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Abstract. In this paper we study normal subgroups of Kleinian groups as well as dis-
crepancy groups (d-groups), that are Kleinian groups for which the exponent of convergence
is strictly less than the Hausdorff dimension of the limit set. We show that the limit set of a
d-group always contains a range of fractal subsesich containing the set of radial limit points
and having Hausdorff dimension strictly less than the Hausdorff dimension of the whole limit
set. We then consider normal subgroupsf an arbitrary non-elementary Kleinian groép
and show that the exponent of convergencé @ bounded from below by half of the exponent
of convergene of{. Finally, we give a discussion of various examples of d-groups.

1. Introduction and statement of results. In this paper we investigate non-ele-
mentary Kleinian group& acting on(N + 1)-hyperbolic spac®” 1 without torsion, which
have the property that their associated limit6&t) has Hausdorff dimension strictly greater
than the exponent of convergence

3(G) :=inf {s >0

3 a0 oo} .

geG

(Here, L(G) refers to the set of accumulation points of soGerbit, andp to the hyper-
bolic distance irDV*1). Throughout, we shall refer to these groups as discrepancy groups,
abbreviated as d-groups.

In [6] it was shown that the limit set has positive 2-dimensional Lebesgue measure for
every finitely generated, geometrically infinite d-group which act®dn This result was
obtained via showing that for every arbitrary non-elementary Kleinian gédane has that
8(G) coincides with the hyperbolic dimension 6f, that is, the Hausdorff dimension of the
uniformly radial limit set ofG, or alternatively the Hausdorff dimension of the radial limit set
of G ([6], [26]). In this paper we consider arbitrary d-groupsand discuss fractal properties
of certain subsets df(G), each of which contains the radial limit set@f These sets will be
referred to ag-weakly recurrent limit sets. Our first main result is thatfan a certain range,
the Hausdorff dimension of each of theseveakly recurrent limit sets is strictly less than the
Hausdorff dimension of.(G). In particular, this also allows to specify a range of subsets
of the transient limit set, the complement of the radial limit set, which have the property
that their Hausdorff dimension coincides with the Hausdorff dimensian(6f). Our second
main result deals with the class of normal subgroGpsf some arbitrary non-elementary
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Kleinian groupH. For these groups it is well-known th&{G) = L(H). Nevertheless, as
can for instance be seen in the second example of Section 3, the hyperbolic dimension of
G does not necessarily coincide with the hyperbolic dimensioH oHere our main result
is that the exponent of convergence of such a normal subgtoigpalways bounded from
below by half of the exponent of convergencerdf Finally, in Section 3 we discuss various
examples of d-groups. These include the infinitely-punctured Riemann surfaces of Patterson’s
[19, Theorem 4.4]. This type of example is closely related to the constructions of Hopf [10]
and Pommerenke [22], and seems to have been the first example of a d-group in the literature.
Also, we discuss the case of a normal subgréupf some convex cocompact Kleinian group
H. If H/G is non-amenable, then it follows by the work of Brooks [8] tldats a d-group.
Eventually, based on the further work of Patterson [20], we outline a construction of infinitely
generated free d-groups of the first kind. Again, as in the normal subgroup example this
construction works in any dimension, and we also show that it can be employed to construct
special d-groups which have the property that the set of Jgrgensen points has pésitive
dimensional spherical Lebesgue measure. These special d-groups are groups of the first kind
such that the complement of their horospherical limit set contains a wandering set of positive
N-dimensional measure. Hence, these groupsa act conservatively, and therefore they
are not ergodic 08" in the sense that for eacifithem there exists a bounded group-invariant
function which is hyperbolically harmonic.
In order to state the results in detail, we now first introduce the limit sets which are
relevant. Throughout, l&¥ be some arbitrary non-elementary Kleinian group without torsion.
It is well-known thatL (G) can be decomposed into the €e{G) of radial limit points and
the setLi(G) of transient limit points, where
o Li(G):={§ € L(G) | liminfr_.o A(§7) < 00},
o Li(G):={§ € L(G) | limr_o A(§7) = 00}.
In here,&r refers to the point on the ray from 0 gofor which p(0, &é7) = T, and A(&r)
refers to the hyperbolic distancef to the orbitG (0), thatis,A(ér) := infyec p (&7, g(0)).
Important subsets of.(G) are the setl(G) of uniformly radial limit points and the set
L3(G) of Jgrgensen limit points. These are given as follows (cf. [29], [17]).
o Ly(G):={£ € L(G)| limsupp_ o Ar) < 00}.
e Lj(G) refersto the set of € L(G) such that there exists a geodesic ray towgrds
which is completely contained in some Dirichlet fundamental domaii.of
One easily verifies that,(G) C L;(G) and thatLj(G) C L{(G). Note that for ease of
exposition we have defined the def(G) so that the set of bounded parabolic fixed points of
G is contained inL 3(G) (for the definition of a bounded parabolic fixed point we refer to [16,
p. 43]), and hence our definition af(G) here differs from the definition given in [17]. Also,
note thatl 3(G) corresponds to the dissipative part of the actio@ain the sphere at infinity
(cf. [30], [14]).
Finally, we introduce the seﬂzg'()(G) of k-transient limit points and the selﬁ’()(G) of
r-weakly recurrent limit points for > 0 as follows.
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. & € b(I1(¢(0)), ce*p(o,g(o))/(lJrK))
¢ L6 =Ueo {é €L©) ‘ for infinitely manyg € G }

