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1. Introduction. Let /: Nm —> Mn be a harmonic map from a compact
Riemannian manifold N to a Riemannian manifold M. f is said to be
stable if its second variation of the energy is non-negative.

Leung [6] proved that if Mn is a unit sphere Sn (n ^ 3), then con-
stant maps are the only stable harmonic maps for an arbitrary Nm. Con-
sidering the above result and some of its generalization (cf. [4], [7] and
[8]), we can ask the following:

QUESTION. Let Mn be a complete simply-connected strictly (l/Aypinched
Riemannian manifold of dimension n(n ^ 3) (i.e., the sectional curvature
KM satisfies 1/4 < KM S 1). Let Nm be an arbitrary compact Riemannian
manifold. Is every stable harmonic map f: Nm —> Mn a constant map'!

This is a "harmonic-version" of the famous conjecture of Lawson and
Simons (cf. [5]) on stable minimal submanifolds (or more generally stable
currents). To this question, Howard [3] obtained a partial affirmative
answer. He showed that for each n ^ 3 there exists a constant δ(n)
satisfying 1/4 < δ(n) < 1 such that if Mn is a simply-connected compact
strictly δ(w)-pinched Riemannian manifold of dimension n, then there are
no nonconstant stable harmonic maps from any compact Riemannian mani-
fold to M. But unfortunately limn_»ooδ(w) = 1.

The purpose of this paper is to give a dimension-independent pinching
constant. We prove:

MAIN THEOREM. Let Mn be a compact simply-connected O.SS-pinched
Riemannian manifold (n ^ 3) (i.e. 0.83 5̂  KM ^ 1). Then for any compact
Riemannian manifold Nm, any stable harmonic map f: Nm —> Mn is a
constant map.

In Section 2 we present some necessary formulas and in Section 3
we prove the main theorem. In Section 4 we use the same technique
used in the proof of the main theorem to prove Theorem 3 which is an
extension of a theorem of Ohnita [8], and as a corollary we get topological
information on minimal submanifolds of sufficiently pinched spheres.
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2. Preliminaries. In this section we always assume that Mn is a
compact simply-connected δ-pinched Riemannian manifold.

When Mn is a convex hypersurface in the Euclidean space Rn+1, using
the flat connection of Rn+1 and taking the average of the second varia-
tions, Leung [7] proved that for a certain convex hypersurface Mn in
Rn+1 any stable harmonic map /: Nm -> Mn is a constant map. The idea
now is to follow the pattern of his calculation. To carry this idea out,
we construct a vector bundle E on M and a flat connection V on E in-
stead of ΛfχjRre+1 and the flat connection on MxRn+1, respectively. For
the construction we follow [1] and [2].

As in [2] we normalize the S-pinched metric of M by multiplication
with (1 + δ)/2. Put E = TMζ$ε(M), where TM is the tangent bundle
of M and ε(M) is a trivial line bundle on M with a metric. Thus E
naturally becomes a Euclidean vector bundle on M. Let e be a cross-section
of length one in ε(M). We define a metric connection V" on ί a s follows:

(l) vi'r= vzy-<x, r> β

(2 ) Vxe = X ,

where X and Y are vector fields on M, < , > and V are the Riemannian
metric andt he Riemannian connection of M, respectively. Under the
pinching assumption, the curvature R" of V" is small. We obtain a flat
metric connection V close to V" exactly as in [2]. To measure the close-
ness we define

||V - V"|| : = MaxfllViΓ- VΪY||; Xe TM, \\X\\ = 1, YeE, \\Y\\ = 1} .

Note that our ||V - V"|| is half of ||V - V"|| in [1]. We define k^
k2(δ) and ks(δ) as follows:

(3 ) ktf) = -|-(1 - δ)δ~1\l + (δ1/2 sin ^

(4) K(δ)

h(δ)= . . . . . .™»
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By [1, 4.13], we get

(6) ||V - V"|| ̂  ±-h(δ) .

3. Proof of the main theorem. Consider a harmonic map /: Nm —> Mn.
Let ea (a = 1, , m) be a local orthonormal frame on N. The energy
of / is defined as

For any vector field V on M, we denote by φt the flow generated by V.
Then we get the following second variational formula (cf. [6]) for the
variational vector field V.

( 7 )
dt2 E(Φt°f)

JN a
- <Λ(V,Λβ.)Λβ.f V)} ,

where V and R denote the Riemannian connection and curvature tensor
of M, respectively.

