TSUKUBA J. MATH.
Vol. 16 No. 2 (1992), 321—334

3-DIMENSIONAL SUBMANIFOLDS OF SPHERES WITH
PARALLEL MEAN CURVATURE VECTOR*

By

Qing-ming CHENG and Bin JIANG

Abstract. In this paper, for a 3-dimensional complete submanifold
M with parallel mean curvature vector in S**+?(¢), we give a pinch-
ing condition of the Ricci curvature under which M is a 3-dimen-
sional small sphere.

1. Introduction

Let M be an n-dimensional complete submanifold immersed in a sphere
S»+P(¢). It is well-known that properties of M can be described by a pinching
condition of some curvatures. When M is a minimal submanifold or a sub-
manifold with parallel mean curvature vector, many authors studied the pinch-
ing problem with respect to the sectional curvature or the scalar curvature of
M and a lot of beautiful results were obtained. It is natural to consider
whether we can describe the properties of M by a pinching condition of the
Ricci curvature. When M is minimal, Ejiri and Shen studied the
pinching problem. Shun [6] researched compact submanifolds of a sphere with
parallel mean curvature vector for n>3. He gave a pinching condition of the
Ricci curvature under which M is totally umbilic.

In this paper, for =3, we consider same problem. That is, we prove the
following :

THEOREM 1. Let M be a 3-dimensional complete submanifold of S**?(c)(p<2)
with parallel mean curvature vector h. If

ch(M>>—3—+ CH \/1221H4+—~H2c,

then M is totally umbilic. Hence M is a 3-dimensional small sphere, where
Ric(M) and H=|h| denote the Ricci curvature and the norm of the mean cur-
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vature vector h respectively.
THEOREM 2. Let M be a 3-dimensional complete submanifold with parallel
mean curvature vector of S**P(c)(p>2). If
Ric(M)=d,

then M is totally umbilic. Hence M is a 3-dimensional small sphere, where

a3 B, L [B2L 45, 5p—p
5_Max{4c+64H +3 \/ s H 5 H e 3,

(c+H2)}.

2. Preliminaries.

Throughout this paper all manifolds are assumed to be smooth, connected
without boundary. We discuss in smooth category.

Let M be a 3-dimensional submanifold of a (3+ p)-dimensional sphere S**?(c).
We choose a local field of orthonormal frame e,, ---, es4p, in S**?(¢) and the
dual coframe w,, ---, @s4, in such a way that e,, ¢, and ¢, are tangent to M.
In the sequel, the following convention on the range of indices is used, unless

otherwised stated:
4<a, B, - £3+p.

And we agree that the repeated indices under a summation sign without indi-
cation are summed over the respective range. The connection forms {w,s} of
S#+?(¢) are characterized by the structure equations

dws—ZwapN\wp=0, wastwap=0,
2.1) dwsp—XWsc NWcp=8245,
1
Qup =—§2RQBCD(DC/\O)D ,

(2-2) RQBCDZC@ACaBD—aADaBC) ’

where Q45 (resp. R%scp) denotes the Riemannian curvature form (resp. the
components of the Riemannian curvature tensor) of S3*?(¢). Therefore the
components of Ricci curvature tensor Ric’ and the scalar curvature »’ are

given as
Rip=c(n+p—1)048, r'=n+pXn+p—1I).

Restricting these forms to M, we have

(2.3) w.=0 for a=4, -, 34+p.
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We see that e;, ¢, and e; is a local field of orthonormal frames on M and w,,
w, and w; is a local field of its dual coframes on M. It follows from [2.1),
and Cartan’s Lemma that
(2.4) Wa; =2 h§w; , hgy=h$; .
The second fundamental form a and the mean curvature vector A of M are
defined by
2.5) a=Shiwae., h=33(Shide. .
The mean curvature H is given by

.
(2.6) H=h|=3 V(T hE".

