SMALE SPACES FROM SELF-SIMILAR GRAPH ACTIONS

INHYEOP YI

ABSTRACT. We show that, for contracting and regular self-similar graph actions, the shift maps on limit spaces are positively expansive local homeomorphisms. From this, we find that limit solenoids of contracting and regular self-similar graph actions are Smale spaces and that the unstable Ruelle algebras of the limit solenoids are strongly Morita equivalent to the Cuntz-Pimsner algebras by Exel and Pardo if self-similar graph actions satisfy the contracting, regular, pseudo free and G-transitive conditions.

1. Introduction. Exel and Pardo [4] generalized self-similar groups of Nekrashevych [9, 10] to self-similar graph actions. For a selfsimilar group (G, X), Nekrashevych constructed two dynamical systems (\mathcal{J}_G, σ) , called the limit dynamical system, and $(\mathcal{S}_G, \widehat{\sigma})$, called the limit solenoid, and two associated C^* -algebras \mathcal{O}_G and \mathcal{O}_{σ} . Here, \mathcal{O}_G is a universal Cuntz-Pimsner algebra with a correspondence over $C_r^*(G)$, and \mathcal{O}_{σ} is a groupoid algebra of the Deaconu groupoid from (\mathcal{J}_G, σ) . Then, he showed that the limit solenoid of (G, X) is a Smale space and that the stable Ruelle algebra and the unstable Ruelle algebra, respectively, of the limit solenoid are strongly Morita equivalent to \mathcal{O}_{σ} and \mathcal{O}_{G} , respectively. On the other hand, for a self-similar graph action (G, E), Exel and Pardo [3] defined a C^* -algebra $\mathcal{O}_{G,E}$ which is *-isomorphic to a Cuntz-Pimsner algebra for a correspondence over $C(E^0) \rtimes G$. They then showed that $\mathcal{O}_{G,E}$ includes \mathcal{O}_G as a special case. Moreover, the limit dynamical system $(J_{(G,E)}, \sigma)$ and its Deaconu groupoid algebra $C^*(\Gamma_{(G,E)})$ are studied in [18] following Nekrashevych's development. Although the topological structure of $J_{(G,E)}$ is different from that of \mathcal{J}_G , it turned out that $(J_{(G,E)},\sigma)$ and its groupoid algebra $C^*(\Gamma_{(G,E)})$ are natural generalizations of (\mathcal{J}_G,σ) and \mathcal{O}_{σ} . Therefore, it is rational to expect that the limit solenoid of

²⁰¹⁰ AMS Mathematics subject classification. Primary 37D20, 46L05, 46L55. Keywords and phrases. Self-similar graph action, limit dynamical system, limit solenoid, positively expansive map, Smale space.

Received by the editors on April 17, 2017, and in revised form on July 15, 2017.

DOI:10.1216/RMJ-2018-48-4-1359

Copyright ©2018 Rocky Mountain Mathematics Consortium

a self-similar graph action (G, E) under suitable conditions is a Smale space and that $\mathcal{O}_{G,E}$ and $C^*(\Gamma_{(G,E)})$ are related to Ruelle algebras of the limit solenoid.

In this paper, we show that the limit solenoid is a Smale space and that $\mathcal{O}_{G,E}$ is strongly Morita equivalent to the unstable Ruelle algebra if (G,E) is a contracting, regular and pseudo free self-similar graph action and E is G-transitive. The main techniques used here are positive expansiveness of the shift maps in the limit dynamical systems and groupoid equivalence in the sense of Muhly, Renault and Williams [8]. When

$$\sigma: J_{(G,E)} \longrightarrow J_{(G,E)}$$

is a surjective positively expansive map, the inverse limit system induced from $(J_{(G,E)},\sigma)$, which is topologically conjugate to the limit solenoid, is a Smale space (see [11, 16]). For the unstable Ruelle algebra of the limit solenoid and $\mathcal{O}_{G,E}$, which is *-isomorphic to a groupoid algebra, we borrow ideas from [12] to reduce the groupoid for the unstable Ruelle algebra on a transversal that is determined by a fixed left-hand-sided infinite path. Then, it becomes much easier to compare the groupoid algebras using strong Morita equivalence.

- 2. Self-similar graph actions. We introduce the basic definitions and properties of self-similar graph actions to be used later. All material in this section is taken from [4, 9, 10]. The reader is referred to these for more details.
- **2.1.** Directed graphs. Suppose that $E = (E^0, E^1, d, r)$ is a directed graph where E^0 is the set of vertices, E^1 is the set of edges and d and r are domain and range maps, respectively. A directed graph E is called *finite* if E^0 and E^1 are finite sets. A vertex is called a *sink* if it does not emit any edge and a *source* if it does not receive any edge.

Let E be a directed graph. A finite path of length $n \geq 1$ in E is a finite sequence

$$a = a_1 \cdots a_n$$

such that $a_i \in E^1$ and $r(a_i) = d(a_{i+1})$ for $i = 1, \ldots, n-1$. The domain of a is defined to be $d(a) = d(a_1)$ and the range of a is $r(a) = r(a_n)$. A vertex $v \in E^0$ is considered a path of length zero with d(v) = r(v) = v. For every integer $n \geq 0$, we denote by E^n the set of paths of length n in E and denote by E^* the set of finite paths in E, i.e.,

$$E^* = \bigcup_{n=0}^{\infty} E^n.$$

If a and b are paths in E such that r(a) = d(b), then ab is the path obtained by concatenating a and b.