THEOREM 1. Let Mn be a compact simply-connected d-pίnched n-
dimensional Riemannian manifold. Suppose that n and d satisfy

( 8 ) Iί±l(k3(δ)Y + 1 - -r^-rin - 1) + (n + I)1/2fc8(«) < 0 .
4 1 + δ

Then the only stable harmonic map f: Nm —» Mn for an arbitrary compact
Riemannian manifold Nm is a constant map.

PROOF. First we normalize the metric of M by multiplication with
(1 + 8)12. Let E be the vector bundle on M constructed in Section 2.
For WeE we denote by Wτ and Wε the TTkf-component and the e(M)
component of W, respectively. Let V be a parallel cross-section of E
with respect to V. From (7), the second variation corresponding to Vτ

is given by

(9) I{VT, Vτ) = \ Σί l lV^Fl 2 - (R(Vτ,f*ea)fA, Vτ)} .
JN a

Observe that

Vf*eaV
τ = {V .̂(V - Vψ = {V^VY - {V^«F, e)e))τ

= (y'LVf - <y, e>Λe. .

Using (6)
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(10) H V ^ F l 2 <S (1 + k)\\Vh*V\\> + ( l )

S l±A(fc,(W-|[VlM|/*e.||s + (l + j)(V, en/Ml*.

where A; is a positive constant fixed later. On the other hand, since we
normalized the δ-pinched metric of M by multiplication with (1 + δ)/2,

(11) (R{V\/,«.)/•«., Vτ) £ — -̂—{11 ^IMlΛeJI 2 - (Vτ,ΛO1}

1 + o

Combining (9), (10) and (11), we get

(12) i{V\ vη

( + i-)< V,

We now define ^ ~ = {VeΓ(E); V'V = 0}, where Γ(£7) denotes the vector
space consisting of all smooth cross-sections of E. Then 'W is isomorphic
to Rn+ι and has a natural inner product. We define a quadratic form Q
on W by

(13) Q(V) = the right hand side of (12) := ( Σ ϊ .

Take an orthonormal basis {W19 , Wn+1} of ^ " . Then we obtain

(14) Σ ί ( n T̂ D ^ Σ Q ( Wy) = tr Q = ί Σ tr qa .
j=l 3=1 JN a

Since the trace of qa is independent of the choice of an orthonormal basis
for each fiber of E, at each point xeM we choose an orthonormal basis
{V19 , Vn, e} such that theV t are tangent to M. Then we get

Q = \
4

Now we take k = ((n + l)/^- 1 7 2^^)" 1. Then

(16) to Q = ( Σ j ^ ί f e ( δ ) ) 2 + 1 - -T^-T-CΛ - 1)
J^ o, { 4 1 + 3+ 3

To get the conclusion, we suppose that / is a nonconstant harmonic map
and that n and d satisfy (8). Then we get tr Q < 0. By (14) we obtain

J, Wτ

5) < 0 for some j. Thus / is unstable. q.e.d.
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PROOF OF THE MAIN THEOREM. Since we have &3(0.83) = 0.964, (8) is
equivalent to n ^ 8 for δ — 0.83. On the other hand, the constant δ(n)
of Howard [3] satisfies δ(n) < 0.83 for 3 ̂  n ^ 7. Thus we get the con-
clusion, q.e.d.

REMARK. The value δ satisfying k3(δ)2 = 88/(1 + δ) is 0.76 . So
our estimate for δ can be improved up to 0.76 if n is large.

4. An extension of a theorem of Ohnita and its application to mini-
mal submanifolds. Ohnita [8] proved the following theorem.

THEOREM 2. Let Mn be an n-dimensional compact minimal submani-
fold immersed in a unit sphere SN~1(1). If the Ricci curvature Ric^ of
M satisfies Ric^ > n/2, then M is harmonically unstable. That is, there
exists no nonconstant stable harmonic map from M to any Riemannian
manifold nor from any compact Riemannian manifold to M.

Now we prove the following theorem which is a partial extension of
Theorem 2.

