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Abstract. We construct local splitting families of hyperelliptic pencils so that the orig-
inal complicated degenerate fiber decomposes into several simple degenerate fibers. In some
sense, our trial is a generalization to hyperelliptic curves of arbitrary genus of Moishezon's
construction for families of elliptic curves. Moreover, we study certain invariants of degener-
ate fiber germs.

Introduction. The aim of this paper is to construct splitting families of degenerations
of hyperelliptic curves so that the original complicated singular fiber decomposes into several
simple singular fibers by these local deformations. The historical background of our study is
as follows:

In 1977, Moishezon [Moi] showed that any degenerate elliptic curve splits by local de-
formation into several singular fibers of only one or two types. One is a rational curve with
a node (type Ii in Kodaira's table [Kodl]) and the other is a multiple fiber whose reduced
scheme is a nonsingular elliptic curve (type mIo). Matsumoto [Mai] and Ue [Uel] studied a
similar problem for good torus fibrations which are topological analogs of elliptic fibrations.
These results are used in studying diffeomorphism classes of global elliptic surfaces or torus
fibrations ([FM], [Ma2], [Ue2], etc.).

In 1988, Horikawa [Ho4] showed that any degenerate genus two curve splits into several
fibers of type Ii in his table [Ho2] (a stable curve with two elliptic components with a node)
and several fibers of type 0 (the fibers "arising from rational double points", which include
many topologically different types of fibers). At the same time, he remarked that the sum of
a certain invariant (the Horikawa index for genus 2 in our terminology) is conserved in his
splitting families.

In 1990, Xiao and Reid [Re] proposed this type of problem—Modification for fiber
germs in their terminology—from the viewpoint of the study of relative canonical algebra for
pencils of curves as in Mendes-Lopes [Men]. Especially they pointed out the importance of
looking for "atomic fibers", i.e., the atoms of degenerations.

On the other hand, Nakayama [Na] studied certain two-parameter splitting degenerations
of elliptic curves from the viewpoint of threefold minimal model theory.

Now in this paper, we show that any degenerate hyperelliptic curve splits into several
singular fibers belonging to very small classes called type Oo, class I and class II defined in
Section 1 step by step by preserving the relative hyperelliptic involution of pencils (Theorem
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3.3). A fiber of type Oo is an irreducible stable curve with one node. A fiber in class I is a
stable curve with two components with two nodes. The fiber in class II is defined by a certain
strong condition for the germs of singularities of the branch curve arising from its relative
hyperelliptic involution. We only classify them for small genera, and obtain one, three and
three types for genus 2, 3 and 4, respectively (Proposition 1.7).

The method of construction of our splitting families is as follows: We first construct a
one-parameter family of normal surfaces which is a double cover over a family of local projec-
tive line bundles, and then we resolve their singularities simultaneously. A bad singular fiber
corresponds to bad singularities of the branch curve of the double cover which passes through
the projective line over the origin. Therefore we first construct a splitting family of branch
curve singularities so that bad singularities decompose into several simpler singularities, and
then we lift it to a family of local hyperelliptic pencils.

The idea of our construction of local analytic splitting family of this curve singularity
essentially comes from the well-known method for the Modification of singularity, the so-
called A'Campo-Gusein Zade theory [Ac], [G], that is, a perturbation method along the way
of its resolution process.

The method of lifting to the family of pencils is to write down the equation itself case
by case according to the situation of the family of branch curves. Our method is completely
explicit so that we can describe which types of singular fibers appear in our splitting families.

In the last section, we define two invariants for the singular fiber of a hyperelliptic pencil,
i.e., the Horikawa index and the local signature. Note that the sum of these invariants are
conserved in the splitting families which we construct here (Proposition 4.11).

The Horikawa index is defined to be the fractional number which measures the contribu-
tion of the fiber to the distance from the geographical lower bound of existence of hyperellitic
pencils of fixed genus. From the viewpoint of singularity theory, it measures the total badness
of singularities of the branch curve compared to simple (ADE) singularities.

The local signature is defined directly from the Horikawa index and the topological Euler
contribution, and the usual global signature of a compact surface with hyperelliptic pencil is
the sum of these local signatures (Proposition 4.7). In the genus 2 case, Matsumoto [Ma4]
observed this fact by using the speciality of Meyer's signature cocycle [Mey]. (Note that the
general pencil does not satisfy this localized property of the signature, cf. [At2], [Kod2],
[Hi2], etc.) Matsumoto also calculated the local signature of two types of singular fibers
of Lefschetz fibrations, which coincide with the "atomic fibers" of genus 2 by [Ho4] and a
special case of Corollary 4.12. Therefore the global signature of genus 2 fibration is written as
a simple linear combination of two terms as in Corollary 4.14, which gives a precise "third"
solution to the the negative signature problem posed by Persson [P2]. (Note that Xiao [XI]
and Ueno [U] solved this problem.) Corollary 4.14 gives us similar information in the genus
3 and 4 cases.

We note that the topological approach to hyperelliptic pencils by using [Mey] was re-
cently developed by Endo [E] and Morifuji [Mor].

For further discussions, see our forthcoming paper [AA].
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1. Special classes of germs of singular fiber. In this section, we define very special

classes of degenerations of hyperelliptic curves. We will show in Section 3 that any degen-

eration of hyperelliptic curves splits by local deformations into several fibers in these classes

step by step.

1.1. Let S be a 2-dimensional complex manifold and Δε = {t e C \t \ < ε] a complex

one-dimensional open disk with radius ε. Let / : 5 -> Δε be a relatively minimal proper

surjective holomorphic map. If / satisfies the conditions

(i) for any t e Δε\ {0}, the fiber f~ι(t) is a nonsingular hyperelliptic curve of genus

9>2,

(ii) F = f~ι(0) is a singular curve,

we call / a degeneration of hyperelliptic curves of genus g, and F the singular fiber of / .

Now let f : S' ->• Δε' be another degeneration of hyperelliptic curves of genus g.

If there is a positive real number ε" with ε" < ε and ε" < ε' such that the restrictions

f\Δεr, S\Δε,f -> Δε" and /'U e ,, : S\^eff -> Δε» are isomorphic to each other as analytic

fiber spaces, then we say / and f to be equivalent. The equivalence class of / , which we

write [/, F], is called the germ of the singular fiber associated with / .

The study of the germ [/, F] is translated into the study of the singularities of the branch

curve of the double cover arising from the relative hyperelliptic involution in the following

way: Let π : W = Pι x Δε -> Δε be the trivial Pι-bundle and set Γt =π~λ(t) for t e Δε.

Let B be a reduced divisor on W which satisfies

ii) The bad points of B are at most on /"b, where a bad point P of B is a point such that

the intersection multiplicity of B and Γπ(p) at P satisfies Ip(B, Γπ(P)) > 2 (i.e., a singular

point of B or a point tangential to Γπ(/>)).

Let B' be another divisor on Wf = Px x Δε> which satisfies the same conditions as in

the above i) and ii). We say (W, B) and (Wf, Br) to be equivalent if there is a positive real

number ε" with ε" < ε and ε" < ε' such that the restrictions (W, B)\&εll and (W'9 B')\ΔεΠ

coincide with each other modulo a finite succession of elementary transformations in the sense

of [Ho2, §2]. We denote by [W, B] the equivalence class of (W, B) and call it the germ of

branch curve of a degeneration of hyperelliptic curves. It is well-known that there exists a

one-to-one correspondence between the set of germs of singular fibers {[/, F]} and those of

branch curves {[W, B]} (cf. [Ho2]).

We remark that there exist examples such that [/, F] and [/', F'] are mutually different

as germs of singular fiber but F and Ff have the same weighted dual graph. For instance,
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compare 2lo-m with Π*_o in Namikawa-Ueno's table [NU, p. 159,172] in the g = 2 case. We

also refer to Matsumoto-Montesinos [MM, §8] for its topological meaning. Therefore in this

paper, we always express the germ of fiber by a suitable representative of the corresponding

branch curve.

