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Abstract. We consider the weakly coupled system of reaction-diffusion equations

ur = Au+ |x[°vP, v = Av+ [x[72u?,
u(x,0) =r4px), vx, 0 =21"¢x)
where x e RN 1 > 0, p,g>1land0 <oy < N(p —1),0 <0y < N(g — 1). The existence of solutions, blow-up

conditions, and global solutions of the above equations are studied by Mochizuki-Huang. In this paper, we consider
the estimate of maximal existence time of blow-up solutions in %1 x 152 as A goes to 0 or oco.

1. Introduction.

We consider nonnegative solutions of the initial value problem for a weakly coupled
system

ur = Au+ |x|°v? (x €eRM,t>0),
vr=Av+ |x|2u9 (xeRMN,t>0),
u(x,0) = Mox) (x €RY),
v(x,0) =AY (x) (x €RY),

1)

where N > 1,p,g > 1,0 <01 < N(p—1),0 <02 < N(g—1), A > 0Ois apa-
rameter, u, v are positive constants. Since the nonlinearities, |x|°1v?, |x|2u?, are locally
Holder continuous in x and locally Lipschitz in u, v, it follows from standard results that
any solution u(x, t), v(x,t) > O of the equation (1) is in fact classical; that is, u,v €
C>'(RYN x (0, T)) NCRN x [0, T)).

Throughout the rest of this paper we shall use the following notations. We put

o 2(p+1) 2(g +1) 5 o2p + o1 5, o1q + o3
=— =, 1= —_— .
pq —1 pqg—1 pg —1 rq —1
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We set BC to be the space of all bounded continuous functions in RY and fora > 0,

= [S € BC; £(x) = 0, limsup |x|?&(x) < oo] ,

[x|—>o00
I, = {s € BC; &(x) = 0, 1|ir|ninf|x|“§(x) > 0} .
X |—> 00

It is obvious that
€ loo,a = sup (x)?|E(x)| < 00

xeRN
holds if & € I%, where (x) = /1 + |x]|?. The letter C denotes a positive generic constant
which may vary from line to line. We shall use the notation S(#)& to represent the solution of
the heat equation with initial value &(x):

x —y|?

SER) = @rn~¥ f exp(—' )S(y)dy-
RN 4t

In the following we require
(@, ) € I x 1. (2)

Then as is proved by K. Mochizuki and Q. Huang in [7], problem (1) has a unique, nonnega-
tive solution (u(-, t), v(-, t)) which satisfies

sup {[lu()lloo,8, + lv()lloo,5,} <00 for 0 < 3T = 00
te[0,T)

when (2) holds. We let 7;* > 0 be the maximal existence time:

Ty' = sup [T > 0; sup {Jlu(@®)lloo,s; + IV lloo,s,} < OO] .
tel0,T)

If T = oo, the solutions are global. The global existence and nonexistence are studied by
Escobedo-Herrero [1] and Mochizuki [6] in the case 07 = 02 = 0, and are generalized in [7]
to the problem (1). The following two results are proved in [7].

1. if max{a + 8, B + 82} = N, then T;* < oo for every nontrivial solution (x(¢), v(t))
of (1);

2. ifmax{a+81, B+82} < Nandg € I, witha < a+38; (or ¢ € I, withb < B+47),
then T;¥ < oo for every nontrivial solution (u(z), v(t)) of (1).

In this paper, we shall consider a precise estimate of T," as A goes to 0 or 0o. ThlS problem
is studied in Huang-Mochizuki-Mukai [4] and Mochizuki [6] in the special case 01 = 0 = 0.
We shall extend the results to the case 0 < o1 < N(p—1)and0 <02 < N(g — 1).