o LYG):=LG)\LIG).
In here,b(n, r) C SV refers to the ball centred ate SV of spherical radius, and/7 to the
shadow projection from zero to the bound&Y of the hyperbolic space. One easily verifies
that LY (G) > L{*?(G) wheneverc1 < ko, and thatZL;(G) ¢ L) (G) for all x > 0.
Also, note that;(G) is a dense subset @f(G), and hence so iﬂﬁ’()(G). Therefore, by a
standard result in fractal geometry (see e.{), [®follows that the lower packing dimension
of Lﬁ")(G) coincides with the lower packing dimension bfG), where the latter is always
greater than or equal to the Hausdorff dimensioih. ¢). The following theorem shows that
the Hausdorff dimension OIEK)(G) relates in a more subtle way to the Hausdorff dimension
dimy(L(G)) of L(G). The theorem gives the first main result of the paper.

THEOREM 1. Let G be a d-group. With §,(G) := (dimy(L(G)) — §(G))/8(G), we
havefor all 0 < ¥ < 8.(G),

8(G) < dimy(L{)(G)) < dimy(L(G))

andin particular

dimy (L) (G)) = dimy(L(G)).

Note that by a result of Beardon ([2], [3]) the exponent of convergence of a non-elementa-
ry Kleinian group is strictly positive, which gives th&t(G) is well-defined.

Our second main result considers normal subgroups of an arbitrary Kleinian group. We
refer to Section 3 (Example 2) for a discussion of some examples for d-groups of this type.

THEOREM 2. Let H be a non-elementary Kleinian group, and let G be a non-trivial
normal subgroup of H. \\e then have

8(G) = @ .

Before giving the proofs of these theorems, let us first show that they have some interest-
ing immediate implications. For #first recall that a Kleinian grou@ is said to be o8(G)-
convergence type i, .; ¢ ~*(@ (-9 converges. Also, lett* refer to thes-dimensional
Hausdorff measure. Note that the statement (i) in the following corollary generalizes a result
in [5, Corollary 5], where the case difaL(G)) = N has been considered.

COROLLARY 1. For eachd-group G thefollowing holds.

(i) If HdimH(L(G))
0 <k < 64(G).

(iiy If G isof §(G)-convergence type, then H
8+(G).

dimy (L(G)) dimy (L(G))

(L(G)) > 0, then H (LG =H (L(G)) for all

(I4+x)8(G)

(LY(G)) = Oforall 0 < x <
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The following corollary represents the main theorem of [5]. We remark that the work
in this paper was originally inspired by this result of Bishop. We also refer to Lundh’s paper
[11].

COROLLARY 2. For every non-elementary Kleinian group G we have

dimn(L(G)) = max(a(c), dimy < U L{”(G))) .
k>0

Finally, let us briefly comment on the way our results relate to horospherical limit sets
(recall thaté € L(G) is called a horospherical limit point if every horoball &tcontains
infinitely many elements of; (0)). In [31] Tukia introduced the so-called big horospherical
limit set, which consists of limit point§ € L(G) for which there exists a horoball &t
containing infinitely many elements ¢f(0). One can verify that every horospherical limit
point is contained in the big horospherical limit set, and mﬁl(G) coincides with the big
horospherical limit set (see the proof of Lemma 2). A straightforward adaptation of the proof
of Theorem 1 (where one has to repldcgs) by Lﬁl)(G)) then gives rise to the following
proposition.