We introduce some notation for a germ of branch curve (W, B). We set

£ h o r = B - Γo if Γo C B , and Bhoτ = B otherwise,

and call Z?hor m e horizontal part of B. Let

(1.1.1) W = Wo A - Wϊ ^ <£- Wr

be a succession of blow-ups such that the center P;_i e W/_i of τ/ (1 < / < r) is infinitely

near to a bad point of B. Let £;,; be the exceptional curve for τj•. For 0 < / < j < r, let £ ; j

be the proper transform of Eij by the map τ/>y = τ£ +i o o τ/ : Wy —> W/. We also denote

by £ o j the proper transform of 7~b by τoj. Then the reduced scheme of the total transform

of Γo by τoj is written as Ej = Σ/=o £/,y We put Bo = B and let # t (1 < / < r) be the

even proper transform of Bι-\ in the sense of [Hoi], [PI], that is, #/ = τ*5/_i — 2[nti/2\Eij

where m, is the multiplicity of 2?;_i at P/_i.

In choosing one representative from the equivalence class of it in a normalized form in

some sense, the following lemma is useful:

LEMMA 1.2 ([X3, Lemma 5.1.2], [Ho3], [P2]). Let [/, F] be a germ of singular fiber

of a degeneration of hyperelliptic curves of genus g. Then there exists a representative (W, B)

of the branch curve of[f, F] which satisfies the following condition (*);

(*) For any bad point P ofB, the multiplicity at P of the horizontal part muh> (Bhor) is not

greater than g+ 1.

Moreover such (W, B) is uniquely determined by [/, F] except in the following case (**):

(**) There exists just two bad points P\ ,PiofB such that multpj (Bhor) = mult/>2 (Bhor) =

9+1.

We call (W, B) which satisfies (*) the germ of the normalized branch curve. Note that

the branch curve is not necessarily normalized in this paper, unless otherwise stated.

1.3. We use the following terminology. Assume two reduced (and may reducible) curves

C\ and C2 on a nonsingular surface meet at a point Q. For a natural number n, we say C\

is n-tangential to C2 at Q if the following condition hold: Blow-up n times successively at

infinitely near points of Q. Then there exist a local analytic component C\ of C\ at Q and

a local analytic component C'2 of Cι at Q so that the proper transforms of C\ and Cf

2 by the

composition of these blow-ups still meet, namely, C[ and Cf

2 are contact at Q of order at least

n + 1. Note that by definition, for two natural numbers n and m with n < m, m -tangential is

always ^-tangential. We simply call tangential if it is 1-tangential.

We say C\ is n-tangential to C2 if there exists a point Q such that C\ is n-tangential to

C2 at Q.

We go back to the previous situation. We define very special classes of germs of singular

fiber.
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1.3.1. Assume B is smooth on W and meets Γo transversally except at one point P

where the order of contact is two. Then the associated singular fiber F is an irreducible curve

of genus g — 1 with one ordinary double point. (The genus of a component means that of its

normalization.) If the normalized branch curve (W, B) has the above property, we call [/, F]

a fiber germ of type Oo

1.3.2. Assume B does not contain V~b and meets Γo transversally except at one point

P which is an ordinary singularity of B of multiplicity 2</ + 2, where </ is an integer with

1 < (/ < [(g — l)/2]. Then F has an irreducible decomposition Ff + F" where F' and F" are

nonsingular curves of genera (j and g—gf — l, respectively, meeting each other transversally at

two points, whose self-intersection numbers in S are (Ff)2 = (F")2 — —2. If the normalized

branch curve (W, B) has the above property, we say that [/, F] belongs to class I. In fact, this

class contains [(g — l)/2] types according to the number </'.

1.3.3. Assume B contains Γo. We can produce the succession of blow-ups (1.1.1) such

that any singularity of the even proper transform Br is ordinary. We take r the minimal number

which enjoys the above property. Note that such a process is uniquely determined by B up to

the order of the choice of the centers of blow-ups. Assume the following conditions (a)-(e)

hold:

(a) Br contains/£r,

(b) Any singularity of Br has even multiplicity,

(c) For any 0 < / < r, any singularity on B[ with even multiplicity is ordinary.

(d) Assume B meets ΓQ at P so that B is not tangential to Γo at P, i.e., B\ does not

pass through the double point of E\ after blowing up at P. Then B\ — E\ is 3-tangential to

Ex.

(e) If 2?hor m e e t s ΓQ transversally at a smooth point P of j9hor (i.e., P is an ordinary

double point of B), then there exits another point R such that #hor is 3-tangential to Γo at R.

We say a germ of fiber [/, F] belongs to class II if at least one representative of the

branch curve (W, B) of [/, F] satisfy B D Γo and moreover any representative of the branch

curve (W, B) of [/, F] with B D ΓO has the above conditions (a)-(e).

1.4. Let (C, P) be an analytic germ of a plane curve singularity. If (C, P) satisfies the

following condition for some m > 2 and n > 2, we call it an mn point: C has m irreducible

local analytic components C ( 1 ) , . . . , C ( m ) such that C ( / ) is nonsingular and Ip(C{i\ CU)) =

n for any 1 < i < j < m. (A typical equation is xm + ymn = 0.)

LEMMA 1.5. Let P be a bad point of the branch curve B which contains Γ$ and

defines a singular fiber in class II.

(i) IfmultpB is even, then (B, P) is an ordinary singularity.

(ii) IfmultpB = 3, then (B, P) is a 3 2 point.

(iii) Assume multpZ? = 5 and Z?hor is not 3-tangencial to Γo. Then (B, P) is a 5 2 point.

(iv) Assume muh># < 6 and //>(#hOr> ^o) < 10. Then #hor is not 3-tangencial to Γo

at P.

PROOF. The assertion (i) is clear by definition.
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Let £ ( 1 ) , . . . , B{k) be the set of local analytic components of #hor at P. Let τ\ : W\ ->

W be the blow-up at P and we put Pi = £0,1 Π £1,1. Let # ( / ) (1 < / < A:) be the proper

transform of 2?^ by τ\.

Assume mult/># = 3. We first suppose Λ: = 1. If # ( 1 ) is not tangential to Γo, then # r has

ordinary triple point. This contradict to the condition (b) in 1.3.3. Therefore # ( 1 ) is tangential

to Γo. Then (B1, Pi) is a triple or a quadruple point. However (B\, P\) is not an ordinary

quadruple point, and so it is a triple point by the condition (c). Then Br has an ordinary triple

point, a contradiction to the condition (b). Suppose k = 2. If one of B ( ί ) (1 = 1, 2) is not

tangential to Γo, then Br also has an ordinary triple point. Hence both of # ( i ) (/ = 1, 2)

are tangential, and so Pi is a quadruple point, which must be ordinary. Hence we have the

assertion (ii).

Assume multpB = 5. We first assume that at least one of the components, say # ( 1 ) , is

not tangential to TV Then Z?(1) passes through a point Q e £i,i\£o,i. Since multρJ5i < 4

by the condition (d), it follows from (i) and (ii) that (B\, Q) is an ordinary quadruple point

or a 3 2 point or an ordinary double point. In the first case, B\ has a triple point at Pi which

is not a 3 2 point. This is impossible. The second case contradicts the condition (d), because

B\ — E\ does not pass through Pi and B\ — E\ is not 3-tangential toE\. In the third case, we

apply the elementary transformation so that the image of £i, 1 becomes a new fiber. Then the

condition (e) is not satisfied.

Therefore all of £ ( / ) (1 < i <k) are tangential to Γo. If k = 4, then the multiplicity at

Pi of #i is 6, and so (B\, P\) is ordinary. Therefore (B, P) is a 5 2 point. We will show that

1 < k < 3 is impossible.

Assume k = 3. We may suppose multpi?^ = 2 and the other two are nonsingular. Then

2?(1) is nonsingular, for otherwise (B\, P\) is a non-ordinary 6-ρle point. Therefore ( £ ( 1 ) , P)

is a simple cusp, i.e. t2 + x3 = 0. Then after the blow-up at Pi, #3 has an ordinary triple

point at P2 = £1,2 Π £2,2- This is impossible.

Assume k = 2. We first consider the case where mult/>#(1) = 3 and # ( 2 ) is nonsingular.

Since Pi cannot be a 6-ple point, we have mult pxB
(1) < 2. Then(# ( 1 ) , P) is either ί 3 +jc 4 = 0

or ί3 -h x5 = 0. In each case, after two blow-ups, (#2, Pi) has a triple point which is not a 3 2

point. This is impossible. When multp# ( 1 ) = mult/>#(2) = 2, the argument is similar, k = 1

is also impossible by a similar argument. Therefore we have the assertion (iii).