THEOREM 1. Supposethat$ <a <a +8 anda < N (oré; < b < B+ 82 and
b < N). Let ¢ € I, (or ¥ € Ip). Then there exist .1 > 0 and C > 0 such that

2 2
T} < CA™#8 (or < CATFR0)  for A < At
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THEOREM 2. Supposethatdy <a <a+81,00<b<B+8,a,b< N and
O<pb—a—-01<2 or 0<ga—b—o0y<?2. 3)
Let p, v be chosen to satisfy
n o +d6; —a

v B+6—b" @

and let (¢, ¥) € (I° N I,) x (I° N I). Then we have
2 2v
T~ A oFi=a = A7 B8 g5 ) — 0.

REMARK 1. Lets satisfies

N-—-86 N-=-3§
05s<min{1, 1, 2],
o B
and puta = so + 81, b = sB + 8. Then a, b satisfies (3).
REMARK 2. If we put oy = 03 = 0 in Theorems 1 and 2, these results are the same
one as Theorem 4.4 (i) and (ii) in [6] respectively.

These theorems are the upper and lower bound estimate of 7;* as A — 0, and we shall
prove them in Sections 2 and 3, respectively. The methods of proof are quite similar to [6].
But, about the upper bound, the definition of Fy .(¢) and Gy ((t) is slightly different from [6]
to satisfy Fi () < Cllur(?)lloo,s; and Gg ¢ (t) < Cllvk(#)]lo0,s,, and about the lower bound,
we will add Lemma 3.3 to prove Lemma 3.4 (iii) in this paper.

It is also an interesting problem to obtain the estimates of 7, as A — co. Some results
of this problem are proved in the last Section 4.

2. Proof of Theorem 1.
(u(t), v(2)) is a solution of (1). We put
ur(x, t) = k% oulkx, k2t),  w(x,t) = kP20 (kx, k%t)
for k > 0. As is easily seen (ux(¢), vi(2)) solves the system

Urr = Aug + |x|° UII: ,
vke = Avg + |x]%2u}

5
u(x,0) = k* o1 ko (kx), ®
ve(x, 0) = kBto20 vy (kx) .
Let Tk* be the life span of (ug(¢), vi(z)). Then obviously

We define
NS 2 N—& )
Fre(r) = E_T'Lf ur(x, e " dx,  Gre(t) = 8'72/ ve(x, e~ ax |
RN RN
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then it follows that

_ _ 2
Fro(®) < luk® lloo.s, fR Iy by

< Cllux(®)lloo,s, »
Gi,e(?) = Cllvk (Dl oo,s, »

where C > 0 is independent of ¢ > 0. Since
AeH = (—2Ne + 462 (x[P)e " > —2Nge~e R’
and, by Holder’s inequality,
81—7& ./I;N v (x, t)e_slxlzdx = fN sil%sl |x|%vk(x, t) - am—:b)—wilxl_%e"'elx‘zdx
R

1
N-§ 2 P
< (8 ) / x| e (x, 1)Pe ¢ dx)
RN
—1

-1
N_ o __a P
x{&? 7(”—)/ x| 7 Te ehl dx
RN
we have

d N-8
——s—flf uk(x,t)e_‘g'x'zdx
dt RN

N-§
=g 7+ /N(Auk(x, 1)+ x| v (x, t)p)e—slxlzdx

R
N-3 2
> —2Ns-e_7'l"f uk(x,t)e"‘g'x| dx
RN

i —p+l N—3 p
+ (f I)’I*”_‘lTe_lylzdy) (8 Z f vE(x, t)e"sl’”zdx) ,
RN RN

so the following inequalities hold:

F{ ,(t) = —2N&Fyc(t) + CpGie ()P (t > 0) D
1 e(®) = —2NeGre(t) + CgFie(®)? (1> 0),
where
_ o _p+1 _ o _q+1
Cp= (] |y|"p_—1Te—|y|2dy) , Cgq= (f |y|"q—-2Te_|y|2dy) .
RV RN
Let us consider the system of ordinary differential equations

FUt) = —2Nefe(t) + Cpge(®)? (t>0)
g:(t) = =2Nege(t) + Cp fe ()1 (t>0) 3

fe(0) = Fre(0), g¢(0) = Gre(0).
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Then (Fy ¢(t), Gk ¢(¢)) is a supersolution of (8) By the scaling

J 2
pq—1

f@ = (2Ne)‘7C”q“ CJ™ fo(t/2N¢)

1
0 = @Ney 8CFTETT 9. (t/2Ne)
we obtain the simpler system of equations
ff=—f®O+g®)? >0
g =—g®+f®7 (¢>0).
LEMMA 2.1. Let (f(t), g(t)) be the solution to (9) with the initial data
fO®>1, g@©0=0.

