ∈ X ;

and

‖g(t, s, x)− g(t, s, y)‖ ≤ a(t, s)‖x− y‖, for a.e. (t, s) ∈ Σ, ∀x, y ∈ X.

H(5) The operator B ∈ Lb(Lp(J, Y ), Lp(J, X)).
H(6) The multivalued map U : J → Pf (Y )(where Pf(Y ) is a class of nonempty

closed and convex subsets of Y ) is measurable and there exists a function v(t) ∈
Lp(J, R+), p > 1

α , such that

‖U(t)‖ = sup{‖u‖ : u ∈ U(t)} ≤ v(t), for a.e. t ∈ J.
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H(7) The following inequality holds

M∗ : = M
m∑

k=1

hk +
M

Γ(α)
(
1− β

α − β
)1−βbα−β‖μ1‖

L
1
β

+
Mμ∗

2‖a∗‖L∞bα

Γ(1 + α)
< 1, where μ∗

2 = sup
t∈J

μ2(t).

Set the admissible control set

Uad = S
p
U = {u ∈ Lp(J, Y ) : u(t) ∈ U(t) a.e.}, 1 < p < ∞.

Then, Uad �= ∅(Proposition 2.1.7 and Lemma 2.3.2 of [6]). And it is not difficult
to check that Uad is a closed and convex subset of Lp(J, Y ).

According to Definitions 2.1-2.3 and [22], we shall define the concept of mild
solution for problem (1.1) as follows:

Definition 3.1. A function x ∈ PC(J, X) is said to be a mild solution of the
problem (1.1) if there exists a u ∈ Uad such that

(3.1)

x(t) = Sα(t)x0 +
∑

0<tk<t

Sα(t − tk)Ik(x(t−k ))

+
∫ t

0

(t − s)α−1Tα(t − s)B(s)u(s)ds

+
∫ t

0

(t − s)α−1Tα(t − s)f(s, x(s),
∫ s

0

g(s, τ, x(τ))dτ)ds,

where
Sα(t) =

∫ ∞

0
ξα(θ)T (tαθ)dθ, Tα(t) = α

∫ ∞

0
θξα(θ)T (tαθ)dθ,

and
ξα(θ) =

1
α

θ−1− 1
α �α(θ−

1
α ) ≥ 0,

�α(θ) =
1
π

∞∑
n=1

(−1)n−1θ−nα−1 Γ(nα + 1)
n!

sin(nπα), θ ∈ (0,∞),

ξα is a probability density function defined on (0,∞), that is

ξα(θ) ≥ 0, θ ∈ (0,∞), and
∫ ∞

0
ξα(θ)dθ = 1.

A solution x(·) ∈ PC(J, X) of the system (1.1) is referred to as a state trajectory
of the fractional semilinear differential equation corresponding to the initial state x0

and the control u(·).
Lemma 3.2. ([22]). If the C0−semigroup T (t) is uniformly bounded (i.e. supt∈[0,∞)

‖T (t)‖ ≤ M < ∞), then the operators Sα(t) and Tα(t) have the following properties:
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(i) For any fixed t ≥ 0, Sα(t) and Tα(t) are linear and bounded operators, i.e.,
for any x ∈ X,

‖Sα(t)x‖ ≤ M‖x‖, and ‖Tα(t)x‖ ≤ M

Γ(α)
‖x‖.

(ii) {Sα(t), t ≥ 0} and {Tα(t), t ≥ 0} are strongly continuous.
(iii) For any t > 0, Sα(t) and Tα(t) are also compact operators if T (t)(t > 0) is

compact.

In order to discuss the optimal control of system (1.1), we need

Lemma 3.3. Assume that H(1)− H(7) hold. Then there exists a constant ω > 0
such that

‖ x ‖PC≤ ω, for any solution x of (1.1).

Proof. If x is a mild solution of system (1.1) with respect to u ∈ Uad on [0, b],
then

x(t) = Sα(t)x0 +
∑

0<tk<t

Sα(t − tk)Ik(x(t−k )) +
∫ t

0
(t − s)α−1Tα(t − s)B(s)u(s)ds

+
∫ t

0
(t − s)α−1Tα(t − s)f(s, x(s),

∫ s

0
g(s, τ, x(τ))dτ)ds.