It remains to prove (iv). Suppose Z?h0Γ is 3-tangential to Γo at P. If mu\tpB\ is even,

then (B\, P\) must be an ordinary singularity. This contradicts to the 3-tangentiality at P. If

multp^i = 7, then all of £ ( 1 ) , . . . , B{k) are tangential to Γo. Then (5, P) is a 5 2 point by the

argument in (iii), which is not 3-tangential. We also have multp#i φ 3 by the same argument

as in (ii). Therefore we have multp#i = 5, that is, multpj (B\ — E\) = 3.

Blow up at Pi, and set P2 = £0,2 Π £2,2- By the same argument as above, we have

multp2(Z?2 — E2) = 3. By the 3-tangentiality at P, Z?2 — ̂ 2 is tangential to £0,2 at P2.

Therefore

Ip(Bhor,Γ0) > 4 + 3 + 3 = 10.

This contradicts the assumption. Q.E.D.
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FIGURE 1. Branch curve of type {3, 3, 22}.

1.6. In low genus cases 2 < g < 4, we have the classification of fibers in class II.

We introduce some notation for writing them. We express the information of the set of bad

points of a representative of the branch curve B inside the bracket { } by writing that of B^or.

{m,...} means that B has an ordinary (m + l)-ple point. {mn,...} means that B has an

(m + l)n point. We express the weighted dual graph of the minimal singular fiber as follows:

The component of the singular fiber is always nonsingular in our list. The bold face numbers

O, I, II mean that the genus of the components are 0,1,2,.. . respectively. The coefficient

means the multiplicity of the component. The suffix means the self-intersection number of

the component, but we omit it if it is —2. The symbol "—" means "intersects transversally".

For instance, {3, 3, 22} means that the bad points of B are two ordinary quadruple points

and one 3 2 point. (See Figure 1.) This really appears as (#=4, iii) in Proposition 1.7. In

this case, the even resolution consists of four blow-ups, and the minimal singular fiber is

F = 2F0 + Fi + F2 + 2F 3 where g(F0) = 0, g(Fx) = g(F2) = g(F3) = 1, FOFX = F0F2 =

F 0 F 3 = 1, F$ = F\ = F 2 = - 2 and F3

2 = - 1 . This is easily seen by the usual double

covering method (cf. [PI]).

PROPOSITION 1.7. The classification of germs of singular fiber of class II for genus

2 < g < 4 are the following: We have one, three and three types for g = 2, 3 and 4 respec-

tively.

(g = 2) I-i-I-i
I_,-II-i

I_i -III-i
(ii) {22,22} 2I_i - 2O - 2I_i (iii) {42} 2Π0

(ii) {5, 5} //_i - Π_i (iii) {3, 3, 22}
I

I
2O-21_!
I
I

PROOF. Let (W, B) be the normalized branch curve of the germ of fiber. If B contains

ΓQ, Lemma 1.5 easily implies the list in the assertion.
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Assume B does not contain ΓQ. We set B Π ΓQ = {P\, P2,... , P*}. We may assume

that (β, Pi) is a triple or a 5-pie point and B intersects V~b transversally at P2, . . . , P*. Other-

wise, we choose another branch curve (W', Bf) such that B' contains the fiber by elementary

transformations. Then the condition (c) in 1.3.3 is not satisfied for (W, Br).

Now let (W", B") be the branch curve obtained by the elementary transformation at P\.

Then B" contains the new fiber Γo". Let Q be the point on Γo" which is the image of £Ό,i

by the contraction map. Since B does not contain Γo, the multiplicity of (B'\ Q) is even.

Therefore ( # " , Q) is an ordinary singularity. Other bad points of B" have their multiplicity

at most 6. Then we apply Lemma 1.5, and obtain the assertion.

2. Fisson of plane curve singularities. Let C be a normal analytic curve defined on

the open set Vo = {(X, Y) e C2 |X| < ε, \Y\ < ε,} for a sufficiently small ε such that

P = (0, 0) is the unique singular point of C. In this section, we explicitly construct certain

local analytic deformations {Cu}ueAδ of C such that Cu (u φ 0) has several isolated singular

points. The idea is essentially the same as that in A'Campo [Ac].

2.1. Let C = ΣSj=\ C ( y ) be the local analytic irreducible decomposition of C at P.

Let Vb <— V\ <— * — Vr be the succession of blow-ups whose centers are infinitely

near to P and let Cr (resp. Cr, 1 < j < s) be the proper transform of C (resp. C ( y ) ) by

τOr := τiT2 τr. Let Q be an isolated singular point of Cr.

We first assume that Q is a smooth point of the (reduced) exceptional set Sr = Σy=i Ej-

Assume Q is on Ej0 (1 < 70 5 Ό Let U(x, y) be the open coordinate neighborhood in the

classical topology on Vr containing Q so that Ej0 is defined by y = 0 and Q is defined by

(JC, y) = (α, 0) (a e Q. Let C r

(1), . . . Cr

(/:o) (Jfc0 < J ) be the components of Cr which pass

through Q (by changing the order of them if necessary). Since ε is sufficiently small, we may

assume that the support of the divisor Σ/Lo Q o n ^r is contained in ί/. Let

7 = 1

be the equation of Σ 7 = 0 ^ on U. Now we define a divisor D on t/ x Δ$ by

(2.1.1) ^ - a - φ(u), y - ψ(μ)) = 0

where u is the coordinate of Δ$ and φ(u), ψ(u) are generic holomorphic functions of u which

satisfy φ(0) = ψ(0) = 0 .

Since ε and δ are sufficiently small, we can choose a classical open covering Vr x Δ& =

U! = o ^ ' s o m a t ^0 coincides with U x ^ , and the locus (U/=i ̂ ' n Wo) does not contain

the support of V. Therefore the analytic closure of V in Vr x ^5 coincides with V itself. The

divisor Don Vr x ^5 has the following properties:

(i) V does not meet the divisor V = Σ * = Λ o + 1 C r

0 ) x Z\5 on Vr x Δδ.

(ii) For any u e ^5, let DM be the restriction of P to Vr x {u} and we regard it as

a curve on Vr. Then PM intersects £̂ r transversally at IQ(CΓ, EJ0) mutually distinct points.
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Moreover, the point Qu = {(JC, y) = (a + φ{u), ψ(u))} on U is the unique singular point of

Now we define a divisor M on Vb χ <̂5 by

The natural fibration π : M -> Δ$ has the following properties:

(a) Mo = 3 i - 1 (0) coincides with C.

(b) For any M G ^ \ | O J , the fibers Mu has just two isolated singular points at P and

Ru = τo,r(QM). Moreover the germ of singularity (ΛfM, /?M) coincides with (CΓ, β ) .

We call (C, P) /ιαs afisson into (Mu, P) α«J (MM, /?M) fry the perturbation at the infin-

itely near point β, am/ we call the fibration n thefisson of(C, P) of type A.

EXAMPLE 2.2. The singularity x3 + yn = 0(0 < 3k < n) has afisson into x3 + y3k =

0 and x3 + yΛ~3^ = 0 by the perturbation at the infinitely near point which appears after k

blow-ups.

2.3. Assume Q is a double point of Er. We construct local deformations of (C, p) in

the following two different ways:

(1) We assume Q = Ej0 Π Ejx and x = 0 is the equation of Ejx on U in the same

situation as in 2.1. Then we can construct a fibration π : M -+ Δ& such that the only one

condition (ii) is replaced by the following (ii'):

(ii7) For any u e Δ&, Vu intersects Er only at nonsingular points of Ej0 + Ejλ. Vu

intersects Ejk (k = 0, 1) transversally at IQ(CΓ, Ejk) mutually distinct points. Moreover the

point Qu = {(JC, v) = (φ(u), ψ(u))} on U is the unique singular point of Vu.

We also call π a fisson of type A.

(2) In the equation (2.1.1), we put ψ(μ) = 0. Then Vu (u Φ 0) has a singularity at

Qu = {(*, y) = (ψ(u), 0)} on Ej0 and intersects £/, at IQ(CΓ, EJ) distinct points transver-

sally. We construct π : M -> Δ$ in the same way. Then Mu (u / 0) has one isolated singular

point at P such that the germ (MM, P) is different from (C, P), because their embedded res-

olution processes are distinct. We call π a fisson of type B.

