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SMALE SPACES FROM
SELF-SIMILAR GRAPH ACTIONS

INHYEOP YI

ABSTRACT. We show that, for contracting and regular
self-similar graph actions, the shift maps on limit spaces
are positively expansive local homeomorphisms. From this,
we find that limit solenoids of contracting and regular self-
similar graph actions are Smale spaces and that the unstable
Ruelle algebras of the limit solenoids are strongly Morita
equivalent to the Cuntz-Pimsner algebras by Exel and Pardo
if self-similar graph actions satisfy the contracting, regular,
pseudo free and G-transitive conditions.

1. Introduction. Exel and Pardo [4] generalized self-similar groups
of Nekrashevych [9, 10] to self-similar graph actions. For a self-
similar group (G,X), Nekrashevych constructed two dynamical sys-
tems (JG, σ), called the limit dynamical system, and (SG, σ̂), called
the limit solenoid, and two associated C∗-algebras OG and Oσ. Here,
OG is a universal Cuntz-Pimsner algebra with a correspondence over
C∗
r (G), and Oσ is a groupoid algebra of the Deaconu groupoid from

(JG, σ). Then, he showed that the limit solenoid of (G,X) is a Smale
space and that the stable Ruelle algebra and the unstable Ruelle alge-
bra, respectively, of the limit solenoid are strongly Morita equivalent
to Oσ and OG, respectively. On the other hand, for a self-similar
graph action (G,E), Exel and Pardo [3] defined a C∗-algebra OG,E
which is ∗-isomorphic to a Cuntz-Pimsner algebra for a correspon-
dence over C(E0) o G. They then showed that OG,E includes OG
as a special case. Moreover, the limit dynamical system (J(G,E), σ) and
its Deaconu groupoid algebra C∗(Γ(G,E)) are studied in [18] follow-
ing Nekrashevych’s development. Although the topological structure
of J(G,E) is different from that of JG, it turned out that (J(G,E), σ) and
its groupoid algebra C∗(Γ(G,E)) are natural generalizations of (JG, σ)
and Oσ. Therefore, it is rational to expect that the limit solenoid of
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a self-similar graph action (G,E) under suitable conditions is a Smale
space and that OG,E and C∗(Γ(G,E)) are related to Ruelle algebras of
the limit solenoid.

In this paper, we show that the limit solenoid is a Smale space
and that OG,E is strongly Morita equivalent to the unstable Ruelle
algebra if (G,E) is a contracting, regular and pseudo free self-similar
graph action and E is G-transitive. The main techniques used here are
positive expansiveness of the shift maps in the limit dynamical systems
and groupoid equivalence in the sense of Muhly, Renault and Williams
[8]. When

σ : J(G,E) −→ J(G,E)

is a surjective positively expansive map, the inverse limit system
induced from (J(G,E), σ), which is topologically conjugate to the limit
solenoid, is a Smale space (see [11, 16]). For the unstable Ruelle
algebra of the limit solenoid and OG,E , which is ∗-isomorphic to a
groupoid algebra, we borrow ideas from [12] to reduce the groupoid
for the unstable Ruelle algebra on a transversal that is determined by
a fixed left-hand-sided infinite path. Then, it becomes much easier to
compare the groupoid algebras using strong Morita equivalence.

2. Self-similar graph actions. We introduce the basic definitions
and properties of self-similar graph actions to be used later. All
material in this section is taken from [4, 9, 10]. The reader is referred
to these for more details.

2.1. Directed graphs. Suppose that E = (E0, E1, d, r) is a directed
graph where E0 is the set of vertices, E1 is the set of edges and d and r
are domain and range maps, respectively. A directed graph E is called
finite if E0 and E1 are finite sets. A vertex is called a sink if it does
not emit any edge and a source if it does not receive any edge.

Let E be a directed graph. A finite path of length n ≥ 1 in E is a
finite sequence

a = a1 · · · an

such that ai ∈ E1 and r(ai) = d(ai+1) for i = 1, . . . , n−1. The domain
of a is defined to be d(a) = d(a1) and the range of a is r(a) = r(an). A
vertex v ∈ E0 is considered a path of length zero with d(v) = r(v) = v.
For every integer n ≥ 0, we denote by En the set of paths of length n
in E and denote by E∗ the set of finite paths in E, i.e.,
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E∗ =
∞∪
n=0

En.

If a and b are paths in E such that r(a) = d(b), then ab is the path
obtained by concatenating a and b.

We consider the left-infinite path space and the right-infinite path
space

E−ω = {· · · a−2a−1 : ai ∈ E1 and r(ai) = d(ai+1)}

and

Eω = {a0a1 · · · : ai ∈ E1 and r(ai) = d(ai+1)}.

We also use the two-sided-infinite path space

E±ω = {· · · a−2a−1 · a0a1 · · · : ai ∈ E1 and r(ai) = d(ai+1)}.

The left-infinite path space E−ω has the product topology of the
discrete set E1. For each a ∈ E∗, define the cylinder set Z(a) as

Z(a) = {α∈E−ω : α = · · · a−n−1a−n · · · a−1 such that a−n · · · a−1 = a}.

Then, the product topology on E−ω has {Z(a) : a ∈ E∗} as its
basis. Similarly, the collection of appropriate cylinder sets are bases
of topologies of Eω and E±ω.

2.2. Self-similar graph actions. Let E = (E0, E1, d, r) be a di-
rected graph and G a group. An automorphism of E is a bijection

f : E0 ∪ E1 −→ E0 ∪ E1

such that, for i = 0 and 1, f(Ei) ⊂ Ei, f ◦ d = d ◦ f and f ◦ r = r ◦ f
hold. We say that G acts on E if there is a group homomorphism from
G to the group of graph automorphisms of E. We denote the (left)
actions of G on E0 and E1 by

(g, v) 7−→ g(v) ∈ E0

and

(g, e) 7−→ g(e) ∈ E1

for g ∈ G, v ∈ E0 and e ∈ E1.
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Definition 2.1 ([4, 9, 10]). Suppose that E is a finite directed graph
with no sink nor source and that G is a group acting on E such that the
induced action on E∗ is faithful. We call the pair (G,E) a self-similar
graph action if, for all g ∈ G and e ∈ E1, there exists a unique h ∈ G
such that

g(eb) = g(e)h(b)

for every b ∈ E∗ with r(e) = d(b).

Remark 2.2 ([2, subsection 7.2]). The faithful condition of G-action
implies the uniqueness of h in Definition 2.1. See [3, 4] for more general
cases.