Let S=3}(h)* denote the squared norm of the second fundamental form of M.
The connection forms {w;;} of M are characterized by the structure equations

dwi-—Z}wi,-/\wij , wij+wji=O B
(2.7) dw;—Swa Nwr; =825,
1
Qij:_‘é‘zRijklwk Nwy ,

where 2;; (resp. R,;,:;) denotes the Riemannian curvature form (resp. the com-
ponents of the Riemannian curvature tensor) of M. Therefore the Gauss equa-
tion is given by, from [2.1) and [2.7),

(2.8) Rijri=¢(0:40;:—0:10;1)+2(h&h$i—h§ih$) .

The components of the Ricci curvature Ric and the scalar curvature » are
given by

(2.9) R;j1=2¢0jr+2h&h5— 2050,
(2.10) r=6¢c+9H*—3>3(h%)?.
We also have

1
AdWapg—2ZWar NWrg=— "Z“ERaﬁijwi/\ﬂ)j s

where

(2.11) Ragiy=3(hshf—hsh).

Define A%, and A%, by

(2.12) Shippor=dhG+Zhws+Zhiow—Shfwas
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Shfinor=dhr+2hinw;+Zhiwn+2h 0 — S hie.s .
The Codazzi equation and the Ricci formula for the second fundamental form
are given by
h$e—h$;=0,

(2.13) hei—hee=2hinRujni+ 20 iR mini+2hERgar:

The Laplacian Ahg% of the components hg of the second fundamental form a
is given by
Ah?j=k2 h?jkk .

From [2.13) we get
(2.14) Ah?jzkzhfkirf‘zhimfemuk+2h%1Rmkn+2hfiRﬁajk .

In this paper, we assume that the mean curvature vector A of M is parallel.
Hence the mean curvature H is constant. We choose e, such that h=He,,
then

(2.15) > hi,=3H, Shi= for any a+4,
(2.16) H,H=HH, for any «a,

where H, denotes 3X3-matrix (h%). From (2.14), we have

(2.17) > hngh?j:na h&hsm R mise

ari
+(§4h?jhﬁuRmk1k+§4hfjhftRﬁajk ,
(2.18) Shi; AR ;=2hthim Rmije + 200 R -

Define |7|2=]asitr(H2) and |o|*=tr(H}). Then S=|z|?*+|0¢|%. A submani-
fold M is said to be pseudo-umbilic if it is umbilic with respect to the direction
of the mean curvature vector h, that is

h‘%j:' Hai, .

3. Proofs of Theorems

In this section, we will give the proofs of Theorem 1 and Theorem 2. In
order to prove Theorems, at first we give the following Propositions 1 and 2.

PROPOSITION 1. Let M be a 3-dimensional complete pseudo-umbilical sub-
manifold in S**P(c)(p>1) with parallel mean curvature vector. If
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ch<M>__2(52’; 5 e+,

then M is a totally umbilical submanifold.

PROOF. Because of Ric(M)=[(5p—9)/22p—3)1(c+H?) >0, we know that M
.is a compact submanifold from Myers’ theorem (2.17) implies

3.1) T All*= 3 (h)t+ 3 hoahg,

=23 (h{e)+ 2 (hgnRmije +hmlRmkjk)hiJ+ E htjhftR/sa;k ,

a4 aF*4

a§4(hfm[3mijk +hgiRmrir)hiy

= > {tr(HoaHpg)—tr (HFHZ)} — %ﬂ {tr (HyHp)}?

a, B#4

+3€ ]T l 2+3H§1tr (HaHliHa)"“ §4 {tr (HaH4)}2
+ ;ﬂtr(HaH,,)2 Z tr(H2H?).

Since M is a pseudo-umbilical submanifold, we have H,= HI, where I is the
identity matrix. Hence

2 tr (o Ho'= 33 tr (HaHD=0,

a#4

a§4 tr (HaH4Ha):H[ 7-| ’

n;‘ {tr (H, H)}?=0 (by (2.15)).

Thus
(3.2) 2 (M Rmije+hiuiRome i)

=a'§ {tr (Ho Hp)?—tr (H3H3)} — %}4 {tr (Ho Hp)} 2 +3(c+H?) |7 |*.
3.3) ' m%ﬂ h?jh;ﬁRﬂajk=a.%,;4 {tr (Ho Hg—tr (HH})}.

