SMALE SPACES FROM SELF-SIMILAR GRAPH ACTIONS

INHYEOP YI

Abstract

We show that, for contracting and regular self-similar graph actions, the shift maps on limit spaces are positively expansive local homeomorphisms. From this, we find that limit solenoids of contracting and regular selfsimilar graph actions are Smale spaces and that the unstable Ruelle algebras of the limit solenoids are strongly Morita equivalent to the Cuntz-Pimsner algebras by Exel and Pardo if self-similar graph actions satisfy the contracting, regular, pseudo free and G-transitive conditions.

1. Introduction. Exel and Pardo [4] generalized self-similar groups of Nekrashevych $[\mathbf{9}, \mathbf{1 0}]$ to self-similar graph actions. For a selfsimilar group (G, X), Nekrashevych constructed two dynamical systems $\left(\mathcal{J}_{G}, \sigma\right)$, called the limit dynamical system, and $\left(\mathcal{S}_{G}, \widehat{\sigma}\right)$, called the limit solenoid, and two associated C^{*}-algebras \mathcal{O}_{G} and \mathcal{O}_{σ}. Here, \mathcal{O}_{G} is a universal Cuntz-Pimsner algebra with a correspondence over $C_{r}^{*}(G)$, and \mathcal{O}_{σ} is a groupoid algebra of the Deaconu groupoid from $\left(\mathcal{J}_{G}, \sigma\right)$. Then, he showed that the limit solenoid of (G, X) is a Smale space and that the stable Ruelle algebra and the unstable Ruelle algebra, respectively, of the limit solenoid are strongly Morita equivalent to \mathcal{O}_{σ} and \mathcal{O}_{G}, respectively. On the other hand, for a self-similar graph action (G, E), Exel and Pardo [3] defined a C^{*}-algebra $\mathcal{O}_{G, E}$ which is $*$-isomorphic to a Cuntz-Pimsner algebra for a correspondence over $C\left(E^{0}\right) \rtimes G$. They then showed that $\mathcal{O}_{G, E}$ includes \mathcal{O}_{G} as a special case. Moreover, the limit dynamical system $\left(J_{(G, E)}, \sigma\right)$ and its Deaconu groupoid algebra $C^{*}\left(\Gamma_{(G, E)}\right)$ are studied in [18] following Nekrashevych's development. Although the topological structure of $J_{(G, E)}$ is different from that of \mathcal{J}_{G}, it turned out that $\left(J_{(G, E)}, \sigma\right)$ and its groupoid algebra $C^{*}\left(\Gamma_{(G, E)}\right)$ are natural generalizations of $\left(\mathcal{J}_{G}, \sigma\right)$ and \mathcal{O}_{σ}. Therefore, it is rational to expect that the limit solenoid of

[^0]a self-similar graph action (G, E) under suitable conditions is a Smale space and that $\mathcal{O}_{G, E}$ and $C^{*}\left(\Gamma_{(G, E)}\right)$ are related to Ruelle algebras of the limit solenoid.

In this paper, we show that the limit solenoid is a Smale space and that $\mathcal{O}_{G, E}$ is strongly Morita equivalent to the unstable Ruelle algebra if (G, E) is a contracting, regular and pseudo free self-similar graph action and E is G-transitive. The main techniques used here are positive expansiveness of the shift maps in the limit dynamical systems and groupoid equivalence in the sense of Muhly, Renault and Williams [8]. When

$$
\sigma: J_{(G, E)} \longrightarrow J_{(G, E)}
$$

is a surjective positively expansive map, the inverse limit system induced from $\left(J_{(G, E)}, \sigma\right)$, which is topologically conjugate to the limit solenoid, is a Smale space (see [11, 16]). For the unstable Ruelle algebra of the limit solenoid and $\mathcal{O}_{G, E}$, which is $*$-isomorphic to a groupoid algebra, we borrow ideas from [12] to reduce the groupoid for the unstable Ruelle algebra on a transversal that is determined by a fixed left-hand-sided infinite path. Then, it becomes much easier to compare the groupoid algebras using strong Morita equivalence.
2. Self-similar graph actions. We introduce the basic definitions and properties of self-similar graph actions to be used later. All material in this section is taken from $[\mathbf{4}, \mathbf{9}, \mathbf{1 0}]$. The reader is referred to these for more details.
2.1. Directed graphs. Suppose that $E=\left(E^{0}, E^{1}, d, r\right)$ is a directed graph where E^{0} is the set of vertices, E^{1} is the set of edges and d and r are domain and range maps, respectively. A directed graph E is called finite if E^{0} and E^{1} are finite sets. A vertex is called a sink if it does not emit any edge and a source if it does not receive any edge.

Let E be a directed graph. A finite path of length $n \geq 1$ in E is a finite sequence

$$
a=a_{1} \cdots a_{n}
$$

such that $a_{i} \in E^{1}$ and $r\left(a_{i}\right)=d\left(a_{i+1}\right)$ for $i=1, \ldots, n-1$. The domain of a is defined to be $d(a)=d\left(a_{1}\right)$ and the range of a is $r(a)=r\left(a_{n}\right)$. A vertex $v \in E^{0}$ is considered a path of length zero with $d(v)=r(v)=v$. For every integer $n \geq 0$, we denote by E^{n} the set of paths of length n in E and denote by E^{*} the set of finite paths in E, i.e.,

$$
E^{*}=\bigcup_{n=0}^{\infty} E^{n}
$$

If a and b are paths in E such that $r(a)=d(b)$, then $a b$ is the path obtained by concatenating a and b.

We consider the left-infinite path space and the right-infinite path space

$$
E^{-\omega}=\left\{\cdots a_{-2} a_{-1}: a_{i} \in E^{1} \text { and } r\left(a_{i}\right)=d\left(a_{i+1}\right)\right\}
$$

and

$$
E^{\omega}=\left\{a_{0} a_{1} \cdots: a_{i} \in E^{1} \text { and } r\left(a_{i}\right)=d\left(a_{i+1}\right)\right\} .
$$

We also use the two-sided-infinite path space

$$
E^{ \pm \omega}=\left\{\cdots a_{-2} a_{-1} \cdot a_{0} a_{1} \cdots: a_{i} \in E^{1} \text { and } r\left(a_{i}\right)=d\left(a_{i+1}\right)\right\}
$$

The left-infinite path space $E^{-\omega}$ has the product topology of the discrete set E^{1}. For each $a \in E^{*}$, define the cylinder set $Z(a)$ as $Z(a)=\left\{\alpha \in E^{-\omega}: \alpha=\cdots a_{-n-1} a_{-n} \cdots a_{-1}\right.$ such that $\left.a_{-n} \cdots a_{-1}=a\right\}$.

Then, the product topology on $E^{-\omega}$ has $\left\{Z(a): a \in E^{*}\right\}$ as its basis. Similarly, the collection of appropriate cylinder sets are bases of topologies of E^{ω} and $E^{ \pm \omega}$.
2.2. Self-similar graph actions. Let $E=\left(E^{0}, E^{1}, d, r\right)$ be a directed graph and G a group. An automorphism of E is a bijection

$$
f: E^{0} \cup E^{1} \longrightarrow E^{0} \cup E^{1}
$$

such that, for $i=0$ and $1, f\left(E^{i}\right) \subset E^{i}, f \circ d=d \circ f$ and $f \circ r=r \circ f$ hold. We say that G acts on E if there is a group homomorphism from G to the group of graph automorphisms of E. We denote the (left) actions of G on E^{0} and E^{1} by

$$
(g, v) \longmapsto g(v) \in E^{0}
$$

and

$$
(g, e) \longmapsto g(e) \in E^{1}
$$

for $g \in G, v \in E^{0}$ and $e \in E^{1}$.

Definition $2.1([4, \mathbf{9}, 10])$. Suppose that E is a finite directed graph with no sink nor source and that G is a group acting on E such that the induced action on E^{*} is faithful. We call the pair (G, E) a self-similar graph action if, for all $g \in G$ and $e \in E^{1}$, there exists a unique $h \in G$ such that

$$
g(e b)=g(e) h(b)
$$

for every $b \in E^{*}$ with $r(e)=d(b)$.

Remark 2.2 ([2, subsection 7.2]). The faithful condition of G-action implies the uniqueness of h in Definition 2.1. See [3, 4] for more general cases.

For all $g \in G$ and $a, b \in E^{*}$ such that $a b \in E^{*}$, by induction, there is a unique element $h \in G$ such that $g(a b)=g(a) h(b)$. We call the unique element h the restriction of g at a and denote it by $\left.g\right|_{a}$. For $c=g(a)$ and $h=\left.g\right|_{a}$, we formally write the above equality as

$$
g \cdot a=c \cdot h
$$

We will need the following basic properties of restrictions $[\mathbf{4}, \mathbf{9}, \mathbf{1 0}]$: for $g, h \in G$ and $a, b \in E^{*}$,

$$
\left.g\right|_{a b}=\left.\left(\left.g\right|_{a}\right)\right|_{b},\left.\quad(g h)\right|_{a}=\left.\left.g\right|_{h(a)} h\right|_{a}, \quad\left(\left.g\right|_{a}\right)^{-1}=\left.g^{-1}\right|_{g(a)}
$$

Standing assumption. In this paper, we assume that every graph is a connected finite directed graph with no sink nor source, and every group is a finitely generated countable group.
2.3. Universal C^{*}-algebra $\mathcal{O}_{G, E}$. For a self-similar graph action $(G, E), \mathcal{O}_{G, E}$ is the universal unital C^{*}-algebra generated by a set

$$
\left\{p_{x}: x \in E^{0}\right\} \cup\left\{s_{e}: e \in E^{1}\right\} \cup\left\{u_{g}: g \in G\right\}
$$

subject to the following relations:
(1) $\left\{p_{x}: x \in E^{0}\right\}$ is a set of mutually orthogonal projections;
(2) $\left\{s_{e}: e \in E^{1}\right\}$ is a set of partial isometries;
(3) $s_{e}^{*} s_{e}=p_{d(e)}$ for every $e \in E^{1}$;
(4) $p_{x}=\sum_{e \in r^{-1}(x)} s_{e} s_{e}^{*}$ for every $x \in E^{0}$ where $r^{-1}(x)$ is finite and nonempty;
(5) the map $u: G \rightarrow \mathcal{O}_{G, E}$ defined by $g \mapsto u_{g}$ is a unitary representation of G;
(6) $u_{g} s_{e}=s_{g(e)} u_{\left.g\right|_{e}}$ for every $g \in G$ and $e \in E^{1}$; and
(7) $u_{g} p_{x}=p_{g(x)} u_{g}$ for every $g \in G$ and $x \in E^{0}$.

