
TSUKUBA J. MATH.
Vol. 22 No. 2 (1998), 305-331

NORMAL FORMS FOR DERIVATIONS IN ARAI’S $AI_{\xi}^{-}$

By

Kazuma IKEDA

Abstract. In this paper, we shall consider normal forms for deri-
vations in $AI_{\overline{\xi}}$ , where $AI_{\xi}^{-}$ is a system introduced by Arai (cf. [4])

and its consistency implies the consistency of Feferman’s $ID_{\xi}$ (cf. [6]).

We shall give two normal form theorems for derivations in $AI_{\xi}^{-}$ . One
(Theorem 1) implies the consistency of $AI_{\overline{\xi}}$ . The other (Theorem 2)

implies the $\omega$-consistency of $AI_{\overline{\xi}}$ .

0. Introduction

In this paper, we shall consider normal forms for derivations in $AI_{\xi}^{-}$ , where
$AI_{\overline{\xi}}$ is a system introduced by Arai (cf. [4]) and its consistency implies the
consistency of Feferman’s $ID_{\xi}$ (cf. [6]).

Normal forms for derivations in LK have been studied by several authors (for

example, Gentzen [7], Mints [10], Arai and Mints [5]). Gentzen’s cut elimination
theorem (cf. [7], [11]) is one of the most famous normal form theorems for
derivations in LK. In [10], Mints gave an extended form of Gentzen’s theorem.
Moreover, extended forms of Mints’ theorem were given by Arai and Mints (cf.

[5]).
And also, normal forms for derivations in arithmetic formalized in the

sequent style have been studied by several authors (for instance, Hinata [8], the
author [9]). Hinata’s theorem (cf. [8]) is considered as an analogue of Gentzen’s
theorem and implies the consistency of arithmetic. $\ln[9]$ , the author gave an
extended form of Hinata’s theorem, which is also considered as an analogue of
Mints’ theorem and implies the $\omega$-consistency of arithmetic.

In this paper, we shall give some normal form theorems for derivations in
$AI_{\xi}^{-}$ . To prove these theorems, Takeuti’s system of ordinal diagrams $O(\xi+1,2)$
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(cf. [11]) will be used. $0(\xi+1,2)$ is the structure consisting of the set of objects
called ordinal diagrams and the well-orderings $<i(i\in I)$ over the ordinal dia-
grams, where $I$ is the well-ordering set $(\xi+1)\cup\{\infty\}$ , whose ordering is that of
$\xi+1$ with the largest element $\infty$ .

In [1] and [4], Arai showed that the consistency of $AI_{\xi}^{-}$ can be proved by
transfinite induction along $<0$ up to the ordinal diagram $(\xi, 1,0)$ but can not be
proved by transfinite induction along $<0$ up to any $\alpha$, where $\alpha<0(\xi, 1,0)$ .

So, we want to give a normal form theorem for derivations in $AI_{\overline{\xi}}$ , which
implies the fact that the consistency of $AI_{\overline{\xi}}$ can be proved by transfinite induction
along $<0$ up to the ordinal diagram $(\xi, 1,0)$ . Theorem 1 given in Section 2 below
is just such a theorem. Moreover, it is considered as an analogue of Hinata’s
theorem (cf. [8]). Furthermore, we shall give another normal form theorem
(Theorem 2) for derivations in $AI_{\overline{\xi}}$ in Section 2 below. It implies the $\omega$-con-
sistency of $AI_{\overline{\xi}}$ and is proved by transfinite induction along $<0$ up to the ordinal
diagram $(\xi, 1,0\# 0)$ . Moreover, it is considered as an analogue of author’s theorem
(cf. [9]).

1. The system $AI_{\xi}^{-}$

The system considered here is obtained from Arai’s original $AI_{\overline{\xi}}$ (cf. [3], [4])
by some modifications. In this section, we explain the system $AI_{\overline{\xi}}$ in detail.

DEFINITION 1.1. The language $\mathscr{L}$ is the first order language whose non-
logical symbols consist of the following symbols:

1. Individual constant: $0$ ;
2. Function constant: ’ (successor) and $\overline{f}$ for each primitive recursive function

$f$;
3. Predicate constant: $=$ .
The language $\mathscr{L}+\{Y_{0}, Y_{1}, c_{0}, c_{1}\}$ is the language obtained from $\mathscr{L}$ by

adding a unary predicate variable $Y_{0}$ and a binary predicate variable $Y_{1}$ and
individual constants $c_{0}$ and $c_{1}$ .

Let $\xi$ be a fixed ordinal and $let\prec be$ a primitive recursive $well- orde\dot{n}ng$ on a
primitive recursive subset of the set of natural numbers and $\lambda x\cdot x\oplus 1$ a primitive
recursive successor function with respect to $\prec$ . We assume that the order type of
$\prec$ is $\xi+1$ and the least element of $\prec$ is the natural number $0$ . Moreover, we
assume the same properties with respect $to\prec and\oplus as$ ones assumed in [4]. We
denote the largest element $of\prec by\xi$ . Furthermore, $\xi$

’ is also used to denote the
numeral corresponding to the largest element with respect to $\prec$ . Let $f_{\prec}$ be the
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characteristic function $of\prec$ . Then, to denote the formula $\overline{f}_{\prec}(s, t)=0’$ , we use
the expression $s\prec t’$ .

Let $t$ be a closed term in $\mathscr{L}$ . Then $v(t)$ is used to denote the value of $t$ under
the standard interpretation.

DEFINITION 1.2. A formula $\mathfrak{B}(Y_{0}, Y_{1}, c_{0}, c_{1})$ in $\mathscr{L}+\{Y_{0}, Y_{1}, c_{0}, c_{1}\}$ is said to
be an arithmetical form if it includes no free individual variables.

$DEFIN TION1.3$ . The language $\mathscr{L}^{\prime}$ is the language obtained from $g$ by
adding unary predicate variables $X_{i}(i\in\omega)$ and adding binary predicate constants
$Q^{\mathfrak{B}}$ and temary predicate constants $Q_{\prec}^{\mathfrak{B}}$ for each arithmetical form 8 in
$\mathscr{L}+\{Y_{0}, Y_{1}, c_{0}, c_{1}\}$ . We write $Q_{\prec u}^{\mathfrak{B}}ts$ for $Q_{\prec}^{\mathfrak{B}}uts$ .

DEFINITION 1.4. $AI_{\xi}^{-}$ is a system formalized in the language $\mathscr{L}^{\prime}$ and consists
of the following initial sequents and inference mles:

1. Initial sequents
(a) Logical initial sequents:

$D\rightarrow D$ , where $D$ is an arbitrary atomic formula.

(b) Mathematical initial sequents:
The sequents which consist of atomic formulas in $\mathscr{L}$ and are true under the
standard interpretation.

2. Inference mles
(a) Inference mles of LK without inference mles for $\supset$ .
(b) Cut:

$\frac{\Gamma\rightarrow\Delta,DD,\Lambda\rightarrow\Pi}{\Gamma,\Lambda\rightarrow\Delta,\Pi}$

$D$ is called the cut formula of this inference. This inference is said to be inessential
if its cut formulas are of the form $Q^{\mathfrak{B}}ts$ and include at least one free individual
variable.

(c) Inference mles for $\supset$ ;

$\supset$ : left $\supset$ : right

$\frac{\Gamma\rightarrow\Delta,AB,\Gamma\rightarrow\Delta}{A\supset B,\Gamma\rightarrow\Delta}$ $\frac{A,\Gamma\rightarrow\Delta}{\Gamma\rightarrow\Delta,A\supset B}$ and $\frac{\Gamma\rightarrow\Delta,B}{\Gamma\rightarrow\Delta,A\supset B}$
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(d) Term-replacement:

$\frac{\Gamma(s)\rightarrow\Delta(s)}{\Gamma(t)\rightarrow\Delta(t)}$

$s$ and $t$ are closed terms such that $v(s)=v(t)$

This inference is considered as a stmctural inference.
(e) Equality $mle$ :

$\frac{\Gamma\rightarrow\Delta,t=s\Gamma\rightarrow\Delta,F(t)F(s),\Gamma\rightarrow\Delta}{\Gamma\rightarrow\Delta}$

$t$ and $s$ are arbitrary terms

$t=s,$ $F(t)$ and $F(s)$ are called the auxiliary formulas and also $F(t)$ and $F(s)$ are
called the equality formulas. This inference is said to be inessential if $t=s$

includes at least one free individual variable and $F(t)$ is not identical with $F(s)$ .
(f) Induction $mle$ :

$\frac{\Gamma\rightarrow\Delta,A(0)A(a),\Gamma\rightarrow\Delta,A(a^{\prime})A(t),\Gamma\rightarrow\Delta}{\Gamma\rightarrow\Delta}$

$a$ does not occur in the lower sequent and $t$ is an arbitrary term

$A(O),$ $A(a),$ $A(d)$ and $A(t)$ are called the auxiliary formulas and also $\Lambda(a)$ is
called the induction formula. $a$ and $t$ are said to be the eigenvariable and the
induction term, respectively. This inference is said to be constant normal if its
induction formula contains at least one occurrence of its eigenvariable and its
induction term contains at least one free individual variable.

(g) Inference mles for $Q^{\mathfrak{B}}$ :
$Q^{\mathfrak{B}}$ : left

$\frac{\Gamma\rightarrow\Delta,t\prec\xi \mathfrak{B}(V,Q_{\prec t}^{\mathfrak{B}},t,s),\Gamma\rightarrow\Delta}{Q^{\mathfrak{B}}ts,\Gamma\rightarrow\Delta}$

$V$ is an arbitrary unary abstract and $t,$ $s$ are arbitrary terms

$Q^{\mathfrak{B}}$ : right

$\frac{\Gamma\rightarrow\Delta,t\prec\xi\Gamma\rightarrow\Delta,\mathfrak{B}(X,Q_{\prec t}^{\mathfrak{B}},t,s)}{\Gamma\rightarrow\Delta,Q^{\mathfrak{B}}ts}$

$X$ does not occur in the lower sequent and $t,$ $s$ are arbitrary terms
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In $Q^{\mathfrak{B}}$ : left, $ t\prec\xi$ and $\mathfrak{B}(V, Q_{\prec t}^{\mathfrak{B}}, t,s)$ are called the auxiliary formulas and $Q^{\mathfrak{B}}ts$ is
called the principal formula. In $Q^{\mathfrak{B}}$ : right, $ t\prec\xi$ and $\mathfrak{B}(X, Q_{\prec t}^{\mathfrak{B}}, t, s)$ are called the
auxiliary formulas, $Q^{\mathfrak{B}}ts$ is called the principal formula and $X$ is called the
eigenvariable of this inference.