For t ∈ J , we obtain

(3.2)

‖x(t)‖ ≤ ‖Sα(t)x0‖ + ‖
∑

0<tk<t

Sα(t − tk)Ik(x(t−k ))‖

+
∫ t

0
(t − s)α−1‖Tα(t − s)B(s)u(s)‖ds

+
∫ t

0
(t − s)α−1‖Tα(t − s)f(s, x(s),

∫ s

0
g(s, τ, x(τ))dτ)‖ds

≤ M‖x0‖ + M
m∑

k=1

hk‖x(t−k )‖+ Mm‖Ik(0)‖

+
M

Γ(α)

∫ t

0

(t − s)α−1‖(Bu)(s)‖ds

+
M

Γ(α)

∫ t

0
(t − s)α−1[φ(s) + μ1(s)‖x(s)‖

+μ2(s)
∫ s

0
a(s, τ)‖x(τ)‖dτ ]ds

≤ M‖x0‖ + M

m∑
k=1

hk‖x(t−k )‖+ Mm‖Ik(0)‖
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+
M

Γ(α)
(

p − 1
pα − 1

)
p−1

p bα− 1
p ‖Bu‖Lp

+
M

Γ(α)
(
1 − β

α − β
)1−βbα−β[‖φ‖

L
1
β

+ ‖μ1‖
L

1
β
· sup

s∈[0,t]

‖x(s)‖]

+
Mμ∗

2‖a∗‖L∞

Γ(α)

∫ t

0

(t − s)α−1 sup
τ∈[0,s]

‖x(τ)‖ds.

Let

λ0 = M‖x0‖ + Mm‖Ik(0)‖+
M

Γ(α)
(

p − 1
pα − 1

)
p−1

p bα− 1
p ‖Bu‖Lp

+
M

Γ(α)
(
1 − β

α − β
)1−βbα−β‖φ‖

L
1
β
,

λ1 =
M

Γ(α)
(
1 − β

α − β
)1−βbα−β‖μ1‖

L
1
β
, λ2 =

Mμ∗
2‖a∗‖L∞

Γ(α)
, W (t) = sup

s∈[0,t]
‖x(s)‖.

Then by (3.2), we have

W (t) ≤ λ0 + λ1W (t) + λ2

∫ t

0
(t − s)α−1W (s)ds + M

∑
0<tk<t

hkW (t−k )

≤ λ0

1− λ1
+

λ2

1− λ1

∫ t

0
(t − s)α−1W (s)ds +

M

1 − λ1

∑
0<tk<t

hkW (t−k ).

It follows from Lemma 2.5 that

W (t) ≤ λ0

1 − λ1
(1 + �∗Eα(

λ2

1− λ1
Γ(α)bα)mEα(

λ2

1− λ1
Γ(α)bα) := ω,

where
�∗ = max{ M

1 − λ1
hk : k = 1, 2, · · · , m}.

Therefore supt∈J ‖x(t)‖ ≤ ω, which completes the proof.
Firstly, for a compact semigroup, we have the following.

Lemma 3.4. (Theorem 2.3.2 of [14]). Let T (t) be a C0−semigroup. If T (t)
is a compact semigroup for t > t0, then T (t) is continuous in the uniform operator
topology for t > t0.

Next, we are ready to state the existence of mild solution which is based on the
Krasnoselskii’s fixed point theorem:

Theorem 3.5. If H(1)− H(7) hold, then the problem (1.1) has at least one mild
solution on J .
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Proof. Choose

r ≥
M [‖x0‖ + m‖Ik(0)‖+ bα−β

Γ(α) ( 1−β
α−β )1−β‖φ‖

L
1
β

+ b
α− 1

p

Γ(α) ( p−1
pα−1)

p−1
p ‖Bu‖Lp ]

1 − M∗ .

Let Br = {x ∈ PC(J, X) : ‖x‖ ≤ r}. It is obvious that Br is a bounded, closed and
convex subset of PC(J, X). Define two operators A and B on Br as

(Ax)(t) = Sα(t)x0 +
∑

0<tk<t

Sα(t−tk)Ik(x(t−k ))+
∫ t

0
(t−s)α−1Tα(t−s)B(s)u(s)ds,

and

(Bx)(t) =
∫ t

0
(t − s)α−1Tα(t − s)f(s, x(s),

∫ s

0
g(s, τ, x(τ))dτ)ds.

Clearly, the problem of finding mild solutions of (1.1) is reduced to find the fixed point
of the A + B. Now we prove that the operators A and B satisfy all the conditions of
the Theorem 2.6. For the sake of convenience, we divide the proof into three steps.