PROPOSITION Let G be a non-elementary Kleinian group such that §(G) <
dimu (LY (G)). We then havefor all 0 < © < (dimy (LY (G)) — 8(G)) /8(G),

dimy (L{7(G)) < dimy(LP(G)).

We would like to thank the Department of Mathematics at the University of Helsinki
for warm hospitality and financial support. Also, we are grateful to Pekka Tukia for helpful
conversations on the construction of certain d-groups, as well as to the referee for his/her
careful reading of the original manuscriptdafor the helpful comments which significantly
improved the paper. Finally, the second author would like to thank the Mathematical Institute
and the Institute for Mathematical Stochastics at the University of Gottingen for hospitality
and excellent working conditions.

2. Proofs.

2.1. Upper bounds for the Hausdorff dimension of weakly recurrent limit sets.

PROOF OFTHEOREM 1. Leto > 0 be given. By definitionLﬁ")(G) can be written
as a union of limsup-sets as follows

LG = | limsupb(IT(g(0)), ce @9/ | g € G}.

c>0

For eachc > 0 the family{b(IT(g(0)), ce=©.9)/+2)y | 4 ¢ G} represents a covering of
lim sup{b(IT(g(0)), ce=PO9)/A+a)y | 4 ¢ G}. For the radii of these covering balls we have
by the definition o (G) that

Z(cefp(o’g(o))/(yr“))s <oo forall s > (1+0)8(G).
geG



HAUSDORFF DIMENSIONS FOR TRANSIENT LIMIT SETS 575

Therefore, the-dimensional Hausdorff measure of the limsup-set associatedcvistfinite
foralls > (14 0)8(G), which gives

dimy (lim sup{b (I (g(0)), ce P OIO/A+)y 1 4 e G}) < (14 0)8(G) .

Sincec was chosen to be arbitrary, the latter estimate clearly holds for every. By the
monotonicity of Hausdorff dimension (see e.g. [9, p.29]), we therefore have

dimu(L{”(G)) < (1+0)8(G).

This immediately implies that for every with (1 4+ 0)§(G) < dimy(L(G)), or what is
equivalent for every < 3., we have

dimy(L{(G)) < dimy(L(G)).

This proves the first assertion of the theorem. The second assertion is an immediate conse-
guence of the first. Namely, as we have just shownmlib{\’()(G)) < dimy(L(G)) for all
0 < k < 84, and hence for in this range we have

dimu(L(G)) = dimu(L(G\L{ (G)) = dimu(L{ (G)) . 0

PROOFS OFCOROLLARIES. Corollary 2 is an immediate consequence of Theorem 1.

For Corollary 1 (i), Theorem 1 gives dLmQLﬁ’()(G)) < dimy(L(G)), forall0 < « <
8.(G). Forx in this range we thus have thatif ™“‘”” (L(G)) > 0, ther"™ " (L(G)) =
Hdimmuc))(Lt(K)(G)) - 0.

Corollary 1 (ii) is proved by way of contradiction. Assume thé: (Lﬁ")(G)) >0
for 0 < « < 8.(G). Using Frostman’s lemma (cf. [15]), it follows that there exists a finite
Radon measure, with compact support i’ (G), such thab, (b(n, R)) < RI+3(G) for
allnp € S¥, R > 0. Using the definition 08(G) and the fact thaG is of §(G)-convergence
type, it follows for allc > 0,

+1)8(G)

D e (b(IT(g(0)), ce P @I/ A1)y < o0
geG

By the Borel-Cantelli lemma, we hence have fora# 0,
Ve (lim sup{b(IT(g(0)), ce P9/ 1y — .
This impliesy, (Lﬁ’()(G)) = 0, and hence gives a contradiction. O

2.2. Alower bound for the exponent of convergence of normal subgroups.

In order to prepare for the proof of Theorem 2 we give the following elementary geomet-
ric estimates. In herB(z, r) refers to the open hyperbolic ball centred at DV*1 of radius
r,and|IT(E)| := |{¢ € SV | & € E forsomeT > 0} denotes the spherical diameter of
the shadow projectiofl (E) of E ¢ DV*! from zero to the boundarg" of the hyperbolic
space. Also, we use the common conventior b to describe that the ratio of two positive
real numberg andb is uniformly bounded away from zero and infinity.
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I1(B(z,0))

FIGURE 1. The setting of Lemma 1.