EXAMPLE 2.4. JC5 + y3 = 0 has a fisson into (x4 + ;y2)(;c + y) = 0 as follows: After

two blow-ups, the proper transform becomes nonsingular and meets E\ transversally and £2

with contact of order 2. We perturb it to the direction of the generic point of E\, and then

blow-down twice.

REMARK 2.5. The above deformations are not necessarily well-defined in the alge-

braic category, because the local analytic reducibility does not imply algebraic reducibility.

(This was pointed out to the authors by Professor Masayoshi Miyanishi.)

3. Splitting families of degenerations. In this section, we construct splitting families

of degenerations of hyperelliptic curves. Our aim is not only to prove the existence of splitting

families but also to describe explicitly the germs of singular fibers in our families.
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DEFINITION 3.1. Let [/, F] be a germ of singular fiber of a degeneration of hyperel-

liptic curves of genus g. Assume there exist positive real numbers ε and δ, a 3-dimensional

complex manifold Z and a flat surjective holomorphic map h : Z ->• Δε x Δ$ such that

(i) the fibration ho '. Zo -^ Δε x {0} arising from the restriction of h over 0 e Δ$ has

a unique singular fiber over 0 e Δε such that the germ of fiber [ho, h^ι(0)] coincides with

[/, F],

(ii) for any M G ^ \ {0}, the fibration hu : ZM ->• Z\ε x {u} has / (/ > 2) singular fibers.

The number / is independent of w.

Then we call h a splitting family of [/, F].

DEFINITION 3.2. Let G be a certain subset of the set of all germs of singular fiber of

degenerations of hyperelliptic curves of genus g. We say the germ [/, F] is reduced to G via

several splitting families if the following conditions are satisfied:

First [/, F] has a splitting family h : Z -• Δε x Δ&. If any germ of singular fiber

[ftM, A" 1^)] (t e Δε x {u}) of any general fibration hu : ZM -> Δε x {u} (u e Δδ \ {0})

belongs to G, then we stop our reducing process. Assume some of them do not belong to G.

Let [hu, h~ι(to)] (to e Δε x {u}) be any germ of singular fiber of hu which does not belong

to G. Then [hu, h~ι(to)] has a splitting family h1: Z' -> Δεr x Δγ. If any germ of singular

fiber of any general fibration of h' belongs to G, then we stop our process. If not, the germ

which does not belong to G also has a splitting family.

Then this process terminates after finitely many steps, that is, any germ of singular fiber

of any general fibration of the terminating splitting families belong to G.

The main result of this paper is the following:

THEOREM 3.3. Let G be the union of the sets of the germs of singular fiber of type

Oo, classes I and II defined in Section 1. Then any germ of singular fiber of a degeneration of

hyperelliptic curves is reduced to G via several splitting families.

COROLLARY 3.4. Any degeneration of hyperelliptic curves of genus two (resp. three,

four) is reduced via several splitting families to germs of singular fibers of two types (resp.

five types, five types) whose tables are listed in 1.3.1, 1.3.2 and Proposition 1.7.

For the proof of Theorem 3.3, we start with some lemmas. Let (W, B) be a representative

of the branch curve of the germ of fiber [/, F], where W = Pι x Δε for sufficiently small

ε. Let P be a bad point of B. Let W = Wo <^— W\ <-?- <^— Wr be a succession of

blow-ups at infinitely near points of P. We use the same notation as in 1.1.

LEMMA 3.5. Assume there is a component Ejur (0 < j \ < r) and a point Q on Ejur

such that (i) Q is not a double point ofEr, (ii) Ejur is not contained in Br and (iii) Br has a

singularity at Q or Br is tangential to Ejj at Q. Then [/, F] has a splitting family.

PROOF. Let B$ be the sum of components of B which pass through P. Let VΌ be a

sufficiently small classical open neighborhood of F on W, and let

Vo x Δ8 D J5ΰ -^> Δ8
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be the fisson of type A of the germ (B$, P) arising from the perturbation at Q constructed in

2.1. Let B$ be the analytic closure of B$ in Wo x Λ§. If the support of B does not contain the

fiber 7~o, then B$ coincides with B^. If the support of B contains /o, then B$ coincides with

(β^)hor + Jo where (B^)hor is the horizontal part of B^.

Now we define a divisor B onW = W x Δ& by

B:=W+(B-B*) x Δδ.

Let p : B —• Z\,5 be the natural moφhism. We consider the fiber Bu — p~ι(u) as a divisor on

W = W x {u}. Then 2?o coincides with B and Z?M (w 7̂  0) has the following properties:

i) BuΓt =2g+2(t eΔε),
ii) Bu has two bad points P on Γ$ and #M on Γπ(Ru), where the point Ru is as described

in 2.1.

Since the problem is local with respect to the parameter space, we may assume that there

is a line bundle L on W which satisfies [B] = 2L. On the P 1 -bundle P(CV θ CV(X)), we

construct a double cover μ : 5 — • W branched along B. In order to resolve the singularities

on «S, we construct a relative even resolution for the family p of branch curves in the following

way:

By the construction of p and Tomari's lemma [As, Lemma 3.8], the multiplicity of the

center of ί-th blow up (1 < / < r) of the even resolution of the germ (Bu, P) coincides with

nii for any u e Δ$. Now let

W= Wo A- Wι 4? <£- Wr

be the succession of blow-ups such that the center of τ, (1 <i < r) is {P/-i} x Δ$. LetB, =

T*J?/_I — 2[/w//2]C| (1 < / < r) be the even proper transform of B/_i, where Bo = B and

C; is the exceptional set for τ/. Note that Z?r does not contain Ejur x Δ& by our assumption.

Therefore on the coordinate open neighborhood U x Δ$ = {(x, y, z)} of W x Δ§ described

in 2.1, the equation of Br is written as g(x —a — φ(u), y — ψ(u)) = 0. Now let Q be the curve

on Wr x Δ& defined by the image of the holomorphic map

Δs ^ U x Δs C Wr x Δs , u h-> (x,y,u) = (φ(u), ψ(u), u).

Then Br is equisingular along the locus Q in the sense that the restricted germs of singu-

larity ((βr)\π-uuy Q\π-\u)) n a v e t n e s a m e e v e n resolution process for any u e Δ$, where

πr : Br -> Δδ is the natural map. Therefore we have a similar process for Q. Lastly the

singularities of (B — B$) x Δδ are simultaneously resolved and we complete the relative even

resolution for the family p. Namely, by the succession of blow-ups τb : Wb -> W, the even

proper transform Bb of B becomes nonsingular and the restriction of τ b over any u e Δδ

coincides with the even resolution of Bu. Since Bb is an even divisor on Wb, we can construct

a nonsingular double covering π : Mb -> Wb which branches along Bb and obtain natural

morphismsMb — >̂ Δε x Δδ —> Δδ.

By our construction, any (—l)-curve contained in a fiber of ^j>(plP2)-1(«) ""* ^ε x ^ ^ o r

any u e Δδ is stable without shrinking the parameter space Δ$. Therefore any (—l)-curve
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contained in a fiber of ̂ \{pxPl)-x(u) ~^ Δε x {«} is stable over Δ$, and is simultaneously

contracted by Fujiki-Nakano [FN]. Repeating this process, we reach a family of relatively

minimal fibrations M ^ 4 ^ ^ ^ ^ This family has the following properties:

(i) /o : Mo -• Δε x {0} has a unique singular fiber over 0 e Δε whose fiber germ

coincides with [/, F].

(ii) For any u e Δ$\ {0},/M : Mu -> Δε x {u} has just two singular fibers/"1 (0) and

f-\π(Ru)). Q.E.D.

EXAMPLE 3.6. Assume B jj Γo, BΓ0 = 6 and 5 has a triple point JC3 + t6n = 0

at P € Γo with //>(#, Γo) = 3 and meets Γo transversally at the other three points. By 2k

blowing-ups (1 < k < n — 1), the infinitely near point Q of P becomes JC3 + tr6{n~k) = 0 and

#2jfc does not contain Eik,ik> Then we use the method in Lemma 3.5. Bu has two bad points

JC3 + tβk = 0 and JC3 + tβ{n~k) = 0 at two mutually distinct points as in Example 2.2. (In

Figure 2, the solid line is a component of the branch locus while the dotted line is not.) The

associated family of genus two fibrations / : M -> Δ$ has the following properties:

/o has a unique singular fiber

I_! - O O - I _ i

and/M (u φ 0) has two singular fibers

n-k

l_{ _ o O -I_i , I_i - O O - I _ i .