Step 1. We prove that Ax + By ∈ Br , whenever x, y ∈ Br .
For each pair x, y ∈ Br , t ∈ J, it follows from H(7) that

‖(Ax)(t) + (By)(t)‖
≤ ‖Sα(t)x0‖+‖

∑
0<tk<t

Sα(t−tk)Ik(x(t−k ))‖+
∫ t

0
(t−s)α−1‖Tα(t−s)(Bu)(s)‖ds

+
∫ t

0
(t − s)α−1‖Tα(t − s)f(s, y(s),

∫ s

0
g(s, τ, y(τ))dτ)‖ds

≤ M‖x0‖ + M
m∑

k=1

hk‖x(t−k )‖ + Mm‖Ik(0)‖+
M

Γ(α)
(

p − 1
pα − 1

)
p−1

p bα− 1
p ‖Bu‖Lp

+
M

Γ(α)

∫ t

0

(t − s)α−1[φ(s) + μ1(s)‖y(s)‖+ μ2(s)
∫ s

0

a(s, τ)‖y(τ)‖dτ ]ds

≤ M [‖x0‖ + m‖Ik(0)‖+
b
α− 1

p

Γ(α)
(

p − 1
pα − 1

)
p−1

p ‖Bu‖Lp +
bα−β

Γ(α)
(
1 − β

α − β
)1−β‖φ‖

L
1
β
]

+
[
M

m∑
i=1

hk +
M

Γ(α)
(
1 − β

α − β
)1−βbα−β‖μ1‖

L
1
β

+
Mμ∗

2‖a∗‖L∞bα

Γ(1 + α)

]
r ≤ r,

which implies that Ax + By ∈ Br whenever x, y ∈ Br .

Step 2. We show that A is a contraction mapping on Br.



442 Xiuwen Li and Zhenhai Liu

For any x, y ∈ Br, and t ∈ J, we obtain

(3.3)

‖(Ax)(t)− (Ay)(t)‖

≤ ‖
∑

0<tk<t

Sα(t − tk)[Ik(x(t−k )) − Ik(y(t−k ))‖ ≤ M

m∑
k=1

hk‖x − y‖.

By M
∑m

k=1 hk < M∗ < 1, we obtain A is a contraction mapping on Br.

Step 3. B is a completely continuous operator.

Claim 1. We show that B is continuous on Br . Let {xn} be a sequence such that
xn → x in Br as n → ∞. Then for each t ∈ J, we obtain

‖(Bxn)(t) − (Bx)(t)‖

≤ M

Γ(α)

∫ t

0
(t − s)α−1[L1‖xn(s) − x(s)‖+ L2

∫ s

0
a(s, τ)‖xn(τ)− x(τ)‖dτ ]ds

≤ M(L1 + L2‖a∗‖L∞)bα

Γ(1 + α)
‖xn − x‖ → 0 as m → ∞,

which implies that B is continuous.

Claim 2. We prove that B is equicontinuous on Br .
Firstly, for any ε>0, there exists δ0 =min{( Mε

2Γ(α)(
1−β
α−β )1−β[‖φ‖L 1

β
+r‖μ1‖L 1

β
]
)β−α,( Γ(1+α)ε

2Mμ∗
2‖a∗‖L∞r

)α} > 0, such that, for any x ∈ Br , τ1 = 0, 0 < τ2 ≤ δ0, one can
obtain

‖(Bx)(τ2) − (Bx)(τ1)‖

≤ M

Γ(α)
(
1 − β

α − β
)1−β[‖φ‖L 1

β
+ r‖μ1‖L 1

β
]δα−β

0 +
Mμ∗

2‖a∗‖L∞r

Γ(1 + α)
δα
0

<
ε

2
+

ε

2
= ε.

Hence, by the definition of equicontinuity, we get B is equicontinuous on [0, δ0].

Next, for any x ∈ Br and δ0
2 ≤ τ1 < τ2 ≤ b, we obtain
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‖(Bx)(τ2) − (Bx)(τ1)‖
= ‖

∫ τ2

0

(τ2 − s)α−1Tα(τ2 − s)f(s, x(s),
∫ s

0

g(s, τ, x(τ))dτ)ds

−
∫ τ1

0
(τ1 − s)α−1Tα(τ1 − s)f(s, x(s),

∫ s

0
g(s, τ, x(τ))dτ)ds‖

≤ ‖
∫ τ2

τ1

(τ2 − s)α−1Tα(τ2 − s)f(s, x(s),
∫ s

0
g(s, τ, x(τ))dτ)ds‖

+‖
∫ τ1

0
[(τ2 − s)α−1 − (τ1 − s)α−1]Tα(τ2 − s)f(s, x(s),

∫ s

0
g(s, τ, x(τ))dτ)ds‖

+‖
∫ τ1

0

(τ1 − s)α−1[Tα(τ2 − s) − Tα(τ1 − s)]f(s, x(s),
∫ s

0

g(s, τ, x(τ))dτ)ds‖
≤ Q1 + Q2 + Q3.