For all g ∈ G and a, b ∈ E∗ such that ab ∈ E∗, by induction, there is
a unique element h ∈ G such that g(ab) = g(a)h(b). We call the unique
element h the restriction of g at a and denote it by g|a. For c = g(a)
and h = g|a, we formally write the above equality as

g · a = c · h.

We will need the following basic properties of restrictions [4, 9, 10]:
for g, h ∈ G and a, b ∈ E∗,

g|ab = (g|a)|b, (gh)|a = g|h(a)h|a, (g|a)−1 = g−1|g(a).

Standing assumption. In this paper, we assume that every graph
is a connected finite directed graph with no sink nor source, and every
group is a finitely generated countable group.

2.3. Universal C∗-algebra OG,E. For a self-similar graph action
(G,E), OG,E is the universal unital C∗-algebra generated by a set

{px : x ∈ E0} ∪ {se : e ∈ E1} ∪ {ug : g ∈ G}

subject to the following relations:

(1) {px : x ∈ E0} is a set of mutually orthogonal projections;
(2) {se : e ∈ E1} is a set of partial isometries;
(3) s∗ese = pd(e) for every e ∈ E1;

(4) px =
∑
e∈r−1(x) ses

∗
e for every x ∈ E0 where r−1(x) is finite

and nonempty;
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(5) the map u : G → OG,E defined by g 7→ ug is a unitary repre-
sentation of G;

(6) ugse = sg(e)ug|e for every g ∈ G and e ∈ E1; and

(7) ugpx = pg(x)ug for every g ∈ G and x ∈ E0.

See [3, 4] for more details regarding OG,E .

Remark 2.3 ([4, Proposition 8.1]). We can extend the action of
G on E∗ to Eω: for every g ∈ G, ξ = x0x1 · · · ∈ Eω and n ≥ 0,
g(ξ) = η = y0y1 · · · ∈ Eω is defined as

g(x0 · · ·xn) = y0 · · · yn.

We will need the following properties of self-similar graph actions.

Definition 2.4 ([4, 9, 10]). Suppose that (G,E) is a self-similar graph
action.

(1) We say that (G,E) is contracting if there is a finite subset N of
G satisfying the following: for every g ∈ G, there is an n ≥ 0 such that
g|a ∈ N for every a ∈ E∗ of length |a| ≥ n. If the action is contracting,
the smallest finite subset of G satisfying this condition is called the
nucleus of the group and is denoted by N .

(2) We say that (G,E) is regular if, for every g ∈ G and every
w ∈ Eω, either g(w) ̸= w or there is a neighborhood of w such that
every point in the neighborhood is fixed by g.

(3) We say that (G,E) is pseudo free if Fixg = {a ∈ E∗ : g(a) = a}
is a finite set for every g ∈ G.

(4) We say that E is G-transitive if, for any two vertices u and v
of E, there is a finite sequence of vertices u = u0, u1, . . . , un = v such
that, for each i ∈ {1, . . . , n}, either there is a gi ∈ G such that

gi(ui−1) = ui,

or there is a path ai ∈ E∗ such that

d(ai) = ui−1 and r(ai) = ui.

Definition 2.5 ([9, 10]). Two paths · · · a−2a−1 and · · · b−2b−1 in E
−ω

are said to be asymptotically equivalent if there are a finite set I ⊂ G
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and a sequence gn ∈ I such that

gn(a−n · · · a−1) = b−n · · · b−1

for every n ∈ N.
For two-sided infinite space E±ω, we say that two paths · · · a−2a−1 ·

a0a1 · · · and · · · b−2b−1 · b0b1 · · · are asymptotically equivalent if there
are a finite set H ⊂ G and a sequence hn ∈ H such that

hn(anan+1 · · · ) = bnbn+1 · · ·

for every n ∈ Z.

Remark 2.6. When (G,E) is a contracting self-similar graph action,
we can use the nucleus N of G, instead of the arbitrary finite subset of
G, to determine asymptotic equivalence. See [10, subsection 2.3] for
details.

2.4. Limit dynamical systems. The quotient of E−ω by the as-
ymptotic equivalence relation is called the limit space of (G,E) and is
denoted by J(G,E). Since the asymptotic equivalence relation is invari-
ant under the shift map

σ : E−ω −→ E−ω,

defined by
· · · a−2a−1 7−→ · · · a−3a−2,

the shift map σ induces a continuous surjection on J(G,E). By abuse
of notation, we denote the induced map on J(G,E) by σ if there is
no confusion. The dynamical system (J(G,E), σ) is called the limit
dynamical system of (G,E). See [9, 10] for details.

Theorem 2.7 ([18, Lemma 2.9, Proposition 3.1]). If (G,E) is a self-
similar graph action, then:

(1) J(G,E) is a compact metrizable space, and

(2) σ ◦ q = q ◦ σ where q : E−ω → J(G,E) is the quotient map.

Theorem 2.8 ([18, Lemma 5.4]). If (G,E) is a contracting and
regular self-similar graph action, then σ : J(G,E) → J(G,E) is a surjective
local homeomorphism.
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2.5. Limit solenoids. Suppose that (G,E) is a self-similar graph
action with the two-sided infinite path space E±ω. We denote the quo-
tient of E±ω by the asymptotic equivalence relation by S(G,E). Then,

the shift map σ on E±ω induces a homeomorphism of S(G,E), which
is also denoted σ. We call the dynamical system (S(G,E), σ) the limit
solenoid of the self-similar graph action (G,E).

The proofs of the following properties of limit solenoids are identical
to those of [10, Proposition 2.4] and [18, Lemma 2.9].

Theorem 2.9. If (G,E) is a self-similar graph action, then:

(1) S(G,E) is a compact metrizable space, and

(2) σ ◦ q = q ◦ σ where q : E±ω → S(G,E) is the quotient map.

Suppose that (J(G,E), σ) is the limit dynamical system of (G,E). We
define the inverse limit of (J(G,E), σ)

lim←−(J(G,E), σ) = {(x0, x1, x2, . . .) : xi ∈ J(G,E) and σ(xi) = xi−1}.

Then, lim←−(J(G,E), σ) carries an induced homeomorphism, which we also
denote as σ, given by

σ : (x0, x1, x2, . . .) 7−→ (σ(x0), x0, x1, x2, . . .).

Theorem 2.10 ([9, Proposition 5.7.3]). The limit solenoid (S(G,E), σ)
is topologically conjugate to the inverse limit system (lim←−(J(G,E), σ), σ).