(h) Infemece mles for $Q_{\prec}^{\mathfrak{B}}$ :

$Q_{\prec}^{\mathfrak{B}}$ :left $Q_{\prec}^{\mathfrak{B}}:$ right

$ Q_{\prec u}^{\mathfrak{B}}ts,\Gamma\rightarrow\Delta t\prec u,\Gamma\rightarrow\Delta$ and $ Q^{\mathfrak{B}}ts,\Gamma\rightarrow\Delta Q_{\prec u}^{\mathfrak{B}}ts,\Gamma\rightarrow\Delta$ $\frac{\Gamma\rightarrow\Delta,t\prec u\Gamma\rightarrow\Delta,Q^{\mathfrak{B}}ts}{\Gamma\rightarrow\Delta,Q_{\prec u}^{\mathfrak{B}}ts}$

$s,$
$t$ and $u$ are arbitrary terms $s,$

$t$ and $u$ are arbitrary terms

$t\prec u$ and $Q^{\mathfrak{B}}ts$ are called the auxiliary formulas and $Q_{\prec u}^{\mathfrak{B}}ts$ is called the principal

formula.

2. Normal form theorems and their applications

In this section, we explain our normal form theorems and their applications.
First of all, we give definitions necessary to state our theorems.

DEFINITION 2.1. Let $\Gamma$ be a sequence $A_{1},$ $\ldots,A_{n}$ of formulas. Let
$\langle i_{1}, i_{2}, \ldots, i_{k}\rangle$ be a sequence of natural numbers such that $1\leq i_{1}<i_{2}<\cdots<$

$i_{k}\leq n$ . Then, the sequence $A_{i_{1}},$ $\ldots,A_{i_{k}}$ is called a part of F. $\Gamma^{*}$ is used to denote a
part of $\Gamma$ . Let $\Lambda\rightarrow\Pi$ be a sequent. Then $\Lambda^{*}\rightarrow\Pi^{*}$ is called a part of $\Lambda\rightarrow\Pi$ .

DEFINITION 2.2. Let $\pi$ be a derivation with the end sequent $S$ in $AI_{\xi}^{-}$ . And
let $S^{*}$ be a part of $S$ and $C$ a formula in $\pi$ . Then $C$ is said to be $(S^{*})$ -implicit if a
descendant (cf. [11]) of $C$ satisfies one of the following conditions:

1. It is a cut formula.
2. lt is an auxiliary formula of an equality or an induction.
3. lt is in $S^{*}$ .
4. It is an atomic formula.

0therwise $C$ is said to be $(S^{*})$ -explicit. And also $C$ is said to be implicit if a
descendant of $C$ satisfies one of the above conditions 1,2. 0therwise $C$ is said to
be explicit.

Let $I$ be an inference in $\pi$ . Then $I$ is called $(S^{*})$ -implicit or $(S^{*})$ -explicit
according as its principal formula is $(S^{*})$ -implicit or $(S^{*})$ -explicit. And also $I$ is
called implicit or explicit according as its principal formula is implicit or explicit.
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DEFINITION 2.3. Let $\pi$ be a derivation and let $v$ be a free individual variable
or a unary predicate variable in $\pi$ . Then $v$ is said to be redundant in $\pi$ if it occurs
in an upper sequent of an inference $I$ and does not occur in the lower sequent of $I$

and is not used as the eigenvariable of $I$.

DEFINITION 2.4. Let $T$ be a subtheory of $AI_{\xi}^{-}$ and let $\pi$ be a derivation in
$AI_{\xi}^{-}$ . Then a logical inference $I$ in $\pi$ is said to be reducible with respect to $T$ if one
of the auxiliary formulas of $I$ is derivable (refutable) in $T$ provided that it belongs
to the antecedent (succedent) of the sequent in which it occurs.

DEFINITION 2.5. Let $\pi$ be a derivation with the end sequent $S$ in $AI_{\xi}^{-}$ . Then
$\pi$ is said to be normal if it satisfies the following conditions:

1. It includes no cuts except inessential ones.
2. It includes no redundant variables.
3. It includes no inductions except constant normal ones.
4. It includes no equalities except inessential ones.

Let $S^{*}$ be a part of $S$. Then $\pi$ is said to be $(S^{*})$ -strongly normal if it is normal
and satisfies the following condition:

5. It includes no $(S^{*})$ -explicit inferences which are reducible with respect to
$AI_{\xi}^{-}$ .

Especially, we say that $\pi$ is strongly normal if it is $(\rightarrow)$-strongly normal.

REMARK. Let $\pi$ be a derivation with the end sequent $S$ in $AI_{\xi}^{-}$ . Then, $\pi$ is
$(S)$ -strongly normal if it is normal.

Then we have the following theorems.

THEOREM 1. We can transform any derivation in $AI_{\xi^{-}}$ into a normal one with
the same end sequent.

THEOREM 2. We can transform any derivation in $AI_{\xi^{-}}$ into a strongly normal
one with the same end sequent.

In Section 4, Theorem 1 will be proved by transfinite induction along $<0$ up
to $(\xi, 1,0)$ and Theorem 2 will be proved by transfinite induction along $<0$ up to
$(\xi, 1,0\# 0)$ , where $(\xi, 1,0)$ and $(\xi, 1,0\# 0)$ are ordinal diagrams and $<0$ is a well-
ordering over the ordinal diagrams in Takeuti’s system of ordinal diagrams
$O(\xi+1,2)$ (cf. [11]).
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Theorem 1 implies the following corollary. Thus, by transfinite induction
along $<0$ up to $(\xi, 1,0)$ we can show that $AI_{\xi}^{-}$ is consistent.

COROLLARY 1. $AI_{\xi^{-}}$ is consistent.

PROOF. Similar to corollary 2 below. $\blacksquare$

Theorem 2 implies the following corollary. Thus, by transfinite induction
along $<0$ up to $(\xi, 1,0\# 0)$ we can show that $AI_{\xi}^{-}$ is $\omega$-consistent.

COROLLARY 2. $AI_{\xi^{-}}$ is $\omega$-consistent.

PROOF. Let $A(a)$ be an arbitrary formula which includes no free individual
variable other then $a$ $and\rightarrow A(\overline{n})$ is derivable in $AI_{\xi}^{-}$ for all numeral $\overline{n}$ . Then it
suffices to show that $\forall xA(x)\rightarrow is$ not derivable in $AI_{\xi}^{-}$ . Now, we suppose that
$\forall xA(x)\rightarrow is$ derivable in $AI_{\xi}^{-}$ . Then there exists a strongly normal derivation $\pi$ of
$\forall xA(x)\rightarrow$ . Assume that $\pi$ includes at least one non-stmctural inference. Note
that the end-place of $\pi$ includes no free individual variables and hence it includes
no cuts. If an inference is an induction or an equality or an inference for $Q^{\mathfrak{B}}$ or
an inference for $Q_{\prec}^{\mathfrak{B}}$ , then it does not belong to the boundary of $\pi$ . Thus every
boundary inference is a $\forall$ : left whose auxiliary formula is of the form $A(t)$ where
$t$ is a closed term. But it is impossible, because $\pi$ is strongly normal $and\rightarrow A(t)$ is
derivable in $AI_{\xi}^{-}$ by our assumption. Thus $\pi$ does not include non-stmctural
inferences. But it is clear that there does not exist such a derivation. So $AI_{\xi}^{-}$ is
$\omega$-consistent. $\blacksquare$

3. $Pre\mathbb{I}mina\dot{n}es$

In order to prove our theorems, we shall consider the system $\underline{AI}_{\xi}^{-}$ obtained
from $AI_{\xi}^{-}$ by adding the following inference $mle$ , called substitution rule,

$\frac{\Gamma(X)\rightarrow\Delta(X)}{\Gamma(V)\rightarrow\Delta(V)}$

where $X$ does not occur in the lower sequent and $\Gamma(V)\rightarrow\Delta(V)$ is the sequent
obtained from $\Gamma(X)\rightarrow\Delta(X)$ by substituting a unary abstract $V$ for $X$. Then $X$ is
called the eigenvariable of this inference and $V$ is called the substituted abstract of
this inference. This inferenoe is considered as a stmctural inference.
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DEFINITION 3.1. The grade of a formula $A$ , denoted by $g(A)$ , is defined as
follows:

1. $g(A)=0$ , if $A$ is an atomic formula which is not of the form $Q_{\prec u}^{\mathfrak{B}}ts$ .
2. $g(Q_{\prec u}^{\mathfrak{B}}ts)=1$ , where $s,$

$t$ and $u$ are arbitrary terms.
3. $g(B\wedge C)=g(B\vee C)=g(B\supset C)=\max\{g(B), g(C)\}+1$ .
4. $g(\neg B)=g(\forall xB)=g(\exists xB)=g(B)+1$ .

DEFINITION 3.2. The grade of an inferenoe $I$, denoted by $g(I)$ , is defined as
follows:

$g(I)=\{_{0}^{\max\{g(A)|Aisanauxiliaryformula}thegradeofacutformulaofI$

of $I$}
$ifIisnon- stmcturalifIisacutotherwise$

.

DEFINITION 3.3. Let $\pi$ be a derivation in $\underline{AI}_{\xi}^{-}$ and $S$ a sequent in $\pi$ . For any
natural number $\rho$ , the height based on $\rho$ of $S$ in $\pi$ , denoted by $h_{\rho}(S;\pi)$ or simply
$h_{p}(S)$ , is defined as follows:

1. $ h_{p}(S)=\rho$ , if $S$ is the end sequent of $\pi$ .
2. Let $S$ be one of the upper sequents of an inference $I$ in $\pi$ and $S^{\prime}$ the lower

sequent of $I$. Assume that $h_{\rho}(S^{\prime})$ is defined. Then

$h_{p}(S)=\left\{\begin{array}{l}0 ifIisasubstitution,\\\max\{h_{\rho}(S^{/}),g(I)\} otherwise.\end{array}\right.$

DEFINITION 3.4. The degree of a formula $A$ , denoted by $dg(A)$ , is defined as
follows:

1. $dg(t=s)=dg(Xt)=0$ , where $s$ and $t$ are arbitrary terms and $X$ is an
arbitrary unary predicate variable.