See $[\mathbf{3}, \mathbf{4}]$ for more details regarding $\mathcal{O}_{G, E}$.
Remark 2.3 ([4, Proposition 8.1]). We can extend the action of G on E^{*} to E^{ω} : for every $g \in G, \xi=x_{0} x_{1} \cdots \in E^{\omega}$ and $n \geq 0$, $g(\xi)=\eta=y_{0} y_{1} \cdots \in E^{\omega}$ is defined as

$$
g\left(x_{0} \cdots x_{n}\right)=y_{0} \cdots y_{n}
$$

We will need the following properties of self-similar graph actions.
Definition $2.4([4,9,10])$. Suppose that (G, E) is a self-similar graph action.
(1) We say that (G, E) is contracting if there is a finite subset N of G satisfying the following: for every $g \in G$, there is an $n \geq 0$ such that $\left.g\right|_{a} \in N$ for every $a \in E^{*}$ of length $|a| \geq n$. If the action is contracting, the smallest finite subset of G satisfying this condition is called the nucleus of the group and is denoted by \mathcal{N}.
(2) We say that (G, E) is regular if, for every $g \in G$ and every $w \in E^{\omega}$, either $g(w) \neq w$ or there is a neighborhood of w such that every point in the neighborhood is fixed by g.
(3) We say that (G, E) is pseudo free if $\mathrm{Fix}_{g}=\left\{a \in E^{*}: g(a)=a\right\}$ is a finite set for every $g \in G$.
(4) We say that E is G-transitive if, for any two vertices u and v of E, there is a finite sequence of vertices $u=u_{0}, u_{1}, \ldots, u_{n}=v$ such that, for each $i \in\{1, \ldots, n\}$, either there is a $g_{i} \in G$ such that

$$
g_{i}\left(u_{i-1}\right)=u_{i}
$$

or there is a path $a_{i} \in E^{*}$ such that

$$
d\left(a_{i}\right)=u_{i-1} \quad \text { and } \quad r\left(a_{i}\right)=u_{i} .
$$

Definition $2.5([\mathbf{9}, \mathbf{1 0}])$. Two paths $\cdots a_{-2} a_{-1}$ and $\cdots b_{-2} b_{-1}$ in $E^{-\omega}$ are said to be asymptotically equivalent if there are a finite set $I \subset G$
and a sequence $g_{n} \in I$ such that

$$
g_{n}\left(a_{-n} \cdots a_{-1}\right)=b_{-n} \cdots b_{-1}
$$

for every $n \in \mathbb{N}$.
For two-sided infinite space $E^{ \pm \omega}$, we say that two paths $\cdots a_{-2} a_{-1}$. $a_{0} a_{1} \cdots$ and $\cdots b_{-2} b_{-1} \cdot b_{0} b_{1} \cdots$ are asymptotically equivalent if there are a finite set $H \subset G$ and a sequence $h_{n} \in H$ such that

$$
h_{n}\left(a_{n} a_{n+1} \cdots\right)=b_{n} b_{n+1} \cdots
$$

for every $n \in \mathbb{Z}$.
Remark 2.6. When (G, E) is a contracting self-similar graph action, we can use the nucleus \mathcal{N} of G, instead of the arbitrary finite subset of G, to determine asymptotic equivalence. See [10, subsection 2.3] for details.
2.4. Limit dynamical systems. The quotient of $E^{-\omega}$ by the asymptotic equivalence relation is called the limit space of (G, E) and is denoted by $J_{(G, E)}$. Since the asymptotic equivalence relation is invariant under the shift map

$$
\sigma: E^{-\omega} \longrightarrow E^{-\omega}
$$

defined by

$$
\cdots a_{-2} a_{-1} \longmapsto \cdots a_{-3} a_{-2},
$$

the shift map σ induces a continuous surjection on $J_{(G, E)}$. By abuse of notation, we denote the induced map on $J_{(G, E)}$ by σ if there is no confusion. The dynamical system $\left(J_{(G, E)}, \sigma\right)$ is called the limit dynamical system of (G, E). See $[\mathbf{9}, 10]$ for details.

Theorem 2.7 ([18, Lemma 2.9, Proposition 3.1]). If (G, E) is a selfsimilar graph action, then:
(1) $J_{(G, E)}$ is a compact metrizable space, and
(2) $\sigma \circ q=q \circ \sigma$ where $q: E^{-\omega} \rightarrow J_{(G, E)}$ is the quotient map.

Theorem 2.8 ([18, Lemma 5.4]). If (G, E) is a contracting and regular self-similar graph action, then $\sigma: J_{(G, E)} \rightarrow J_{(G, E)}$ is a surjective local homeomorphism.
2.5. Limit solenoids. Suppose that (G, E) is a self-similar graph action with the two-sided infinite path space $E^{ \pm \omega}$. We denote the quotient of $E^{ \pm \omega}$ by the asymptotic equivalence relation by $S_{(G, E)}$. Then, the shift map σ on $E^{ \pm \omega}$ induces a homeomorphism of $S_{(G, E)}$, which is also denoted σ. We call the dynamical system $\left(S_{(G, E)}, \sigma\right)$ the limit solenoid of the self-similar graph action (G, E).

The proofs of the following properties of limit solenoids are identical to those of [10, Proposition 2.4] and [18, Lemma 2.9].

Theorem 2.9. If (G, E) is a self-similar graph action, then:
(1) $S_{(G, E)}$ is a compact metrizable space, and
(2) $\sigma \circ q=q \circ \sigma$ where $q: E^{ \pm \omega} \rightarrow S_{(G, E)}$ is the quotient map.

Suppose that $\left(J_{(G, E)}, \sigma\right)$ is the limit dynamical system of (G, E). We define the inverse limit of $\left(J_{(G, E)}, \sigma\right)$

$$
\lim _{\leftarrow}\left(J_{(G, E)}, \sigma\right)=\left\{\left(x_{0}, x_{1}, x_{2}, \ldots\right): x_{i} \in J_{(G, E)} \text { and } \sigma\left(x_{i}\right)=x_{i-1}\right\} .
$$

Then, $\lim _{\rightleftarrows}\left(J_{(G, E)}, \sigma\right)$ carries an induced homeomorphism, which we also denote as σ, given by

$$
\sigma:\left(x_{0}, x_{1}, x_{2}, \ldots\right) \longmapsto\left(\sigma\left(x_{0}\right), x_{0}, x_{1}, x_{2}, \ldots\right)
$$

Theorem 2.10 ([9, Proposition 5.7.3]). The limit solenoid $\left(S_{(G, E)}, \sigma\right)$ is topologically conjugate to the inverse limit system $\left(\lim _{\rightleftarrows}\left(J_{(G, E)}, \sigma\right), \sigma\right)$.
3. Quotient maps and shift maps. For a self-similar graph action (G, E), we show that the quotient maps

$$
q: E^{-\omega} \longrightarrow J_{(G, E)}
$$

and

$$
q: E^{ \pm \omega} \longrightarrow S_{(G, E)}
$$

are open maps and that the shift map

$$
\sigma: J_{(G, E)} \longrightarrow J_{(G, E)}
$$

is a positively expansive map if (G, E) is contracting and regular.
3.1. Quotient maps. Suppose that (G, E) is a self-similar graph action with the left-infinite path space $E^{-\omega}$. First, we consider a principal groupoid defined by the asymptotic equivalence relation on $E^{-\omega}$

$$
H=\left\{(\xi, \eta) \in E^{-\omega} \times E^{-\omega}: \xi \text { is asymptotically equivalent to } \eta\right\}
$$

Then, $E^{-\omega}$ is the unit space of H and its coarse moduli space

$$
|H|=E^{-\omega} / H=\left\{[\xi]: \xi \in E^{-\omega}\right\}
$$

is $J_{(G, E)}$. Here, $[\xi]=\left\{\eta \in E^{-\omega}:(\xi, \eta) \in H\right\}$, i.e., $\eta \in[\xi]$ if and only if $q(\eta)=q(\xi)$.

Remark 3.1. In order to give a locally compact Hausdorff topology on H, for each natural number n, we define a binary relation \sim_{n} on $E^{-\omega}$ by $\xi \sim_{n} \eta$ if and only if
(1) there are $\xi^{\prime}, \eta^{\prime} \in E^{-\omega}$ such that ξ^{\prime} is asymptotically equivalent to η^{\prime}, and
(2) $\xi_{-n} \cdots \xi_{-1}=\xi_{-n}^{\prime} \cdots \xi_{-1}^{\prime}$ and $\eta_{-n} \cdots \eta_{-1}=\eta_{-n}^{\prime} \cdots \eta_{-1}^{\prime}$.

Then, it is easy to see that \sim_{n} is an equivalence relation due to the asymptotical equivalence between ξ^{\prime} and η^{\prime}. Now, we let

$$
H_{n}=\left\{(\xi, \eta) \in E^{-\omega} \times E^{-\omega}: \xi \sim_{n} \eta\right\}
$$

with the subspace topology of $E^{-\omega} \times E^{-\omega}$.
Since the complement of H_{n} is open in $E^{-\omega} \times E^{-\omega}$, each H_{n} is a compact Hausdorff space satisfying $H \subset H_{n+1} \subset H_{n}$ with the inclusion map $i_{n}: H \rightarrow H_{n}$. We give H the initial topology induced from $\left(H_{n}, i_{n}\right)_{n \in \mathbb{N}}$. Then, H is a compact Hausdorff space by [17, Example 29.10, Theorem 29.11]. It is not difficult to verify that the initial topology on H is compatible with the groupoid structure. A left Haar system on H is described in [14, Example I.2.5(c)]. See [14, Section I.2] for more details.