According to [3.1), and (3.3), we get
1
3.4 7A1712=Z(h§"1k)2'— 2 {tr(H,Hp)}*
e a, B#4
+3(c+H?)|7|?+2 ,92 {tr {(H, Hg)*—tr (H3H})}.
a, B#4

For a suitable choice of e;, -+, ¢3:p, We can assume (p—1)X(p—1) matrix
(tr (HoHpg)) is diagonal. Hence



326 Qing-ming CHENG and Bin JiANG

(3.9) 2 {tr(HoHp)}*= 23 {tr (H3)}*

a, B#4 a#4

From Lemma 1 in [1], we have
(3.6) 2{tr (H, Hg)*—tr (H3H?})}
=—tr(H. Hs— HgH,)* = —2tr (H2) tr(H}),

and equality holds for nonzero matrices H, and Hj if and only if H, and Hg
can be transformed simultaneously by an orthogonal matrix into

1 0 O 0 1 0
H%¥=240 —1 0} and H%=g1 0 O0].
0 0 O 0 0 O
Moreover if H,,, ---, H,, satisfy

tr (Hy Ho,— Ho Ho P +2tr (H2)tr (H2,)  for 1<i, k<s,

then at most two of the matrices H,, are nonzero. Let

(p—Dos=lel?,

37) (=1DXp—2os=2 S (HD(HY).
Then

(3.8 (p=10p-Dat—o)=_3 fer(HD—tr (HP)".
Hence we obtain

(39) Al 'z 3 (b 3+ HY) 2

—2{ Ztr (H))* + 3 {er (H2)*
> —{2(p—1)—1}(p—1)at +(p— 1) p—2X a2 — o) +3(c+ H?)| 7|
>—(p—1)2p—3)at+3(c+H?)| |
1 4 2 2
=—(2— }5_—1)|r| +3(c+H?)|7|?.

On the other hand, for each fixed a4, we can choose a local field of ottho-
normal frames e,, ¢, and e; such that, from (2.16),

h}j——'H(SU and h?;zl‘i’a” .

Since tr H,=>J49=0, we have
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S Gn= 2 (DA,

that is,
1
tr H‘t,::—z— {tr HZ}®.
Hence ,
(3.10) Str Ht.-——l {tr HZ}®.
a4 2 a4

For any a4,

3+p

(3.11) 2,92 {tr (HZHE)—tr (Ha Hp)?}

={;§ S (A8 (a5 — 25

=b6 1]

<4 T SErQ.

B#4, B#a ij

According to (2.9), we get

(3.12) Ri,-=2(c+H2)—(2‘%‘)2—ﬁ z S(hé?,
} +4, B#+a J
(3.13) S S
B+4, B+a ij

=2+ H) TN~ D'~ 3 Ru2”

<2(c-+ HY) tr (HE)— 5 {tr (HD} =5, tr (H3),
where 0, is the infimum of the Ricci curvature of M. Hence
3+
(3.14) 253 {tr (H2HS)—tr (H, Hp))
ﬁ=5

<{8(c+H"—4d,}tr (HZ)—2{tr (H)}®.

The terms at the both ends of the inequality above do not depend on the
choice of the frame fields. Hence

(3.15) 2 X {tr(H H%)—tr (H.Hp)"}

a, B#4

< {8(c+HY)— 401} [t =2 3 {tr (HE)}*.

(3.4), (3.5) and [3.15) yield
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(3.16) %Aw;— {8c+H*)—401} 7"+ 2 {tr (H)} +3(c+HA) 7 |*

2 (=5(e+ HY)-+48) e+ S 1ol

(3.9)%1/(2p—3)+(3.16) implies

1 1 s (= 3 2 2
3.17) ~2—[1+————~2p__3]Alrl 2{16,~(5- 5,5 Je+ HO} I
Since 4, is the infimum of the Ricci curvature, we have
5p—9 .

If 6,>((5p—3)/22p—3))c+H?), from and Hopf’s maximum principle, we
obtain |7|2=0. If 0,=((5p—3)/2(2p—3))c+ H?), (3.16) and Hopf’s maximum
principle yield |7|>*=constant and all inequalities above become actually equalites.