2. $dg(Q^{\mathfrak{B}}ts)=\{_{\xi}v(t)\oplus 1$ $ifQ^{\mathfrak{B}}tsisotherwise$

.
closed and $ v(t)\prec\xi$ ,

3. $dg(Q_{\prec u}^{\mathfrak{B}}ts)=\{_{\xi}^{v(u)}$ $ifQ_{\prec u}^{\mathfrak{B}}tsisotherwise$

.

closed and $ v(u)\prec\xi$ ,

4. $dg(\neg B)=dg(B)$ .
5. $dg(B\wedge C)=dg(B\vee C)=dg(B\supset C)=\max_{\prec}\{dg(B), dg(C)\}$ , where $\max_{\prec}$

is used to denote the maximum with respect to $\prec$ .
6. $dg(\forall xB)=dg(\exists xB)=dg(B)$ .
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Let $\pi$ be a derivation in $\underline{A1}_{\xi}^{-}$ . Then the degree of a formula $F$ in $\pi$ , denoted by
$d(F;\pi)$ or simply $d(F)$ , is defined as follows:

$d(F)=\{_{0}^{dg(F)}$ $ifFisimplicitotherwise$

.

in $\pi$ ,

DEFINITION 3.5. Let $\pi$ be a derivation in $\underline{A1}_{\xi}^{-}$ . We say that a sequent $S$ in $\pi$

belongs to the end-place of $\pi$ if no non-stmctural inferences occur below $S$ in $\pi$ .
And we say that an inference $I$ in $\pi$ belongs to the boundary of $\pi$ or is a boundary

inference of $\pi$ if the lower sequent of $I$ belongs to the end-place of $\pi$ and the
upper sequents of $I$ do not belong to the end-place of $\pi$ .

DEFINITION 3.6. Let $\pi$ be a derivation with the end sequent $S$ in $\underline{AI}_{\xi}^{-}$ and let
$S^{*}$ be a part of $S$. Let $d$ be a mapping from the set of substitutions in $\pi$ to the set
of ordinals less than $\xi$ . For each substitution $J$ in $\pi,$ $d(J)$ is used to denote the
value of the mapping $d$ at $J$ and is read “degree of J.” Then the triple $\langle\pi;d;S^{*}\rangle$

is called a derivation with degree if it satisfies the following conditions for each
substitution $J$ in $\pi$ and each formula $B$ in the upper sequent of $J$:

1. The upper sequent of $J$ belongs to the end-place of $\pi$ .
2. If $B$ is $(S^{*})$ -explicit, then it includes no eigenvariables of $J$.
3. If $B$ is $(S^{*})$ -implicit, then so is its successor.
4. $d(B)\preceq d(J)$ holds.

DEFINITION 3.7. Let $\langle\pi;d;S^{*}\rangle$ be a derivation with degree. Then $\langle\pi;d;S^{*}\rangle$

is said to be normal if it satisfies the conditions $1\sim 4$ in Definition 2.5. And also
$\langle\pi;d;S^{*}\rangle$ is said to be $(S^{*})$ -strongly normal if it satisfies the conditions $1\sim 5$ in
Definition 2.5.

Since we shall use Takeuti’s system of ordinal diagrams $O(\xi+1,2)$ to prove
our theorems, we shall give some related definitions and propositions.

DEFINITION 3.8. Let $j$ be an ordinal less than $\xi$ . Then we shall define the
order $\ll\iota$ on ordinal diagrams. Let $\alpha$ and $\beta$ be ordinal diagrams. Then

$\alpha\ll i\beta\Leftrightarrow\alpha<j\beta$ for all $ i\preceq j\preceq\xi$ .

$\alpha\leq j\beta$ is used to denote the statement $\alpha\ll i\beta$ or $\alpha=\beta$ .
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NOTATION. Let $\alpha$ be an ordinal diagram and let $\zeta$ be an ordinal less than or
equal to $\xi$ and $n$ a natural number. Then an ordinal diagram $\zeta(n, 0, \alpha)$ is defined
as follows:

$\zeta(0,0, \alpha)$ $:=\alpha$ , $\zeta(n+1,0, \alpha)$ $:=(\zeta,0, \zeta(n,0, \alpha))$ .

PROPOSITION 1. Let $\alpha,$
$\beta$ and $\gamma$ be ordinal diagrams and let $ i\prec\zeta\preceq\xi$ and

$ n\in\omega$ . Then,
1. $\alpha\ll 0\alpha\#\beta$ .
2. $\alpha<j(\zeta, 0, \alpha)forj\preceq\zeta$ .
3. $(i, 0, \alpha)\ll i+1(\zeta, 0,\beta)$ .
4. $\alpha,\beta\ll i(\zeta,0, \gamma)\Rightarrow\alpha\#\beta\ll f(\zeta, 0, \gamma)$ .
5. If $\alpha\ll j\beta$, then $(\zeta,0, \alpha)\ll j(\zeta,0,\beta)$ .
6. $(\zeta, 0, \alpha)\#(\zeta,0,\beta)\ll 0(\zeta, 0, \alpha\#\beta)$ .
7. If $\alpha\ll\iota(\zeta, 1,0)$ , then $\zeta(n, 0, \alpha)\ll j(\zeta, 1,0)$

$PROPOS\Gamma\Gamma ION2$ . Let $ j\preceq\xi$ and let $\gamma$ and $\delta$ be ordinal diagrams for which there
exists two finite sequences of ordinal diagrams $\delta=\delta_{0},$ $\ldots,\delta_{m}$ and $\gamma=\gamma_{0},$

$\ldots,$
$\gamma_{m}$

which satisfies the following conditions:
1. Each $\gamma_{j}$ is of the form $(k, a, \gamma_{i+1}\#\eta)$ for some $j\preceq k\preceq\xi,$ $0\leq a\leq 1$ and $\eta$ .
2. Each $\delta_{i}$ is of the form $(k, a,\delta_{i+1}\#\eta)$ for some $\eta^{\prime}\underline{<<}j\eta$ if $\gamma_{i}$ is $(k, a, \gamma_{i+1}\#\eta)$ .
3. $\delta_{mj}\ll\gamma_{m}$ .

Then $\delta<<j\gamma$ .

DEFINITION 3.9. Let $\pi$ be a derivation with the end sequent $\check{S}$ in $\underline{A1}_{\xi}^{-}$ . Let $\check{S}^{*}$

be a part of $\check{S}$ and let $d$ be a mapping from the set of substitutions in $\pi$ to the
set of ordinals less than $\xi$ . Let $\rho$ be a natural number. To each sequent $S$ in $\pi$

and each inferenoe $I$ in $\pi$, we assign ordinal diagrams $0_{p}(S;\pi;d;\check{S}^{*})$ and
$0_{p}(I;\pi;d;\check{S}^{*})$ , or simply $0_{p}(S)$ and $O_{\rho}(I)$ , respectively, as follows:

1. If $S$ is an initial sequent, then

$O_{p}(S)=0$ .

2. Let $S_{i}(1\leq i\leq n)$ be the upper sequents of $I$. Assume that $O_{p}(S_{i})$ are
defined for each $1\leq i\leq n$ .
(2.1) If $I$ is a weak inference or a term-replacement, then

$O_{\rho}(I)=O_{p}(S)$ .

(2.2) If $I$ is a cut, then

$O_{p}(I)=0_{\rho}(S_{1})\# O_{\rho}(S_{2})$ .
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(2.3) If $I$ is an $(\check{S}^{*})$ -explicit logical inference, then

$O_{p}(I)=\left\{\begin{array}{l}O_{\rho}(S_{1})f(\xi,1,0)\\O_{p}(S_{1})\# O_{p}(S_{2})f(\xi,1,0)\end{array}\right.$ $IhastwouppersequentsIhasoneuppersequent,$

.

(2.4) If $I$ is an $(\check{S}^{*})$ -implicit logical inferenoe or a $Q^{\mathfrak{B}}$ : right or an inferenoe for
$Q_{\prec}^{\mathfrak{B}}$ , then

$0_{p}(I)=\left\{\begin{array}{l}O_{\rho}(S_{1})\# 0\\O_{\rho}(S_{1})f0_{\rho}(S_{2})\end{array}\right.$ $IhastwouppersequentsIhasoneuppersequent,$

.

(2.5) If $I$ is a $Q^{\mathfrak{B}}$ : left, then

$O_{\rho}(I)=O_{\rho}(S_{1})\#0_{p}(S_{2})\#(\xi, 0,0)$ .

(2.6) If $I$ is an equality, then

$O_{\rho}(I)=O_{\rho}(S_{1})\# O_{\rho}(S_{2})\# O_{\rho}(S_{3})$ .

(2.7) If $I$ is an induction, then

$O_{p}(I)=O_{\rho}(S_{1})\#(\xi, 0, O_{\rho}(S_{2}))\# O_{\rho}(S_{3})$ .

(2.8) If $I$ is a substitution, then

$O_{\rho}(I)=(\xi, 0, O_{p}(S_{1}))$ .

3. Let $S$ be the lower sequent of $I$.
(3.1) lf $I$ is a substitution, then

$O_{p}(S)=(d(I), 0, O_{\rho}(I))$ .

(3.2) If $I$ is not a substitution, then

$O_{p}(S)=\xi(h_{p}(S_{1})-h_{p}(S), 0, O_{p}(I))$ .

Finally, we define the ordinal diagram $0_{p}(\pi;d;\check{S}^{*})$ by $(\xi, 0,0_{\rho}(\check{S}))$ .
Then we have a proposition similar to one given by Arai (cf. [2]).

PROPOSITION 3. Let $\langle\pi;d;S^{*}\rangle$ be a derivation with degree and $S^{\prime}$ a sequent in
$\pi$ . And let $p$ and $\sigma$ be natural numbers. If $\sigma\leq\rho$ , then

$O_{\sigma}(S^{\prime})\leq 0\xi(h_{p}(S^{\prime})-h_{\sigma}(S^{\prime}), 0, O_{\rho}(S^{\prime}))$ .

4. Proofs of our theorems

Let $\alpha$ be an ordinal diagram such that $\alpha\leq 0(\xi, 1,0\# 0)$ . Then we shall show
the following lemma by transfinite induction along $<0$ up to $\alpha$ .
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LEMMA 1. For any derivation with degree $\langle\pi;d;\check{S}^{*}\rangle$ such that $O_{0}(\pi;d;\check{S}^{*})<$

$\alpha$ , we can transform $\langle\pi;d;\check{S}^{*}\rangle$ into an $(\check{S}^{*})$ -strongly normal derivation in $AI_{\xi^{-}}$ with
the same end sequent.

This lemma implies Theorem 1 and 2 as follows.

PROOF OF THEOREM 1. Let $\pi$ be a derivation with the end sequent $S$ in $AI_{\xi}^{-}$ .
Note that $\pi$ includes no substitutions. So, $\langle\pi;\phi;S\rangle$ is a derivation with degree.
Note that $0_{0}(\pi;\phi;S)<0(\xi, 1,0)$ . So, set $\alpha=(\xi, 1,0)$ . Then, by Lemma 1 and its
proof, we can transform $\langle\pi;\phi;S\rangle$ to a normal derivation by transfinite induction
along $<0$ up to $(\xi, 1,0)$ . $\blacksquare$

PROOF OF THEOREM 2. Let $\pi$ be a derivation in $AI_{\xi}^{-}$ . Note that $\pi$ includes
no substitutions. So, $\langle\pi;\phi;\rightarrow\rangle$ is a derivation with degree. Note that
$O_{0}(\pi;\phi;\rightarrow)<0(\xi, 1,0\# 0)$ . So, set $\alpha=(\xi, 1,0\# 0)$ . Then, by Lemma 1 and its
proof, we can transform $\langle\pi;\phi;\rightarrow\rangle$ to a strongly normal derivation by transfinite
induction along $<0$ up to $(\xi, 1,0\# 0)$ . $\blacksquare$

To prove Lemma 1, we need the following lemma.