If £(0) is sufficiently large, then (f(t), g(t)) blows up in finite time. Moreover, the life span
To of (f(t), g(¢)) is estimated from above like

9)

To < 10+ / T Cp g T 25y, (10)
f @) g (%)
where " : B
Clp.q) = (p+q+2)7’%1+7 (p—}-q+2)?$q_+2
p+1 qg+1
and 0 < ty < Ty is chosen to satisfy { f (t0) g (to)}P—1/(P+a+D) 5 2,
PROOF. See e.g., K. Mochizuki [6]. ]

As is shown is above lemma, there exist A; > 0 and B; > 0 such that if
f(©) > A1 or g(0) > By,

then (f(z), g(¢2)) blows up in finite time. As a result of these arguments and a comparison
principle, we have the following about (Fx ¢(¢), Gk ¢(1)).

LEMMA 2.2. Let (Fy (1), Gk, (1)) satisfy differential inequalities (7). If
Fie(0) > Ac¥, or Gie(0) > Be? 11)
for some ¢ > 0, then (Fy (t), G (1)) blows up in finite time, where

1
= @N)"3CE” 1c"_qL‘T,«al, = 2N)~ ‘%c’"" CIB,.

Moreover, its life span is estimated from above by (2N¢e)™ 1To. Thus, we obtain
T < 2Ne) Ty . (12)
Note that there is only one equilibria of system (8) in R2 <, say
P = (2Ne)%, @Ne)?).

As is easily seen, P is a saddle point. One of the separatrix starts from O and runs to oo.
Another one intersects f-axis and g-axis at As®/2 and BeP/2, respectively. Moreover, every
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solution ( fz (), g.(¢)) of (8) with the initial value of ( f,(0), g.(0)) lying above this separatrix
runs into

0 = ((f,9) € R%; (C;'2Nef)F < g < C,2Ne)™ 9},

and then blows up in finite time. As for these argument, see e.g., Galktionov-Kurdyumov-
Samarskii [2], [3] or Qi-Levine [8].

LEMMA 2.3. Suppose ¢ € I, for somea < N and §; < a < a + 81. Put
AH = k—a—81+a (13)
in (7). Then there exists a constant K| > 0 independent of € > O such that
. . a—é8
liminf Fi . (0) > 1{13—2‘l .
A—0
PROOF. By (13),
N-§
Fr(0) = kae—fl/ rp(kx)e“e"“zdx.
RN
Putting y = g!/ 2x, it holds
é
Fi:(0) = k%7 f o 2ky)e " dy .
RN
For an arbitraly M > O such that liminf;_, o [x|?@(x) > M, there exists a kg > O such that
e~k Y% (e"2ky) > M for k > ko .
Thus, we obtain
a—4 a—38
liminf Fi (0) > Me 7 f ly|=%e~PPay > K1+ .
k— 00 RN

a

PROOF OF THEOREM 1. We only prove the first inequality. Let k be chosen as in (13).
Then by assumption we see k — oo as A — 0. Thus, by Lemma 2.3, if we choose ¢ > 0
to satisfy £@+81-9)/2 « K, A~!, there exists A; > O such that F; .(0) > Ae%/? for A < Aj.
Thus, we can appiy Lemma 2.2 and (6) to conclude the result. O

3. Proof of Theorem 2.

We setfory > 0
ny(x, ) = SE)x)77. (14)
LEMMA 3.1. We have

ny (x, £) = Cmin{(x)™, (1 + )" %}.