We learned the following from an unpublished lecture note by Freed [5].

Proposition 3.2 ([5, Lemma 15.66]). The quotient map $q: E^{-\omega} \rightarrow$ $J_{(G, E)}$ is an open map.

Proof. Let H be as above. We identify $E^{-\omega}=H^{(0)}$ and $J_{(G, E)}=$ $|H|$. For every open set U in $E^{-\omega}, q(U)$ is open in $J_{(G, E)}$ if and only if $q^{-1} \circ q(U)$ is open in $E^{-\omega}$. On the other hand, the structure of the groupoid H implies $d \circ r^{-1}(U)=q^{-1} \circ q(U)$, where d and r are the domain and range maps, respectively, of H. Since H is a locally compact Hausdorff groupoid with a left Haar system, d and r are open maps by [14, Proposition I.2.4]. Hence, $d \circ r^{-1}(U)$ is an open subset of $E^{-\omega}$, and thus, is $q^{-1} \circ q(U)$ for every open set $U \subset E^{-\omega}$. Therefore, the quotient map q is an open map.

When (G, E) is a contracting self-similar graph action such that E is an n-bouquet, every asymptotic equivalence class on $E^{-\omega}$ has no more than $|\mathcal{N}|$ elements by [9, Proposition 3.2.6]. We can obtain the same result for finite graphs.

Proposition 3.3. Suppose that (G, E) is a contracting self-similar graph action. For each $x \in J_{(G, E)},\left|q^{-1}(x)\right| \leq|\mathcal{N}|$, where $|\cdot|$ is the cardinality and \mathcal{N} is the nucleus.

Proof. We fix one element $\xi=\cdots x_{-n} \cdots x_{-1} \in q^{-1}(x)$ and consider an arbitrary element $\eta=\cdots y_{-n} \cdots y_{-1} \in E^{-\omega}$. Let
$X=\left\{\left\{g_{n}\right\}: g_{n} \in \mathcal{N}\right.$ for every $n \in \mathbb{N}$ and $g_{n-1}=\left.g_{n}\right|_{x_{-n}}$ for every $\left.n \geq 2\right\}$.
Then, $\eta \in q^{-1}(x)$ if and only if there is at least one sequence $\left\{g_{n}\right\} \in X$ such that $g_{n}\left(x_{-n}\right)=y_{-n}$ for every $n \in \mathbb{N}$. Thus, we have an injective map $q^{-1}(x) \rightarrow X$ that sends each $\eta \in q^{-1}(x)$ to one of such sequences in X, which implies $\left|q^{-1}(x)\right| \leq|X|$.

In order to show $|X| \leq|\mathcal{N}|$, we consider X as a subset of $\prod \mathcal{N}$. For every $n \in \mathbb{N}$, let $X_{n}=\mathcal{N}$ and

$$
p_{n}: \prod \mathcal{N}=\prod X_{n} \longrightarrow X_{1} \times \cdots \times X_{n}
$$

be the projection map given by

$$
\left(g_{1}, \ldots, g_{n}, g_{n+1}, \ldots\right) \longmapsto\left(g_{1}, \ldots, g_{n}\right)
$$

Due to

$$
\left.g_{n}\right|_{x_{-n} x_{-n+1}}=\left.\left(\left.g_{n}\right|_{x_{-n}}\right)\right|_{x_{-n+1}}=\left.g_{n-1}\right|_{x_{-n+1}}=g_{n-2}
$$

we observe that, for $\left(g_{1}, \ldots, g_{n}\right) \in p_{n}(X), g_{n}$ determines g_{n-1}, \ldots, g_{1}. Therefore, $\left|p_{n}(X)\right| \leq\left|X_{n}\right|=|\mathcal{N}|$ for every $n \in \mathbb{N}$. Since a map $p_{n+1}(X) \rightarrow p_{n}(X)$ defined by $\left(g_{1}, \ldots, g_{n}, g_{n+1}\right) \mapsto\left(g_{1}, \ldots, g_{n}\right)$ is surjective, we have $\left|p_{n}(X)\right| \leq\left|p_{n+1}(X)\right|$. Thus, the sequence $\left\{\left|p_{n}(X)\right|\right\}$ is a bounded increasing sequence of natural numbers, and $\left\{\left|p_{n}(X)\right|\right\}$ is a convergent sequence by the monotone convergence theorem. Hence, there is a natural number N such that $\left|p_{N}(X)\right|=$ $\left|p_{N+k}(X)\right|$ for every $k \geq 1$ since $\left\{\left|p_{n}(X)\right|\right\}$ is a convergent sequence of natural numbers. Then, for each $\left(g_{1}, \ldots, g_{N}\right) \in p_{N}(X)$, there is a unique $\left(g_{1}, \ldots, g_{N}, g_{N+1}\right) \in p_{N+1}(X)$ and, by induction, a unique $\left(g_{1}, \ldots, g_{N}, \ldots, g_{N+k}\right) \in p_{N+k}(X)$, for every $k \in \mathbb{N}$. Therefore, we can choose an element $\left(g_{1}, \ldots, g_{N}, \ldots, g_{N+k}, \ldots\right) \in p_{N}^{-1}\left(g_{1}, \ldots, g_{N}\right) \subset X$ for each $\left(g_{1}, \ldots, g_{N}\right) \in p_{N}(X)$. We define

$$
s_{N+k}: p_{N}(X) \longrightarrow p_{N+k}(X)
$$

by

$$
\left(g_{1}, \ldots, g_{N}\right) \longmapsto\left(g_{1}, \ldots, g_{N}, \ldots, g_{N+k}\right)
$$

and

$$
t: p_{N}(X) \longrightarrow X
$$

by

$$
\left(g_{1}, \ldots, g_{N}\right) \longmapsto\left(g_{1}, \ldots, g_{N}, \ldots, g_{N+k}, \ldots\right) .
$$

Then, it is clear that s_{N+k} is bijective and $p_{N+k} \circ t=s_{N+k}$ for every $k \in \mathbb{N}$.

Now, we show that $t: p_{N}(X) \rightarrow X$ is surjective. Then, we will have $|X| \leq\left|p_{N}(X)\right| \leq|\mathcal{N}|$. Assume that $t: p_{N}(X) \rightarrow X$ is not surjective. Then, $X \backslash t\left(p_{N}(X)\right)$ is not an empty set so that there is an $h=\left(h_{1}, \ldots, h_{N}, \ldots\right) \in X \backslash t\left(p_{N}(X)\right)$. When we compare h and each $\left(g_{1}, \ldots, g_{N}, \ldots\right) \in t\left(p_{N}(X)\right)$, there is at least one index n such that $h_{n} \neq g_{n}$, i.e., $\left(h_{1}, \ldots, h_{n}\right) \neq\left(g_{1}, \ldots, g_{n}\right)$, so that, for every $k \in \mathbb{N}$,

$$
\left(h_{1}, \ldots, h_{n}, \ldots, h_{n+k}\right) \neq\left(g_{1}, \ldots, g_{n}, \ldots, g_{n+k}\right)
$$

Here, it is clear that $n>N$ due to the fact that $p_{N}(h)=\left(h_{1}, \ldots, h_{N}\right) \in$ $p_{N}(X)$. Since $t\left(p_{N}(X)\right)$ has finitely many elements, there is a natural number K such that $\left(h_{1}, \ldots, h_{N+K}\right) \neq\left(g_{1}, \ldots, g_{N+K}\right)$ for every $\left(g_{1}, \ldots, g_{N}, \ldots\right) \in t\left(p_{N}(X)\right)$, i.e.,

$$
\left(h_{1}, \ldots, h_{N+K}\right) \notin p_{N+K} \circ t\left(p_{N}(X)\right) .
$$

However, $\left(h_{1}, \ldots, h_{N+K}\right)=p_{N+K}(h) \in p_{N+K}(X)$ means that there exists at least one $\left(a_{1}, \ldots, a_{N}, \ldots, a_{N+K}\right) \in p_{N+K}(X)$ such that

$$
\begin{aligned}
\left(h_{1}, \ldots, h_{N+K}\right) & =\left(a_{1}, \ldots, a_{N}, \ldots, a_{N+K}\right) \\
& =s_{N+K}\left(a_{1}, \ldots, a_{N}\right) \\
& =p_{N+K} \circ t\left(a_{1}, \ldots, a_{N}\right) \in p_{N+K} \circ t\left(p_{N}(X)\right)
\end{aligned}
$$

a contradiction. Hence, $t: p_{N}(X) \rightarrow X$ is a surjective map, which implies that $|X| \leq\left|p_{N}(X)\right| \leq|\mathcal{N}|$. Therefore, we have $\left|q^{-1}(x)\right| \leq$ $|X| \leq\left|p_{N}(X)\right| \leq|\mathcal{N}|$ for every $x \in J_{(G, E)}$.

By the same argument, we have similar results for the limit of the solenoid:

Proposition 3.4.

(1) The quotient map $q: E^{ \pm \omega} \rightarrow S_{(G, E)}$ is an open map.
(2) For each $x \in S_{(G, E)},\left|q^{-1}(x)\right| \leq|\mathcal{N}|$.
3.2. Shift maps. For a contracting and regular self-similar graph action (G, E), we show that the shift map $\sigma: J_{(G, E)} \rightarrow J_{(G, E)}$ is positively expansive.

Definition $3.5([15])$. Let (X, d) be a metric space. A continuous map $f: X \rightarrow X$ is called positively expansive if there exists a constant $\rho>0$ such that, for any distinct points $x, y \in X$, there exists an $n \geq 0$ such that $d\left(f^{n}(x), f^{n}(y)\right)>\rho$.