3. Quotient maps and shift maps. For a self-similar graph action
(G,E), we show that the quotient maps

q : E−ω −→ J(G,E)

and
q : E±ω −→ S(G,E)

are open maps and that the shift map

σ : J(G,E) −→ J(G,E)

is a positively expansive map if (G,E) is contracting and regular.
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3.1. Quotient maps. Suppose that (G,E) is a self-similar graph
action with the left-infinite path space E−ω. First, we consider a
principal groupoid defined by the asymptotic equivalence relation on
E−ω

H = {(ξ, η) ∈ E−ω × E−ω : ξ is asymptotically equivalent to η}.

Then, E−ω is the unit space of H and its coarse moduli space

|H| = E−ω/H = {[ξ] : ξ ∈ E−ω}

is J(G,E). Here, [ξ] = {η ∈ E−ω : (ξ, η) ∈ H}, i.e., η ∈ [ξ] if and only if
q(η) = q(ξ).

Remark 3.1. In order to give a locally compact Hausdorff topology
on H, for each natural number n, we define a binary relation ∼n on
E−ω by ξ ∼n η if and only if

(1) there are ξ′, η′ ∈ E−ω such that ξ′ is asymptotically equivalent
to η′, and

(2) ξ−n · · · ξ−1 = ξ′−n · · · ξ′−1 and η−n · · · η−1 = η′−n · · · η′−1.

Then, it is easy to see that ∼n is an equivalence relation due to the
asymptotical equivalence between ξ′ and η′. Now, we let

Hn = {(ξ, η) ∈ E−ω × E−ω : ξ ∼n η}

with the subspace topology of E−ω × E−ω.

Since the complement of Hn is open in E−ω × E−ω, each Hn is
a compact Hausdorff space satisfying H ⊂ Hn+1 ⊂ Hn with the
inclusion map in : H → Hn. We give H the initial topology induced
from (Hn, in)n∈N. Then, H is a compact Hausdorff space by [17,
Example 29.10, Theorem 29.11]. It is not difficult to verify that the
initial topology on H is compatible with the groupoid structure. A
left Haar system on H is described in [14, Example I.2.5(c)]. See [14,
Section I.2] for more details.

We learned the following from an unpublished lecture note by
Freed [5].

Proposition 3.2 ([5, Lemma 15.66]). The quotient map q : E−ω →
J(G,E) is an open map.
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Proof. Let H be as above. We identify E−ω = H(0) and J(G,E) =

|H|. For every open set U in E−ω, q(U) is open in J(G,E) if and only

if q−1 ◦ q(U) is open in E−ω. On the other hand, the structure of
the groupoid H implies d ◦ r−1(U) = q−1 ◦ q(U), where d and r are
the domain and range maps, respectively, of H. Since H is a locally
compact Hausdorff groupoid with a left Haar system, d and r are open
maps by [14, Proposition I.2.4]. Hence, d◦r−1(U) is an open subset of
E−ω, and thus, is q−1 ◦ q(U) for every open set U ⊂ E−ω. Therefore,
the quotient map q is an open map. �

When (G,E) is a contracting self-similar graph action such that E is
an n-bouquet, every asymptotic equivalence class on E−ω has no more
than |N | elements by [9, Proposition 3.2.6]. We can obtain the same
result for finite graphs.

Proposition 3.3. Suppose that (G,E) is a contracting self-similar
graph action. For each x ∈ J(G,E), |q−1(x)| ≤ |N |, where | · | is the
cardinality and N is the nucleus.

Proof. We fix one element ξ = · · ·x−n · · ·x−1 ∈ q−1(x) and consider
an arbitrary element η = · · · y−n · · · y−1 ∈ E−ω. Let

X={{gn} : gn∈N for every n ∈ N and gn−1=gn|x−n for every n≥2}.

Then, η ∈ q−1(x) if and only if there is at least one sequence {gn} ∈ X
such that gn(x−n) = y−n for every n ∈ N. Thus, we have an injective
map q−1(x)→ X that sends each η ∈ q−1(x) to one of such sequences
in X, which implies |q−1(x)| ≤ |X|.

In order to show |X| ≤ |N |, we consider X as a subset of
∏
N . For

every n ∈ N, let Xn = N and

pn :
∏
N =

∏
Xn −→ X1 × · · · ×Xn

be the projection map given by

(g1, . . . , gn, gn+1, . . .) 7−→ (g1, . . . , gn).

Due to

gn|x−nx−n+1 = (gn|x−n)|x−n+1 = gn−1|x−n+1 = gn−2,
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we observe that, for (g1, . . . , gn) ∈ pn(X), gn determines gn−1, . . . , g1.
Therefore, |pn(X)| ≤ |Xn| = |N | for every n ∈ N. Since a
map pn+1(X) → pn(X) defined by (g1, . . . , gn, gn+1) 7→ (g1, . . . , gn)
is surjective, we have |pn(X)| ≤ |pn+1(X)|. Thus, the sequence
{|pn(X)|} is a bounded increasing sequence of natural numbers, and
{|pn(X)|} is a convergent sequence by the monotone convergence the-
orem. Hence, there is a natural number N such that |pN (X)| =
|pN+k(X)| for every k ≥ 1 since {|pn(X)|} is a convergent sequence
of natural numbers. Then, for each (g1, . . . , gN ) ∈ pN (X), there is
a unique (g1, . . . , gN , gN+1) ∈ pN+1(X) and, by induction, a unique
(g1, . . . , gN , . . . , gN+k) ∈ pN+k(X), for every k ∈ N. Therefore, we can
choose an element (g1, . . . , gN , . . . , gN+k, . . .) ∈ p−1

N (g1, . . . , gN ) ⊂ X
for each (g1, . . . , gN ) ∈ pN (X). We define

sN+k : pN (X) −→ pN+k(X)

by
(g1, . . . , gN ) 7−→ (g1, . . . , gN , . . . , gN+k)

and
t : pN (X) −→ X

by
(g1, . . . , gN ) 7−→ (g1, . . . , gN , . . . , gN+k, . . .).

Then, it is clear that sN+k is bijective and pN+k ◦ t = sN+k for every
k ∈ N.