By the assumption H(2), we have

Q1 ≤ M

Γ(α)
(
1− β

α − β
)1−β(τ2−τ1)α−β[‖φ‖L 1

β
+r‖μ1‖L 1

β
]+

Mμ∗
2‖a∗‖L∞r

Γ(1 + α)
(τ2−τ1)α,

Q2 ≤ M

Γ(α)

∫ τ1

0
[(τ1 − s)α−1 − (τ2 − s)α−1][φ(s) + μ1(s)‖x(s)‖

+μ2(s)
∫ s

0
a(s, τ)‖x(τ)‖dτ ]ds

≤ 2M

Γ(α)
(
1− β

α − β
)1−β(τ2−τ1)α−β[‖φ‖L 1

β
+r‖μ1‖L 1

β
]+

2Mμ∗
2‖a∗‖L∞r

Γ(1 + α)
(τ2−τ1)α,

Q3 ≤ ‖
∫ τ1−ε

0

(τ1−s)α−1[Tα(τ2−s)−Tα(τ1−s)]f(s, x(s),
∫ s

0

g(s, τ, x(τ)dτ)ds‖

+‖
∫ τ1

τ1−ε
(τ1−s)α−1[Tα(τ2−s) − Tα(τ1−s)]f(s, x(s),

∫ s

0
g(s, τ, x(τ)dτ)ds‖

≤ sups∈[0,τ1−ε]‖Tα(τ2 − s) − Tα(τ1 − s)‖
[
(
1− β

α − β
)1−β(τ

α−β
1−β

1 − ε
α−β
1−β )1−β

[
‖φ‖L 1

β
+ r‖μ1‖L 1

β

]
+

μ∗
2‖a∗‖L∞r

α
(τα

1 − εα)
]

+
2M

Γ(α)
(
1 − β

α − β
)1−βεα−β +

2Mμ∗
2‖a∗‖L∞r

Γ(1 + α)
εα.

Since the compactness of T (t)(t > 0) and Lemma 3.4 imply the continuous of
T (t)(t > 0) in t in the uniform operator topology, it can be easily seen that Q3 tends
to zero independently of x ∈ Br as τ2 → τ1, ε → 0. It is also clear that Q1 and
Q2 tend to zero as τ2 → τ1 does not depend on particular choice of x. Thus, we get
that ‖(Bx)(τ2)− (Bx)(τ1)‖ tends to zero independently of x ∈ Br as τ2 → τ1, which
implies B is equicontinuous on δ0

2 ≤ τ1 < τ2 ≤ b.
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Hence, by the above arguments, we obtain that {B(x) : x ∈ Br} is an equicontin-
uous subset in PC(J, X).

Claim 3. Now we remain to show that B is compact.
Let t ∈ J be fixed. We show that the set Π(t) = {(Bx)(t) : x ∈ Br} is relatively

compact in X . Clearly, Π(0) = {0} is compact. So it is only necessary to consider
t > 0. For each ε ∈ (0, t), t ∈ (0, b], x ∈ Br and any δ > 0, we define

Πε,δ(t) = {(Bε,δx)(t) : x ∈ Br},

where

(Bε,δx)(t)

= α

∫ t−ε

0

∫ ∞

δ

θ(t − s)α−1ξα(θ)T ((t− s)αθ)f(s, x(s),
∫ s

0

g(s, τ, x(τ))dτ)dθds.

= αT (εαδ)
∫ t−ε

0

∫ ∞

δ

θ(t − s)α−1ξα(θ)T ((t − s)αθ

−εαδ)f(s, x(s),
∫ s

0
g(s, τ, x(τ))dτ)dθds.