Suppose that X is a locally compact metrizable space with diagonal $\Delta=\{(x, x): x \in X\}$ and that $f: X \rightarrow X$ is a continuous map.

Definition 3.6 ([15]). An expansivity neighborhood for f is a closed neighborhood $N \subset X \times X$ of Δ such that, for any distinct $x, y \in X$, there is an $n \geq 0$ such that $\left(f^{n}(x), f^{n}(y)\right) \notin N$. We say that f is weakly positively expansive if it has an expansivity neighborhood.

Theorem 3.7 ([15, Theorem 4]). Let $f: X \rightarrow X$ be a continuous map on a locally compact metrizable space X. Then, f is positively expansive if and only if it is weakly positively expansive with respect to some metric compatible with the topology of X.

Now, we consider a self-similar graph action (G, E). For each natural number m, we define

$$
\begin{aligned}
& U_{m}=\left\{\left(\cdots a_{-1}, \cdots b_{-1}\right) \in E^{-\omega} \times E^{-\omega}: g\left(a_{-m} \cdots a_{-1}\right)\right. \\
&\left.=b_{-m} \cdots b_{-1} \text { for some } g \in \mathcal{N}\right\}
\end{aligned}
$$

and

$$
V_{m}=(q \times q)\left(U_{m}\right) \subset J_{(G, E)} \times J_{(G, E)} .
$$

Lemma 3.8. For every natural number m, V_{m} is a closed neighborhood of the diagonal Δ of $J_{(G, E)} \times J_{(G, E)}$.

Proof. First, we show that U_{m} is a closed subset of $E^{-\omega} \times E^{-\omega}$. Let

$$
\xi=\cdots x_{-m} \cdots x_{-1} \quad \text { and } \quad \eta=\cdots y_{-m} \cdots y_{-1}
$$

be elements of $E^{-\omega}$ such that (ξ, η) is a boundary element of U_{m}. Then, for a neighborhood $W=Z\left(x_{-m} \cdots x_{-1}\right) \times Z\left(y_{-m} \cdots y_{-1}\right)$ of (ξ, η) we have $W \cap U_{m} \neq \emptyset$. Choose an element $(\alpha, \beta) \in W \cap U_{m}$ such that

$$
\alpha=\cdots a_{-m} \cdots a_{-1} \quad \text { and } \quad \beta=\cdots b_{-m} \cdots b_{-1} .
$$

Since (α, β) is an element of U_{m}, there is a group element $g \in \mathcal{N}$ such that $g\left(a_{-m} \cdots a_{-1}\right)=b_{-m} \cdots b_{-1}$. On the other hand, $(\alpha, \beta) \in W$ means

$$
\alpha \in Z\left(x_{-m} \cdots x_{-1}\right) \quad \text { and } \quad \beta \in Z\left(y_{-m} \cdots y_{-1}\right),
$$

which imply

$$
a_{-m} \cdots a_{-1}=x_{-m} \cdots x_{-1}
$$

and

$$
b_{-m} \cdots b_{-1}=y_{-m} \cdots y_{-1} .
$$

Thus, we have

$$
g\left(x_{-m} \cdots x_{-1}\right)=y_{-m} \cdots y_{-1},
$$

and (ξ, η) is included in U_{m}; hence, U_{m} is a closed subset of $E^{-\omega} \times E^{-\omega}$. Then, $V_{m}=(q \times q)\left(U_{m}\right)$ is a closed subset of $J_{(G, E)} \times J_{(G, E)}$ since $E^{-\omega}$ and $J_{(G, E)}$ are compact spaces and the quotient map $q: E^{-\omega} \rightarrow J_{(G, E)}$ is continuous.

Moreover, U_{m} is an open set in $E^{-\omega} \times E^{-\omega}$. Let $(\alpha, \beta) \in U_{m}$ be given by $\alpha=\cdots a_{-m} \cdots a_{-1}$ and $\beta=\cdots b_{-m} \cdots b_{-1}$. Then, the existence of some $g \in \mathcal{N}$ such that

$$
g\left(a_{-m} \cdots a_{-1}\right)=b_{-m} \cdots b_{-1}
$$

implies

$$
Z\left(a_{-m} \cdots a_{-1}\right) \times Z\left(b_{-m} \cdots b_{-1}\right) \subset U_{m} .
$$

Thus, (α, β) is an interior point of U_{m}, and U_{m} is an open subset of $E^{-\omega} \times E^{-\omega}$. Hence, $V_{m}=(q \times q)\left(U_{m}\right)$ is open in $J_{(G, E)} \times J_{(G, E)}$ by Proposition 3.2.

In order to show $\Delta \subset V_{m}$, consider any $(z, z) \in \Delta$ and $\zeta=$ $\cdots z_{-m} \cdots z_{-1} \in q^{-1}(z)$. Then, it is trivial that $(\zeta, \zeta) \in U_{m}$ and $(q \times q)(\zeta, \zeta)=(z, z) \in V_{m}$. Therefore, V_{m} is a closed neighborhood of the diagonal Δ.

In order to show that V_{m} is an expansivity neighborhood for the shift map, we need to extend [10, Lemma 6.3] a little further.

Lemma 3.9. If (G, E) is a contracting and regular self-similar graph action, then there is a natural number k_{0} such that, for every $k \geq k_{0}$, any $w \in E^{k}$ and any two elements $g, h \in \mathcal{N}$, either $g(w) \neq h(w)$ or $g(w)=h(w)$ and $\left.g\right|_{w}=\left.h\right|_{w}$ hold.

Proof. It is proven in [10, Lemma 6.3] that there is a natural number k_{0} such that, for any $w \in E^{k_{0}}$ and any two elements $g, h \in \mathcal{N}$, either $g(w) \neq h(w)$ or $g(w)=h(w)$ and $\left.g\right|_{w}=\left.h\right|_{w}$ hold. For every $k>k_{0}$, let $w_{0} \in E^{k_{0}}, w_{1} \in E^{k-k_{0}}$ and $w_{2} \in E^{*}$ be arbitrary words with the conditions $r\left(w_{0}\right)=d\left(w_{1}\right)$ and $r\left(w_{1}\right)=d\left(w_{2}\right)$ so that $w_{0} w_{1} \in E^{k}$ and $w_{0} w_{1} w_{2} \in E^{*}$. We must show that, for any $g, h \in \mathcal{N}$, $g\left(w_{0} w_{1}\right)=h\left(w_{0} w_{1}\right)$ implies $\left.g\right|_{w_{0} w_{1}}=\left.h\right|_{w_{0} w_{1}}$.

If $g\left(w_{0} w_{1}\right)=h\left(w_{0} w_{1}\right)$, then $w_{0} \in E^{k_{0}}$ implies

$$
g\left(w_{0} w_{1}\right)=\left.g\left(w_{0}\right) g\right|_{w_{0}}\left(w_{1}\right)=\left.h\left(w_{0}\right) h\right|_{w_{0}}\left(w_{1}\right)=h\left(w_{0} w_{1}\right)
$$

such that $g\left(w_{0}\right)=h\left(w_{0}\right)$ and $\left.g\right|_{w_{0}}=\left.h\right|_{w_{0}}$ hold. Thus, for any $w_{2} \in E^{*}$ such that $w_{0} w_{1} w_{2}$ is allowed, we obtain

$$
\begin{aligned}
g\left(w_{0} w_{1} w_{2}\right) & =\left.g\left(w_{0}\right) g\right|_{w_{0}}\left(w_{1} w_{2}\right)=\left.g\left(w_{0} w_{1}\right) g\right|_{w_{0} w_{1}}\left(w_{2}\right) \\
& =\left.h\left(w_{0}\right) h\right|_{w_{0}}\left(w_{1} w_{2}\right)=\left.h\left(w_{0} w_{1}\right) h\right|_{w_{0} w_{1}}\left(w_{2}\right)=h\left(w_{0} w_{1} w_{2}\right)
\end{aligned}
$$

Therefore, we have $\left.g\right|_{w_{0} w_{1}}=\left.h\right|_{w_{0} w_{1}}$, and this completes the proof.
Lemma 3.10. Suppose that $m \geq k_{0}+1$ is any natural number, where k_{0} is given in Lemma 3.9, and that U_{m} and V_{m} are as in Lemma 3.8. Then, V_{m} is an expansivity neighborhood for $\sigma: J_{(G, E)} \rightarrow J_{(G, E)}$.

Proof. We prove the following. If $(x, y) \in J_{(G, E)} \times J_{(G, E)}$ satisfies $\left(\sigma^{n} x, \sigma^{n} y\right) \in V_{m}$ for every $n \geq 0$, then $x=y$.