Now, we show that t : pN (X) → X is surjective. Then, we will
have |X| ≤ |pN (X)| ≤ |N |. Assume that t : pN (X) → X is not
surjective. Then, X\t(pN (X)) is not an empty set so that there is
an h = (h1, . . . , hN , . . .) ∈ X\t(pN (X)). When we compare h and each
(g1, . . . , gN , . . .) ∈ t(pN (X)), there is at least one index n such that
hn ̸= gn, i.e., (h1, . . . , hn) ̸= (g1, . . . , gn), so that, for every k ∈ N,

(h1, . . . , hn, . . . , hn+k) ̸= (g1, . . . , gn, . . . , gn+k).

Here, it is clear that n > N due to the fact that pN (h) = (h1, . . . , hN ) ∈
pN (X). Since t(pN (X)) has finitely many elements, there is a natu-
ral number K such that (h1, . . . , hN+K) ̸= (g1, . . . , gN+K) for every
(g1, . . . , gN , . . .) ∈ t(pN (X)), i.e.,

(h1, . . . , hN+K) /∈ pN+K ◦ t(pN (X)).
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However, (h1, . . . , hN+K) = pN+K(h) ∈ pN+K(X) means that there
exists at least one (a1, . . . , aN , . . . , aN+K) ∈ pN+K(X) such that

(h1, . . . , hN+K) = (a1, . . . , aN , . . . , aN+K)

= sN+K(a1, . . . , aN )

= pN+K ◦ t(a1, . . . , aN ) ∈ pN+K ◦ t(pN (X)),

a contradiction. Hence, t : pN (X) → X is a surjective map, which
implies that |X| ≤ |pN (X)| ≤ |N |. Therefore, we have |q−1(x)| ≤
|X| ≤ |pN (X)| ≤ |N | for every x ∈ J(G,E). �

By the same argument, we have similar results for the limit of the
solenoid:

Proposition 3.4.

(1) The quotient map q : E±ω → S(G,E) is an open map.

(2) For each x ∈ S(G,E), |q−1(x)| ≤ |N |.

3.2. Shift maps. For a contracting and regular self-similar graph
action (G,E), we show that the shift map σ : J(G,E) → J(G,E) is
positively expansive.

Definition 3.5 ([15]). Let (X, d) be a metric space. A continuous
map f : X → X is called positively expansive if there exists a constant
ρ > 0 such that, for any distinct points x, y ∈ X, there exists an n ≥ 0
such that d(fn(x), fn(y)) > ρ.

Suppose that X is a locally compact metrizable space with diagonal
∆ = {(x, x) : x ∈ X} and that f : X → X is a continuous map.

Definition 3.6 ([15]). An expansivity neighborhood for f is a closed
neighborhood N ⊂ X × X of ∆ such that, for any distinct x, y ∈ X,
there is an n ≥ 0 such that (fn(x), fn(y)) /∈ N . We say that f is weakly
positively expansive if it has an expansivity neighborhood.

Theorem 3.7 ([15, Theorem 4]). Let f : X → X be a continuous map
on a locally compact metrizable space X. Then, f is positively expan-
sive if and only if it is weakly positively expansive with respect to some
metric compatible with the topology of X.
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Now, we consider a self-similar graph action (G,E). For each natural
number m, we define

Um = {(· · · a−1, · · · b−1) ∈ E−ω × E−ω : g(a−m · · · a−1)

= b−m · · · b−1 for some g ∈ N}

and
Vm = (q × q)(Um) ⊂ J(G,E) × J(G,E).

Lemma 3.8. For every natural number m, Vm is a closed neighborhood
of the diagonal ∆ of J(G,E) × J(G,E).

Proof. First, we show that Um is a closed subset of E−ω×E−ω. Let

ξ = · · ·x−m · · ·x−1 and η = · · · y−m · · · y−1

be elements of E−ω such that (ξ, η) is a boundary element of Um. Then,
for a neighborhood W = Z(x−m · · ·x−1)× Z(y−m · · · y−1) of (ξ, η) we
have W ∩ Um ̸= ∅. Choose an element (α, β) ∈W ∩ Um such that

α = · · · a−m · · · a−1 and β = · · · b−m · · · b−1.

Since (α, β) is an element of Um, there is a group element g ∈ N such
that g(a−m · · · a−1) = b−m · · · b−1. On the other hand, (α, β) ∈ W
means

α ∈ Z(x−m · · ·x−1) and β ∈ Z(y−m · · · y−1),

which imply
a−m · · · a−1 = x−m · · ·x−1

and
b−m · · · b−1 = y−m · · · y−1.

Thus, we have
g(x−m · · ·x−1) = y−m · · · y−1,

and (ξ, η) is included in Um; hence, Um is a closed subset of E−ω×E−ω.
Then, Vm = (q×q)(Um) is a closed subset of J(G,E)×J(G,E) since E

−ω

and J(G,E) are compact spaces and the quotient map q : E−ω → J(G,E)

is continuous.

Moreover, Um is an open set in E−ω×E−ω. Let (α, β) ∈ Um be given
by α = · · · a−m · · · a−1 and β = · · · b−m · · · b−1. Then, the existence of
some g ∈ N such that

g(a−m · · · a−1) = b−m · · · b−1
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implies
Z(a−m · · · a−1)× Z(b−m · · · b−1) ⊂ Um.

Thus, (α, β) is an interior point of Um, and Um is an open subset of
E−ω × E−ω. Hence, Vm = (q × q)(Um) is open in J(G,E) × J(G,E) by
Proposition 3.2.

In order to show ∆ ⊂ Vm, consider any (z, z) ∈ ∆ and ζ =
· · · z−m · · · z−1 ∈ q−1(z). Then, it is trivial that (ζ, ζ) ∈ Um and
(q × q)(ζ, ζ) = (z, z) ∈ Vm. Therefore, Vm is a closed neighborhood
of the diagonal ∆. �

In order to show that Vm is an expansivity neighborhood for the
shift map, we need to extend [10, Lemma 6.3] a little further.

Lemma 3.9. If (G,E) is a contracting and regular self-similar graph
action, then there is a natural number k0 such that, for every k ≥ k0,
any w ∈ Ek and any two elements g, h ∈ N , either g(w) ̸= h(w) or
g(w) = h(w) and g|w = h|w hold.

Proof. It is proven in [10, Lemma 6.3] that there is a natural number
k0 such that, for any w ∈ Ek0 and any two elements g, h ∈ N ,
either g(w) ̸= h(w) or g(w) = h(w) and g|w = h|w hold. For every
k > k0, let w0 ∈ Ek0 , w1 ∈ Ek−k0 and w2 ∈ E∗ be arbitrary
words with the conditions r(w0) = d(w1) and r(w1) = d(w2) so that
w0w1 ∈ Ek and w0w1w2 ∈ E∗. We must show that, for any g, h ∈ N ,
g(w0w1) = h(w0w1) implies g|w0w1 = h|w0w1 .