From the compactness of T (εαδ) (εαδ > 0), we obtain that the set Πε,δ(t) =
{(Bε,δx)(t) : x ∈ Br} is relatively compact set in X for each ε ∈ (0, t) and δ > 0.
Moreover, we have

‖(Bx)(t)− (Bε,δx)(t)‖

=‖α
∫ t

0

∫ ∞

0
θ(t − s)α−1ξα(θ)T ((t − s)αθ)f(s, x(s),

∫ s

0
g(s, τ, x(τ))dτ)dθds

−α

∫ t−ε

0

∫ ∞

δ
θ(t − s)α−1ξα(θ)T ((t − s)αθ)f(s, x(s),

∫ s

0
g(s, τ, x(τ))dτ)dθds‖

≤α‖
∫ t

0

∫ δ

0

θ(t − s)α−1ξα(θ)T ((t− s)αθ)f(s, x(s),
∫ s

0

g(s, τ, x(τ))dτ)dθds‖

+α‖
∫ t

t−ε

∫ ∞

δ

θ(t − s)α−1ξα(θ)T ((t − s)αθ)f(s, x(s),
∫ s

0

g(s, τ, x(τ))dτ)dθds‖

≤αM(
1 − β

α − β
)1−β [‖φ‖L 1

β
+ r‖μ1‖L 1

β
][bα−β

∫ δ

0

θξα(θ)dθ +
1

Γ(1 + α)
εα−β ]

+
Mμ∗

2‖a∗‖L∞r

Γ(α)
[bα

∫ δ

0
θξα(θ)dθ +

1
Γ(1 + α)

εα].
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Since
∫ ∞

0
ξα(θ) = 1, the last inequality tends to zero when ε → 0 and δ → 0.

Therefore, there are relatively compact sets arbitrarily close to the set Π(t), t > 0.

Hence the set Π(t), t > 0 is also relatively compact in X .
From the above claims and Theorem 2.7, we know that B is a completely continuous

operator. Hence, the operators A and B satisfy all the conditions of Theorem 2.6. As
a result, by Theorem 2.6, we obtain that A + B has a fixed point x on Br. Therefore
system (1.1) has at least one mild solution on J . The proof is completed.

Now, according to the Banach contraction mapping principle, we shall show a
uniqueness result of mild solution as follows:

Theorem 3.6. Assume that the hypotheses H(2) − H(7) are satisfied. Then the
problem (1.1) has a unique mild solution on J provided that

m∑
k=1

hk +
(L1 + L2‖a∗‖L∞)bα

Γ(1 + α)
<

1
M

, where M := supt∈[0,∞)‖T (t)‖Lb(X) < ∞.

Proof. Consider the operator � : PC(J, X) → PC(J, X) defined by

(�x)(t) = Sα(t)x0+
∑

0<tk<t

Sα(t−tk)Ik(x(t−k ))+
∫ t

0
(t−s)α−1Tα(t−s)B(s)u(s)ds

+
∫ t

0
(t − s)α−1Tα(t − s)f(s, x(s),

∫ s

0
g(s, τ, x(τ))dτ)ds.

Obviously, any mild solutions of the problem (1.1) are fixed points of the operator
� : PC(J, X) → PC(J, X).

Let Br = {x ∈ PC(J, X) : ‖x‖ ≤ r} be a closed ball in PC(J, X), where

r ≥
M [‖x0‖ + m‖Ik(0)‖+ bα−β

Γ(α) ( 1−β
α−β )1−β‖φ‖

L
1
β

+ b
α− 1

p

Γ(α) ( p−1
pα−1)

p−1
p ‖Bu‖Lp ]

1 − M∗ .

Like the proof of step 1 in Theorem 3.5, we can easily obtain ‖�x‖ ≤ r for any
x ∈ Br , which means that �Br ⊆ Br .

For t ∈ J, and x, y ∈ PC(J, X), we obtain

‖(�x)(t)− (�y)(t)‖
≤ ‖

∑
0<tk<t

Sα(t − tk)[Ik(x(t−k ))− Ik(y(t−k ))‖

+
∫ t

0
(t − s)α−1‖Tα(t − s)[f(s, x(s),

∫ s

0
g(s, τ, x(τ))dτ)

−f(s, y(s),
∫ s

0
g(s, τ, y(τ))dτ)]‖ds
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≤ M

m∑
k=1

hk‖x− y‖ +
M

Γ(α)

∫ t

0
(t − s)α−1[L1‖x(s)− y(s)‖

+L2

∫ s

0
a(s, τ)‖x(τ)− y(τ)‖dτ ]ds

≤ [M
m∑

k=1

hk +
M(L1 + L2‖a∗‖L∞)bα

Γ(1 + α)
]‖x− y‖,

which implies � is a contradiction operator from the assumptions in the theorem.
According to Banach’s fixed point theorem, we obtain the problem (1.1) has a unique
mild solution on J . The proof is completed.