If |7|2=0, then M is totally umbilic. If |7|%#0, from (3.6) and we
have

(3.18) h=0,
(3.19) jelt= — 2 (e+HY),
Z_F—T

tr (Hy Hy— Hy Ho?=2tr (H2)tr (H3)  for a#8,

(3.20) (p—1Xp—2X0i—02)=0.

From Lemma 1 in [1], we know that at most two of the matrices H, are non-
zero, say H,, and H,, and we can suppose

1 0 O 0 1 O
He =40 —1 0] and Hg =gl 0 O0j.
0O 0 O 0 0 O
From ((2.16), we have
(3.21) Ha1H4:H4Ha1! HﬁlH4:H4Hf81’ tr H4:3H.

Hence under this local field of orthonormal frames, we also have
hi;=Hoy; .

a) Case p=2. (2.16) implies for a suitable choice of the orthonormal frame
field

hi,j=Hdy;,
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h§=24%0:;,
(3.22) >3 4%=0.

If 29+0, from [(3.12) and [3.13), we have

R.=8,= %<c+H2> for i=1, 2, 3,

351=—g—(c—|—H2)=6(c—[—H2)—— lz|2=3(c+H?)  (from [3.19).

This is a contradiction. Hence at least one of A1¢ is zero, say A2=0. Thus

Ag=—22 from [3.22).
|712=(9+(A5)=3(c+H?),

AP =(i8r= 3 (c+HY,

Rn=%(c+Hz):constant>0, i=1, 2,

Rys=2(¢c+ H?)=constant >0,
7’22_ R,1:3(C+Hz)>0 .

2, Ry= %(c—i—Hz)z:constant.

Hence V,R;;=0. Thus M is a 3-dimensional conformally flat submanifold with
positive definite Ricci curvature. From Theorem 2 due to Goldberg [3], we
know that M is a space form. Hence M is totally umbilic. This is a contra-
diction.

b) Case p=3. In this cases, implies

G1=0Cg .

We obtain that at most two of H,, a=5, ---, 3+p, are different from zero.
Suppose that only one of them, say H, , is different from zero. Then we have
o?=(1/p—1)|r|? and ¢,=0, which is a contradiction. Therefore we can
suppose that

1 0 0 0 1 0
H=20 —1 0| and Hs=p[1 0 0},

0 0 ©O 0 0 O

H,=0 for az==7.
In this case,
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H,=HI, tr H¥=22%, tr Hi=2p?,
(3.23) 22242t =t |*=3(c+ H?).
implies

0= Ho,, W5, =AW, W52 = — AW,, ®53=0,
W5 =W, We=pw®;, =0, =0 for a=2, -,3+p.
Since h%,=0 from [3.9), we have, for a=5, ---, 3+p,
—dh= hfiws;+ 3 hwri+2 hfopa .
Setting =6, /=1 and j=2, we have
dp=dh$,=0.

Hence g is constant. Thus 2 is also constant from (3.23).
Riu=Ryp=2(c+H*)—*— (c+H2) constant>0 .

Rss=2(c+ H®*)=constant >0 .

Making use of the same proof as in case p=2, we obtain |r|{*=0. This is a
contradiction. Thus we complete the proof of Proposition 1.

COROLLARY. Let M be a 3-dimensional minimal submanifold in a sphere
S3*P(¢). If
. 5p—4
Ric(M)= - F——— 22p—1) 1)
then M is totally geodesic.

PROOF. Since M is a minimal submanifold in S®*?(¢) and S**P(¢) is a
totally umbilical hypersurface in S**?+!(c— H?®), then M can be seen as a sub-
manifold in S**?+!(¢c— H?). It is a pseudo-umbilical submanifold with parallel
mean curvature vector A. According to Proposition 1, we know that Corollary
is true.

REMARK. The result in Corollary is better than one due to Shen [5].

PROPOSITION 2. Let M be a 3- dimensz’onal complete submanifold in S**?(c)
with parallel mean curvature vector.