LEMMA 3.7. Under the same conditions ii), iii) as in Lemma 3.5, we further assume

Q = EjOir Π Ejur for some 0 < jo < j \ . Then [/, F] has a splitting family.

PROOF. If £ 7 0 ? r £ #, then we can construct a splitting family as in Lemma 3.5 by

using the fisson of type A for (B, P) defined in 2.3, (1).

Assume EjoJ c B. Then we use the fisson of type B for (B, P) defined in 2.3, (2) arising

from the perturbation of the branch curve at Q into the generic point of Ejo,r, and construct a

family p : B —> Δ$ of branch curves as in Lemma 3.5. p has a relative even resolution and

the associated family of relatively minimal hyperelliptic fibrations / : M ^ 4 X ^ ^ ^

has the following properties:

(i) /o : Mo -> Δε x {0} has a unique singular fiber over 0 e Δε whose fiber germ

coincides with [/, F],

(ii) for any « e ^ \ {0}, the fibration fu : Mu -> Δε x {«} has k + 1 singular fibers,

where k = IQ(BΓ — Ejo,r, Ejur). One of them is f~ι(0) and the others are fibers of type Oo

Indeed, we denote by (Bu)i (1 < / < r, u φ 0) the even proper transform by τ\j

of Bu = p~ι(u) on W = W x {M}. Since F 7 l , r is contracted to Qf = τjur(Q) by the

map Xj^r : Wr ->• W^-i, the images by τ/1>r of the components of (Bu)r which intersect

F y i i r pass through Q'. Since the family p arises from the perturbation of type B at Q =

Ejo,r Π Ejur, (Bu)j{-ι has at least k nonsingular local components C ( 1 ) , . . . , C^ ) at Qr

which transversally intersect one another at this point. Moreover C{j) (1 < j < k) also
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- 1

perturb

x3 + (t - a)6{"-k)

FIGURE 2. Construction of the branch curve in Example 3.6.

pass through the point Q'u = τjur(Qu) where Qu is as defined in 2.3, (2). Now let Uf be

a small classical open set of Wj{-\ containing Qr and Q'u, and we consider the restricted

fibration πj-\\u : Wj-\\u -• Δε. Then it is easy to see that each C ( ^ (1 < j < k) has

contact of order 2 at a point of certain mutually distinct fibers π\~jjX(tj) (tj φ 0). Therefore

Bu also has contact of order 2 at just k points of fibers Γtj (j = 1,.. . , k) of πo : W -> ^5,

and transversally intersects the fiber of 7Γo at the other points. Hence the fibration / has the

above properties. Q.E.D.

EXAMPLE 3.8. Assume B D ΓO, Bh<χΓo = 8, and that Bhor has a triple point ;c 6 +ί 3 =

0 at P with Ip(Bhor, Γo) = 6 and transversally intersects Γo at the other two points. Let

x\ : W\ -+ W be the blow-up at P. Then B\ J> E\Λ , B\ D Eo,\ and B\ = B{ - Eo,\ has

an ordinary triple point at Q = £0,1 Π £1,1. By the method in Lemma 3.7, Z?M (w 7̂  0) has

two ordinary triple points on Γo and three tangential points on three mutually distinct fibers

(see Figure 3). The associated family of genus three fibrations/: M -* Δ& has the following

properties: /o has an unique singular fiber
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FIGURE 3. Construction of the branch curve in Example 3.8.

O - 2O - 21 - O

I I
o o

and/M (u φ 0) has four singular fibers. One of them is

O

O - 2O I

and the other three are of type Oo

LEMMA 3.9. Assume B ~fi 7~b and B has at least two bad points on Γ$. Then [/, F]

has a splitting family.

PROOF. Let Pi, . . . , Ps be bad points of B. Let hi : Aε -> W (i = 1, 2) be sections

of π : W -> Aε such that the image hi(Δε) does not pass through any of P\, . . . , Ps. Then

the pair (h\ : hi) defines a homogeneous fiber coordinate of the P1-bundle π. Let (x, t) be a

coordinate of the open set U := W — h2(Δε) = Δε x C, where c = /M//*2 We may assume

that the support of the divisor B on W is contained in (7. We set Pi = {(x,t) = (α, 0)}

(α e C). Then the equation of B in ί/ is written as f\(x — a, t)fι(x, t) = 0, where f\,

fi are holomorphic functions of (JC, t) which satisfy /i(0, 0) = 0 and fi{μ, 0) 7̂  0. For a

sufficiently small <5, we define a divisor B' onVί = W x Z^ by

/lU-α, t -cu)f2(x,t) =0,

where c is a complex number whose absolute value is sufficiently small. Then the analytic

closure B of Bf in W coincides with Bf itself. Let φ : Δ& -> W be the map defined by

w h^ (x, t, u) = (of, cu, u). Then the family of branch curves B —• ^ o n W has a relative

even resolution by the blow-ups whose centers are infinitely near to the locus φ(Δ$) and

{Pi} x Δ$ (2 < i < s). Then we obtain a family of hyperelliptic fibrations M -> Δε x Δ$
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such that Mu -> Δε x {u} (u φ 0) has two singular fibers. One of them has one bad point on

its branch curve, and the other has s — 1 bad points. Q.E.D.

LEMMA 3.10. We assume (i) B D 7~o, (ii) the even proper transform B\ of B by

τ\ : W\ —> W contains E\ = £Ό,i + £1,1, (ϋi) B\ — B\ — E\ does not pass through

Pi = Eo^i Π £Ί,i, (iv) B\ intersects both £0,1 and E\,\ and (v) B\ is not 3-tangential to E\.

Then [/, F] has a splitting family.

PROOF. We take a coordinate (t\, x) on the open set U = Δε x C of W\ so that the

support of the divisor B\ on W\ is contained in U, the equation of £Ό,i and E\t\ on U are

t\ = 0 and x = 0 respectively and the map πτ\ : Wi |(/ ->• Zî  is given by (t\,x) \-^ t = t\x.

Let /y = {(tux) = (α /, 0)} (1 < 1 < 5), P/r = {(ίi,jc) = (0, βj)} (1 < j < s') be the

intersection points of B\ with E\ (α, # 0, )67 7̂  0). Then the equation of B\ on ί/ is written

as

s s'

hx Π fiifi ~ oti.x) f ] fs+j(tι,x - βj) = 0.

Now we define a divisor ^ r on the open coordinate neighborhood U x Δ& = {(t\, JC, w)} by

u2 u2

7=1 V

B' passes through the point P[ = (cti,u2/cti,u) (1 < ί < J ) and ^ = (u2/βj,βj,u)

(1 < 7 < sr). Since the tangent line of the curve t\x — u2 — 0 at P[ coincides with t\ —

u2/cίi + (u2/af)(x — cti) = 0 (with u fixed) and this curve has contact of order 2 with this

tangent line, the germs of singularities (B, P!) and (B'u, P[) have the same even resolution

process by the assumption (v). The germs (#, P'j) and (B'u, P' ) also have the same property.

Let Bι be the closure of B' in W\ x Δ&. Let ψ[ (1 < 1 < s), ^7 (1 < 7 < $0 be the

maps from Δ§ to ί/ x Z\̂  C W\ x Z\̂  defined by

(α' ^ ") ^r-u^(j.,βhu).

Then by the succession of blow-ups at the infinitely near loci of ψi(Δs) and ψi(Δs), we have

a relative even resolution B —> B^ of the family of branch curves W\ x Δ$ D B{ -+ Δ$

except at the point P\. Let M -• W x Z\̂  be the double cover branched along B. Then M

is smooth except at one point Pi, which is a 3-dimensional A1-singularity. We can resolve

the singularity at Pi without affecting the general fiber of M -> Δ$ by the method of Atiyah

[Atl] (see also [B]). Starting from Λf, we obtain a family of relatively minimal hyperelliptic

fibrations M ->• Δε x Δ§ -+ Δs by the same argument as in the proof of Lemma 3.5. Then

Mu ^ Δε x {u} has two singular fibers/"1 (0) and/" 1 (w) for any w / 0. Q.E.D.
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LEMMA 3.11. Assume (i) B D Γo, (ii) Z?hor = B - Γo transversally intersects ΓQ at a

point P and (iii) Z?horί5< n o t ^-tangential to ΓQ. Then [/, F] has a splitting family.