4. OPTIMAL CONTROL RESULTS

In this section, we are concerned with the following Lagrange problem (P).
Minimize a cost function of the form

(4.1) J (x, u) :=
∫ b
0
L(t, x(t), u(t))dt,

among all the admissible state control pairs of the impulsive fractional semilinear differ-
ential equations (1.1), i.e., find an admissible state control pair (x0, u0) ∈ PC(J, X)×
Uad such that

J (x0, u0) ≤ J (x, u), for all (x, u) ∈ PC(J, X)× Uad,

where x denotes the mild solution of system (1.1) corresponding to the control u ∈ Uad.
For the existence of solutions for problem (P), we shall introduce the following

assumptions:
H(8) : The function L : J × X × Y → R ∪ {∞} satisfies:
(i) the function L : J × X × Y → R ∪ {∞} is Borel measurable;
(ii) L(t, ·, ·) is sequentially lower semicontinuous on X × Y for almost all t ∈ J;
(iii) L(t, x, ·) is convex on Y for each x ∈ X and almost all t ∈ J;
(iv) there exist constants c≥0, d>0, ϕ is nonnegative and ϕ∈L1(J, R) such that

L(t, x, u) ≥ ϕ(t)+c‖x‖X+d‖u‖Y .

Next, we can give the following result on existence of optimal controls for problem
(P):

Theorem 4.1. Let the assumptions of Theorem 3.5 and H(8) hold. Then Lagrange
problem (P) admits at least one optimal pair, that is, there exists an admissible control
pair (x0, u0) ∈ PC(J, X) × Uad such that

J (x0, u0) =
∫ b

0
L(t, x0(t), u0(t))dt ≤ J (x, u), for all (x, u) ∈ PC(J, X) × Uad,
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where x denotes a mild solution of system (1.1) corresponding to the control u ∈ Uad.

Proof. If inf{J (x, u) : (x, u) ∈ PC(J, X)× Uad} = +∞, then it is clear that the
Lagrange problem (P) has an optimal pair.

Without loss of generality, we assume that inf{J (x, u) : (x, u) ∈ PC(J, X) ×
Uad} = ρ < +∞. Using H(8)(iv), we have ρ > −∞. By definition of infimum
there exists a minimizing sequence feasible pair {(xm, um)} ⊂ Pad ≡ {(x, u) : x is a
mild solution of system (1.1) corresponding to u ∈ Uad}, such that J (xm, um) → ρ

as m → +∞. Since {um} ⊆ Uad(m = 1, 2, · · ·), {um} is a bounded subset of the
separable reflexive Banach space Lp(J, Y ), there exists a subsequence, relabeled as
{um}, and u0 ∈ Lp(J, Y ) such that

um → u0 weakly in Lp(J, Y ).

Since Uad is closed and convex, then by Marzur lemma, u0 ∈ Uad.
Let {xm} denote the sequence of solutions of the system (1.1) corresponding to

{um}, i.e.,

(4.2)

xm(t)
= Sα(t)x0 +

∑
0<tk<t

Sα(t − tk)Ik(xm(t−k ))

+
∫ t

0

(t − s)α−1Tα(t − s)B(s)um(s)ds

+
∫ t

0
(t − s)α−1Tα(t − s)f(s, xm(s),

∫ s

0
g(s, τ, xm(τ))dτ)ds.

Now, we prove that {xm(t)} is relatively compact on PC(J, X) based on Theorem
2.7.

Firstly, it follows the boundedness of {um} and Lemma 3.3, one can check that
there exists a positive number ω such that ‖xm‖PC ≤ ω, which implies that ‖xm‖PC

is uniformly bounded.
Next, for each interval (tk, tk+1](k = 0, 1, · · · , m), tk ≤ τ1 < τ2 ≤ tk+1, like

the proof of Claim 2 in Theorem 3.5, it is not difficult to show that {xm(t)} is
equicontinuous on (tk, tk+1](k = 0, 1, · · · , m).

Finally, similar to the proof of Claim 3 in Theorem 3.5, we can show that {xm(t)} =
{y(t) : y ∈ xm, t ∈ J \ {t1, · · · , tm}}, {xm(t+k )} = {y(t+k ) : y ∈ xm} and
{xm(t−k )} = {y(t−k ) : y ∈ xm} are all relatively compact subsets of PC(J, X).