Let $\xi=\cdots x_{-m} \cdots x_{-1} \in q^{-1}(x)$ and $\eta=\cdots y_{-m} \cdots y_{-1} \in q^{-1}(y)$. Since the shift maps on $E^{-\omega}$ and $J_{(G, E)}$ and the quotient map are commutative to each other, $\left(\sigma^{n} x, \sigma^{n} y\right) \in V_{m}$ means $\left(\sigma^{n} \xi, \sigma^{n} \eta\right) \in U_{m}$. Thus, for every $n \geq 0$, there is a group element $g_{n} \in \mathcal{N}$ such that $g_{n}\left(x_{-m-n} \cdots x_{-1-n}\right)=y_{-m-n} \cdots y_{-1-n}$. In order to obtain $x=y$, we show

$$
g_{n}\left(x_{-m-n} \cdots x_{-1-n} \cdots x_{-1}\right)=y_{-m-n} \cdots y_{-1-n} \cdots y_{-1},
$$

which implies an asymptotic equivalence between ξ and η such that

$$
x=q(\xi)=q(\eta)=y
$$

For $n=0,1$, we have

$$
\begin{aligned}
g_{0}\left(x_{-m} \cdots x_{-1}\right) & =g_{0}\left(x_{-m} \cdots x_{-2} x_{-1}\right) \\
& =\left.g_{0}\left(x_{-m} \cdots x_{-2}\right) g_{0}\right|_{x_{-m} \cdots x_{-2}}\left(x_{-1}\right) \\
& =y_{-m} \cdots y_{-2} y_{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
g_{1}\left(x_{-m-1} \cdots x_{-2}\right) & =g_{1}\left(x_{-m-1} x_{-m} \cdots x_{-2}\right) \\
& =\left.g_{1}\left(x_{-m-1}\right) g_{1}\right|_{x_{-m-1}}\left(x_{-m} \cdots x_{-2}\right) \\
& =y_{-m-1} y_{-m} \cdots y_{-2} .
\end{aligned}
$$

Since we choose $m-1 \geq k_{0}$, by Lemma 3.9,

$$
g_{0}\left(x_{-m} \cdots x_{-2}\right)=y_{-m} \cdots y_{-2}=\left.g_{1}\right|_{x_{-m-1}}\left(x_{-m} \cdots x_{-2}\right)
$$

implies

$$
\left.g_{0}\right|_{x_{-m} \cdots x_{-2}}=\left.\left(\left.g_{1}\right|_{x_{-m-1}}\right)\right|_{x_{-m} \cdots x_{-2}}=\left.g_{1}\right|_{x_{-m-1} x_{-m} \cdots x_{-2}}
$$

and

$$
\begin{aligned}
g_{1}\left(x_{-m-1} \cdots x_{-2} x_{-1}\right) & =\left.g_{1}\left(x_{-m-1} \cdots x_{-2}\right) g_{1}\right|_{x_{-m-1} x_{-m} \cdots x_{-2}}\left(x_{-1}\right) \\
& =\left.g_{1}\left(x_{-m-1} \cdots x_{-2}\right) g_{0}\right|_{x_{-m} \cdots x_{-2}}\left(x_{-1}\right) \\
& =y_{-m-1} y_{-m} \cdots y_{-2} y_{-1} .
\end{aligned}
$$

Then, by induction, we have $g_{n}\left(x_{-m-n} \cdots x_{-1-n} \cdots x_{-1}\right)=y_{-m-n} \cdots$ $y_{-1-n} \cdots y_{-1}$ for every $n \geq 0$. Therefore, ξ is asymptotically equivalent to η, and V_{m} is an expansivity neighborhood for $\sigma: J_{(G, E)} \rightarrow J_{(G, E)}$.

Now, we have the following from Theorem 2.8, Theorem 3.7 and Lemma 3.10.

Theorem 3.11. If (G, E) is a contracting and regular self-similar graph action, then $\sigma: J_{(G, E)} \rightarrow J_{(G, E)}$ is a positively expansive surjective local homeomorphism.

Since a local homeomorphism is an open map, [13, Theorem 2] implies the following.

Corollary 3.12. If (G, E) is a contracting and regular self-similar graph action, then $\sigma: J_{(G, E)} \rightarrow J_{(G, E)}$ is expanding.

Remark 3.13. The metric mentioned in Theorem 3.7 is given as follows. Let U_{m} and V_{m} be as above. Then,

$$
g\left(x_{-m-1} x_{-m} \cdots x_{-1}\right)=\left.g\left(x_{-m-1}\right) g\right|_{x_{-m-1}}\left(x_{-m} \cdots x_{-1}\right)
$$

implies $U_{m+1} \subset U_{m}$ and $V_{m+1} \subset V_{m}$, and it is easy to see that $\left\{V_{m}\right\}$ satisfies the conditions of [6, page 185, Lemma 12]. For $x, y \in J_{(G, E)}$, we define

$$
\tau(x, y)=\sup \left\{m \in \mathbb{N} \cup\{0\}:(x, y) \in V_{m}\right\} \quad \text { and } \quad \delta(x, y)=2^{-\tau(x, y)}
$$

Let $\bar{d}(x, y)$ be the infimum of $\sum \delta\left(a_{i-1}, a_{i}\right)$ over all finite sequences $a_{0}, a_{1}, \ldots, a_{n}$ in $J_{(G, E)}$ such that $a_{0}=x$ and $a_{n}=y$. Then, \bar{d} is the metric on $J_{(G, E)}$ induced from $\left\{V_{m}\right\}$ by the aforementioned citation.

Proposition 3.14. For every $x, y \in J_{(G, E)}, \delta(x, y)=\bar{d}(x, y)$.

Proof. First, we remark that $\tau(x, y)<\infty$ if and only if $x \neq y$ in $J_{(G, E)}$. Trivially, $\delta(x, x)=\bar{d}(x, x)=0$ and $\delta(x, y) \geq \bar{d}(x, y)$ by the definition. In order to show $\delta(x, y) \leq \bar{d}(x, y)$, let $a_{0}, a_{1}, \ldots, a_{n}$ be any finite sequence in $J_{(G, E)}$ such that $a_{0}=x$ and $a_{n}=y$. We observe that, if there is at least one $i \in\{1, \ldots, n\}$ such that $\tau\left(a_{i-1}, a_{i}\right) \leq \tau(x, y)$, then

$$
\delta(x, y)=2^{-\tau(x, y)} \leq 2^{-\tau\left(a_{i-1}, a_{i}\right)} \leq \sum_{j=0}^{n} 2^{-\tau\left(a_{j-1}, a_{j}\right)}=\sum_{j=0}^{n} \delta\left(a_{j-1}, a_{j}\right)
$$

Thus, we assume that $\tau\left(a_{i-1}, a_{i}\right) \gtrless \tau(x, y)$ for every $i=1, \ldots, n$, and obtain a contradiction. For each a_{i}, choose $\alpha_{i}=\cdots a_{i,-2} a_{i,-1} \in$ $q^{-1}\left(a_{i}\right)$. Then, we have

$$
\left(\alpha_{i-1}, \alpha_{i}\right) \in U_{\tau\left(a_{i-1}, a_{i}\right)} \subset U_{\tau(x, y)+1}
$$

since $U_{m+1} \subset U_{m}$ for every m and $\tau\left(a_{i-1}, a_{i}\right) \geq \tau(x, y)+1 \geq \tau(x, y)$. Thus, there is a group element $g_{i} \in \mathcal{N}$ for every $i=1, \ldots, n$ such that

$$
g_{i}\left(a_{i-1,-\tau(x, y)-1} \cdots a_{i-1,-1}\right)=a_{i,-\tau(x, y)-1} \cdots a_{i,-1}
$$

and

$$
g_{n} \cdots g_{1}\left(a_{0,-\tau(x, y)-1} \cdots a_{0,-1}\right)=a_{n,-\tau(x, y)-1} \cdots a_{n,-1} .
$$

Then, we have $\left(\alpha_{0}, \alpha_{n}\right) \in U_{\tau(x, y)+1}$ and $\left(q\left(\alpha_{0}\right), q\left(\alpha_{n}\right)\right)=(x, y) \in$ $V_{\tau(x, y)+1}$ such that $\tau(x, y) \geq \tau(x, y)+1$, a contradiction. Hence, there is at least one $i \in\{1, \ldots, n\}$ such that $\tau\left(a_{i-1}, a_{i}\right) \leq \tau(x, y)$, which implies that $\delta(x, y) \leq \sum_{j=0}^{n} \delta\left(a_{j-1}, a_{j}\right)$. Since a_{0}, \ldots, a_{n} is any finite sequence satisfying $a_{0}=x$ and $a_{n}=y$, we conclude that $\delta(x, y) \leq \bar{d}(x, y)$. Therefore, $\delta(x, y)=\bar{d}(x, y)$ for all $x, y \in J_{(G, E)}$.
4. Smale spaces. We omit the definitions and fundamental properties of Smale spaces and their corresponding C^{*}-algebras. The interested reader may consult $[11,12]$ for details.

For a contracting and regular self-similar graph action (G, E), where E is an n-bouquet, Nekrashevych showed [10, Proposition 6.10] that its limit solenoid is a Smale space. We extend his result to finite graphs.

Theorem 4.1. If (G, E) is a contracting and regular self-similar graph action, then its limit solenoid $\left(S_{(G, E)}, \sigma\right)$ is a Smale space.

Proof. When (G, E) satisfies contracting and regular conditions,

$$
\sigma: J_{(G, E)} \longrightarrow J_{(G, E)}
$$

is a positively expansive surjective local homeomorphism by Theorem 3.11. Then, Theorem 2.10 and [16, Lemma 4.18] imply the conclusion.
4.1. Unstable Ruelle algebras. We show that, under contracting, regular, pseudo free and G-transitive conditions, the unstable Ruelle
algebra of $\left(S_{(G, E)}, \sigma\right)$ is strongly Morita equivalent to the groupoid algebra $\mathcal{O}_{G, E}$ of Exel and Pardo.

Instead of the formal definition of unstable equivalence given in [11], we use [10, Proposition 6.8].