LEMMA 2. Let $\langle\pi;d;S^{*}\rangle$ be an $(S^{*})$ -strongly normal derivation with degree.
Then we can transform $\langle\pi;d;S^{*}\rangle$ into an $(S^{*})$ -strongly normal derivation in $AI_{\xi^{-}}$

with the same end sequent.

PROOF. By induction on the number of substitutions in $\pi$ . $\blacksquare$

The rest of this section is devoted to proving Lemma 1.

PROOF OF LEMMA 1. We shall prove this lemma by transfinite induction
along $<0$ up to $\alpha$ .

Suppose that $\langle\pi;d;\check{S}^{*}\rangle$ be a derivation with degree such that
$ O_{0}(\pi;d;\check{S}^{*})<0\alpha$ . If $\langle\pi;d;\check{S}^{*}\rangle$ is $(\check{S}^{*})$ -strongly normal, we can transform
$\langle\pi;d;\check{S}^{*}\rangle$ into an $(\check{S}^{*})$ -strongly normal derivation in $AI_{\xi}^{-}$ with the same end
sequent by Lemma 2. So, we assume that $\langle\pi;d;\check{S}^{*}\rangle$ is not $(\check{S}^{*})$ -strongly normal.

We suppose that $\check{S}$ is of the form $\Gamma\rightarrow\Delta$ and $\check{S}^{*}$ is of the form $\Gamma^{*}\rightarrow\Delta^{*}$ . We
can suppose that $\pi$ includes no redundant variables, because $dg(F(t))\preceq dg(F(a))$

for any formula $F$ and any term $t$ . And also we can suppose that if there exists a
weakening $I$ in the end-plaoe of $\pi$ then every inferenoe below $I$ is a weakening or
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an exchange, because if $\pi$ does not satisfy the above condition then we can
transform $\langle\pi;d;\check{S}^{*}\rangle$ to a derivation with degree $\langle\pi^{\prime};d^{\prime};\check{S}^{*}\rangle$ such that $\pi^{\prime}$ satisfies
the above condition and every substitution in $\pi^{\prime}$ has same degree as the cor-
responding one in $\pi$ and $o_{0}(\pi^{\prime};d^{\prime};\check{S}^{*})\leq 0^{O_{0}(\pi;d;\check{S}^{*})}$ by the usual method.

We shall divide our proof into some cases. When we shall consider a case, we
assume that the proceeding case(s) do not hold.

In this proof, the letter $S$
’ in the expression $\Lambda\rightarrow^{s}\Pi$ is used to denote

the sequent $\Lambda\rightarrow\Pi$ itself. And also we shall omit the superscript $\mathfrak{B}$ in $Q^{\mathfrak{B}}$ or
$Q_{\prec}^{\mathfrak{B}}$ if there is no danger of confusion.
(1) The case where $\pi$ includes at least one logical initial sequent $\hat{S}$ in the end-
place.
(1.1) The case where a descendant of a formula in $\hat{S}$ is a cut formula.

Assume that $\pi$ is of the form:

$D\rightarrow\hat{s}D$

$\pi_{1^{:}}$. :

$\Lambda\rightarrow s_{1}\Pi,$ $D^{\prime}$
$D^{\prime}\rightarrow s_{2}D^{\prime\prime}$

$\Lambda\rightarrow s\Pi,$ $D^{J/}$

:

where $D^{\prime}(D^{\prime\prime})$ in $S_{2}$ is a descendant of $D$ in the antecedent (succedent) of $\hat{S}$ .
Note that $D^{\prime\prime}$ is $(\check{S}^{*})$ -implicit. Because, if $D^{\prime\prime}$ is atomic, it is clear that $D^{\prime\prime}$ is

$(\check{S}^{*})$ -implicit. So, we assume that $D^{\prime\prime}$ contains at least one logical symbol. Sinoe $D$

is atomic, $D^{\prime\prime}$ is obtained from $D$ by at least one substitution. Since $\langle\pi;d;\check{S}^{*}\rangle$ is a
derivation with degree, $D^{\prime\prime}$ in $\pi$ is $(\check{S}^{*})$ -implicit.

Let $h_{0}(S_{1};\pi)=p$ and $ h_{0}(S;\pi)=\sigma$ and let $\Lambda^{*}\rightarrow\Pi^{*},$ $D^{\prime}$ be the sequent
obtained from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit formulas. Then we reduoe $\pi$ to the
derivation $\pi^{\prime}$ :

$\pi_{1^{:}}$.

$\frac{\Lambda\rightarrow\Pi,D^{\prime}s_{1}}{term- rep1acements}$

$\Lambda\rightarrow s\Pi,$ $D^{\prime\prime}$

:

Here, note that $D^{\prime\prime}$ is also $(\check{S}^{*})$ -implicit in $\pi^{\prime}$ . Let $d^{\prime}$ be the mapping from the set
of substitutions in $\pi^{\prime}$ to the ordinals less than $\xi$ such that, for each substitution $J^{\prime}$
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in $\pi^{\prime},$ $d^{\prime}(J^{\prime})=d(J)$ , where $J$ is the corresponding one in $\pi$ . The letter $d^{\prime}$
’ is also

used to denote the restriction of d’ to the set of substitutions in $\pi_{1}$ . Then
$\langle\pi^{\prime};d^{\prime}; \check{S}^{*}\rangle$ is a derivation with degree. Next we shall prove $0_{0}(S;\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0$

$O_{0}(S;\pi;d;\check{S}^{*})$ . Note that $ h_{0}(S_{1} ; \pi^{\prime})=\sigma$ . Sinoe

$O_{0}(S_{1} ; \pi^{\prime};d^{\prime};\check{S}^{*})=O_{\sigma}(S_{1} ; \pi_{1} ; d^{\prime};\Lambda^{*}\rightarrow\Pi^{*},D^{\prime})$

$\leq 0\xi(\rho-\sigma, 0,0_{\rho}(S_{1} ; \pi_{1} ; d^{\prime};\Lambda^{*}\rightarrow\Pi^{*}, D^{\prime}))$

$=\xi(\rho-\sigma, 0,0_{0}(S_{1} ; \pi;d;\check{S}^{*}))$ ,

we have

$O_{0}(S;\pi^{\prime};d^{\prime};\check{S}^{*})=O_{0}(S_{1} ; \pi^{\prime};d^{\prime}; \check{S}^{*})$

$\leq 0\xi(\rho-\sigma,0, O_{0}(S_{1} ; \pi;d;\check{S}^{*}))$

$\ll 0\xi(p-\sigma, 0, O_{0}(S_{1} ; \pi;d;\check{S}^{*})\#0_{0}(S_{2};\pi;d;\check{S}^{*}))$

$=0_{0}(S;\pi;d;\check{S}^{*})$ .

Thus, $O_{0}(\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0(O_{0}(\pi;d;\check{S}^{*})$ by proposition 2. Henoe we can transform $\pi^{\prime}$

to an $(S^{*})$ -strongly normal derivation with the same end sequent, by induction
hypothesis.

(1.2) The other case.
Sinoe the proceeding case does not hold, there exists a formula $A(B)$ which

is a descendant of the antecedent (sucoedent) formula of $\hat{S}$ and occurs in $\check{S}$ .
If $A$ is atomic, then $B$ is also atomic and henoe it is clear that we can obtain

a desired derivation.
So, we assume that $A$ contains at least one logical symbol. Then both $A$ and

$B$ are in $\check{S}^{*}$ , because both $A$ and $B$ are obtained from the formulas in $\hat{S}$ by at
least one substitution. Thus it is clear that we can obtain a desired derivation.

(2) The case where $\pi$ includes no boundary inferenoes.
Then $\pi$ includes no logical initial sequents. Thus we can obtain a desired

derivation, sinoe the mathematical initial sequents are closed under cuts.

(3) The case where $\pi$ includes at least one $(\check{S}^{*})$ -explicit inferenoe which is
reducible with respect to $AI_{\xi}^{-}$ .

Let $I$ be such an inferenoe. Since the other cases are treated similarly, we
shall consider the case where $I$ is a $\wedge$ : left.
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Assume that $\pi$ is of the form:

$\pi_{1}$

.

$ A,\Lambda\rightarrow s_{1}\Pi$

$ A\wedge B,\Lambda\rightarrow s\Pi$

:

Let $ h_{0}(S_{1} ; \pi)=\rho$ and $ h_{0}(S;\pi)=\sigma$ and let $\Lambda^{*}\rightarrow\Pi^{*}$ be the sequent obtained from
$S$ by deleting the $(\check{S}^{*})$ -explicit formulas. By our assumption, $\rightarrow A$ is derivable in
$AI_{\xi}^{-}$ . So, let $\hat{\pi}$ be a derivation $of\rightarrow A$ . Note that $\hat{\pi}$ contains no substitutions.
Then we reduoe $\pi$ to the derivation $\pi^{\prime}$ :

$\hat{\pi}^{:}$

$\pi_{1}$ :
$\frac{\rightarrow AA,\Lambda\rightarrow^{l}\Pi\hat{s}s}{\Lambda\rightarrow\Pi}$

$ A\wedge B,\Lambda\rightarrow s\Pi$

:

Let $d^{\prime}$ by the mapping from the set of substitutions in $\pi^{\prime}$ to the ordinals less than
$\xi$ such that, for each substitution $J^{\prime}$ of in $\pi^{\prime},$ $d^{\prime}(J^{\prime})=d(J)$ , where $J$ is the
corresponding one in $\pi$ . The letter $d^{\prime}$

’ is also used to denote the restriction of $d^{\prime}$

to the set of substitutions in $\pi_{1}$ . Since $\pi_{1}$ and $\hat{\pi}$ include no substitutions,
$\langle\pi^{\prime};d‘; \check{S}^{*}\rangle$ is a derivation with degree. Then we shall prove $0_{0}(S;\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0$

$O_{0}(S;\pi;d;\check{S}^{*})$ . At first, we have

$O_{0}(S_{1} ; \pi^{\prime};d^{\prime};\check{S}^{*})=O_{p}(S_{1} ; \pi_{1} ; d^{\prime};A,\Lambda^{*}\rightarrow\Pi^{*})$

$\underline{<<}00_{\rho}(S_{1} ; \pi_{1} ; d^{\prime};\Lambda^{*}\rightarrow\Pi^{*})$

$=O_{0}(S_{1} ; \pi;d;S^{*})$ .