Hence, by Theorem 2.7, we can deduce that {xm} is relatively compact on PC(J, X).
Therefore, there exists a function x0 ∈ PC(J, X) such that

(4.3) xm → x0 in PC(J, X).
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Moreover, by H(3), we get

‖Ik(xm(t−k ))− Ik(x0(t−k ))‖ ≤ hk‖xm(t−k ) − x0(t−k )‖.
It follows from (4.3) that

Ik(xm(t−k )) → Ik(x0(t−k )), as m → ∞.

Similarly, we have

g(t, τ, xm(τ)) → g(t, τ, x0(τ)), a.e. (t, τ) ∈ Σ,

and by H(4), we obtain

‖g(t, τ, xm(τ))‖ ≤ a(t, τ)‖xm(τ)‖ ≤ ωa(t, τ), a.e. (t, τ) ∈ Σ.

Hence, from the dominated convergence theorem, one can deduce that

(4.4)
∫ t

0
g(t, τ, xm(τ))dτ →

∫ t

0
g(t, τ, x0(τ))dτ, a.e. (t, τ) ∈ Σ.

By H(2)(iii), we get

‖f(t, xm(t),
∫ t

0

g(t, τ, xm(τ))dτ)− f(t, x0(t),
∫ t

0

g(t, τ, x0(τ))dτ)‖

≤ L1‖xm(t) − x0(t)‖ + L2‖
∫ t

0

g(t, τ, xm(τ))dτ −
∫ t

0

g(t, τ, x0(τ))dτ‖.

Then, in view of (4.3) and (4.4), we can obtain

f(t, xm(t),
∫ t

0
g(t, τ, xm(τ))dτ) → f(t, x0(t),

∫ t

0
g(t, τ, x0(τ))dτ), a.e. t ∈ J.

and by H(2)(ii), we get

‖f(t, xm(t),
∫ t

0
g(t, τ, xm(τ))dτ)‖

≤ φ(t) + μ1(t)‖xm(t)‖ + μ2(t)‖
∫ t

0
g(t, τ, xm(τ))dτ‖

≤ φ(t) + ωμ1(t) + ω‖a∗‖L∞μ2(t).

Thus, by means of the dominated convergence theorem, one can prove that
∫ t

0
(t − s)α−1Tα(t − s)f(s, xm(s),

∫ s

0
g(s, τ, xm(τ))dτ)

→
∫ t

0
(t − s)α−1Tα(t − s)f(s, x0(s),

∫ s

0
g(s, τ, x0(τ))dτ), a.e. t ∈ J.
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Hence, it follows from (4.2) that

x0(t)

= Sα(t)x0 +
∑

0<tk<t

Sα(t − tk)Ik(x0(t−k )) +
∫ t

0
(t − s)α−1Tα(t − s)B(s)u0(s)ds

+
∫ t

0

(t − s)α−1Tα(t − s)f(s, x0(s),
∫ s

0

g(s, τ, x0(τ))dτ))ds,

i.e., x0 denotes the sequence of solutions of the system (1.1) corresponding to u0.
Note that H(8) implies all of the assumptions of Balder (see Theorem 2.1, [1]) are

satisfied. Hence, by Balder’s theorem, we can conclude that (x, u)→
∫ b

0
L(t, x(t), u(t))

dt is sequentially lower semicontinuous in the strong topology of L1(J, X)×L1(J, Y ).
Since Lp(J, X) × Lp(J, Y ) ⊂ L1(J, X) × L1(J, Y ), J is also sequentially lower
semicontinuous in Lp(J, X) × Lp(J, Y ). Hence, J is weakly lower semicontinu-
ous on Lp(J, X) × Lp(J, Y ), and by H(8)(iv), J > −∞, J attains its infimum at
(x0, u0) ∈ PC(J, X) × Uad, that is,

ρ = limm→∞
∫ b

0
L(t, xm(t), um(t))dt ≥

∫ b

0
L(t, x0(t), u0(t))dt = J(x0, u0) ≥ ρ.

The proof is completed.