PROOF. We set Bhor Π Γo = {P, P i , . . . , P5} Let U = C x Δε = {(JC, t)} be an open

coordinate neighborhood on W such that Bhor Π Γo is contained in t/, the map 7Γ is given

by (JC, /) ι-> ί and the local branch of Bhor passing through P is given by x = 0. Then the

equation of B on U is written as txf\(x — <x\,t)-- fs(x — as,t) = 0, where /}(* - α, , ί)

is the equation of £ passing through P; = {(JC, ί) = (α;, 0)} (1 < i < s). Now we define a

divisor B' on ί/ x 2l$ by the equation

5 / u2 u2 \
(tx-u2)Y\fi(x-aht + -=• (JC - a/) I = 0.

Let 5 be the closure of B' in W x ^ . Then B coincides with 5 ' U {σo} where oo is a certain

point on Γo. The family W x Δ& D B ->• 2I5 has a relative even resolution except at P,

and the Λi-singularity over P on its double cover is resolved by [Atl]. The induced splitting

family of hyperelliptic fibrations has s singular fibers on the general fibration. Q.E.D.

EXAMPLE 3.12. In the situation of Lemma 3.11, we assume that #hor is given by

x(x29+i - i) = 0. Then the divisor B' is written as (tx - u2)(x2g+x - 1) = 0. Note that

if u φ 0, then B'u has 2g + 1 ordinary double points at (JC, t) — (ζv, u2ζ~v) (0 < v < 2g),

where ζ is a primitive (2g + l)-th root of unity. (See Figure 4.) The associated family of

genus g fibrations f\M^>> Δ§ has the following properties:

/o has a unique singular fiber of the form F = 2#o + E\ H h £"2̂ +2 where £"/s are

nonsingular rational curves with EQ = —g— 1, E2. = —2, EQEJ — 1 (1 < j < 2g + 2) and

£/£/ = 0 (1 < i < j < 2g + 2).

/M (u φ 0) has 2^ 4-1 singular fibers of the following form: F' = E\ + £2 where £Ί is

a nonsingular curve of genus g — 1 and £"2 is a nonsingular rational curve, E2 = E2 = —2

and E\E2 = 2.

LEMMA 3.13. Assume (i) B 7$ Γo and (ii)

P G ΓQ. Then [/, F] has a splitting family.

an ordinary double point at a point

2</+2
horizontal
line

I 1 1

2g+l
horizontal

line

FIGURE 4. Construction of the branch curve in Example 3.12.
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PROOF. Let C ( / ) (/ = 1, 2) be the components of B passing through P. Then the

equation of B on an open set U of W is written as f\ (JC, O/2U, t)g(x, t) = 0 where f\(JC, t)

(i = l, 2) is the equation of C ( ί ) . Let Bf be the divisor on U x Δ$ defined by

Then the closure of B' in W x Δ$ induces a splitting family/: M —> ^ ε x ^5 as in Lemma

3.11. The singular fibers of fu (u Φ 0) are as follows:

i) If B has bad points other than P, then/M has three singular fibers. Moreover two of

them are of type Oo

ii) If P is a unique bad point of B, then/has two singular fibers of type Oo Q.E.D.

EXAMPLE 3.14. Let ([/, F]) be the germ given in Example 3.12. By combining Ex-

ample 3.12 and Lemma 3.13, ([/, F]) splits step by step into 4g+2 fibers of type Oo (Compare

[Ma4, p. 140], [Ma5].)

LEMMA 3.15. We assume Br has an ordinary singularity Q of odd multiplicity k > 3.

Then [f,F] has a splitting family.

PROOF. We only consider the case where Q is contained in a unique Ejx >Γ (1 < 71 < r)

and Ejx C Br. The other cases are similar and we omit their proof. By the coordinate U(x, y)

as in 2.1, Br is written as yf\(x—a, v) fk-\(x — a, y)g(x, y) = 0, where fi(x — a, v) = 0

(I < i < k — I) is the equation of branch curves of Br — EjxJ passing through P = (α, 0)

and Ejx r is defined by y = 0. Then we define a divisor Br on U x Δ& by

k-\

v/i (x -a - φ(u), y - ψ{u)) J~[ f(x - α, y)g(x, y) = 0
1=2

for generic holomorphic functions φ(u), ψ(u) with φ(0) — ^(0) = 0. Then 2^ C U x {«}

has an ordinary (/: — l)-ple point and /: — 1 ordinary double points. The analytic closure B in

Wr x Δ§ oϊB' has natural properties similar to those in 2.1.

Note that the locus (JC, V, U) = (α, 0, u) on U x ^ has the same multiplicity sequence as

for the even resolution for any u e Δ$. Therefore the family of the branch curves Wr x Δ& C

B -± Δ$ has relative even resolution except at the k — 1 ordinary double points, which can

also be resolved by [Atl]. Therefore we have a splitting family/ : M -> Δ$ such that/M

(w φ 0) has k — 1 singular fibers and k — 2 of them are of the following type: the branch curve

does not contain the fiber and the bad point is an ordinary double point. Therefore these k — 2

fibers are written as F' = A + B where A is a nonsingular curve of genus g — 1 and B is a

nonsingular rational curve, and A2 = B2 = —2, AB = 2. Q.E.D.

PROOF OF THEOREM 3.3. Let (W, B) be a representative of the branch curve of

[/, F] which has no splitting family.

Step 1. Assume B D /o Then we will show that the germ [/, F] belongs to class II.

Lemma 3.15 implies the condition (b) in 1.3.3 while Lemmas 3.5 and 3.7 imply (c) and (a).

Lemma 3.11 implies (e). Lemma 3.10 implies (d).
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Step 2. Assume B ~ύ 7~Ό. Then the bad point P of B is unique by Lemma 3.9. If m =

mulύpB > 1 is odd, then the problem is reduced to Step 1 by the elementary transformation

at P.

Assume m is even. Then P is an ordinary singularity by Lemmas 3.5 and 3.7.

If m — 2, then [/, F] splits into two singular fibers of type Oo by Lemma 3.13. If m > 4,

then [/, F] belongs to class I. Hence we proved that any germ [/, F] which does not belong

to classes Oo, I or II has a splitting family.

Step 3. It remains to prove the finiteness of our reducing process to class G. Let

/ : M -> Δε x As -> Δ& be any splitting family constructed in this section for a given

(/, F), and let (/M, Fr) be any singular fiber germ of the fibration fu (for any u φ 0). Then

there exist some representatives of branch curves (B, W) and (B\ W') of (/, F) and (/M, Ff)

respectively so that, for any bad point P' of Bf, there exists a bad point P of B such that

(Bf, P') is a (perturbed) deformation of (#, P) in our sense. Then one of the following con-

ditions is satisfied:

(i) The germ of the singularity (B\ P') coincides with (#, P),

(ii) multp/β' < multpβ,

(iii) mxxXtp'B' — mxxλipB and the minimal number of times of blow-ups for (Bf, Pr)

such that the reduced scheme of the total transform of the horizontal component B' of B' is

normal crossing is strictly less than that of (B, P).

Note that at least one bad point satisfies (ii) or (iii). Moreover, if (B, P) is perturbed

into ( £ ( 1 ) , P ( 1 ) ) , ( £ ( 2 ) , P ( 2 ) ) , . . . ( # ( / ) , P ( / )) (/ > 2), then (i) does not hold for any of

Therefore the assertion is clear.

4. Horikawa index and signature. In this section, we define the Horikawa index and

the local signature of a germ of singular fiber of a degeneration of hyperelliptic curves. By

using these notions and Theorem 3.3, we study compact complex surfaces with hyperelliptic

pencils, especially their signature problem.

4.1. Let / : S -> Δε be a degeneration of hyperelliptic curves of genus g with a unique

singular fiber F. Let (W, B) be a representative of the branch curve of the germ [/, F]. Let

τv,o WV —• Wo = W be the succession of blow-ups such that the even proper transform Br is

nonsingular. Assume the number r of blow-ups is the minimum to attain the above property.