We consider the left-infinite path space and the right-infinite path space

$$E^{-\omega} = \{ \cdots a_{-2} a_{-1} \colon a_i \in E^1 \text{ and } r(a_i) = d(a_{i+1}) \}$$

and

$$E^{\omega} = \{a_0 a_1 \cdots : a_i \in E^1 \text{ and } r(a_i) = d(a_{i+1})\}.$$

We also use the two-sided-infinite path space

$$E^{\pm\omega} = \{ \cdots a_{-2}a_{-1} \cdot a_0 a_1 \cdots : a_i \in E^1 \text{ and } r(a_i) = d(a_{i+1}) \}.$$

The left-infinite path space $E^{-\omega}$ has the product topology of the discrete set E^1 . For each $a \in E^*$, define the cylinder set Z(a) as

$$Z(a) = \{ \alpha \in E^{-\omega} : \alpha = \cdots = a_{-n-1}a_{-n} \cdots = a_{-1} \text{ such that } a_{-n} \cdots = a_{-1} = a \}.$$

Then, the product topology on $E^{-\omega}$ has $\{Z(a): a \in E^*\}$ as its basis. Similarly, the collection of appropriate cylinder sets are bases of topologies of E^{ω} and $E^{\pm \omega}$.

2.2. Self-similar graph actions. Let $E = (E^0, E^1, d, r)$ be a directed graph and G a group. An automorphism of E is a bijection

$$f \colon E^0 \cup E^1 \longrightarrow E^0 \cup E^1$$

such that, for i=0 and 1, $f(E^i) \subset E^i$, $f \circ d = d \circ f$ and $f \circ r = r \circ f$ hold. We say that G acts on E if there is a group homomorphism from G to the group of graph automorphisms of E. We denote the (left) actions of G on E^0 and E^1 by

$$(g,v) \longmapsto g(v) \in E^0$$

and

$$(g,e) \longmapsto g(e) \in E^1$$

for $g \in G$, $v \in E^0$ and $e \in E^1$.

Definition 2.1 ([4, 9, 10]). Suppose that E is a finite directed graph with no sink nor source and that G is a group acting on E such that the induced action on E^* is faithful. We call the pair (G, E) a self-similar graph action if, for all $g \in G$ and $e \in E^1$, there exists a unique $h \in G$ such that

$$g(eb) = g(e)h(b)$$

for every $b \in E^*$ with r(e) = d(b).

Remark 2.2 ([2, subsection 7.2]). The faithful condition of G-action implies the uniqueness of h in Definition 2.1. See [3, 4] for more general cases.

For all $g \in G$ and $a, b \in E^*$ such that $ab \in E^*$, by induction, there is a unique element $h \in G$ such that g(ab) = g(a)h(b). We call the unique element h the restriction of g at a and denote it by $g|_a$. For c = g(a) and $h = g|_a$, we formally write the above equality as

$$g \cdot a = c \cdot h.$$

We will need the following basic properties of restrictions [4, 9, 10]: for $g, h \in G$ and $a, b \in E^*$,

$$g|_{ab} = (g|_a)|_b,$$
 $(gh)|_a = g|_{h(a)}h|_a,$ $(g|_a)^{-1} = g^{-1}|_{g(a)}.$

Standing assumption. In this paper, we assume that every graph is a connected finite directed graph with no sink nor source, and every group is a finitely generated countable group.

2.3. Universal C^* -algebra $\mathcal{O}_{G,E}$. For a self-similar graph action (G, E), $\mathcal{O}_{G,E}$ is the universal unital C^* -algebra generated by a set

$$\{p_x \colon x \in E^0\} \cup \{s_e \colon e \in E^1\} \cup \{u_q \colon g \in G\}$$

subject to the following relations:

- (1) $\{p_x : x \in E^0\}$ is a set of mutually orthogonal projections;
- (2) $\{s_e : e \in E^1\}$ is a set of partial isometries;
- (3) $s_e^* s_e = p_{d(e)}$ for every $e \in E^1$;
- (4) $p_x = \sum_{e \in r^{-1}(x)} s_e s_e^*$ for every $x \in E^0$ where $r^{-1}(x)$ is finite and nonempty;

- (5) the map $u: G \to \mathcal{O}_{G,E}$ defined by $g \mapsto u_g$ is a unitary representation of G:
- (6) $u_g s_e = s_{g(e)} u_{g|_e}$ for every $g \in G$ and $e \in E^1$; and
- (7) $u_q p_x = p_{q(x)} u_q$ for every $g \in G$ and $x \in E^0$.

See [3, 4] for more details regarding $\mathcal{O}_{G.E}$.