If g(w0w1) = h(w0w1), then w0 ∈ Ek0 implies

g(w0w1) = g(w0)g|w0(w1) = h(w0)h|w0(w1) = h(w0w1)

such that g(w0) = h(w0) and g|w0 = h|w0 hold. Thus, for any w2 ∈ E∗

such that w0w1w2 is allowed, we obtain

g(w0w1w2) = g(w0)g|w0(w1w2) = g(w0w1)g|w0w1(w2)

= h(w0)h|w0(w1w2) = h(w0w1)h|w0w1(w2) = h(w0w1w2).

Therefore, we have g|w0w1 = h|w0w1 , and this completes the proof. �

Lemma 3.10. Suppose that m ≥ k0 + 1 is any natural number, where
k0 is given in Lemma 3.9, and that Um and Vm are as in Lemma 3.8.
Then, Vm is an expansivity neighborhood for σ : J(G,E) → J(G,E).
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Proof. We prove the following. If (x, y) ∈ J(G,E) × J(G,E) satisfies
(σnx, σny) ∈ Vm for every n ≥ 0, then x = y.

Let ξ = · · ·x−m · · ·x−1 ∈ q−1(x) and η = · · · y−m · · · y−1 ∈ q−1(y).
Since the shift maps on E−ω and J(G,E) and the quotient map are
commutative to each other, (σnx, σny) ∈ Vm means (σnξ, σnη) ∈ Um.
Thus, for every n ≥ 0, there is a group element gn ∈ N such that
gn(x−m−n · · ·x−1−n) = y−m−n · · · y−1−n. In order to obtain x = y, we
show

gn(x−m−n · · ·x−1−n · · ·x−1) = y−m−n · · · y−1−n · · · y−1,

which implies an asymptotic equivalence between ξ and η such that

x = q(ξ) = q(η) = y.

For n = 0, 1, we have

g0(x−m · · ·x−1) = g0(x−m · · ·x−2x−1)

= g0(x−m · · ·x−2)g0|x−m···x−2(x−1)

= y−m · · · y−2y−1

and

g1(x−m−1 · · ·x−2) = g1(x−m−1x−m · · ·x−2)

= g1(x−m−1)g1|x−m−1
(x−m · · ·x−2)

= y−m−1y−m · · · y−2.

Since we choose m− 1 ≥ k0, by Lemma 3.9,

g0(x−m · · ·x−2) = y−m · · · y−2 = g1|x−m−1(x−m · · ·x−2)

implies

g0|x−m···x−2 = (g1|x−m−1)|x−m···x−2 = g1|x−m−1x−m···x−2

and

g1(x−m−1 · · ·x−2x−1) = g1(x−m−1 · · ·x−2)g1|x−m−1x−m···x−2(x−1)

= g1(x−m−1 · · ·x−2)g0|x−m···x−2(x−1)

= y−m−1y−m · · · y−2y−1.

Then, by induction, we have gn(x−m−n · · ·x−1−n · · ·x−1) = y−m−n · · ·
y−1−n · · · y−1 for every n ≥ 0. Therefore, ξ is asymptotically equivalent
to η, and Vm is an expansivity neighborhood for σ : J(G,E) → J(G,E).

�
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Now, we have the following from Theorem 2.8, Theorem 3.7 and
Lemma 3.10.

Theorem 3.11. If (G,E) is a contracting and regular self-similar
graph action, then σ : J(G,E) → J(G,E) is a positively expansive surjec-
tive local homeomorphism.

Since a local homeomorphism is an open map, [13, Theorem 2]
implies the following.

Corollary 3.12. If (G,E) is a contracting and regular self-similar
graph action, then σ : J(G,E) → J(G,E) is expanding.

Remark 3.13. The metric mentioned in Theorem 3.7 is given as
follows. Let Um and Vm be as above. Then,

g(x−m−1x−m · · ·x−1) = g(x−m−1)g|x−m−1(x−m · · ·x−1)

implies Um+1 ⊂ Um and Vm+1 ⊂ Vm, and it is easy to see that {Vm}
satisfies the conditions of [6, page 185, Lemma 12]. For x, y ∈ J(G,E),
we define

τ(x, y) = sup{m ∈ N ∪ {0} : (x, y) ∈ Vm} and δ(x, y) = 2−τ(x,y).

Let d(x, y) be the infimum of
∑
δ(ai−1, ai) over all finite sequences

a0, a1, . . . , an in J(G,E) such that a0 = x and an = y. Then, d is the
metric on J(G,E) induced from {Vm} by the aforementioned citation.

Proposition 3.14. For every x, y ∈ J(G,E), δ(x, y) = d(x, y).

Proof. First, we remark that τ(x, y) < ∞ if and only if x ̸= y in
J(G,E). Trivially, δ(x, x) = d(x, x) = 0 and δ(x, y) ≥ d(x, y) by the

definition. In order to show δ(x, y) ≤ d(x, y), let a0, a1, . . . , an be any
finite sequence in J(G,E) such that a0 = x and an = y. We observe that,
if there is at least one i ∈ {1, . . . , n} such that τ(ai−1, ai) ≤ τ(x, y),
then

δ(x, y) = 2−τ(x,y) ≤ 2−τ(ai−1,ai) ≤
n∑
j=0

2−τ(aj−1,aj) =
n∑
j=0

δ(aj−1, aj).
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Thus, we assume that τ(ai−1, ai) 
 τ(x, y) for every i = 1, . . . , n,
and obtain a contradiction. For each ai, choose αi = · · · ai,−2ai,−1 ∈
q−1(ai). Then, we have

(αi−1, αi) ∈ Uτ(ai−1,ai) ⊂ Uτ(x,y)+1

since Um+1 ⊂ Um for every m and τ(ai−1, ai) ≥ τ(x, y) + 1 
 τ(x, y).
Thus, there is a group element gi ∈ N for every i = 1, . . . , n such that

gi(ai−1,−τ(x,y)−1 · · · ai−1,−1) = ai,−τ(x,y)−1 · · · ai,−1

and

gn · · · g1(a0,−τ(x,y)−1 · · · a0,−1) = an,−τ(x,y)−1 · · · an,−1.