PROOF. Assumefirstt < 1. If |z] <1 /ﬁ, then
1+ 1x —z2 < 1+2(1x* + 1z*) < 2(1 + [x[),
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so we have

22
Ny (x, 1) = (4m)~% f (x — e W dz
lzl<1/v/2

z12
> 2—%(47::)—%@)-"[ e~ dz
jel<1/+2

- 2—%n—%’(x>—y/ 7Py
| lyl<@8n-1/2

>C{x)™"V fort<l.

Next, let ¢ > 1. Since
L b lx—Ez =1 +tlxt™? —z2 <1+ |xt72 —z?),
we have
_N _ _|z|2
ny(x,t) =@m)" 2 N(x —\tz) Ve T dz
R

z2
> (4m)"317% f (xt™% —z) Ve T dz.
RN
If x|t ~1/2 < 1/+/2, this shows
Z2
ny (e, 1) = 275 (4m)~ 3% f 2y Ve Faz>cr k.
RN

On the other hand, if £ = |x|¢t~!/2 > 1/4/2, we have

7y 0 2 @R [ —ave ¥
R

<25 ax)- T g —Vf
< (Am)~ 2|1V (§) lzI<1/~/§e

22
S 25 an)¥ / e~ Fdz>0 as &> oo.
izl<1/4/2

Summarizing these results, we obtain the inequality in the lemma. O

LEMMA 3.2. LetO <y < N and0 <8 < y. Then we have for anyt > 0,

—y+8
17y G Dlloos < CA+1TT .
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PROOF.
N 2
%Py (. ) = Jxf {[ +f ](47rt)_7(x _yyre-Eay
i’ Iyl<ixl/v2  JIyl>Ixi/v2

=I+4+11

2
I<2i@nn)" % f (x — y)*Ye 4 dy
Iyl<Ix|/~/2
) s
<218@)(x)°7Y
x|2 2
11 <28 @ro)~ % xPe & (x — y)~Y e~ ¥ dy
Iyl>x1/v/2

3
<ct2SQ2t){(x)77Y,
where we use the fact

2(x — )2 2 2lx —y? = 2(x? = Iy = |x|*> for |y| < |x|/v/2,
<12
sup {le‘st_%e_%t‘} < 00.
(x,t)eRN x(0,00)

Sincey < N,
5 Sy (x) 7 = (am) ¥ [N R
R

2
=< (47t)"¥f xt~2 —zl”}'e—%'dz
RN

2
— (47r)_’]§/ Izl_ye"%‘dz <00 ast— 0.
RN

Thus, we obtain (cf., [5, Lemma 2.12])
IS®(x) ¥ lloo < CA+0)7F .
By this inequality, we have 11 < C(1 + t)("¥*+%/2 and, since

SO <A +ni@nnt f ) ~r e gy

Iyl<+/t
+ 1+ T @t f =57 dy
Iyl>+/f
<A+DISEOW Y + 1+,
we also have I < C(1 + ¢)v+9/2, O

LEMMA 3.3. We have in RY x (0, 00),
o1+a—pb
) e, P < €A+ 0T na(x, 1),

oy +b—qa (15)
)10 06, )7 < C(L+ 0 Z T2 ny(x, 1) .
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PROOF. We only consider the case b > a. A similar argument can be applied also to
the case b < a. We have by Lemma 3.1,

()7 e Cx, P = ()7 (x, )P na(x, D nalx, 1)
< C(0)? max{(x)?, (1 + Dy (x, P nalx, 1) .
Suppose ¢ < |x|2. Since a + 01 < pb by (3), we have by Lemma 3.2