Next we shall note that every logical inferenoe in $\hat{\pi}$ is $(\check{S}^{*})$ -implicit in $\pi^{\prime}$ . Thus,
$O_{0}(\hat{S};\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0(\xi, 1,0)$ . So

$0_{0}(S;\pi^{\prime};d^{\prime};\check{S}^{*})=\xi(\rho-\sigma, 0, O_{0}(\hat{S};\pi^{\prime};d^{\prime};\check{S}^{*})\#0_{0}(S_{1} ; \pi^{\prime};d^{\prime};\check{S}^{*}))$

$\ll 0\xi(\rho-\sigma,0, (\xi, 1,0)\#0_{0}(S_{1} ; \pi;d;\check{S}^{*}))$

$=O_{0}(S;\pi;d;\check{S}^{*})$ .
So, $O_{0}(\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(\pi;d;\check{S}^{*})$ by proposition 2. Hence we can transform $\pi^{\prime}$ to
an $(S^{*})$ -strongly normal derivation with the same end sequent, by induction
hypothesis.
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(4) The case where $\pi$ includes at least one equality which belongs to the
boundary of $\pi$ .

Assume that $\pi$ is of the form:

: : :

$\frac{\Lambda\rightarrow\Pi,t=s\Lambda\rightarrow\Pi,F(t)F(s),\Lambda\rightarrow\Pi s_{1}s_{2}s_{3}}{s}$

$\Lambda\rightarrow\Pi$

:
$\Gamma\rightarrow\Delta$

Let $ h_{0}(S_{1} ; \pi)=\rho$ and $ h_{0}(S;\pi)=\sigma$ and let $\Lambda^{*}\rightarrow\Pi^{*}$ be the sequent obtained from
$S$ by deleting the $(S^{*})$ -explicit formulas in $\pi$ .

(4.1) The case where $t=s$ has no free individual variables.

(4.1.1) The case where $t=s$ is tme under the standard interpretation.
We reduoe $\pi$ to the following derivation $\pi^{\prime}$ :

:
:

$ F(s),\Lambda\rightarrow s_{3}\Pi$

$\frac{\Lambda\rightarrow\Pi,F(t)F(t),\Lambda\rightarrow\Pi s_{2}}{s}$

$\Lambda\rightarrow\Pi$

:

Let $d^{\prime}$ be the mapping from the set of substitutions in $\pi^{\prime}$ to the ordinals less than
$\xi$ such that, for each substitution $J^{\prime}$ in $\pi^{\prime},$ $d^{\prime}(J^{\prime})=d(J)$ , where $J$ is the cor-
responding one in $\pi$ . Then \langle rf; $ d^{\prime};\check{S}^{*}\rangle$ is a derivation with degree. Next we shall
show that $O_{0}(S;\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(S;\pi;d;\check{S}^{*})$ .

$0_{0}(S;\pi^{\prime};d^{\prime};\check{S}^{*})=\xi(\rho-\sigma, 0,0_{0}(S_{2};\pi^{\prime};d^{\prime};\check{S}^{*})\# O_{0}(S_{3};\pi^{\prime};d^{\prime};\check{S}^{*}))$

$\ll 0\xi(\rho-\sigma,0, O_{0}(S_{1};\pi;d;\check{S}^{*})\# O_{0}(S_{2};\pi;d;\check{S}^{*})\# O_{0}(S_{3};\pi;d;\check{S}^{*}))$

$=O_{0}(S;\pi;d;\check{S}^{*})$ .

Thus, $O_{0}(\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(\pi;d;\check{S}^{*})$ by proposition 2. Hence we can transform rd
to an $(S^{*})$ -strongly normal derivation with the same end sequent, by induction
hypothesis.

(4.1.2) The case where $t=s$ is false under the standard interpretation.
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Then the sequent $t=s\rightarrow is$ a mathematical initial sequent. So, we reduoe $\pi$

to the following derivation $\pi^{\prime}$ ;

:

$\frac{\Lambda\rightarrow\Pi,t=st=s\rightarrow}{s}$

$\Lambda\rightarrow\Pi$

.
Let $d^{\prime}$ be the mapping from the set of substitutions in $\pi^{\prime}$ to the ordinals less than
$\xi$ such that, for each substitution $J^{\prime}$ in $\pi^{\prime},$ $d^{\prime}(J^{\prime})=d(J)$ , where $J$ is the cor-
responding one in $\pi$ . Then $\langle\pi^{\prime};d‘; \check{S}^{*}\rangle$ is a derivation with degree. We can show
that $O_{0}(S;\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(S;\pi;d;\check{S}^{*})$ . Thus, $O_{0}(\pi^{\prime};d^{\prime};\check{S}^{*})\ll 00_{0}(\pi;d;\check{S}^{*})$ by
proposition 2. Henoe we can transform $\pi^{\prime}$ to an $(S^{*})$ -strongly normal derivation
with the same end sequent, by induction hypothesis.

(4.2) The case where $F(t)$ is identical with $F(s)$ .
Similar to the case (4.1.1).

(4.3) The case where $I$ is inessential.
Then we constmct the following derivations $\pi_{1},$ $\pi_{2}$ and $\pi_{3}$ from $\pi$ .

$\pi_{1}$ $\pi_{2}$ $\pi_{3}$

$\Lambda\rightarrow\prod_{:}^{:},$

$t=s\overline{\overline{\Lambda\rightarrow t.=s,\Pi}}$

$\frac{\underline{\Lambda\rightarrow\Pi,F(t)}}{\Lambda\rightarrow F(t),\Pi}$

:
$\frac{\underline{F(s),\Lambda\rightarrow\Pi}}{\Lambda,F(s)\rightarrow\Pi}:$

:
$\Gamma\rightarrow t=s,$ $\Delta$ $\Gamma\rightarrow F^{\prime}(t),$ $\Delta$ $\Gamma,F^{\prime}(s)\rightarrow\Delta$ ,

where $F^{\prime}(t)$ and $F^{\prime}(s)$ are formulas obtained from $F(t)$ and $F(s)$ by some
substitutions, respectively. Let $d_{i}$ be the mapping from the set of substitutions in
$\pi_{i}$ to the ordinals less than $\xi$ such that, for each substitution $J^{\prime}$ in $\pi_{i},$ $d_{i}(J^{\prime})=$

$d(J)$ , where $J$ is the corresponding one in $\pi$ . Then $\langle\pi_{1};d_{1};\Gamma^{*}\rightarrow t=s, \Delta^{*}\rangle$ ,
\langle $\pi_{2};d_{2};\Gamma^{*}\rightarrow F$‘(t), $\Delta^{*}\rangle$ and $\langle\pi_{3}; d_{3}; \Gamma^{*},F^{\prime}(s)\rightarrow\Delta^{*}\rangle$ are derivations with degree.
Because $t=s,$ $F^{\prime}(t)$ and $F^{\prime}(s)$ are explicit in $\pi_{1},$ $\pi_{2}$ and $\pi_{3}$ , respectively. We can
prove the following facts:

$O_{0}(\pi_{1} ; d_{1} ; \Gamma^{*}\rightarrow t=s, \Delta^{*})\ll 0O_{0}(\pi;d;\check{S}^{*})$ .

$0_{0}(\pi_{2};d_{2};\Gamma^{*}\rightarrow F^{\prime}(t), \Delta^{*})\ll 0O_{0}(\pi;d;\check{S}^{*})$ .

$O_{0}(\pi_{3}; d_{3}; \Gamma^{*},F^{\prime}(s)\rightarrow\Delta^{*})\ll 00_{0}(\pi;d;\check{S}^{*})$ .
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By induction hypothesis, we can transform $\pi_{1}$ to a derivation $\pi^{\prime_{1}}$ whose end
sequent is $\Gamma\rightarrow t=s,$ $\Delta$ and which is $(\Gamma^{*}\rightarrow t=s, \Delta^{*})$ -strongly normal, and $\pi_{2}$ to
a derivation $\pi_{2}^{\prime}$ whose end sequent is $\Gamma\rightarrow F^{\prime}(t),$ $\Delta$ and which is $(\Gamma^{*}\rightarrow F^{\prime}(t), \Delta^{*})-$

strongly normal, and $\pi_{3}$ to a derivation $\pi_{3}^{\prime}$ whose end sequent is $\Gamma,$ $ F^{\prime}(s)\rightarrow\Delta$ and
which is $(\Gamma^{*}, F^{\prime}(s)\rightarrow\Delta^{*})$ -strongly normal. We define the derivation $\pi^{\prime}$ as follows:

$\pi^{\prime_{1}}$ : $\pi_{2}^{\prime}$ : $\pi_{3}^{\prime}$ :

$\overline{\overline{\Gamma\rightarrow\Delta,t=}}\Gamma\rightarrow t=s,$
$\Delta_{S}$

$\overline{\overline{\Gamma\rightarrow\Delta^{\prime}F(t)}}\Gamma\rightarrow F(t),\Delta$ $\overline{\overline{F(s)^{\prime},\Gamma\rightarrow\Delta}}\Gamma,F(s)\rightarrow\Delta$

$\overline{\Gamma\rightarrow\Delta}$

Then $\pi^{\prime}$ is $(\check{S}^{*})$ -strongly normal, because the free individual variables in $t$ or $s$

ooeur in $\Gamma$ or $\Delta$ .

(5) The case where $\pi$ includes at least one induction which belongs to the
boundary of $\pi$ .

Similar to the case (4) (cf. [9]).

(6) The case where $\pi$ includes at least one explicit logical inferenoe which
belongs to the boundary of $\pi$ .

Let $I$ be such an inferenoe. Sinoe the other cases are treated similarly, we
shall consider the case where $I$ is a $\forall:left$ .