Definition 4.2 ([10, Proposition 6.8]). Suppose that $\left(S_{(G, E)}, \sigma\right)$ is the limit solenoid of a contracting and regular self-similar graph action (G, E). For $x, y \in S_{(G, E)}$, let

$$
\xi=\cdots x_{-1} \cdot x_{0} x_{1} \cdots \in q^{-1}(x)
$$

and

$$
\eta=\cdots y_{-1} \cdot y_{0} y_{1} \cdots \in q^{-1}(y)
$$

We say that x is unstably equivalent to y if and only if there exist $n \in \mathbb{Z}$ and $g \in \mathcal{N}$ such that

$$
g\left(x_{n} x_{n+1} \cdots\right)=y_{n} y_{n+1} \cdots
$$

The unstable groupoid and its induced groupoid of $\left(S_{(G, E)}, \sigma\right)$ are given by

$$
R^{u}=\left\{(x, y) \in S_{(G, E)} \times S_{(G, E)}: x \text { is unstably equivalent to } y\right\}
$$

and
$R^{u} \rtimes \mathbb{Z}=\left\{(x, l-k, y) \in S_{(G, E)} \times \mathbb{Z} \times S_{(G, E)}: l, k \in \mathbb{N},\left(\sigma^{l}(x), \sigma^{k}(y)\right) \in R^{u}\right\}$.
It is a well-known fact that R^{u} and $R^{u} \rtimes \mathbb{Z}$ are locally compact Hausdorff groupoids. The groupoid C^{*}-algebra $C^{*}\left(R^{u} \rtimes \mathbb{Z}\right)$ is called the unstable Ruelle algebra of the Smale space $\left(S_{(G, E)}, \sigma\right)$. See $[11,12]$ for details.
4.2. Strong Morita equivalence between $C^{*}\left(R^{u} \rtimes \mathbb{Z}\right)$ and $\mathcal{O}_{G, E}$. For a self-similar graph action (G, E), the following groupoid is constructed in [4, Theorem 8.19]:

$$
\mathcal{G}_{G, E}=\left\{\begin{array}{c}
\left(\alpha ;\left[\left\{g_{i}\right\}\right], l-k ; \beta\right): \alpha, \beta \in E^{\omega}, g_{i} \in G, l, k \in \mathbb{N}, \\
\text { there exists an } n \geq l \text { such that } \\
g_{i} \cdot \alpha_{i}=\beta_{i-l+k} \cdot g_{i+1} \text { for all } i \geq n
\end{array}\right\}
$$

Here, $\left[\left\{g_{i}\right\}\right]$ is the equivalence class of $\left\{g_{i}\right\}$ under \sim such that, for sequences of group elements, $\left\{g_{i}\right\} \sim\left\{h_{i}\right\}$ if and only if there is an
$m \geq 0$ such that $g_{i}=h_{i}$ for every $i \geq m$. A suitable topology of $\mathcal{G}_{G, E}$ is described in [4, Proposition 9.5].

Theorem 4.3 ([4, Theorem 9.6]). If (G, E) is pseudo free, then the Cuntz-Pimsner algebra $\mathcal{O}_{G, E}$ is *-isomorphic to the groupoid algebra $C^{*}\left(\mathcal{G}_{G, E}\right)$.

Now, we show that there is a groupoid equivalence between $R^{u} \rtimes \mathbb{Z}$ and $\mathcal{G}_{G, E}$ in the sense of Muhly, Renault and Williams [8]. We begin by mentioning a well-known groupoid equivalence result reviewed in [7, Section 5]: Let Γ be a locally compact Hausdorff groupoid and X a locally compact Hausdorff space. If there is a continuous open surjection $\psi: X \rightarrow \Gamma^{(0)}$, we set

$$
\Gamma^{\psi}=\{(\xi, \gamma, \eta): \xi, \eta \in X, \gamma \in \Gamma, \psi(\xi)=d(\gamma), \psi(\eta)=r(\gamma)\}
$$

with the subspace topology of $X \times \Gamma \times X$.
Lemma 4.4 ([7, Lemma 5.1]). The groupoid Γ is equivalent to Γ^{ψ}.
Suppose that (G, E) is a contracting and regular self-similar graph action with the two-sided infinite path space $E^{ \pm \omega}$ and the induced unstable groupoid $R^{u} \rtimes \mathbb{Z}$. Then, $E^{ \pm \omega}$ is a compact Hausdorff space, $R^{u} \rtimes \mathbb{Z}$ is a locally compact Hausdorff groupoid whose unit space is $S_{(G, E)}$ and $q: E^{ \pm \omega} \rightarrow S_{(G, E)}$ is a continuous open surjection by Proposition 3.4. Thus, the following is true by Lemma 4.4.

Proposition 4.5. The groupoid $R^{u} \rtimes \mathbb{Z}$ is equivalent to

$$
\left(R^{u} \rtimes \mathbb{Z}\right)^{q}=\left\{\begin{array}{c}
(\xi,(x, l-k, y), \eta): \xi, \eta \in E^{ \pm \omega}, q(\xi)=x, q(\eta)=y, \\
l, k \in \mathbb{N},\left(\sigma^{l} x, \sigma^{k} y\right) \in R^{u} .
\end{array}\right\}
$$

In order to compare $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}$ with $\mathcal{G}_{G, E}$, whose unit space is E^{ω}, we need to reduce the unit space of $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}$. For this purpose, we use a transversal in [8, Example 2.7]. Fix a left-infinite word $z=\cdots z_{-2} z_{-1} \in E^{-\omega}$, and consider

$$
T=\left\{z \cdot w \in E^{ \pm \omega}: w \in E^{\omega}\right\}
$$

Then, T is trivially a closed subspace of $E^{ \pm \omega}$. Since $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}$ has the subspace topology of $E^{ \pm \omega} \times\left(R^{u} \rtimes \mathbb{Z}\right) \times E^{ \pm \omega}$, so does

$$
\left(R^{u} \rtimes \mathbb{Z}\right)_{T}^{q}=\left\{\gamma \in\left(R^{u} \rtimes \mathbb{Z}\right)^{q}: d(\gamma) \in T\right\}
$$

Then, $\left.d\right|_{\left(R^{u} \rtimes \mathbb{Z}\right)^{q} T}$ and $\left.r\right|_{\left(R^{u} \rtimes \mathbb{Z}\right)^{q} T}$, respectively, are open maps since they are projection maps to the first and the third coordinate spaces, respectively, of $\left(R^{u} \rtimes \mathbb{Z}\right)^{q} T$. Now, we show that T meets every orbit in the unit space of $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}$.

Lemma 4.6 ([4, Proposition 13.2]). If (G, E) is a self-similar graph action such that E is G-transitive, then, for any vertices u and v of E there are $a \in E^{*}, p \in E^{0}$ and $g \in G$ such that a is a path from u to p and $g(p)=v$.

Lemma 4.7. If (G, E) is a contracting and regular self-similar graph action such that E is G-transitive, then, for every $\xi=\cdots x_{-1}$. $x_{0} x_{1} \cdots \in E^{ \pm \omega}$, there is an $\eta=\cdots z_{-1} \cdot w \in T$ such that

$$
(\xi,(q(\xi), l-k, q(\eta)), \eta) \in\left(R^{u} \rtimes \mathbb{Z}\right)^{q}
$$

for some nonnegative integers l, k.

Proof. For two vertices $r\left(z_{-1}\right)$ and $d\left(x_{0}\right)$, by Lemma 4.6, there are a vertex p, a path a from $r\left(z_{-1}\right)$ to p and a $g \in G$ such that $g(p)=d\left(x_{0}\right)$. Then,

$$
g^{-1}\left(x_{0} x_{1} \cdots\right)=y_{0} y_{1} \cdots \in E^{\omega}
$$

satisfies $d\left(g^{-1}\left(x_{0} x_{1} \cdots\right)\right)=d\left(g^{-1}\left(x_{0}\right)\right)=g^{-1}\left(d\left(x_{0}\right)\right)=p$. Thus, we have

$$
\eta=\cdots z_{-2} z_{-1} \cdot a \cdot g^{-1}\left(x_{0} x_{1} \cdots\right)=\cdots z_{-2} z_{-1} \cdot a \cdot y_{0} y_{1} \cdots \in T
$$

Now, we verify that $\sigma^{n}(\xi)=\cdots x_{-n-2} x_{-n-1} \cdot x_{-n} \cdots x_{-1} x_{0} \cdots$ is unstably equivalent to η, where n is the length of a. For $g^{-1} \in G$, the contracting condition implies that there is a natural number m such that $\left.g^{-1}\right|_{b} \in \mathcal{N}$ for every $b \in E^{m}$. Then, we obtain from Remark 2.3 that

$$
g^{-1}\left(x_{0} x_{1} \cdots\right)=y_{0} y_{1} \cdots=\left.g^{-1}\left(x_{0} \cdots x_{m-1}\right) g^{-1}\right|_{x_{0} \cdots x_{m-1}}\left(x_{m} \cdots\right)
$$

such that $\left.g^{-1}\right|_{x_{0} \cdots x_{m-1}} \in \mathcal{N}$ and $\left.g^{-1}\right|_{x_{0} \cdots x_{m-1}}\left(x_{m} x_{m+1} \cdots\right)=y_{m} y_{m+1}$ \cdots. Therefore, $\eta=\cdots z_{-1} \cdot a \cdot g^{-1}\left(x_{0} \cdots\right) \in T$ satisfies $(\xi,(q(\xi), n-$ $0, q(\eta)), \eta) \in\left(R^{u} \rtimes \mathbb{Z}\right)^{q}$.

Thus, T meets every orbit in the unit space of $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}$, and T is a transversal to $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}$. Then, we have the following from [8, Example 2.7].

Proposition 4.8. If (G, E) is a contracting and regular self-similar graph action such that E is G-transitive, then $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}$ is equivalent to $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T}$.