Then, we have (α0, αn) ∈ Uτ(x,y)+1 and (q(α0), q(αn)) = (x, y) ∈
Vτ(x,y)+1 such that τ(x, y) ≥ τ(x, y)+1, a contradiction. Hence, there is
at least one i ∈ {1, . . . , n} such that τ(ai−1, ai) ≤ τ(x, y), which implies
that δ(x, y) ≤

∑n
j=0 δ(aj−1, aj). Since a0, . . . , an is any finite sequence

satisfying a0 = x and an = y, we conclude that δ(x, y) ≤ d(x, y).
Therefore, δ(x, y) = d(x, y) for all x, y ∈ J(G,E). �

4. Smale spaces. We omit the definitions and fundamental prop-
erties of Smale spaces and their corresponding C∗-algebras. The inter-
ested reader may consult [11, 12] for details.

For a contracting and regular self-similar graph action (G,E), where
E is an n-bouquet, Nekrashevych showed [10, Proposition 6.10] that
its limit solenoid is a Smale space. We extend his result to finite graphs.

Theorem 4.1. If (G,E) is a contracting and regular self-similar graph
action, then its limit solenoid (S(G,E), σ) is a Smale space.

Proof. When (G,E) satisfies contracting and regular conditions,

σ : J(G,E) −→ J(G,E)

is a positively expansive surjective local homeomorphism by Theorem
3.11. Then, Theorem 2.10 and [16, Lemma 4.18] imply the conclusion.

�

4.1. Unstable Ruelle algebras. We show that, under contracting,
regular, pseudo free and G-transitive conditions, the unstable Ruelle
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algebra of (S(G,E), σ) is strongly Morita equivalent to the groupoid
algebra OG,E of Exel and Pardo.

Instead of the formal definition of unstable equivalence given in [11],
we use [10, Proposition 6.8].

Definition 4.2 ([10, Proposition 6.8]). Suppose that (S(G,E), σ) is
the limit solenoid of a contracting and regular self-similar graph action
(G,E). For x, y ∈ S(G,E), let

ξ = · · ·x−1 · x0x1 · · · ∈ q−1(x)

and
η = · · · y−1 · y0y1 · · · ∈ q−1(y).

We say that x is unstably equivalent to y if and only if there exist n ∈ Z
and g ∈ N such that

g(xnxn+1 · · · ) = ynyn+1 · · · .

The unstable groupoid and its induced groupoid of (S(G,E), σ) are
given by

Ru = {(x, y) ∈ S(G,E) × S(G,E) : x is unstably equivalent to y}

and

RuoZ ={(x, l − k, y)∈S(G,E)×Z×S(G,E) : l, k∈N, (σl(x), σk(y))∈Ru}.

It is a well-known fact that Ru andRuoZ are locally compact Hausdorff
groupoids. The groupoid C∗-algebra C∗(RuoZ) is called the unstable
Ruelle algebra of the Smale space (S(G,E), σ). See [11, 12] for details.

4.2. Strong Morita equivalence between C∗(RuoZ) and OG,E.
For a self-similar graph action (G,E), the following groupoid is con-
structed in [4, Theorem 8.19]:

GG,E =

(α; [{gi}], l − k;β) : α, β ∈ Eω, gi ∈ G, l, k ∈ N,
there exists an n ≥ l such that

gi · αi = βi−l+k · gi+1 for all i ≥ n.


Here, [{gi}] is the equivalence class of {gi} under ∼ such that, for
sequences of group elements, {gi} ∼ {hi} if and only if there is an
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m ≥ 0 such that gi = hi for every i ≥ m. A suitable topology of GG,E
is described in [4, Proposition 9.5].

Theorem 4.3 ([4, Theorem 9.6]). If (G,E) is pseudo free, then the
Cuntz-Pimsner algebra OG,E is ∗-isomorphic to the groupoid algebra
C∗(GG,E).

Now, we show that there is a groupoid equivalence between Ru oZ
and GG,E in the sense of Muhly, Renault and Williams [8]. We begin
by mentioning a well-known groupoid equivalence result reviewed in
[7, Section 5]: Let Γ be a locally compact Hausdorff groupoid and
X a locally compact Hausdorff space. If there is a continuous open
surjection ψ : X → Γ(0), we set

Γψ = {(ξ, γ, η) : ξ, η ∈ X, γ ∈ Γ, ψ(ξ) = d(γ), ψ(η) = r(γ)}

with the subspace topology of X × Γ×X.

Lemma 4.4 ([7, Lemma 5.1]). The groupoid Γ is equivalent to Γψ.

Suppose that (G,E) is a contracting and regular self-similar graph
action with the two-sided infinite path space E±ω and the induced
unstable groupoid Ru o Z. Then, E±ω is a compact Hausdorff space,
Ru o Z is a locally compact Hausdorff groupoid whose unit space is
S(G,E) and q : E

±ω → S(G,E) is a continuous open surjection by Prop-
osition 3.4. Thus, the following is true by Lemma 4.4.

Proposition 4.5. The groupoid Ru o Z is equivalent to

(Ru o Z)q =
{
(ξ, (x, l − k, y), η) : ξ, η ∈ E±ω, q(ξ) = x, q(η) = y,

l, k ∈ N, (σlx, σky) ∈ Ru.

}

In order to compare (Ru o Z)q with GG,E , whose unit space is Eω,
we need to reduce the unit space of (Ru o Z)q. For this purpose,
we use a transversal in [8, Example 2.7]. Fix a left-infinite word
z = · · · z−2z−1 ∈ E−ω, and consider

T = {z · w ∈ E±ω : w ∈ Eω}.

Then, T is trivially a closed subspace of E±ω. Since (Ru o Z)q has the
subspace topology of E±ω × (Ru o Z)× E±ω, so does

(Ru o Z)qT = {γ ∈ (Ru o Z)q : d(γ) ∈ T}.
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Then, d|(RuoZ)qT
and r|(RuoZ)qT

, respectively, are open maps since
they are projection maps to the first and the third coordinate spaces,
respectively, of (Ru o Z)qT . Now, we show that T meets every orbit in
the unit space of (Ru o Z)q.

Lemma 4.6 ([4, Proposition 13.2]). If (G,E) is a self-similar graph
action such that E is G-transitive, then, for any vertices u and v of E
there are a ∈ E∗, p ∈ E0 and g ∈ G such that a is a path from u to p
and g(p) = v.