Assume that $\pi$ is of the form:
:

$\frac{A(t),\Lambda\rightarrow\Delta}{\forall xA(x),\Lambda\rightarrow\Delta}I$

:
$\Gamma\rightarrow\Delta$

(6.1) The case where $I$ is $(\check{S}^{*})$ -explicit.
We shall note that $\Gamma$ includes the formula which is a descendant of $\forall xA(x)$

and is of the form $\forall xA^{\prime}(x)$ , where $A^{\prime}(x)$ is a formula obtained from $A(x)$ by
some term-replaoements. We reduoe $\pi$ to the following derivation $\pi^{\prime}$ :

:
$ A(t),\Lambda\rightarrow\Delta$

$\overline{\overline{\forall xA(x),\Lambda,A(t)\rightarrow\Delta}}$

:
$\Gamma,$ $ A^{\prime}(t)\rightarrow\Delta$

where $A^{\prime}(t)$ is the formula obtained from $A^{\prime}(x)$ by substituting $\iota$ for $x$ . Note that
$A(t)$ and its desoendants in $\pi^{\prime}$ contain no eigenvariables of substitutions in $\pi^{\prime}$ ,
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since $\forall xA(x)$ is $(\check{S}^{*})$ -explicit in $\pi$ . Let d’ be the mapping from the set of
substitutions in $\pi^{\prime}$ to the ordinals less than $\xi$ such that, for each substitution $J^{\prime}$ in
$\pi^{\prime},$ $d^{\prime}(J^{\prime})=d(J)$ , where $J$ is the corresponding one in $\pi$ . Then, $\langle\pi^{\prime};d^{\prime};\Gamma^{*}\rightarrow\Delta^{*}\rangle$

is a derivation with degree. We can show that $O_{0}(\pi^{\prime};d^{\prime};\Gamma^{*}\rightarrow\Delta^{*})\ll 00_{0}(\pi;d;\check{S}^{*})$ .
Thus, we can transform $\pi^{\prime}$ to a derivation $\hat{\pi}$ whose end sequent is $\Gamma,$ $ A^{\prime}(t)\rightarrow\Delta$

and which is $(\Gamma^{*}\rightarrow\Delta^{*})$ -strongly normal, by induction hypothesis. Then we shall
define the derivation $\tilde{\pi}$ as follows:

$\hat{\pi}$ :

$\frac{A\prime\overline{\overline{(t)^{\prime},\Gamma\rightarrow\Delta}}\Gamma_{/}A(t)\rightarrow\Delta}{\forall xA(x),\Gamma\rightarrow\Delta}$

$\overline{\overline{\Gamma\rightarrow\Delta}}$

Then $\tilde{\pi}$ is $(\check{S}^{*})$ -strongly normal, because the free individual variables in $t$ occur in
$\Gamma$ or $\Delta and\rightarrow A^{\prime}(t)$ is not derivable in $AI_{\xi}^{-}$ by our assumption.

(6.2) The case where $I$ is $(\check{S}^{*})$ -implicit.
At first, note that $\Gamma$ includes the formula which is a descendant of $\forall xA(x)$

and of the form $\forall xA^{\prime}(x)$ , where $A^{\prime}(x)$ is a formula obtained from $A(x)$ by some
substitutions and some term-replacements. We reduoe $\pi$ to a derivation $\pi^{\prime\prime}$ similar
to $\pi$

‘ in the case (6.1). Let d’ be the mapping from the set of substitutions in $\pi^{\prime\prime}$ to
the ordinals less than $\xi$ such that, for each substitution $J^{\prime}$ in $\pi^{\prime\prime},$ $d^{\prime}(J^{\prime})=d(J)$ ,
where $J$ is the corresponding one in $\pi$ . Then $\langle\pi^{l/};d^{\prime};\Gamma^{*},A^{\prime}(t)\rightarrow\Delta^{*}\rangle$ is a deriva-
tion with degree. We can show that $O_{0}(\pi^{\prime\prime};d^{\prime};\Gamma^{*},A^{\prime}(t)\rightarrow\Delta^{*})\ll 0O_{0}(\pi;d;\check{S}^{*})$ .
So, we can transform $\pi^{\prime\prime}$ to a derivation $\hat{\pi}$ whose end sequent is $\Gamma,$ $ A^{\prime}(t)\rightarrow\Delta$

and which is $(\Gamma^{*},A^{\prime}(t)\rightarrow\Delta^{*})$ -strongly normal, by induction hypothesis. From $\hat{\pi}$,
we shall constmct a derivation $\tilde{\pi}^{\prime}$ similar to $\tilde{\pi}$ in the case (6.1). Then cr is $(\check{S}^{*})-$

strongly normal.

(7) The case where $\pi$ includes at least one explicit inferenoe for $Q^{\mathfrak{B}}$ or $Q_{\prec}^{\mathfrak{B}}$ ,
which belongs to the boundary of $\pi$ .

Let $I$ be such an inferenoe. Sinoe the other cases are treated similarly, we
shall consider the case where $I$ is a $Q^{\mathfrak{B}}:1eft$ .

Assume that $\pi$ is of the form:

. :

$\frac{\Lambda\rightarrow\Pi,t\prec\xi \mathfrak{B}(V,Q_{\prec t},t,s),\Lambda\rightarrow\Pi}{Qts,\Lambda\rightarrow\Pi}I$

:
$\Gamma\rightarrow\Delta$
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We shall note that $\Gamma$ includes the formula which is a descendant of $Qts$ and is
of the form $Qt^{\prime}s^{\prime}$ , where $Qt^{\prime}s^{\prime}$ are a formula obtained from $Qts$ by some term-
replacements. We reduoe $\pi$ to the following derivations $\pi_{1}$ and $\pi_{2}$ :

$\pi_{1}$

$\pi_{2}$. .
.

$\frac{\Lambda\rightarrow\Pi,t\prec\xi}{Qts,\Lambda\rightarrow t\prec\xi,\Pi}$ $\overline{\overline{Qts,\Lambda,\mathfrak{B}(V,Q^{S_{\prec t}},t,s)\Pi}}\mathfrak{B}(V,Q_{\prec t},t,),\Lambda\rightarrow\prod_{\rightarrow}$

. :
$\Gamma\rightarrow t^{\prime}\prec\xi,$ $\Delta$ $\Gamma,$ $\mathfrak{B}(V^{\prime}, Q_{\prec t^{\prime}}, t^{\prime},s^{\prime})\rightarrow\Delta$ ,

where $\mathfrak{B}(V^{\prime}, Q_{\prec t^{\prime}}, t^{\prime},s^{\prime})$ is a formula obtained from $\mathfrak{B}(V, Q_{\prec t}, t,s)$ by some
substitutions and some term-replaoements. Let $d_{i}$ be the mapping from the set of
substitutions in $\pi_{i}$ to the ordinals less than $\xi$ such that, for each substitution $J^{\prime}$ in
$\pi_{i},$ $d_{i}(J^{\prime})=d(J)$ , where $J$ is the corresponding one in $\pi$ . Note that, in $\pi_{2}$ ,
$\mathfrak{B}(V, Q_{\prec t}, t,s)$ and its desoendants are $(\Gamma^{*}, \mathfrak{B}(V^{\prime}, Q_{\prec t^{\prime}}, t^{\prime},s^{\prime})\rightarrow\Delta^{*})$ -implicit and
explicit. Thus $\langle\pi_{1} ; d_{1} ; \Gamma^{*}\rightarrow t^{\prime}\prec\xi, \Delta^{*}\rangle$ and $\langle\pi_{2};d_{2};\Gamma^{*}, \mathfrak{B}(V^{\prime}, Q_{\prec t^{\prime}}, t^{\prime},s^{\prime})\rightarrow\Delta^{*}\rangle$

are derivations with degree. We can prove the following facts:

$0_{0}(\pi_{1} ; d_{1} ; \Gamma^{*}\rightarrow t^{\prime}\prec\xi,\Delta^{*})\ll 00_{0}(\pi;d;\check{S}^{*})$

$0_{0}(\pi_{2};d_{2};\Gamma^{*}, \mathfrak{B}(V^{\prime}, Q_{\prec t}/, t^{\prime},s^{\prime})\rightarrow\Delta^{*})\ll 0O_{0}(\pi;d;\check{S}^{*})$ .

By induction hypothesis, we can transform $\pi_{1}$ to a derivation $\pi_{1}^{\prime}$ whose end
sequent is $\Gamma\rightarrow t^{\prime}\prec\xi,$ $\Delta$ and which is $(\Gamma^{*}\rightarrow t^{\prime}\prec\xi, \Delta^{*})$ -strongly normal. And
also we can transform $\pi_{2}$ to a derivation $\pi_{2}^{\prime}$ whose end sequent is $\Gamma$ ,
$\mathfrak{B}(V^{\prime}, Q_{\prec t}/, t^{\prime}, s^{\prime})\rightarrow\Delta$ and which is $(\Gamma^{*}, \mathfrak{B}(V^{\prime}, Q_{\prec t^{\prime}}, t^{\prime}, s^{\prime})\rightarrow\Delta^{*})$ -strongly normal.
Then we shall define the derivation $\pi^{\prime}$ as follows:

$\pi^{t_{1}}$ : $\pi_{2}^{\prime}$ :

$\frac{\frac\Gamma\rightarrow\Delta^{\prime},t\prec\xi \mathfrak{B}(V,Q_{\prec t^{\prime}}^{\prime},t,s^{\prime}),\Gamma\rightarrow\Delta\underline{\Gamma\rightarrow t\prec_{/}\xi,\Delta}\underline{\underline{\Gamma,\mathfrak{B}(V,Q_{\prec t^{\prime}},t,s^{\prime})\rightarrow\Delta}}}{Qt^{\prime}s^{\prime},\Gamma\rightarrow\Delta}$

$\overline{\overline{\Gamma\rightarrow\Delta}}$

Then $\pi^{\prime}$ is $(\check{S}^{*})$ -strongly normal, because the free individual variables in $V^{\prime},$
$t^{\prime}$ or

$s$
‘ occur in $\Gamma$ or $\Delta$ .
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(8) The case where all the inferences which belong to the boundary of $\pi$ are
implicit inferences.

Then there is at least one suitable cut. Let $I$ be a suitable cut. We shall
consider the cases where the cut formula of $I$ is of the form $Qts$ or $Q_{\prec u}ts$ .

(8.1) The case where the cut formula of $I$ is of the form $Qts$ .
Assume that $\pi$ is of the form:

. . $\pi_{2l}$ : .

$\frac{\Lambda_{1}\rightarrow\Pi_{1},t_{1}\prec\xi\Lambda_{1}\rightarrow\Pi_{1},\mathfrak{B}(X,Q_{\prec t_{1}},t_{1},s_{1})}{\Lambda_{1^{\rightarrow}}^{S_{1}}\Pi_{1},Qt_{1},s_{1}}$
$\frac{\Lambda_{2^{\rightarrow\Pi_{2},t_{2}\prec\xi \mathfrak{B}(V,Q_{\prec t_{2}},t_{2},s_{2}),\Lambda_{2}\rightarrow\Pi_{2}}}^{\Cryllic_be S_{2r}}}{Qt_{2}s_{2},\Lambda_{2^{\rightarrow\Pi}}^{S_{2}}2}$

: :

$\frac{\Lambda_{3^{\rightarrow\Pi_{3},QtsQts,\Lambda_{4}\rightarrow\Pi_{4}}}^{s_{3}s_{4}}}{\Lambda_{3},\Lambda_{4^{\rightarrow}}^{S_{5}}\Pi_{3},\Pi_{4}}I$

:

$\underline{\Lambda}.\Pi_{I_{0}}$

:
$\Gamma\rightarrow\Delta$

Let $j=d(\mathfrak{B}(X, Q_{\prec t}, t,s))$ and let $S$ be the j-resolvent of $S_{5}$ , i.e. the upper sequent
of the uppermost substitution $I_{0}$ under $S_{5}$ whose degree is not greater than $j$, if
such exists; otherwise, the end sequent of $\pi$ . Assume that $h_{0}(S_{2l};\pi)=\rho_{2l}$ and
$h_{0}(S_{2};\pi)=\rho_{2}$ . And also assume that the sequent $\Lambda_{2}^{*}\rightarrow\Pi_{2}^{*},$ $ t_{2}\prec\xi$ is the sequent
obtained from $S_{2l}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi$ .