()0 (s P < L) P b, P 1a(x, 1)
<A+ 1),

Suppose ¢ > |x|2. Then we have by Lemma 3.2
. ) o
() np(x, )P < CA+1)2{(x) 7 np(x, 1)} nalx, t)
a —pb+o
<CU+DEA+DTT nax,0).
Next, by Jensen’s inequality, we have
b b
(X)%2na(x, )7 = (x)7n4(x, )T ang(x, t)a
b
< (x)72na(x, )T anp(x, t)
b
< ()2 max{(x)?, (1 + )2 }1.(x, Inp (x, 1)
: —~qa-+b+o
< CA+D™T 2 pp(x, 1),
sinceb > aand b + 03 < ga. a
We put
Wi(x, 1) = AM@lloc,aa(x, 1), Walx,t) = A" ¥ lloo,bmb(x, 1), (16)
where ¢ € 1%, ¢ € Ib. As is easily verified from Lemmas 3.2 and 3.3, we have the following
LEMMA 3.4. (i) W;(x,t)>0( =1,2)and|x|*Wi(x,1), |x |2 Wa(x, t) are bound-
ed in RN x [0, 00).
(ii) There exists a constant C > 0 such that for any t > 0,
—a+8 —b+5
IWi1(, Dlloo,s;, <CA+8)" 2, IWa2(,Dlloo,s, <CA+1)"7 .
(iii) There exists a constant C1 > O such that for any t > 0,
a+oy1—pb
IWa(, )/ WiC, Dlloooy, < CIAP (L1 5,
_ b+oy—qa
IW1(, )1/ Wa(-, Dlloo,o, < C1ATHTV(1 + 1) =
Now, let (x(t), B(2)) be the solution of

o = ||Wa(, )P /Wi, Dlleo,s; B (¢ > 0),
B’ = IW1(, )/ Wa(, Dlloo,cr? (£ > 0), a7
a0 =0)=1,
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and let us define (u(x, t), v(x, t)) as follows:

ux, 1) =a@®Wilx,t), v(x, 1) =pE)Walx,1). (18)

LEMMA 3.5. (i) Let (x(t), y(t)) be the solution to

{x' =h@t)yP, Yy =h@x? @>0),

19
x(0)=y0) =1, (1

a+oy—pb b+or—qa
where h(t) = C;max{AP*~#(1 + 1) 32 A4~V(1 + 1)~ 3 ). Then (a(t), (1)) is a
subsolution of (19).
(ii) Suppose that ¢ € I° and Y € I b Then (i(x,t), v(x, t)) gives a supersolution of
(D).
PROOF. (i) is obvious from Lemma 3.4 (iii). (ii) We have
i =o' (OWi(x, 1) + () Wi (x, 1)
= |Wf/ Willoo,o1 BP W1 + a AWy
> (x)'WPBP + a AW > |x|710P + Ai.
Similarly, we have 9, > |x|°249 + Av. Moreover, as is easily verified from (16) and a(0) =
B(0) = 1, we have ,
i(x,0) = Aox), v(x,0=A"Y(x).
These results show the assertion. O

PROOF OF THEOREM 2. It follows from Lemma 3.5 and comparison principle that
u(x,t) <ulx,t), v(x, 1) <ov(x,1),
a() <x(@), p@) =<y@).

Then we see from (18) that 7,* is not less than the life span of (x(2), y(?)).
From equation (19) it follows that

t t
f xix'dt = f yPy'dt .
0 0

Suppose p > g (another case can be proved in the same way). Then we have
1

1)a+1 )P+l 1\ 7+t +1
T L YO ey < () s s
q+1 p+1 +1

Substitute this in the first equation of (19), we have

_pgty ,  (p+1\FH
x(t) rHtx' < m h().

Integrating this again from O to z, we obtain

B, -3 '
— 5 (x@) F—1) < Cilp, q)fo h(t)dt ,
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2 t -3
x(t) = {1 - EC1(p, q)/ h(t)dt} :
0
From the equation (3),a + 01 — pb <0, b + 02 — ga < 0, thus

t a+o1—pb b+09—qa —g'
x(f) < [1 -C f max (AP Ky THE jan—v T }dt] .
0

From the equation (3),

a+012—-pb -1, b+or;—qa -1,

so the integrand is integrable from O to ¢, thus,
2+a+oy—pb 2+b+09—ga
x2(1) < (1 — C max{APV—Hy 75 Au—v TR -E

where C1(p, q), C > 0 are independent of A and 7. This implies that x(¢) remains finite at
least for ¢ less than x ) -