Ric(M)z 5 3 + Hz \/1521H‘+2H2

then M is a pseudo-umblical submanifold.
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PROOF. Because of

Ric(M)= ic-{—22H2~i- é \/lgilH +42—5H2c >0,

we conclude that M is compact from Myers’ theorem. We choose a frame field

in such a way that
hiy=2:0:; .
Let py,=2;,—H, we have

12#12:0, Eﬂizlalz—BHZ,

S ui=6H—3H|o|*+3 &2,

(3.26) ' \/(Ial2 3H2)’<2#3<:/—§\/(_]W)T
and equality holds if and only if two of p, are equal (cf. [4]). Because of
(3.27) a%(;lihé‘i)z:a% {iZ(li-—H)h%}z
=(le*—3H®)|7|?,
from [2.18), [3.26) and [(3.27), we obtain

(3.28) —Alol2 > (hije )+ htAR8;

=3 (A1) + 3 (hbmRmiss+ iR mrsa)hi;
= (i) +3c(|0|*=3H")— |0 |*+3HD Xi— 3 (D Ahs)
> (A4 +3c(| 0 |*—3HY +9H(| o |*— 2H?)
~/6\/(l o|*—=3H*'—(lo|*—3H%|7|*—|a]*
=3 (hd)t+(l o |2—3H?)
><{3(c+H2)—¢_g\/<|a|2 SH")—|o|*+3H'~|7|*}.

On the other hand, since M is a 3-dimensional submanifold, its Weyl conformally
curvature tensor vanishes, i.e.,

1
Rijrm=Rx0im— Rim0Os2 +Rjnbir— Rjpr0im— 'z—r(atkajm_aimajk) ,
D (hkmBamise+AmiRmese)hi;

1
= '2“ i;j (Jr‘ﬂ/)z}?m;‘
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_1 e T
=5 S A2 (Rut Riy— )

23(261—%)(|a|2—3H2).
From (2.18), we have

(3.29) SAlolP= 3k ”>2+3(251 5 Xlo1*=3H")
23<251—30— %HH—% |r|2+—;— Iolz)(lalz—SHz).

(3.28)X3/24-(3.29) implies

%Alalz{esal—g-(wm) 3“6H«/<1 E 3H2')}(|a|2—3H2).

Because of
30> Ryy=r=6c+9H*— |a|*—|7|?,
we have
lo|*—3H?*<6¢c+6H*—30, .
Hence
5 5 .
(3.30) ZA(IG]2—3H2)=—4—AIGI3

{651———(0+H2) -g-‘/ﬁz—H\/Z(c—i-H?)—- }(Io‘]z—BHz).

By a straightforward calculation, we can easily verify that if

3 39 1 [i52]
51>71‘C+§'IH +§\/ 64 H4+2HZ

we have

9 o 9VE
{65,——2—(c+H) 4

H~2(c+H» =8, —-51}< lo|*—3H?)>0.

According to and Hopf’s maximum principle, we conclude
lo|2—3H?*=0.

Hence, M is pseudo-umbilic. If

5, = 3 H2+ \/1521H“+ SHC,

then,

{651—— %(c—%Hz)—g—llQH\/Z(c—i—H’) —51}(| o|*—3H*)=0.
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Therefore from [3.30), we obtain that |¢|?>—3H?=constant and all inequalities
above are equalities. If |¢|>*—3H?=0, then M i1s pseudo-umbilic. If |g|*—3H*
>0, we get that two of u; are equal. Without loss of generality, we can
suppose g,=g,, then gy;=—2h,. From we have

0= (himRnije+hniRurie)hi;

1 ¥
= ‘2— i% (Zi_zj)z(Rii+Rji— '2")

:9[,2¥R33 .
Therefore R;;=0. On the other hand,
3
Ruzbi= St D Hit \/12211{44- DH?>0.

This is a contradiction. Hence M is pseudo-umbilic.

PROOF OF THEOREM 1. When p=2, (5p—9)/2(2p—3))=1/2. Hence

3 1 (1521, ves L .

According to Propositions 1 and 2, we conclude easily that M is a 3-dimensional
small sphere. When p=1, Proposition 1 implies that Theorem 1 is true.

PROOF OF THEOREM 2. According to Propositions 1 and 2, Theorem 2
holds good obviously.

Authors would like to express their deep thanks for the referee for his
suggestion on Corollary in this section.
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