We show that $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T}$ is equivalent to $\mathcal{G}_{G, E}$. First, recall that

$$
\begin{aligned}
T & =\left\{z \cdot w \in E^{ \pm \omega}: z \in E^{-\omega} \text { is fixed, } w \in E^{\omega}\right\} \\
\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T} & =\left\{(\xi,(q(\xi), l-k, q(\eta)), \eta) \in\left(R^{u} \rtimes \mathbb{Z}\right)^{q}: \xi, \eta \in T\right\}
\end{aligned}
$$

and

$$
\mathcal{G}_{G, E}=\left\{\begin{array}{c}
\left(\alpha ;\left[\left\{g_{i}\right\}\right], l-k ; \beta\right): \alpha, \beta \in E^{\omega}, g_{i} \in G, l, k \in \mathbb{N}, \\
\text { there exists an } n \geq l \text { such that } \\
g_{i} \cdot \alpha_{i}=\beta_{i-l+k} \cdot g_{i+1} \text { for all } i \geq n
\end{array}\right\}
$$

We simplify $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T}$ and $\mathcal{G}_{G, E}$. On $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T}$, consider

$$
\xi=\cdots z_{-2} z_{-1} \cdot x_{0} x_{1} \cdots \quad \text { and } \quad \eta=\cdots z_{-2} z_{-1} \cdot y_{0} y_{1} \cdots
$$

Then, $(q(\xi), l-k, q(\eta)) \in R^{u} \rtimes \mathbb{Z}$ means that $\sigma^{l}(q(\xi))=q\left(\sigma^{l}(\xi)\right)$ is unstably equivalent to $\sigma^{k}(q(\eta))=q\left(\sigma^{k}(\eta)\right)$, which is equivalent to the existence of a natural number $m \geq l$ and some $g_{m} \in \mathcal{N}$ exist such that

$$
g_{m}\left(x_{m} x_{m+1} \cdots\right)=y_{m-l+k} y_{m-l+k+1} \cdots
$$

Remark 4.9. Let m and g_{m} be as above.
(1) For every $j>m$, let $g_{j}=\left.g_{m}\right|_{x_{m} \cdots x_{j-1}}$. Then, we have g_{j}. $x_{j}=y_{j-l+k} \cdot g_{j+1}$ by Remark 2.3.
(2) A natural number m and a nucleus element g_{m} are not unique. However, if n is another natural number with $n \geq m$ and h_{n} is another nucleus element such that

$$
h_{n}\left(x_{n} x_{n+1} \cdots\right)=y_{n-l+k} y_{n-l+k+1} \cdots,
$$

then, for every $j \geq \max \{m, n\}+k_{0}=n+k_{0}$, where k_{0} is the number given in Lemma 3.9, we have

$$
\begin{aligned}
g_{j} & =\left.g_{m}\right|_{x_{m} \cdots x_{j-1}}=\left.\left(\left.g_{m}\right|_{x_{m} \cdots x_{n-1}}\right)\right|_{x_{n} \cdots x_{j-1}}=\left.g_{n}\right|_{x_{n} \cdots x_{j-1}} \\
& =\left.h_{n}\right|_{x_{n} \cdots x_{j-1}}=h_{j}
\end{aligned}
$$

by Lemma 3.9, in other words, $\left[\left\{g_{j}\right\}\right]=\left[\left\{h_{j}\right\}\right]$ where $\left[\left\{g_{j}\right\}\right]$ was defined at the beginning of this subsection.

Lemma 4.10. Suppose that (G, E) is a contracting and regular selfsimilar graph action such that E is G-transitive and that T is the above transversal to $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}$. Then, for every $x \in S_{(G, E),} q^{-1}(x) \cap T$ has at most one element.

Proof. For $x \in S_{(G, E)}$ such that $q^{-1}(x) \cap T \neq \emptyset$, we denote $\alpha, \beta \in$ $q^{-1}(x) \cap T$ as

$$
\alpha=\cdots z_{-2} z_{-1} \cdot a_{0} a_{1} \cdots \quad \text { and } \quad \beta=\cdots z_{-2} z_{-1} \cdot b_{0} b_{1} \cdots
$$

and show $\alpha=\beta$.
First, we note that, by Lemma 3.9, there is a natural number k such that, for every $w \in E^{k}$ and $g \in \mathcal{N}$, either $g(w) \neq w$ or $g(w)=w$ and $\left.g\right|_{w}=1$. Since α and β are elements of $q^{-1}(x), \alpha$ and β are asymptotically equivalent, and there is a $g_{-k} \in \mathcal{N}$ such that

$$
g_{-k}\left(z_{-k} \cdots z_{-1} \cdot a_{0} a_{1} \cdots\right)=z_{-k} \cdots z_{-1} \cdot b_{0} b_{1} \cdots
$$

By the definition of the G-action on E^{ω} (see Remark 2.3), the above equality means that, for every $l \geq 0$,

$$
\begin{aligned}
g_{-k}\left(z_{-k} \cdots z_{-1} \cdot a_{0} \cdots a_{l}\right) & =\left.g_{-k}\left(z_{-k} \cdots z_{-1}\right) \cdot g_{-k}\right|_{z_{-k} \cdots z_{-1}}\left(a_{0} \cdots a_{l}\right) \\
& =z_{-k} \cdots z_{-1} \cdot b_{0} \cdots b_{l} .
\end{aligned}
$$

Then, $g_{-k}\left(z_{-k} \cdots z_{-1}\right)=z_{-k} \cdots z_{-1}$ implies $\left.g_{-k}\right|_{a_{-k} \cdots a_{-1}}=1$ by Lemma 3.9. Hence, we have $a_{0} \cdots a_{l}=b_{0} \cdots b_{l}$ for every $l \geq 0$, which induces $\alpha=\beta$. Therefore, $q^{-1}(x) \cap T$ has at most one element for every $x \in S_{(G, E)}$.

Now, we no longer need $q(\xi)$ and $q(\eta)$ since $\left.q\right|_{T}$ is a homeomorphism by Proposition 3.4 and Lemma 4.10. Thus, when (G, E) is a contracting and regular self-similar graph action, $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T}$ is isomorphic to a
groupoid

$$
\mathcal{A}=\left\{\begin{array}{l}
(\xi ; l-k ; \eta): \xi, \eta \in T, l, k \in \mathbb{N}, \text { there exist an } m \geq l \text { and a } \\
g_{m} \in \mathcal{N} \text { such that } g_{m}\left(x_{m} x_{m+1} \cdots\right)=y_{m-l+k} y_{m-l+k+1} \cdots
\end{array}\right\}
$$

by a $\operatorname{map}(\xi,(q(\xi), l-k, q(\eta)), \eta) \mapsto(\xi ; l-k ; \eta)$. Then, \mathcal{A} with the induced topology from $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T}$ is topologically isomorphic to $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T}$.

Remark 4.11. We can explain the induced topology on \mathcal{A} as follows. Let

$$
\begin{aligned}
& \mathcal{A}_{n}=\{(\xi ; 0 ; \eta): \xi, \eta \in T, \text { there exists a } g \in \mathcal{N} \text { such that } \\
& \left.\qquad g\left(x_{n} x_{n+1} \cdots\right)=y_{n} y_{n+1} \cdots\right\}
\end{aligned}
$$

with the subspace topology of $T \times T$, and

$$
\mathcal{A}_{\infty}=\bigcup_{n=0}^{\infty} \mathcal{A}_{n}
$$

with the inductive limit topology. Then, the map $\mathcal{A}_{\infty} \times \mathbb{Z} \rightarrow \mathcal{A}$ sending $((\xi ; 0 ; \eta), n)$ to $\left(\xi ; n ; \sigma^{n}(\eta)\right)$ is a bijection, and the product topology of $\mathcal{A}_{\infty} \times \mathbb{Z}$ is transferred to \mathcal{A}. Since R^{u} has an inductive limit topology (see $[11,12]$ for details), it is routine to verify that this topology is the same as the induced topology.

On the other hand, with

$$
\mathcal{G}_{G, E}=\left\{\begin{array}{c}
\left(\alpha ;\left[\left\{g_{i}\right\}\right], l-k ; \beta\right): \alpha, \beta \in E^{\omega}, g_{i} \in G, l, k \in \mathbb{N}, \\
\text { there exists an } n \in \mathbb{N} \text { such that } \\
g_{i} \cdot \alpha_{i}=\beta_{i-l+k} \cdot g_{i+1} \text { for all } i \geq n
\end{array}\right\}
$$

it is not difficult to observe that $g_{i} \cdot \alpha_{i}=\beta_{i-l+k} \cdot g_{i+1}$ for every $i \geq n$ is the same as $g_{n}\left(\alpha_{n} \alpha_{n+1} \cdots\right)=\beta_{n-l+k} \beta_{n-l+k+1} \cdots$ by Remark 2.3. In addition, we can say a little more about $\left[\left\{g_{i}\right\}\right]$.

Lemma 4.12. Suppose that (G, E) is a contracting and regular selfsimilar graph action and $\left(\alpha ;\left[\left\{g_{i}\right\}\right], l-k ; \beta\right) \in \mathcal{G}_{G, E}$. Then:
(1) g_{i} is an element of the nucleus for every large i, and
(2) the equivalence class $\left[\left\{g_{i}\right\}\right]$ is uniquely determined by $\alpha, \beta, l-k$.

Proof.

(1) Let $n \in \mathbb{N}$ and $g_{n} \in G$ be such that

$$
g_{n}\left(\alpha_{n} \alpha_{n+1} \cdots\right)=\beta_{n-l+k} \beta_{n-l+k+1} \cdots .
$$

Then, the contracting condition implies that there is a natural number t such that $\left.g_{n}\right|_{\alpha_{n} \cdots \alpha_{n+t-1}}=g_{n+t} \in \mathcal{N}$. Thus, we have $g_{i} \in \mathcal{N}$ for every $i \geq n+t$.
(2) We show that, if $\left(\alpha ;\left[\left\{g_{i}\right\}\right], l-k ; \beta\right)$ and $\left(\alpha ;\left[\left\{h_{i}\right\}\right], l-k ; \beta\right)$ are elements of $\mathcal{G}_{G, E}$, then $\left[\left\{g_{i}\right\}\right]=\left[\left\{h_{i}\right\}\right]$, i.e., there is an m such that $g_{i}=h_{i}$ for every $i \geq m$. Suppose that n_{1} and n_{2} are natural numbers such that $g_{i} \cdot \alpha_{i}=\beta_{i-l+k} \cdot g_{i+1}$ for every $i \geq n_{1}$ and $h_{i} \cdot \alpha_{i}=\beta_{i-l+k} \cdot h_{i+1}$ for every $i \geq n_{2}$. Let $n=\max \left\{n_{1}, n_{2}\right\}$. Without loss of generality, we may say that g_{i} and h_{i} are elements of \mathcal{N} for every $i \geq n$ by (1). Let k_{0} be the natural number given in Lemma 3.9. Then

$$
g_{n}\left(\alpha_{n} \cdots \alpha_{n+k_{0}-1}\right)=\beta_{n-l+k} \cdots \beta_{n-l+k+k_{0}-1}=h_{n}\left(\alpha_{n} \cdots \alpha_{n+k_{0}-1}\right)
$$

implies $g_{i}=\left.g_{n}\right|_{\alpha_{n} \cdots \alpha_{n+i-1}}=\left.h_{n}\right|_{\alpha_{n} \cdots \alpha_{n+i-1}}=h_{i}$ for every $i \geq n+k_{0}$. Hence, we have $\left[\left\{g_{i}\right\}\right]=\left[\left\{h_{i}\right\}\right]$.