C min{A~ ZFato1-pb )~ I¥btoy—qa }
Integrating the second equation of (19) shows that y(#) is finite in the same interval. Thus, we

obtain
_ L 2pv—w) __2(gqu-v)
T > Cmin{a 2Fa¥o1-pb )~ 2¥b+o—9a}  for VA > 0. (20)

Remember here that we have assumed (4). Then since

pPB—a=qa—B=2, pbh—-8 =01, gé—8&=o0,
it follows that

|z _ pv — i
a+6;1 —a - 24+a+o0; —pb
_ v _ qu —v
T B+&—-b 24b+or—gqga’
Thus, we can combine (20) and Theorem 1 to conclude assertion of Theorem 2. a

4. Some results for the case . — 0.

About the estimate of 7,* as A goes to oo, the following two theorems are obtained.

THEOREM 3. Suppose that ¢ € I® and ¢(0) > 0 (or ¢ € I®2 and ¥ (0) > 0). Then
there exist Ao > 0 and C > 0 such that

% v
< CA™F0 (or < CATF™2)  for A > Ao.

TA*
PROOF. We only prove the first inequality. Put A* = k=% in (7). Then
3 1 2
lim Fi(0) = lim e~ 7 / p(e”2ky)e P dy
A—o00 ‘ k—0 RN

=¥ o) %,
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So if we choose £ > O to satisfy e@+t90/2 < gN/2¢(0)A~1, there exists Ag > O such that
Fr(0) > Ae®’? for o > Ag. Thus, we can apply Lemma 2.2 and (6) to conclude the
result. O

THEOREM 4. Suppose that (¢, ¥) € 1 81 % I®2 gnd let ., v be chosen to satisfy /v =
a/B. Then we have

T >Cr—% =cA % .
PROOF. Puta = 81, b = §; in the proof of Theorem 2. Then we have the inequality.
O

REMARK 3. The order of A in upper bound estimate is different from in lower bound
estimate.

ACKNOWLEDGEMENTS. This research was introduced by Professor Kiyoshi Mochi-
zuki in Tokyo Metropolitan University, and the author would like to thank him for his proper
guidance. The author would also like to thank Kunio Hidano for useful discussions and
friendly encouragement during the writing and editing of this paper.

References

[1] M. EscoBEDO and M. A. HERRERO, Boundedness and blow up for a semilinear reaction-diffusion system,
J. Differential Equations 89 (1991), 176-202.

[2]1 V.A.GALKTIONOV, S. P. KURDYUMOV and A. A. SAMARSKII, A parabolic system of quasilinear equations
I, Differential Equations 19 (1983), 2133-2143.

[3] V.A.GALKTIONOV, S. P. KURDYUMOV and A. A. SAMARSKII, A parabolic system of quasilinear equations
11, Differential Equations 21 (1985), 1544-1559.

[4]1 Q. HuANG, K. MocHIZUKI and K. MUKALI, Life span and asymptotic behavior for a semilinear parabolic
system with slowly decaying initial data, Hokkaido Math. J. (to appear).

[5] T.-Y. LEE and W.-M. NI, Global existence, large time behavior and life span on solutions of a semilinear
parabolic Cauchy problem, Trans. Amer. Math. Soc. 333 (1992), 365-378.

[6] K. MOCHIZUKI, Blow-up, life span and large time behavior of solutions of a weakly coupled system of
reaction-diffusion equations, Adv. Math. Appl. Sci. 48 (1998), World Scientific, 175-198.

[7] K.MocHIzUKI and Q. HUANG, Existence and behavior of solutions for a weakly coupled system of reaction-
diffusion equations, Methods and Application of Analysis 5(2) (1998), 109-129.

[8] Y.-W.QIand H. A. LEVINE, The critical exponent of degenerate parabolic systems, Z. Angew. Math. Phys.
44 (1993), 249-265.

Present Address:

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY,
MINAMI-OHSAWA, HACHIOJI, TOKYO, 192-0397 JAPAN.

e-mail: yasumaro@hkg.odn.ne.jp