(8.1.1) The case where $Qts$ is not closed.
We reduoe $\pi$ to the following derivations $\pi_{1}$ and $\pi_{2}$ :

$\pi_{1}$ $\pi_{2}$

: .

$\overline{\overline{\Lambda_{3},\Lambda_{4}^{S_{5}^{3}}}}\Lambda_{3_{\rightarrow Qts,\Pi_{3},\Pi_{4}}^{\rightarrow\Pi_{3},Qts}}^{S}$ $\overline{\overline{\Lambda_{3},\Lambda,Qs^{S_{5}^{4}}}}Q_{4}ts,\Lambda_{t^{4}\rightarrow\Pi_{3}^{4},\Pi_{4}}^{S}\rightarrow\Pi$

: :
$\Gamma\rightarrow Qts,$ $\Delta$

$\Gamma,$ $ Qts\rightarrow\Delta$
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Let $d_{i}$ be the mapping from the set of substitutions in $\pi_{j}$ to the ordinals less than
$\xi$ such that, for each substitution $J^{\prime}$ in $\pi_{i},$ $d_{i}(J^{\prime})=d(J)$ , where $J$ is the cor-
responding one in $\pi$ . Then $\langle\pi_{1} ; d_{1} ; \Gamma^{*}\rightarrow Qts, \Delta^{*}\rangle$ and $\langle\pi_{2};d_{2};\Gamma^{*}, Qts\rightarrow\Delta^{*}\rangle$ are
derivations with degree. We shall prove $0_{0}(S_{5};\pi_{1};d_{1};\Gamma^{*}\rightarrow Qts, \Delta^{*})\ll 0$

$O_{0}(S_{5};\pi;d;\check{S}^{*})$ .

$O_{0}(S_{5};\pi_{1} ; d_{1} ; \Gamma^{*}\rightarrow Qts,\Delta^{*})=O_{0}(S_{3};\pi_{1} ; d_{1} ; \Gamma^{*}\rightarrow Qts, \Delta^{*})$

$=0_{0}(S_{3};\pi;d;\check{S}^{*})$

$\ll 00_{0}(S_{3};\pi;d;\check{S}^{*})\#0_{0}(S_{4};\pi;d;\check{S}^{*})$

$=0_{0}(S_{5};\pi;d;\check{S}^{*})$

So, we can transform $\pi_{1}$ into a derivation $\pi^{\prime_{1}}$ whose end sequent is $\Gamma\rightarrow Qts,$ $\Delta$

and which is $(\Gamma^{*}\rightarrow Qts, \Delta^{*})$ -strongly normal by induction hypothesis. Similarly,
we have $O_{0}(S_{5};\pi_{2};d_{2};\Gamma^{*}, Qts\rightarrow\Delta^{*})\ll 00_{0}(S_{5}; \pi;d;\check{S}^{*})$ . Henoe, we can transform
$\pi_{2}$ into a derivation $\pi_{2}^{\prime}$ whose end sequent is $\Gamma,$ $ Qts\rightarrow\Delta$ and which is
$(\Gamma^{*}, Qts\rightarrow\Delta^{*})$ -strongly normal. We shall define $\pi^{\prime}$ as follows:

$\pi_{1}^{\prime}$ : $\pi_{2}^{\prime}$ :

$\frac{\overline{\overline{\Gamma\rightarrow\Delta,Qts}}\overline{\overline{Qts,\Gamma\rightarrow\Delta}}\Gamma\rightarrow Qts,\Delta\Gamma,Qts\rightarrow\Delta}{\Gamma,\Gamma\rightarrow\Delta,\Delta,\overline{\overline{\Gamma\rightarrow\Delta}}}$

Then $\pi^{\prime}$ is $(\check{S}^{*})$ -strongly normal, because the free individual variables in $t$ or $s$

occur in $\Gamma$ or $\Delta$ .

(8.1.2) The case where $Qts$ is closed.

(8.1.2.1) The case where $ t\prec\xi$ is tme under the standard interpretation.
We reduce $\pi$ to the derivation $\pi^{\prime}$ :
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:

$\overline{\overline{\Lambda_{1}\rightarrow \mathfrak{B}(X,Q_{\prec t_{1}},t_{1},s_{1})^{1},\Pi_{1}^{1},Qt_{1}s_{1}}}\Lambda_{1}\rightarrow\Pi_{1},$

$\mathfrak{B}(X,Q_{\prec t},t,s_{1})$

: :

$\frac{\Lambda_{3}\rightarrow \mathfrak{B}(X,Q_{\prec t},t,s),\Pi 3QtsQts,\Lambda_{4}\rightarrow\Pi_{4}}{\Lambda_{3},\Lambda_{4}\rightarrow \mathfrak{B}(X,Q_{\prec t},t,s),\Pi_{3},\Pi_{4}}$

:

$\frac\frac{\Lambda\rightarrow \mathfrak{B}(X,Q_{\prec t},t,s),\Pi}{\Lambda\rightarrow\Pi,\mathfrak{B}(X,Q_{\prec t},t,s),\Lambda\rightarrow\Pi,\mathfrak{B}(V,Q^{\prec t},t,s)}J_{0}$ $\frac{\underline{\mathfrak{B}(V,Q_{\prec t_{2}},t_{2},s_{2}),\Lambda_{2}\rightarrow\Pi_{2}:s_{2r}}}{\mathfrak{B}(V,Q_{\prec t},t,s),\Lambda_{2}\rightarrow\Pi_{2}}$

$\Lambda,\Lambda_{2}\rightarrow\Pi,$ $\Pi_{2}$

$Qt_{2}s_{2},\Lambda_{2},\Lambda\rightarrow^{\prime}s_{2}\Pi,$
$\Pi_{2}$

: :

$\Lambda_{3}\rightarrow\Pi_{3},$ $Qts$
$Qts,\Lambda_{A},\Lambda\rightarrow\Pi,$ $\Pi_{4}$

$\Lambda_{3},$ $\Lambda_{4},\Lambda\rightarrow\Pi,$ $\Pi_{3},$ $\Pi_{4}$

$\Lambda,\Lambda\rightarrow\Pi,$

$\Pi\overline{\overline{s}}$

:

$\underline{\Lambda\rightarrow\Pi}_{I_{0}}:$.
$\Gamma\rightarrow\Delta$

Let $d^{\prime}$ be the mapping from the set of substitutions in $\pi$
‘ to the ordinals less than

$\xi$ such that, for each substitution $J^{\prime}$ in $\pi^{\prime}$ except $J_{0},$ $d^{\prime}(J^{\prime})=d(J)$ , where $J$ is the
corresponding one in $\pi$ and $d(J_{0})=j$ . We shall note the following facts:

1. $d(\mathfrak{B}(X, Q_{\prec t}, t,s))=j\prec J\oplus 1=d(Qts)=d(Qt_{1}s_{2})=d(Qt_{2}s_{2})$ .
2. For each formula $A$ in $\Lambda$ or $\Pi,$ $d(A)\preceq j$ by the definition of $I_{0}$ .

By the above facts, we can show that $\langle\pi^{\prime};d^{\prime};\check{S}^{*}\rangle$ is a derivation with degree.
Next we shall prove $O_{0}(I_{0};\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(I_{0};\pi;d;\check{S}^{*})$ . Since

$O_{0}(S_{2};\pi;d;\check{S}^{*})=\xi(\rho_{2l}-\rho_{2},0, O_{0}(S_{2l};\pi;d;\check{S}^{*}))\# O_{0}(S_{2r};\pi;d;\check{S}^{*})\#(\xi, 0,0))$

and

$O_{0}(S_{2}^{\prime};\pi^{\prime};d^{\prime};\check{S}^{*})=\xi(\rho_{2l}-\rho_{2},0, (j,0, O_{0}(J_{0};\pi^{\prime};d^{\prime};\check{S}^{*}))\# O_{0}(S_{2r};\pi^{\prime};d^{\prime};\check{S}^{*}))$ ,
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$O_{0}(S_{2}^{\prime};\pi^{\prime};d^{\prime};\check{S}^{*})\ll J+1O_{0}(S_{2};\pi;d;\check{S}^{*})$ . Henoe $O_{0}(I_{0};\pi^{\prime};d^{\prime};\check{S}^{*})\ll J+1O_{0}(I_{0};\pi;d;\check{S}^{*})$ .
We shall note that $O_{0}(J_{0};\pi^{\prime};d‘; \check{S}^{*})$ is the only one j-section (cf. [11]) which occurs
in $O_{0}(I_{0};\pi^{\prime};d^{\prime};\check{S}^{*})$ and does not occur in $O_{0}(I_{0};\pi;d;\check{S}^{*})$ and every k-section
$(k<j)$ in $O_{0}(I_{0};\pi^{\prime};d^{\prime}; \check{S}^{*})$ occurs in $O_{0}(I_{0};\pi;d;\check{S}^{*})$ . So, in order to show that
$O_{0}(I_{0};\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(I_{0};\pi;d;\check{S}^{*})$ , it suffioes to show that $O_{0}(J_{0};\pi^{\prime};d^{\prime};\check{S}^{*})<j$

$O_{0}(I_{0};\pi;d;\check{S}^{*})$ . But it is clear, because $0_{0}(J_{0};\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(I_{0};\pi;d;\check{S}^{*})$ . Henoe
we have $O_{0}(I_{0};\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(I_{0};\pi;d;\check{S}^{*})$ . Thus, we have $O_{0}(\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0$

$O_{0}(\pi;d;\check{S}^{*})$ by proposition 2. Henoe we can transform $\pi^{\prime}$ to an $(S^{*})$ -strongly
normal derivation with the same end sequent, by induction hypothesis.

(8.1.2.2) The case where $ t\prec\xi$ is false under the standard interpretation.
We reduoe $\pi$ to the derivation $\pi^{\prime}$ :

$\pi_{2l}$

$\frac{\Lambda_{2^{\rightarrow\Pi_{2},t_{2}\prec\xi t_{2}\prec\xi\rightarrow}}^{s_{2l}\hat{s}}}{\Lambda_{2}\rightarrow\Pi_{2}}$

$Qts,\Lambda_{2}\rightarrow s_{2}\Pi_{2}$

:

Let d’ be the mapping from the set of substitutions in $\pi^{\prime}$ to the ordinals less than
$\xi$ such that, for each substitution $J^{\prime}$ in $\pi^{\prime},$ $d^{\prime}(J^{\prime})=d(J)$ , where $J$ is the cor-
responding one in $\pi$ . Then $\langle\pi^{\prime};d^{\prime};\check{S}^{*}\rangle$ is a derivation with degree. The letter $d^{\prime}$

’

is also used to denote the restriction of $d^{\prime}$ to the set of substitutions in $\pi_{2l}$ . We
shall show that $O_{0}(S_{2};\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(S_{2};\pi;d;\check{S}^{*})$ . Then, note that
$h_{0}(S_{2l};\pi^{\prime})=\rho_{2}$ .