Let m i , . . . , mr be the multiplicity sequence of τr?o as in 1.1. Let S' —>• W be the normal

double cover branched along B on the total space of the line bundle C of the square root

of B, i.e., Oψ{C®2) is isomorphic to Oψ(B). Let {Q/}i</</ be the set of isolated singular

points on S''. Let p : 5 —> Sf be the canonical resolution of S\ i.e. S is the double cover

of Wr branched along Br on the total space of the line bundle of the square root of Br. The

natural fibration S -> Δε is not relatively minimal in general. Let oί(ψ,B) be the number of

times of contraction maps of (—l)-curves from S to the original relative minimal model S.

Let pg(Sf, Qi) and K^s, β ) be the geometric genus and the square of the canonical cycle for

the resolution p of the germ of singularity (S", Q, ) (1 < / < /), respectively. Note that the
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formula in [Hoi, Lemma 6] implies that

?] <m - o • έ ̂ .a, - -2 ί e i -
DEFINITION-LEMMA 4.2. We put

I f A / Λ

(

1 = 1 *• 9

Qi)

»/ = .

This is well-defined as an invariant for [/, F], i.e., is determined independently of the choice

of a representative (W, B) of the branch curve of[f F]. We call it the Horikawa index (or

the H-index,/(?r jAorf) o/[/, F].

Since this notion is essential in our discussion, we give two proofs for the well-defined-

ness. One comes from a global compactification argument, and the other comes from a local

computational argument.

THE FIRST PROOF OF LEMMA 4.2. Let P^°\ . . . , P/O

O) be all the bad points of B. By

Artin's theorem [Ar], we may assume that the germ of singularity (B, p/ )̂ (1 < i < IQ) is

algebraic. We fix an inclusion W = P 1 x Λε

 e-> P 1 x Pι := Σo. We denote by π : Σo -» Pι

the extension of the projection π : W -> Δε and identify the original fiber Γo with π~ι(0).

Then it is easy to see that there exists a reduced divisor B^ on Σo such that

(i) Z?(0) is linearly equivalent to (2g + 2) Co + 2koΓo for a sufficiently large integer ko,

where Co is a fiber for another fibration of Σo,

(ii) the germs of bad points of B(0) on Γo coincide with (B, PJ®)9... , (£, p/^).

Let (W^ι\ # ( 1 ) ) be a representative of the branch curve of [/, F] obtained from (W, B) by an

elementary transformation. This transformation is globalized from (Σo, # ( 0 ) ) to (ΣΊ, Z?(1))

where Z?(1) is a divisor on the Hirzebruch surface Σ\ of degree 1. Let 5 ( ί ) be the normal

double cover of Σ[ branched along B^ on the total space of the line bundle of the square root

of B^ for / = 0, 1. By the usual double covering method (cf. [PI]), we easily have

2 4 ( 0 - 1 )

where ωs«) is the dualizing sheaf.

Now let Q\ , . . . , Qι be the points over the bad points of the branch curve on the fiber

over the origin of the fibration 5 ( ί ) -> Pι. Let S^ -» S^ be the canonical resolution with

respect to these points. LetS ( / ) -> 5* ( ί ) be the succession of contractions of (-l)-curves such

that the fiber over the origin of the fibration 5*(z) -> P 1 does not contain any (-l)-curve. Let
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α ( ί ) be the number of times of this (— l)-contractions. Then we have

// U

x(O s-(o) " X(Os,ύ = ~Σ P9(S(i\ Q?) , ω2

sHi) - ω2

siι) = £ K2

 (/) + c*(/)

for / = 0, 1. On the other hand, the fibrations S*(/) -> P 1 for / = 0, 1 are isomoφhic

to each other over /^{O}, and after resolving the singularities on these loci and contracting

(—l)-curves, we obtain the same surface by the uniqueness of the relatively minimal model.

Therefore we have

From these, we have

h

= Σ
7 = 1

THE SECOND PROOF OF LEMMA 4.2. Let (W\ Bf) be a resulting pair after an ele-

mentary transformation of (W, B) and P e W the center of this elementary transformation.

Let W'r, -> Wf be the minimal even resolution of B\ and let m\,... , m'r, be their multiplicity

sequence. We put

* ι = l / = 1

where a = oi{w,B) and a' — ct(w',B')- It suffices to prove H = Ή.

Let μ be the multiplicity of B at P. Then we have 0 < μ < 2g + 3.

(i) Suppose μ = 0, that is, 5 does not pass through P. We may assume that m\ =

2g + 2, mf

2 = m\, mf

3 = mi . Since there exist two more (—l)-curves over the proper

transform of the fiber on the double cover of Wrr, we have a' = a + 2. Hence Ύi! = H +

2([m;/2] - l)(g-[m\/2])/g + 2 = W.
(ii) Suppose μ = 1 and B does not contain ΓQ. We may assume m\ =2g+2,m2 = 2,

^3 = m i, m^ = rri2 and we have a' = a + 2. Hence we similarly have Ή r = W.

(iii) Suppose μ = 1 and B contains ΓQ. We may assume m\ = 2# + 3, m'2 = 2,

m'^—mx.m'^ — m^"- and we have α r = α + 2. Hence W = H.

(iv) Suppose 2 < μ < 2g+ 1. Then, since P is a singular point of B, we can begin

the canonical resolution with the blowing up at P. In this case, we have m\ = μ and may

assume that the /-th even proper transform of B and B' coincides with each other for / > 1.

Especially we have m2 = ni2, m'3 = m?, - and a' = a. Moreover we have the following
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equality:

2g + 2 - mi if Γo <£ B and m\ = 0 (mod 2)
2# + 3 -m\ if Γo £ 5 and mi = 1 (mod 2)
2g + 3 - mi if Γo C £ and mi = 0 (mod 2)
2# + 4 - mi if Γo C £ and mi = 1 (mod 2).

Indeed, we first assume Γo <£_ B and m i is even. Let W <^— W\ —^ Wf be the elementary

transformation. The first even proper transform B\ coincides with the proper transform of B

by τi, and also coincides with the proper transform of Br by τ[. The proper transform £o,i

of Γo by τ\ coincides with the exceptional curve for τ[ and vice versa for £Ί, i. Therefore we

havem'j = #i£b,i = (τ*B — m\E\,\)Eo,\ = BΓQ — m\= 2g + 2 — m\. The other cases are

similar. In any case, we have {[m\/2] — l)(g — [m[/2]) = ([mi/2] — l)(g — [mi/2]), hence

H' = H.

(v) Suppose μ = 2g + 2 or 2g + 3. Then (W, Br) -• (W, B) is also an elementary

transformation whose center has multiplicity less than two in B'. Hence the assertion follows

from (i), (ii) and (iii). Q.E.D.

REMARK 4.3. The notion of the H-index was introduced for the first time by Horikawa

[Ho2] in the genus 2 case. He classified germs of singular fibers of genus 2 into six types

0, I*, Ilk, HI*, IVfc and V, and their H-indices are 0, 2k - 1, 2k, 2k - 1, 2k and 1, respectively

(see also Reid [Re]).

The H-index is related to the invariants of compact surfaces by the following theo-

rem, whose proof can be essentially found in Horikawa [Ho3, Theo.2.1] and Persson [P2,

Prop.2.12] (see also Xiao[X2]):

THEOREM 4.4 (Horikawa-Persson). (i) For any germ [/, F] of a degeneration of

hyperelliptic curves, we have Tί([f, F]) > 0.

(ii) Let φ : V —>• C be a global hyperelliptic pencil of genus g, that is, h is a surjective

proper holomorphic map from a nonsingular compact surface to a nonsingular compact curve

such that the general fiber is a hyperelliptic curve of genus g. Let F\, . . . , F^be all its singular

fibers. Then we have

where Ky/c is the relative canonical sheaf and χφ = deg φ*Ky/c.

EXAMPLE 4.5. The calculation of H := H([f, F]) for the germs defined in Section 1

is the following:

(1) If [/, F] is of type 00, then H = 0.

(2) If [/, F] belongs to class I with 1 < gf < [(g - l)/2], then H = 2j{g - gf - l)/g.