LEMMA 1. Letx > Obegiven. For all z € DN*1 suchthat p(0, z) issufficiently large,

we have
K
Bz, — p(0, — P02/ (LK)
(5 (= 7 009)) <«

PrROOF. Defined := kp(0, z)/(1+ k), and letzy refer to the point of tangency of some
geodesic ray which starts at the origin and which is tangential to the boundayz of ).
Consider the right-angled triangle with verticeg @ndzg, and letx denote its angle at 0 (see
Figure 1). Using the ‘hyperbolic cosine rule’ [4, p. 148] we have

P0.20) = P02 4= _ ,p(0.2) y=kp(0.2)/(1+) _ ,p(0.2)/(4)

Also, by the ‘hyperbolic tangent rule’ for right-angled triangles [4, p. 147] we have
tanhd = sinhp(0, zp) tanca .

Furthermore, note that fqr(0, z) sufficiently large so that is bounded away from /2, we
have

|[1(B(z,0))| < tana..
Combining these three observations, we deduce

@nhd 00 o gr(©2)/te) |

1Bz, kp(0.2)/ A+ 10| = tana = "G =

O

For the proof of Theorem 2 we also require the following result of Matsuzaki [13, The-
orem 6], for which we include a proof. Lemma 2 shows in particular that the radial limit set
of any arbitrary Kleinian groug is always a subset of the big horospherical limit set of any
normal subgroup of, since it is implicit from the proof that the big horospherical limit set
of any Kleinian groupG coincides withLﬁl)(G).
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LEMMA 2. Let H be a non-elementary Kleinian group, and let G be a non-trivial
normal subgroup of H. \\e then have

Li(H) ¢ LY(G) c L(H).

PrROOF. We clearly have thaLﬁl)(G) is a subset of.(G). SinceL(G) = L(H), itis
therefore sufficient to show thdf,(H) C Lﬁl)(G). For this, lett be some arbitrary element
of L;(H). Then there exists a sequenég) of elements:, € H such that:,, (0) approaches
& conically, that isf1,,(0) tends to and there exists > 0 such that € IT(B(h,(0), ¢)) for
alln € N. With go € G \ {id.} referring to some fixed element, we have th,agoh;l € G,
for all n € N. Using the triangle inequality, we obtain

p (7 (0), By goh, 1(0)) = p(0, goh, 1(0)) < p(0, go(0)) + p(0, h,(0)) .

Hence, withH; referring to the horoball &t such that 0= He and that O has hyperbolic
distancecg := p(0, go(0)) + 2c to the horospherical boundary @f, the latter estimate
implies that{hngoh;l(O) |n € N} C He. Now observe that, by Lemma 1 and by a well-
known estimate concerning hyperbolic geometry within horoballs (see e.g. [25, Lemma 2]),
we have that a hyperbolic ball, which is tangential to the ray from the origjreted which is
centred at some arbitragye Hg, must have hyperbolic radius not exceediggt o0 (0, z)/2.
Therefore,

(0, hygoh; 1(0))
2

£e H(B(h,,gohnl(O), + co)) forall n e N.

Using Lemma 1, it then follows th&t € Lﬁl)(G). O

PROOF OFTHEOREM 2. ForG such thats(G) = dimy(L(G)) the statement of the
theorem is trivial. Hence, we can assume without loss of generalityGhiata d-group.
Assume by way of contradiction that there exists- 0 such that & G) + t < §(H). Let
¢ > 0 be sufficiently small so that — 2¢ > 0, and then choose so that 0< o < t — 2s.
With these choices we have tHaG) + ¢ < (8(H) — 0)/2, and therefore

Z(e*p(O,g(O))/Z)S(H)*G < Z(e*p(oﬂ(o)))S(G)Jrs <00,
9eG geG

Hence, we have for all > 0,
dimy (im sup(b (17 (9(0)), ce *®9O2) | g € G}) < 5(H) — o,
which gives dinm(Lﬁl)) < 38(H) — 0. Using Lemma 2, it now follows
§(H) = dimu(L(H)) < dimy(L{P(G)) < 8(H) — o,
which gives a contradiction. O

3. Someexamples. Inthis section we discuss some examples of d-groups. For further
interesting examples of d-groups we refer to [12].
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ExampLE 1. (‘Infinitely-punctured Riemann surfaces) The first example represents
a simply connected Riemann surface with infinitely many punctures. The example is due to
Patterson [19, Theorem 4.4], and to our knowledge it has been the first example of a d-group
in the literature. Here, we only give a brief description of the construction of this type of
Fuchsian groups, and we refer to [19] for the proof that these groups are in fact d-groups
(the proof in [19] uses uniformization theory in combination with perturbation theory of the
Laplacian).