5. AN EXAMPLE

Consider the following initial-boundary value problem of fractional impulsive
parabolic control system

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α

∂tα
x(t, y) =

∂2

∂y2
x(t, y) + e−t +

1
(t + 6)2

sin(x(t, y))

+
t2

5

∫ t

0

s2 cos
x(s, y)

t
ds +

∫ 1

0

q(y, τ)u(τ, t)dτ,

t, s ∈ J ′ = [0, 1]\{1
2}, y ∈ [0, π], u ∈ Uad,

Δx(
1
2
, y) =

|x(y)|
3 + |x(y)|, y ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ∈ J = [0, 1],

x(t, y) = x0(y), t ∈ [0, 1], y ∈ [0, π].

with the cost function

J (x, u) =
∫ 1

0

∫ π

0
|x(t, y)|2dydt +

∫ 1

0

∫ π

0
|u(t, y)|2dydt,
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where α = 2
3 , q : [0, 1]× [0, 1] → R is continuous, u ∈ L2(J, [0, π]).

Take X = Y = L2(J, [0, π]) and the operator A : D(A) ⊂ X → X is defined by

Aω = ω′′,

where the domain D(A) is given by

{ω ∈ X : ω, ω′ are absolutely continuous, ω′′ ∈ X, ω(0) = ω(π) = 0}.
Then A can be written as

Aω =
∞∑

n=1

n2(ω, ωn)ωn, ω ∈ D(A),

where ωn(x) =
√

2/π sinnx(n = 1, 2, · · ·) is an orthonormal basis of X . It is well
known that A is the infinitesimal generator of a compact semigroup T (t)(t > 0) in X
given by

T (t)x =
∞∑

n=1

exp−n2t(x, xn)xn, x ∈ X, and ‖T (t)‖ ≤ e−1 < 1 = M.

We take the functions u : Φx([0, π]) → R as the controls, such that u ∈ L2(Φx([0,
π])). It means that t → u(t) going from J into Y is measurable. Set U(t) := {u ∈
Y : ‖u‖Y ≤ ϑ}, where ϑ ∈ L2(J, R+). We restrict the admissible controls sets Uad to
be all u ∈ L2(Φx([0, π])) such that ‖u(·, t)‖2 ≤ ϑ(t), a.e. t ∈ J.

Denote that x(t, y) = x(t)(y), then

f(t, x(t),
∫ t

0

g(t, s, x(s))ds)(y)

= e−t + [
1

(t + 6)2
sin(x(t)) +

t2

5

∫ t

0

s2 cos
x(s)

t
ds](y),

g(t, s, x(s))(y) = [s2 cos
x(s)

t
](y),

Ik(x(t))(y) =
|x(t)|

3 + |x(t)|(y),

B(t)u(t)(y) = [
∫ 1

0
q(τ)u(τ, t)dτ ](y).

It is easy to see that

‖f(t, x(t),
∫ t

0
g(t, s, x(s))ds)‖ = e−t +

1
(t + 6)2

‖x(t)‖ +
t2

5
‖

∫ t

0
s2 cos

x(s)
t

ds‖

:= φ(t) + μ1(t)‖x(t)‖+ μ2(t)‖
∫ t

0
s2 cos

x(s)
t

ds‖,
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and for any x, y ∈ X,

‖f(t, x(t),
∫ t

0

g(t, s, x(s))ds)− f(t, y(t),
∫ t

0

g(t, s, y(s))ds)‖

≤ 1
36

‖x − y‖ +
1
5
‖

∫ t

0
g(t, s, x(s))ds)−

∫ t

0
g(t, s, y(s))ds)‖.

‖g(t, s, x(s))‖ ≤ s2

t
‖x(s)‖ := a(t, s)‖x(s)‖,

‖g(t, s, x(s))− g(t, s, y(s))‖ ≤ a(t, s)‖‖x− y‖,

where
∫ t

0
a(t, s)ds := a∗(t) ∈ L∞([0, 1]), and

ess sup
t∈[0,1]

∫ t

0
a(t, s)ds = ess sup

t∈[0,1]

∫ t

0

s2

t
ds =

1
3

:= ‖a∗‖L∞.

‖Ik(x(t))‖ ≤ 1
3
,

‖Ik(x(t))− Ik(y(t))‖ ≤ 1
3
‖x − y‖,

Moreover,

M

m∑
K=1

hk +
M

Γ(α)
(
1 − β

α − β
)1−βbα−β‖μ1‖

L
1
β

+
Mμ∗

2‖a∗‖L∞bα

Γ(1 + α)
< 1.

Hence, all the conditions of Theorem 4.1 are satisfied, the system (5.1) has at least
one optimal pair solution.
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