THEOREM 3. Let (MN~\ h) be a complete simply-connected δ-pinched (N —
l)-dimensional Riemannian manifold with (fc3(<5))2 ^ 4(2% + δ — ΐ)/N(l + δ).
Suppose that f: {Mn, g) —> (MN~1, h) is an isometric minimal immersion
of a complete n-dimensional Riemannian manifold (Mn, g) with p >
c(N, n, δ) := (2n + δ - l)/4 + {[(2n + δ - l)/4]2 - [{2n + δ - l)/4 - ΛΓ(1 +
S)&3(§)2/16]2}1/2, where p is the infimum of the Ricci curvature of M. Then
for any compact Riemannian manifold M', any stable harmonic map
φ: M' —> M is a constant map.

PROOF. We normalize the metrics g and h by multiplication with
(1 + δ)/2. We use the same letters g, h for the normalized metrics. Let
V, R be the Riemannian connection and the curvature tensor of (MN~\ h).
We construct a Euclidean vector bundle E on (MN~1, h) and also construct
metric connections V, V" on E as in Section 2. Let < , > be the metric
on E. Thus we have

where X and Y are vector fields on {MN~\ h). Let σ be the second fun-
damental form of Mn in (MN~\ h) and let V be the Riemannian connection
of M. Set N(M) := {Xef*E; Xl TM}. Then we obtain

VxY=VxY + σ(X, Y)

Vxξ= -AξX+
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where X, YeTM, ξ e N(M) Π TM*'1 and A*, V1 are the Weingarten map
in the direction of ξ and the normal connection of M in (M"~ι, h) re-
spectively. Let V be a parallel cross-section of E with respect to V.
Let Vτ and VN be the Γilf-component and the iV(ilί)-component of V, re-
spectively. Thus

where {ζlf , ξN^-n} is an orthonormal basis of N(M) Π TMN~ι. The second
variation of E(φ) corresponding to Vτ is given by

(17) ( I I V ^ Vτ) Vτ,

where {ea} is a local orthonormal frame of Mr and R is the curvature

tensor of ikΓ For WeE we denote by W™ and W™"'1 the TM-component

and the TikF^-component of W, respectively. Observe that

(18) v*« Vτ = (Vφe Vτ)™ — {CVφ, V

and

(19)

±
- Σ

where we abbreviate A3' = Aζj. Hence we obtain from (18), (19) and (6)
that

1/ P)ίh P — > \ \/ & > A ^ (rk 0 i

(l + fc)

+ 1 +
k

where & is a positive constant fixed later. Therefore from (17)

(20) 7 ( F r , F Γ ) ^

+ (l + i-)|<F, - Σ <F .)



STABLE HARMONIC MAPS 219

Denote by Q(V) the right hand side of (20). Then Q is a quadratic form
on TIT = {VeΓ(E); V 'F=0} . We take the trace of Q on 'W. Then
we obtain

(21) t r Q = { Σ>

Σ

Let {Vu •••, Vn) be a local orthonormal basis of TM. Then we get

= Σ <ξj, σ(φ*ea, vjy = Σ lk(^β« v,)!!2.

On the other hand, since

4
+

from the assumption that Λί is a minimal submanifold of (MN~1, h), we
obtain

(23) Ric,, (^e. f 0 Λ ) ^

From (22) and (23) we get

(24) Σ \\Ai(Φ*ea)\\2 ^

+
)n α||2 ̂ _ Σ |jσ(

+

Thus from (21) and (24)

(25)

^ 2(n — 1 ) , , , jig
^ ' , s Ί\Φ*ea\\ - 11 + d 1

A;

2/0

N o w w e s e t k - (iS//4)"1/2A;3(5)-1{l + 2 ( Λ - 1)/(1 + 8 ) - 2p/(l + δ)}v\ T h e n

S j j y 2-^ + δ 1 4

M' a, [ 4 1 + δ 1 + δ
^ — ( 2 % - 2/0 + δ -
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When (h(δ))2 ^ 4(2n + δ - ΐ)/N(l + δ), c(N, n, δ) is a unique solution of
the following equation for t.

\X - 2t + δ - l)l\(δ) = 0 .+ J t
JL + d 1 + d

Thus tr Q < 0, from which the theorem follows.

We obtain the following corollary as in [8].
COROLLARY. Let (MN~\ h) be a complete simply-connected δ-pinched

Riemannian manifold with (&3(<5))2 ̂  4(2w + δ — 1)/N(1 + δ).
Suppose that f: Mn —> (MN~ι, h) is a minimal immersion of a complete

Riemannian manifold. If the Ricci curvature of M satisfies RicM>c(N,n,δ),
then πM — {1} and π2M — {1}.
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