(3) If [/, F] belongs to class II with 2 < g < 4, then H of the germs corresponding to

Proposition 1.7 are as follows:
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= 10/3, (iii)W = 8/3,

Next we study the signature of compact surfaces with hyperelliptic pencils from the

viewpoint of the H-index.

DEFINITION 4.6. We put

σ(lf, F]) '= TΓΎΊ^ndf, F]) -(g+ \)S([/, F])}
2g+ 1

and call it the local signature of the germ [/, F], where £([/, F]) := χtop(^) — 2# + 2 is the

Euler contribution of F (cf. [P3]).

PROPOSITION 4.7. Lei φ : V -> C be a global hyperelliptic pencil of genus g, and

let F\,... , Fjc be all its singular fibers. Then we have

k

ι = l

where σ(V) is the global signature of V, i.e., the signature of the intersection form of the

2'homology of V.

PROOF. We use the relative formulation of Xiao [X2], [X3]. Set eφ = Σli=\ £(Fi)-

Noether's formula and Hirzebruch's signature theorem [Hil] say that

12χ^ = K\jc + eφ, 3σ(V) = K\jC - 2eφ .

We set H(V) = Σ*^ H([φ, F/]). It follows from Theorem 4.4, (ii) and the above formulas

that

W(V) = = i - ^ A Γ j / c - 2 _ l β ==2_L_l<r(V) + £ ± l β Q.E.D.
3g ' 3g g g

EXAMPLE 4.8. The calculation of σ := σ([/, F]) for the germs defined in Section 1

is the following:

(1) If [/, F] is of type 00, then σ = -(g + l)/(2g+ 1).

(2) If [/, F] belongs to class I with 1 < ^ < [(g - l)/2], then σ = 2(ggf - gf2 - g-

(3) If [/, F] belongs to class II with 2 < g < 4, then σ of the germs corresponding to

Proposition 1.7 are as follows:

( 5 = 2 ) ( i ) σ = - l/5,

(g = 3) (i) σ = 1/7, (ii)σ = -6/7, ( i ϋ ) σ = 0 ,

(g = 4)(i)σ = lβ, ( i i)σ=7/9, (iii)σ = - l .

DEΠNITION 4.9. Let X([f, F]) be a certain invariant of the germ of singular fiber

[/, F]. Let h : Z ->• Δε x Δ& be a splitting family of [/, F] in the sense of Definition

3.1. We say the family h conserves the invariant X if the following condition is satisfied: Let
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F\tU, , Fι,u be all singular fibers of the fibration hu : Zu -+ Δε x {«} for any u e Δ&.

Then we have

/, F]) = X([hu, Fi ,J) +

LEMMA 4.10. The H-index and the local signature are conserved in any splitting fam-

ily which is constructed in Section 3.

PROOF. Step 1. Let h : Z ->• Z\f x Δ& be any splitting family constructed in Sec-

tion 3. By our construction, h is induced by the double cover over a family of local P{-

bundle W = W x Δ$ whose branch locus is a family of divisors W D B -^ ^5 . Let

= {miiM, . . . , rarM,M} be the multiplicity sequence of the minimal even resolution of (Wu, Bu)

for u e Δ$. We note that, bad points on several fibers of ρu contribute to this set for M / 0 ,

while bad points are on a unique fiber for u — 0. Now we define the subsequence Tu of the

sequence {[rai,M/2],... , [mΓMίM/2]} consisting of numbers greater than 1, and we consider it

as a set, i.e., we disregard its order. (Note that the multiplicity with [muj/2] < 1 does not

contribute to the H-index of the fiber.) Then it follows from our construction that the splitting

family h conserves this set, i.e., we have

for any u e Δ&. Moreover the number of times of blow-downs of (— 1 )-curves from the canon-

ical resolution to its relatively minimal model is independent of u. Therefore h conserves the

H-index.

Step 2. Next we show the conservation of the Euler contribution, which induces the

conservation of the local signature by definition and Step 1.

We first consider the splitting family of Lemma 3.5. We use the notation in this lemma.

By the stability of (—l)-curves, we may identify M b with M. Let E be the set of components

of F which dominates E^r by the generically two-to-one map ho : Mo —> Wr. Note that E

is irreducible or consists of two irreducible components. Let Λi, . . . , As, Ar

χ,... , A's,, D be

all the connected components of F — E, where Λ, (1 < / < s) intersect E at one point, A'

(1 < j < s) intersect E at two points and ho(D) = Q. Then we have

Xtop(F) = χtop(έ) + Σ Xtop(A, ) + Σ Xtop(Ay) - s - 2sf + χtoP(£>) - ε(D),

where ε(D) (= 1 or 2) is the number of the points of intersection of D and E.

Now we consider singular fibers F' = f~ι(0), F" = f~ι(π(Ru)) of hu : Mu -*

Wr x {«} for u φ 0. Let E' be the set of components of F' which dominates E^r x {u\ by hu.

Then F' — E' has connected components which are isomorphic to Λi, . . . , As, A\,... , A's,,

and we have xtopί^') = χ toP(£') + Σ/=i XtoP(A/) + Σ!j=ι XtoP(A}) - s - 2sf. Moreover

our method of construction implies

Xtop(E') = XtoP(E) - 2 \j



392 T. ARAKAWA AND T. ASHIKAGA

where k = IQ(BΓ, £,>). On the other hand, F" consists of the irreducible component Γ

which dominates the fiber P 1 by hu and the connected component which is isomorphic to D.

We have Xtopί^") = XtoP(Π + XtopΦ) - s{D). Moreover our construction implies

β]
Therefore we have E(F) = £(F') + £(F") . For other splitting families constructed in Section

3, we have the assertion by a similar argument. Q.E.D.

From Theorem 3.3 and Lemma 4.10, we have the following:

PROPOSITION 4.11. Let G be the union of the sets of germs of singular fibers of type

Oo, in class I and in class II defined in 1.3. Then for any germ [/, F] of a degeneration

of hyperelliptic curves, there exists a reduction of [/, F] to G via splitting families which

conserves the H-index and the local signature, that is, these invariants are conserved in any

splitting family for this reduction.

COROLLARY 4.12. Assume the germ [/, F] has the vanishing H-index. Then [/, F]

is reduced to germs of type Oo via splitting families.

PROOF. Note that the germ has the vanishing H-index if and only if it has a represen-

tative of branch curve which has at most simple singularities, in other words, whose normal

double cover has at most rational double points. Especially a germ in class II has the positive

H-index by definition. Therefore Example 4.5 says that a germ which belongs to G has the

vanishing H-index if and only if it is of type Oo Thus the assertion follows from Proposition

4.11. Q.E.D.

REMARK 4.13. The surface of general type with a pencil whose slope has minimal

value automatically has a hyperelliptic pencil such that all the singular fibers have the vanish-

ing H-indices ([X2], [Kon]). Therefore, considering the above corollary, one can ask whether

such a surface has a reduction to surfaces with at most Oo fibers by global splitting families or

not. This type of problem is called the "global Modification problem".

COROLLARY 4.14. Let φ : V —> C be a global hyperelliptic pencil of genus 2 < g <

4. Then the global signature σ(V) is written as follows:

(g = 2) σ(V) = -(3/5)fcOo - (l/5)*(Π,i),

(g = 3) σ(V) = -(4/7)*oo - (6/7)%,,, + (l/7)fc ( i y ) - (6/7)*(π.ii),

(g = 4) σ(V) = -(5/9)*θb - (2β)k(lΛ) + (lβ)km) + (7/9)k(im - k^m),

where koo, . . . , fc(ii,iϋ) are the sum of numbers of germs of the corresponding type which

are obtained by our reducing process applied to every singular fiber of φ via local splitting

families. For instance, &(ii) is the number of germs in class I with </ = 1, and &(π,i) is the

number of germs of type (i) in class II written in Proposition 1.7.

PROOF. The assertion is clear by Proposition 4.7, Proposition 4.11, Proposition 1.7 and

Example 4.8. Q.E.D.
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REMARK 4.15. For g = 2, the above formula is due to Matsumoto, Horikawa and
Corollary 4.12 as we explained in the introduction. For g > 3, Corollary 4.14 and Example
4.8 tell us that there are many singular fibers with positive local signature. In some sense, this
fact supports the existence of surfaces with hyperelliptic pencils whose global signatures are
positive, which was discovered by Xiao and Chen [C].
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