Thus, we may delete $\left[\left\{g_{i}\right\}\right]$ from $\left(\alpha ;\left[\left\{g_{i}\right\}\right], l-k ; \beta\right)$, and $\mathcal{G}_{G, E}$ is topologically isomorphic to a groupoid

$$
\mathcal{B}=\left\{\begin{array}{c}
(\alpha ; l-k ; \beta): \alpha, \beta \in E^{\omega}, l, k \in \mathbb{N}, \text { there exist an } n \in \mathbb{N} \text { and } \\
g_{n} \in \mathcal{N} \text { such that } g_{n}\left(\alpha_{n} \alpha_{n+1} \cdots\right)=\beta_{n-l+k} \beta_{n-l+k+1} \cdots
\end{array}\right\}
$$

which has the induced topology from $\mathcal{G}_{G, E}$.
Similarly to the case of \mathcal{A} in Remark 4.11, the induced topology on \mathcal{B} can be explained from the product topology on

$$
\begin{aligned}
& \mathcal{B}_{n}=\left\{(\alpha ; 0 ; \beta): \alpha, \beta \in E^{\omega}, \text { there exists a } g_{n} \in \mathcal{N}\right. \text { such that } \\
& \left.\qquad g_{n}\left(\alpha_{n} \alpha_{n+1} \cdots\right)=\beta_{n} \beta_{n+1} \cdots\right\},
\end{aligned}
$$

the inductive limit topology on \mathcal{B}_{∞} and the induced topology from the product topology on $\mathcal{B}_{\infty} \times \mathbb{Z}$.

Now, we compare $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T}$ and $\mathcal{G}_{G, E}$ via \mathcal{A} and \mathcal{B}. Then, it is clear that there is a strong relation between $\left(R^{u} \rtimes \mathbb{Z}\right)^{q^{T}} \simeq \mathcal{A}$ and $\mathcal{G}_{G, E} \simeq \mathcal{B}$. The only differences are the unit spaces $T=\left\{z \cdot w: z \in E^{-\omega}\right.$ is fixed, $\left.w \in E^{\omega}\right\}$ for \mathcal{A} and E^{ω} for \mathcal{B}.

Let $\pi: T \rightarrow E^{\omega}$ be defined by $z \cdot w \mapsto w$ and $\bar{\pi}:\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T} \rightarrow \mathcal{G}_{G, E}$ by

$$
(\xi ; l-k ; \eta) \longmapsto(\pi(\xi) ; l-k ; \pi(\eta)) .
$$

In order to simplify the notation, we denote the image of $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T}$ by $\bar{\pi}$ as I. It is easy to show that $\bar{\pi}$ is a continuous groupoid monomorphism so that I is a subgroupoid of $\mathcal{G}_{G, E}$. However, $\bar{\pi}$ is not an epimorphism since the unit space of I is

$$
I^{(0)}=\left\{w \in E^{\omega}: d(w)=r\left(z_{-1}\right)\right\}=\bigcup_{\substack{e \in E^{1} \\ d(e)=r\left(z_{-1}\right)}} Z(e)
$$

which is a proper subset of E^{ω} if the graph E has more than one vertex.
Fortunately, $I^{(0)}$ is a transversal to $\mathcal{G}_{G, E}$. It is trivial to see that $I^{(0)}$ is a clopen subspace of E^{ω} since E is a finite graph. In the proof of Lemma 4.7, we showed that, for every $w \in E^{\omega}$, there are a finite path a and $g \in G$ such that $a \cdot g^{-1}(w) \in I^{(0)}$ and $\left(w ;|a|-0 ; a \cdot g^{-1}(w)\right) \in \mathcal{G}_{G, E}$ where $|a|$ is the length of a; thus, $I^{(0)}$ meets every orbit in the unit space of $\mathcal{G}_{G, E}$. In order to show that $\left.d\right|_{\mathcal{G}_{G, E_{I}(0)}}$ and $\left.r\right|_{\mathcal{G}_{G, E_{I}(0)}}$ are open maps, we remark that $\mathcal{G}_{G, E_{I^{(0)}}}=d^{-1}\left(I^{(0)}\right)$ is an open subspace of $\mathcal{G}_{G, E}$ since $I^{(0)}$ is an open subspace of E^{ω}. Then, every open subset U of $\mathcal{G}_{G, E_{I^{(0)}}}$ is an open set in $\mathcal{G}_{G, E}$ such that $\left.d\right|_{\mathcal{G}_{G, E_{I}(0)}}(U)=d(U)$ and $\left.r\right|_{\mathcal{G}_{G, E_{I}(0)}}(U)=r(U)$ are open sets by [14, Proposition I.2.4]. Hence, $\left.d\right|_{\mathcal{G}_{G, E_{I}(0)}}$ and $\left.r\right|_{\mathcal{G}_{G, E_{I}(0)}}$ are open maps, and $I_{I^{(0)}}^{(0)}$ is a transversal to $\mathcal{G}_{G, E}$. $\stackrel{\text { Therefore }}{ } \stackrel{\mathcal{G}}{G, E}^{G}$ is equivalent to $\mathcal{G}_{G, E_{I}(0)}^{I^{(0)}}$ by [8, Example 2.7]. Moreover, it is clear that $\mathcal{G}_{G, E_{I^{(0)}}^{I^{(0)}}}=I$ and that I is isomorphic to $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T}$ by $\bar{\pi}$. Thus, we have the following.

Proposition 4.13. If (G, E) is a contracting and regular self-similar graph action such that E is G-transitive, then $\mathcal{G}_{G, E}$ is equivalent to $\left(R^{u} \rtimes \mathbb{Z}\right)^{q}{ }_{T}^{T}$.

Combining Propositions 4.5, 4.8 and 4.13, we have a groupoid equivalence between $R^{u} \rtimes \mathbb{Z}$ and $\mathcal{G}_{G, E}$:

Theorem 4.14. If (G, E) is a contracting and regular self-similar graph action such that E is G-transitive, then $R^{u} \rtimes \mathbb{Z}$ is equivalent to $\mathcal{G}_{G, E}$ in the sense of [8].

Adding up Theorem 4.3, we summarize the above argument.

Theorem 4.15. If (G, E) is a contracting, regular and pseudo free self-similar graph action such that E is G-transitive, then the unstable Ruelle algebra of $\left(S_{(G, E)}, \sigma\right)$ is strongly Morita equivalent to the CuntzPimsner algebra $\mathcal{O}_{G, E}$ of [3].

Remark 4.16. In [2], the authors stated that the stable Ruelle algebras of limit solenoids from self-similar graph actions are studied in [1].

Acknowledgments. I express my deep gratitude to the referee for many helpful suggestions and comments.

REFERENCES

1. N. Brownlowe, A. Buss, D. Goncalves, A. Sims and M. Whittaker, K-theoretic duality for self-similar group actions on graphs, in preparation.
2. R. Deely, M. Goffeng, B. Mesland and M. Whittaker, Wieler solenoids, CuntzPimsner algebras and K-theory, Ergodic Th. Dynam. Syst., to appear.
3. R. Exel and E. Pardo, The tight groupoid of an inverse semigroup, Semigroup Forum 92 (2016), 274-303.
4. \qquad , Self-similar graphs a unified treatment of Katsura and Nekrashevych C^{*}-algebras, Adv. Math 306 (2017), 1046-1129.
5. D. Freed, K-theory, unpublished lecture note, available at https://www.ma. utexas.edu/users/dafr/M392C-2015/Notes/lecture15.pdf.
6. J. Kelly, General topology, Springer-Verlag, New York, 1955.
7. A. Kumjian and D. Pask, Actions of \mathbb{Z}^{k} associated to higher rank graphs, Ergodic Th. Dynam. Syst. 23 (2003), 1153-1172.
8. P. Muhly, J. Renault and D. Williams, Equivalence and isomorphism for groupoid C^{*}-algebras, J. Oper. Th. 17 (1987), 3-22.
9. V. Nekrashevych, Self-similar groups, Math. Surv. Mono. 117 (2005).
10. \qquad C^{*}-algebras and self-similar groups, J. reine angew. Math. 630 (2009), 59-123.
11. I. Putnam, C^{*}-algebras from Smale spaces, Canadian J. Math. 48 (1996), 175-195.
12. I. Putnam and J. Spielberg, The structure of C^{*}-algebras associated with hyperbolic dynamical systems, J. Funct. Anal. 163 (1999), 279-299.
13. W. Reddy, Expanding maps on compact metric spaces, Topol. Appl. 13 (1982), 327-334.
14. J. Renault, A groupoid approach to C^{*}-algebras, Springer Verlag, New York, 1980.
15. D. Richeson and J. Wiseman, Positively expansive dynamical systems, Topol. Appl. 154 (2007), 604-613.
16. K. Thomsen, C^{*}-algebras of homoclinic and heteroclinic structure in expansive dynamics, Mem. Amer. Math. Soc. 970 (2010).
17. S. Willard, General topology, Addison-Wesley, New York, 1970.
18. I. Yi, Limit dynamical systems and C^{*}-algebras from self-similar graph actions, Banach J. Math. Anal. 11 (2017), 764-784.

Ewha Womans University, Department of Mathematics Education, Seoul, Korea
Email address: yih@ewha.ac.kr

[^0]: 2010 AMS Mathematics subject classification. Primary 37D20, 46L05, 46L55.
 Keywords and phrases. Self-similar graph action, limit dynamical system, limit solenoid, positively expansive map, Smale space.

 Received by the editors on April 17, 2017, and in revised form on July 15, 2017. DOI:10.1216/RMJ-2018-48-4-1359 Copyright © 2018 Rocky Mountain Mathematics Consortium