$O_{0}(S_{2l};\pi^{\prime};d^{\prime};\check{S}^{*})=0_{p_{2}}(S_{2l};\pi_{2l};d^{\prime};\Lambda_{2}^{*}\rightarrow\Pi_{2}^{*}, t_{2}\prec\xi)$

$\leq 0\xi(\rho_{2l}-\rho_{2},0, O_{p_{2l}}(S_{2l};\pi_{2l};d^{\prime};\Lambda_{2}^{*}\rightarrow\Pi_{2}^{*}, t_{2}\prec\xi))$

$=\xi(\rho_{2l}-\rho_{2},0, O_{0}(S_{2l};\pi;d;\check{S}^{*}))$ .

Thus,

$O_{0}(S_{2};\pi^{\prime};d^{\prime};\check{S}^{*})=O_{0}(S_{2l};\pi^{\prime};d^{\prime};\check{S}^{*})\# 0$

$\leq 0\xi(\rho_{2l}-\rho_{2},0, O_{0}(S_{2l};\pi;d;\check{S}^{*}))\# 0$

$\ll 0\xi(\rho_{2l}-\rho_{2},0, O_{0}(S_{2l};\pi;d;\check{S}^{*})\#0_{0}(S_{2r};\pi;d;\check{S}^{*})\#(\xi,0,0))$

$=O_{0}(S_{2};\pi;d;\check{S}^{*})$ .
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So, $O_{0}(\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(\pi;d;\check{S}^{*})$ by proposition 2. Henoe we can transform $\pi^{\prime}$ to
an $(S^{*})$ -strongly normal derivation with the same end sequent, by induction
hypothesis.

(8.2) The case where the cut formulas of $I$ are of the form $Q_{\prec u}ts$ .
Assume that $\pi$ is of the form:

. . ..

$\frac{\Lambda_{1^{\rightarrow\Pi_{1},f_{1}\prec u_{1}\Lambda_{1}-\rangle}}^{s_{1l}s_{1r_{\Pi_{1},Qt_{1^{S}1}}}}}{\Lambda_{1^{\rightarrow}}^{S_{1}}\Pi_{1},Q_{\prec u_{1}}t_{1}s_{1}}$
$\frac{Qt_{2}s_{2},\Lambda_{2}\rightarrow\Pi_{2}}{Q_{\prec u_{2}}t_{2}s_{2},\Lambda_{2^{\rightarrow}}^{S_{2}}\Pi_{2}}$

: :

$\frac{\Lambda_{3}\rightarrow\Pi_{3},Q_{\prec u}tsQ_{\prec u}ts,\Lambda_{4}\rightarrow\Pi_{4}s_{3}s_{4}}{\Lambda_{3},\Lambda_{4^{\rightarrow}}^{S_{5}}\Pi_{3},\Pi_{4}}I$

$\overline{\Lambda\rightarrow\Pi^{I_{0}}s}$

:

:
$\Gamma\rightarrow\Delta$

where $S$ denotes the uppermost sequent below $I$ whose height based on $0$ is less
than that of the upper sequents of $I$. Assume that $ h_{0}(S_{3}; \pi)=\rho$ and $ h_{0}(S;\pi)=\sigma$ .
Then note that $\sigma<\rho$ by our choice of $I_{0}$ .

(8.2.1) The case where $Q_{\prec u}ts$ is not closed.
We reduoe $\pi$ to the derivation $\pi^{\prime}$ :

. :

$\frac{\Lambda_{1}-\rangle s_{1r_{\Pi_{1},Qt_{1^{S}1}}}}{\overline{s_{1}}}$
$\overline{\overline{Q_{\prec u_{2}}ts_{2}^{2},\Lambda_{2},Qt_{2}s_{2}\rightarrow\Pi_{2}}}Q_{2}ts_{2},\Lambda_{2}\rightarrow\Pi 2$

$\Lambda_{1}\rightarrow Qt_{1}s_{1}\Pi_{1},$

$Q_{\prec u_{1}}t_{1}s_{1}:$
’

: : :

$\frac{\Lambda_{3}\rightarrow Qts,\Pi_{3},Q_{\prec u}tsQ_{\prec u}ts,\Lambda_{4}\rightarrow\Pi_{4}}{s_{5}^{l}}$

$\Lambda_{3}\rightarrow\Pi_{3},$ $Q_{\prec u}ts$ $Q_{\prec u}ts,\Lambda_{A},$ $Qts\rightarrow\Pi_{4}$

$\Lambda_{3},\Lambda_{4}\rightarrow Qts,$ $\Pi_{3},$ $\Pi_{4}$

$\overline{\Lambda_{3},\Lambda_{4},Qts\rightarrow^{\prime}\Pi_{3},\Pi_{4}\prime_{5}}$

–
$I^{\prime}$

:
–

$I^{\prime\prime}$

:
$S^{\prime}$

$\Lambda\rightarrow Qts,\Pi$ $\Lambda,$
$ Qts\rightarrow^{\prime\prime}s\Pi$

$\Lambda\rightarrow\Pi,$ $Qts$
$\overline{\overline{Qts,\Lambda\rightarrow\Pi}}$

$\Lambda,\Lambda\rightarrow\Pi,\Pi\overline{\overline{s}}$

$\Lambda\rightarrow\Pi$
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Let d’ be the mapping from the set of substitutions in $\pi^{\prime}$ to the ordinals less than
$\xi$ such that, for each substitution $J^{\prime}$ in $\pi^{\prime},$ $d^{\prime}(J^{\prime})=d(J)$ , where $J$ is the cor-
responding one in $\pi$ . We shall note the following facts:

1. $d(Qts)\preceq\xi=d(Q_{\prec u}ts)$ .
2. There exist no substitutions between $S_{5}^{\prime}$ and $S^{\prime}$ .
3. There exist no substitutions between $S_{5}^{\prime\prime}$ and $S^{\prime\prime}$ .

By the above facts, it is clear that $\langle\pi^{\prime};d^{\prime};\check{S}^{*}\rangle$ is a derivation with degree. We
shall prove $O_{0}(S;\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(S;\pi;d;\check{S}^{*})$ . Sinoe we have $O_{0}(S_{1} ; \pi^{\prime};d^{\prime};\check{S}^{*})\ll 0$

$O_{0}(S_{1} ; \pi;d;\check{S}^{*})$ , we have $0_{0}(I^{\prime};\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(I;\pi;d;\check{S}^{*})$ . Similarly, we have
$O_{0}(I^{\prime\prime};\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(I;\pi;d;\check{S}^{*})$ . Note that $ h_{0}(S^{\prime}; \pi^{\prime})=h_{0}(S^{\prime\prime};\pi^{\prime})=\sigma$ . Thus,

$O_{0}(S;\pi^{\prime};d^{\prime};\check{S}^{*})=\xi(p-\sigma, 0,0_{0}(I^{\prime};\pi^{\prime};d^{\prime};\check{S}^{*}))\#\xi(p-\sigma, 0,0_{0}(I^{\prime};\pi^{\prime};d^{\prime};\check{S}^{*}))$

$\ll 0\xi(\rho-\sigma, 0, O_{0}(I;\pi;d;\check{S}^{*}))$ (becauses $\sigma<\rho$ )

$=O_{0}(S;\pi;d;\check{S}^{*})$ .

So, $O_{0}(\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(\pi;d;\check{S}^{*})$ by proposition 2. Henoe we can transform $\pi^{\prime}$ to
an $(S^{*})$ -strongly normal derivation with the same end sequent, by induction
hypothesis.

(8.2.2) The case where $Q_{\prec u}ts$ is closed.

(8.2.2.1) The case where $t\prec u$ is tme under the standard interpretation.
Similar to the case (8.2.1).

(8.2.2.2) The case where $t\prec u$ is false under the standard interpretation.
We reduoe $\pi$ to the derivation $\pi^{\prime}$ :

:
$\Lambda_{1}\rightarrow\Pi_{1},$ $t_{1}\prec u_{1}$

$\overline{\overline{\Lambda_{1^{\rightarrow^{l}t_{1}\prec u_{:^{1}}.\prime\Pi_{1},Q_{\prec u_{1}}t_{1}s_{1}}}^{S}}}$

:

$\frac{\Lambda_{3}\rightarrow t\prec u,\Pi_{3},Q_{\prec u}tsQ_{\prec u}ts,\Lambda_{4}\rightarrow\Pi_{4}}{\Lambda_{3},\Lambda_{4}\rightarrow t\prec u,\Pi_{3},\Pi_{4}}$

:
$-I^{\prime}$
$\Lambda\rightarrow t\prec u,$ $\Pi$

$\Lambda\rightarrow\Pi,$ $t\prec u$ $ t\prec u\rightarrow$

$\Lambda\rightarrow s\Pi$
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Let $d^{\prime}$ be the mapping from the set of substitutions in $\pi$
‘ to the ordinals less than

$\xi$ such that, for each substitution $J^{\prime}$ in $\pi^{\prime},$ $d^{\prime}(J^{\prime})=d(J)$ , where $J$ is the cor-
responding one in $\pi$ . Note that $d(t\prec u)=0$ . Then it is clear that $\langle\pi^{\prime};d^{\prime};\check{S}^{*}\rangle$ is a
derivation with degree. Next, we shall prove $O_{0}(S;\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(S;\pi;d;\check{S}^{*})$ .
Sinoe we have $O_{0}(S_{1};\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(S_{1};\pi;d;\check{S}^{*})$ , we have $O_{0}(I^{\prime};\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0$

$0_{0}(I;\pi;d;\check{S}^{*})$ . Thus,
$O_{0}(S;\pi^{\prime}; d^{\prime};\check{S}^{*})=\xi(\rho-\sigma, 0,0_{0}(I^{\prime}, \pi^{\prime};d^{\prime}; \check{S}^{*}))\# 0$

$\ll 0\xi(\rho-\sigma, 0, O_{0}(I;\pi;d;\check{S}^{*}))$ (because $\sigma<\rho$)
$=0_{0}(S;\pi;d;\check{S}^{*})$ .

Thus, $O_{0}(\pi^{\prime};d^{\prime};\check{S}^{*})\ll 0O_{0}(\pi;d;\check{S}^{*})$ by proposition 2. Henoe we can transform $\pi^{\prime}$

to an $(S^{*})$ -strongly normal derivation with the same end sequent, by induction
hypothesis.

This completes a proof of Lemma. $\blacksquare$
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