Let Go be a cocompact Fuchsian group acting@hwithout elliptic elements. Then
(D?\Go(0))/ Gois a compact Riemann surface with gnencture, and hence it is conformally
isomorphic toD2/G1, for some cofinite Fuchsia6'; with exactly one parabolic element.
Consider the canonical group homomorphigm G1 — Go, and letG := ker(¢). Clearly,

G is a normal subgroup af; and uniformize? \ Go(0). In [19] it was shown thaG is a
group of the first kind for whicld (G) < 1. Hence, it follows tha is a d-group.

ExamMpPLE 2. (‘Normal subgroups) The second example is mainly based on an ap-
plication of a beautiful result of Brooks in [8], who gave a significant extension of results of
Rees [23], [24] (see also [32] and the discussion in [21]).

Let Go and G1 be two non-elementary convex cocompact Kleinian groups acting on
DVN+1 with (open) fundamental domairi% and Fy, respectively, such thafy N Fy = @. For
simplicity, we assume thak is freely generated by hyperbolic automorphisms. . ., g,
and likewise thatG; is freely generated by hyperbolic automorphisgpss, .. ., girn (for
k,n > 1). With H := Go * G1 referring to the free product &g andG1, we also assume
that§(H) > N/2. Letp : H — G1 denote the canonical group homomorphism, and define
G = ker(g). ltis easily verified thaG = (hg;h~1|i =1,...,k, h € G1), and thaiG is the
normal subgroup off generated by;g in H. Hence, it follows that/ /G is isomorphic to
G1. In order to see that is a d-group, recall that Brooks [8] has shown thafifis a non-
trivial normal subgroup of a convex cocompact Kleinian grégpvith § (1) > N /2, then we
have that (1) = §(I») if and only if I'1/I» is amenable (for the noti'amenable’ see e.g.
[7], [34]). Observe that in our example here we have #H#@G contains a free subgroup on
two generators, and therefofe/ G is not amenable (note that every group which contains a
free group with two generators is necessarily non-amenable (see e.g. [33])). Hence, applying
the result of Brooks, it follows tha® is a d-group.

ExamMPLE 3. (‘Cantor-tree endings made of cylinders) The third example gives an
infinitely generated d-group of the first kind which acts@®*2. In particular, these groups
give rise for instance to geometrically infinite hyperbdli¢ + 1)-manifolds without cusps,
which consist of a ‘cocompact root’ and an attached ending which is basically an ‘infinite
capstan of hyperbolic cylinders’ (see Figure 2). Our construction gives a slight modification
of the construction of Patterson in [20] (see also [1]). We have simplified the original con-
struction in [20] (paragraph 5) in oedto make the ideas more transparent.
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FIGURE 2. Cantor-tree endings made of hyperbolic cylinders.

Let us first recall from [20] the following observation relating the exponent of conver-
gence of a convex cocompact Kleinian gralipto the exponent of convergence of the free
product!” x (y), for some suitably chosen hyperbolic transformation

Fort e SV, let Hs denote the set of all hyperbolic automorphismsDdf+! which
have¢ as a fixed point. Foy e He, let F, refer to the Dirichlet fundamental domain for
(y) (constructed with respect to & F,). We then have thaF, is bounded by two disjoint
hyperplanesti(y) and Hz(y) of codimension one, and we &t} denote the set of those
elements ofH{¢ for which these two hyperplanes are of equal Euclidean size.

Let F be the Dirichlet fundamental domain for the convex cocompact gioypon-
structed with respect to @ F). Then fix some arbitrary poirt contained in some connected
component2 of F N SV, and letH (£2) refer to the set of elemenis € H} for which
I (H1(y) U Ha(y)) C £2. With these preparations we then have (cf. [20])

8(I' % (y)) — 8(I') for y e H(2) suchthat|IT(Hy(y))| — O.