Lemma 4.7. If (G,E) is a contracting and regular self-similar graph
action such that E is G-transitive, then, for every ξ = · · ·x−1 ·
x0x1 · · · ∈ E±ω, there is an η = · · · z−1 · w ∈ T such that

(ξ, (q(ξ), l − k, q(η)), η) ∈ (Ru o Z)q

for some nonnegative integers l, k.

Proof. For two vertices r(z−1) and d(x0), by Lemma 4.6, there are a
vertex p, a path a from r(z−1) to p and a g ∈ G such that g(p) = d(x0).
Then,

g−1(x0x1 · · · ) = y0y1 · · · ∈ Eω

satisfies d(g−1(x0x1 · · · )) = d(g−1(x0)) = g−1(d(x0)) = p. Thus, we
have

η = · · · z−2z−1 · a · g−1(x0x1 · · · ) = · · · z−2z−1 · a · y0y1 · · · ∈ T.

Now, we verify that σn(ξ) = · · ·x−n−2x−n−1 · x−n · · ·x−1x0 · · · is
unstably equivalent to η, where n is the length of a. For g−1 ∈ G, the
contracting condition implies that there is a natural number m such
that g−1|b ∈ N for every b ∈ Em. Then, we obtain from Remark 2.3
that

g−1(x0x1 · · · ) = y0y1 · · · = g−1(x0 · · ·xm−1)g
−1|x0···xm−1(xm · · · )

such that g−1|x0···xm−1
∈ N and g−1|x0···xm−1

(xmxm+1 · · · ) = ymym+1

· · · . Therefore, η = · · · z−1 · a · g−1(x0 · · · ) ∈ T satisfies (ξ, (q(ξ), n −
0, q(η)), η) ∈ (Ru o Z)q. �
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Thus, T meets every orbit in the unit space of (Ru o Z)q, and T
is a transversal to (Ru o Z)q. Then, we have the following from [8,
Example 2.7].

Proposition 4.8. If (G,E) is a contracting and regular self-similar
graph action such that E is G-transitive, then (Ru o Z)q is equivalent

to (Ru o Z)qTT .

We show that (Ru o Z)qTT is equivalent to GG,E . First, recall that

T = {z · w ∈ E±ω : z ∈ E−ω is fixed, w ∈ Eω},

(Ru o Z)qTT = {(ξ, (q(ξ), l − k, q(η)), η) ∈ (Ru o Z)q : ξ, η ∈ T}

and

GG,E =

(α; [{gi}], l − k;β) : α, β ∈ Eω, gi ∈ G, l, k ∈ N,
there exists an n ≥ l such that

gi · αi = βi−l+k · gi+1 for all i ≥ n.


We simplify (Ru o Z)qTT and GG,E . On (Ru o Z)qTT , consider

ξ = · · · z−2z−1 · x0x1 · · · and η = · · · z−2z−1 · y0y1 · · · .

Then, (q(ξ), l − k, q(η)) ∈ Ru o Z means that σl(q(ξ)) = q(σl(ξ)) is
unstably equivalent to σk(q(η)) = q(σk(η)), which is equivalent to the
existence of a natural number m ≥ l and some gm ∈ N exist such that

gm(xmxm+1 · · · ) = ym−l+kym−l+k+1 · · · .

Remark 4.9. Let m and gm be as above.

(1) For every j > m, let gj = gm|xm···xj−1 . Then, we have gj ·
xj = yj−l+k · gj+1 by Remark 2.3.

(2) A natural number m and a nucleus element gm are not unique.
However, if n is another natural number with n ≥ m and hn is another
nucleus element such that

hn(xnxn+1 · · · ) = yn−l+kyn−l+k+1 · · · ,
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then, for every j ≥ max{m,n}+ k0 = n+ k0, where k0 is the number
given in Lemma 3.9, we have

gj = gm|xm···xj−1 = (gm|xm···xn−1)|xn···xj−1 = gn|xn···xj−1

= hn|xn···xj−1 = hj

by Lemma 3.9, in other words, [{gj}] = [{hj}] where [{gj}] was defined
at the beginning of this subsection.

Lemma 4.10. Suppose that (G,E) is a contracting and regular self-
similar graph action such that E is G-transitive and that T is the above
transversal to (Ru o Z)q. Then, for every x ∈ S(G,E), q

−1(x) ∩ T has
at most one element.

Proof. For x ∈ S(G,E) such that q−1(x) ∩ T ̸= ∅, we denote α, β ∈
q−1(x) ∩ T as

α = · · · z−2z−1 · a0a1 · · · and β = · · · z−2z−1 · b0b1 · · ·

and show α = β.

First, we note that, by Lemma 3.9, there is a natural number k such
that, for every w ∈ Ek and g ∈ N , either g(w) ̸= w or g(w) = w
and g|w = 1. Since α and β are elements of q−1(x), α and β are
asymptotically equivalent, and there is a g−k ∈ N such that

g−k(z−k · · · z−1 · a0a1 · · · ) = z−k · · · z−1 · b0b1 · · · .

By the definition of the G-action on Eω (see Remark 2.3), the above
equality means that, for every l ≥ 0,

g−k(z−k · · · z−1 · a0 · · · al) = g−k(z−k · · · z−1) · g−k|z−k···z−1(a0 · · · al)
= z−k · · · z−1 · b0 · · · bl.

Then, g−k(z−k · · · z−1) = z−k · · · z−1 implies g−k|a−k···a−1 = 1 by Lem-
ma 3.9. Hence, we have a0 · · · al = b0 · · · bl for every l ≥ 0, which
induces α = β. Therefore, q−1(x) ∩ T has at most one element for
every x ∈ S(G,E). �

Now, we no longer need q(ξ) and q(η) since q|T is a homeomorphism
by Proposition 3.4 and Lemma 4.10. Thus, when (G,E) is a contracting

and regular self-similar graph action, (Ru o Z)qTT is isomorphic to a
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groupoid

A =

{
(ξ; l − k; η) : ξ, η ∈ T, l, k ∈ N, there exist an m ≥ l and a
gm ∈ N such that gm(xmxm+1 · · · ) = ym−l+kym−l+k+1 · · ·

}
by a map (ξ, (q(ξ), l − k, q(η)), η) 7→ (ξ; l − k; η). Then, A with

the induced topology from (Ru o Z)qTT is topologically isomorphic to

(Ru o Z)qTT .