The idea of the proof of this statement is roughly as follows (we refer to [20] for the details).
Recall that the limit sefL(I") is constructed very much like a Cantor set generated by a
certain set of contractions. Likewise(I" = (y)) is generated by the same set of contractions
together with some additional contractions, which correspondaady —2. It is intuitively
clear that for|IT(H1(y))| — 0, the amount of contraction of these additional generators
becomes arbitrarily large, and therefore, inlihét the Hausdorff dimension cannot increase.
With this preliminary observation we can now construct the following class of d-groups.
Let Go be some fixed convex cocompact Kleinian group actingdé! such thatrg :=
8(Go) < N. Fix some numbety < v < N, as well as some strictly increasing sequence
(tk)k=0.1,2,... of numbersy such that limg, = ©. With Fy referring to a Dirichlet fundamental
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domain ofGg (constructed with respect to & Fp), we letOg denote the set of connected
components ofp N SV. Also, fix some countable sé&f = {£1, &, ...} which is dense in
Ugeo, 2. Thatis, we letX ¢ Ug.o, 2 andX = Ugco, 2.

We can then construct a sequeric® )x—o,1,... Of convex cocompact groufgs; by way
of induction as follows. In herek}, refers to the Dirichlet fundamental domain Gf (con-
structed with respect to @ F;), and®; denotes the set of connected component&,of SV .
Now, if G_1 is given for som& € N, thenGy is obtained as follows.

If & € L(Gg-1), then we letGy = Gy_1. Otherwise, i.e. fog; ¢ L(Gk—1), there exist
g € Gk—1 and$2 € Ok_1 such thatg (§;) € £2. Hence, by the observation above, there
existsyy € HZk(Ek)(Q) such tha(Gy—1 * (yx)) < 1. In this situation, we then let

Gi = Gr_1* (W) -

In this way we obtain the sequen@@;) of convex cocompact groups, and we define

o
G:=|JGr.
k=0
In order to see that is a d-group, recall that Sullivan ([28]; see also Remark 1 below) has
shown that ifi1 ¢ I> C --- € I C --- is an increasing sequence of subgroups of the

Kleinian groupl” = |J, I'k, then it follows thais(I") = sup, §(I). Applying this result to
our sequencéGy) here, we obtain

8(G) = S(U Gk> = sups(Gy) < supt = .

Also note that by construction we have tHét, ..., &} C L(Gyx) N Ugeoo $2, for each
k € N. This implies thatX C L(G) N Ugcp, §2, and hence, sinc¥ is dense i .o, $2
(and thusGo(X) is dense inSV), it follows that L(G) is dense inSY. Using the fact that
L(G) is closed, it then follows that (G) = SV, and hence thag is a Kleinian group of the
first kind. Summarizing the above, we now have that

3(G) <t < N =dimy(L(G)),
which gives that is a d-group.

REMARK 1 (see also [27]). The proof in [28] of Sullivan’s result which we employed
in Example 3 mainly uses the conformality of the Patterson measure. It seems worth men-
tioning that this result can be derived alternatively by purely elementary means as follows.
One easily verifies thatJ, Lur(It) C Lur(I"). On the other hand, if € Ly(I"), then
there exists an infinite patpg in the Cayley graph of” such that the ray from the origin
to & is fully contained in some fixed hyperbolic neighbourhoodpef and that the hyper-
bolic lengths of the geodesic segmentsppfare uniformly bounded from above. Therefore
Lyr(I") = Uy Lur(I'). Using the monotonicity of Hausdorff dimension (see e.qg. [9]) and the
fact thats(H) = dimny(Lyr(H)) for every non-elementary Kleinian group ([6], [26]), it
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follows that

8(I') = dimy(Lyr(I)) = dimy (U Lur(rk)>
k
= sup dime(Lur(7i)) = Sup3(ro).

REMARK 2. It is straightforward to refine the latter construction to obtain a d-
group G which has the property that th&-dimensional spherical Lebesgue measure
AN (L3(G)) of the set of Jgrgensen points is strictly positive. In order to obtain such a group,
one proceeds as follows. Le&by)rcn denote some sequence of positive numbers such
that ", .ny0k < 1/2. Using the notation introduced in Example 3, gt be specially
chosen so thaty (IT(H1(vx))) < 6k AN(UQE(% £2), for eachk € N. By construction we
haveiy (IT(H1(yx))) = AnIT(H2(yx))) for all k, and that{/T(H; (yx)) | k € N,i = 1, 2}
is a family of mutually disjointN-dimensional spherical discs contained Uﬂ‘geoo 2.
Therefore,

xN( U « \LJ(G)> <> awUTH; ()

2€0p keNi=1,2
szzem( U Q><AN< U 9)
keN €0y €0

which shows thaL 3(G) is of positive N-dimensional spherical Lebesgue measure.
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