Remark 4.11. We can explain the induced topology on A as follows.
Let

An = {(ξ; 0; η) : ξ, η ∈ T, there exists a g ∈ N such that

g(xnxn+1 · · · ) = ynyn+1 · · · }

with the subspace topology of T × T , and

A∞ =

∞∪
n=0

An

with the inductive limit topology. Then, the map A∞×Z→ A sending
((ξ; 0; η), n) to (ξ;n;σn(η)) is a bijection, and the product topology of
A∞ × Z is transferred to A. Since Ru has an inductive limit topology
(see [11, 12] for details), it is routine to verify that this topology is
the same as the induced topology.

On the other hand, with

GG,E =

(α; [{gi}], l − k;β) : α, β ∈ Eω, gi ∈ G, l, k ∈ N,
there exists an n ∈ N such that
gi · αi = βi−l+k · gi+1 for all i ≥ n

 ,

it is not difficult to observe that gi ·αi = βi−l+k · gi+1 for every i ≥ n is
the same as gn(αnαn+1 · · · ) = βn−l+kβn−l+k+1 · · · by Remark 2.3. In
addition, we can say a little more about [{gi}].

Lemma 4.12. Suppose that (G,E) is a contracting and regular self-
similar graph action and (α; [{gi}], l − k;β) ∈ GG,E. Then:

(1) gi is an element of the nucleus for every large i, and

(2) the equivalence class [{gi}] is uniquely determined by α, β, l− k.
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Proof.

(1) Let n ∈ N and gn ∈ G be such that

gn(αnαn+1 · · · ) = βn−l+kβn−l+k+1 · · · .

Then, the contracting condition implies that there is a natural number
t such that gn|αn···αn+t−1 = gn+t ∈ N . Thus, we have gi ∈ N for every
i ≥ n+ t.

(2) We show that, if (α; [{gi}], l − k;β) and (α; [{hi}], l − k;β) are
elements of GG,E , then [{gi}] = [{hi}], i.e., there is an m such that
gi = hi for every i ≥ m. Suppose that n1 and n2 are natural numbers
such that gi ·αi = βi−l+k ·gi+1 for every i ≥ n1 and hi ·αi = βi−l+k ·hi+1

for every i ≥ n2. Let n = max{n1, n2}. Without loss of generality, we
may say that gi and hi are elements of N for every i ≥ n by (1). Let
k0 be the natural number given in Lemma 3.9. Then

gn(αn · · ·αn+k0−1) = βn−l+k · · ·βn−l+k+k0−1 = hn(αn · · ·αn+k0−1)

implies gi = gn|αn···αn+i−1 = hn|αn···αn+i−1 = hi for every i ≥ n + k0.
Hence, we have [{gi}] = [{hi}]. �

Thus, we may delete [{gi}] from (α; [{gi}], l − k;β), and GG,E is
topologically isomorphic to a groupoid

B =

{
(α; l − k;β) : α, β ∈ Eω, l, k ∈ N, there exist an n ∈ N and
gn ∈ N such that gn(αnαn+1 · · · ) = βn−l+kβn−l+k+1 · · ·

}
which has the induced topology from GG,E .

Similarly to the case of A in Remark 4.11, the induced topology on
B can be explained from the product topology on

Bn = {(α; 0;β) : α, β ∈ Eω, there exists a gn ∈ N such that

gn(αnαn+1 · · · ) = βnβn+1 · · · } ,

the inductive limit topology on B∞ and the induced topology from the
product topology on B∞ × Z.

Now, we compare (Ru o Z)qTT and GG,E via A and B. Then, it

is clear that there is a strong relation between (Ru o Z)qTT ≃ A and
GG,E ≃ B. The only differences are the unit spaces T = {z ·w : z ∈ E−ω

is fixed, w ∈ Eω} for A and Eω for B.
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Let π : T → Eω be defined by z ·w 7→ w and π : (Ru o Z)qTT → GG,E
by

(ξ; l − k; η) 7−→ (π(ξ); l − k;π(η)).

In order to simplify the notation, we denote the image of (Ru o Z)qTT
by π as I. It is easy to show that π is a continuous groupoid mono-
morphism so that I is a subgroupoid of GG,E . However, π is not an
epimorphism since the unit space of I is

I(0) = {w ∈ Eω : d(w) = r(z−1)} =
∪
e∈E1

d(e)=r(z−1)

Z(e),

which is a proper subset of Eω if the graph E has more than one vertex.

Fortunately, I(0) is a transversal to GG,E . It is trivial to see that I(0)

is a clopen subspace of Eω since E is a finite graph. In the proof of
Lemma 4.7, we showed that, for every w ∈ Eω, there are a finite path a
and g ∈ G such that a ·g−1(w) ∈ I(0) and (w; |a|−0; a ·g−1(w)) ∈ GG,E
where |a| is the length of a; thus, I(0) meets every orbit in the unit
space of GG,E . In order to show that d|GG,EI(0)

and r|GG,EI(0)
are open

maps, we remark that GG,EI(0) = d−1(I(0)) is an open subspace of

GG,E since I(0) is an open subspace of Eω. Then, every open subset U
of GG,EI(0) is an open set in GG,E such that d|GG,EI(0)

(U) = d(U) and
r|GG,EI(0)

(U) = r(U) are open sets by [14, Proposition I.2.4]. Hence,
d|GG,EI(0)

and r|GG,EI(0)
are open maps, and I(0) is a transversal to

GG,E . Therefore, GG,E is equivalent to GG,EI
(0)

I(0) by [8, Example 2.7].
Moreover, it is clear that GG,EI

(0)

I(0) = I and that I is isomorphic to

(Ru o Z)qTT by π. Thus, we have the following.

Proposition 4.13. If (G,E) is a contracting and regular self-similar
graph action such that E is G-transitive, then GG,E is equivalent to

(Ru o Z)qTT .

Combining Propositions 4.5, 4.8 and 4.13, we have a groupoid
equivalence between Ru o Z and GG,E :

Theorem 4.14. If (G,E) is a contracting and regular self-similar
graph action such that E is G-transitive, then Ru o Z is equivalent
to GG,E in the sense of [8].
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Adding up Theorem 4.3, we summarize the above argument.

Theorem 4.15. If (G,E) is a contracting, regular and pseudo free
self-similar graph action such that E is G-transitive, then the unstable
Ruelle algebra of (S(G,E), σ) is strongly Morita equivalent to the Cuntz-
Pimsner algebra OG,E of [3].

Remark 4.16. In [2], the authors stated that the stable Ruelle
algebras of limit solenoids from self-similar graph actions are studied
in [1].

Acknowledgments. I express my deep gratitude to the referee for
many helpful suggestions and comments.
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