Remark 2.3 ([4, Proposition 8.1]). We can extend the action of G on E^* to E^{ω} : for every $g \in G$, $\xi = x_0 x_1 \cdots \in E^{\omega}$ and $n \geq 0$, $g(\xi) = \eta = y_0 y_1 \cdots \in E^{\omega}$ is defined as

$$g(x_0\cdots x_n)=y_0\cdots y_n.$$

We will need the following properties of self-similar graph actions.

Definition 2.4 ([4, 9, 10]). Suppose that (G, E) is a self-similar graph action.

- (1) We say that (G, E) is contracting if there is a finite subset N of G satisfying the following: for every $g \in G$, there is an $n \geq 0$ such that $g|_a \in N$ for every $a \in E^*$ of length $|a| \geq n$. If the action is contracting, the smallest finite subset of G satisfying this condition is called the nucleus of the group and is denoted by \mathcal{N} .
- (2) We say that (G, E) is regular if, for every $g \in G$ and every $w \in E^{\omega}$, either $g(w) \neq w$ or there is a neighborhood of w such that every point in the neighborhood is fixed by g.
- (3) We say that (G, E) is pseudo free if $\operatorname{Fix}_g = \{a \in E^* : g(a) = a\}$ is a finite set for every $g \in G$.
- (4) We say that E is G-transitive if, for any two vertices u and v of E, there is a finite sequence of vertices $u = u_0, u_1, \ldots, u_n = v$ such that, for each $i \in \{1, \ldots, n\}$, either there is a $g_i \in G$ such that

$$g_i(u_{i-1}) = u_i,$$

or there is a path $a_i \in E^*$ such that

$$d(a_i) = u_{i-1}$$
 and $r(a_i) = u_i$.

Definition 2.5 ([9, 10]). Two paths $\cdots a_{-2}a_{-1}$ and $\cdots b_{-2}b_{-1}$ in $E^{-\omega}$ are said to be *asymptotically equivalent* if there are a finite set $I \subset G$

and a sequence $g_n \in I$ such that

$$g_n(a_{-n}\cdots a_{-1}) = b_{-n}\cdots b_{-1}$$

for every $n \in \mathbb{N}$.

For two-sided infinite space $E^{\pm\omega}$, we say that two paths $\cdots a_{-2}a_{-1} \cdot a_0a_1 \cdots$ and $\cdots b_{-2}b_{-1} \cdot b_0b_1 \cdots$ are asymptotically equivalent if there are a finite set $H \subset G$ and a sequence $h_n \in H$ such that

$$h_n(a_n a_{n+1} \cdots) = b_n b_{n+1} \cdots$$

for every $n \in \mathbb{Z}$.

Remark 2.6. When (G, E) is a contracting self-similar graph action, we can use the nucleus \mathcal{N} of G, instead of the arbitrary finite subset of G, to determine asymptotic equivalence. See [10, subsection 2.3] for details.

2.4. Limit dynamical systems. The quotient of $E^{-\omega}$ by the asymptotic equivalence relation is called the *limit space* of (G, E) and is denoted by $J_{(G,E)}$. Since the asymptotic equivalence relation is invariant under the shift map

$$\sigma \colon E^{-\omega} \longrightarrow E^{-\omega}$$
.

defined by

$$\cdots a_{-2}a_{-1} \longmapsto \cdots a_{-3}a_{-2},$$

the shift map σ induces a continuous surjection on $J_{(G,E)}$. By abuse of notation, we denote the induced map on $J_{(G,E)}$ by σ if there is no confusion. The dynamical system $(J_{(G,E)},\sigma)$ is called the *limit dynamical system* of (G,E). See [9, 10] for details.

Theorem 2.7 ([18, Lemma 2.9, Proposition 3.1]). If (G, E) is a self-similar graph action, then:

- (1) $J_{(G,E)}$ is a compact metrizable space, and
- (2) $\sigma \circ q = q \circ \sigma$ where $q \colon E^{-\omega} \to J_{(G,E)}$ is the quotient map.

Theorem 2.8 ([18, Lemma 5.4]). If (G, E) is a contracting and regular self-similar graph action, then $\sigma: J_{(G,E)} \to J_{(G,E)}$ is a surjective local homeomorphism.

2.5. Limit solenoids. Suppose that (G, E) is a self-similar graph action with the two-sided infinite path space $E^{\pm \omega}$. We denote the quotient of $E^{\pm \omega}$ by the asymptotic equivalence relation by $S_{(G,E)}$. Then, the shift map σ on $E^{\pm \omega}$ induces a homeomorphism of $S_{(G,E)}$, which is also denoted σ . We call the dynamical system $(S_{(G,E)}, \sigma)$ the *limit solenoid* of the self-similar graph action (G, E).

The proofs of the following properties of limit solenoids are identical to those of [10, Proposition 2.4] and [18, Lemma 2.9].

Theorem 2.9. If (G, E) is a self-similar graph action, then:

- (1) $S_{(G,E)}$ is a compact metrizable space, and
- (2) $\sigma \circ q = q \circ \sigma$ where $q \colon E^{\pm \omega} \to S_{(G,E)}$ is the quotient map.

Suppose that $(J_{(G,E)}, \sigma)$ is the limit dynamical system of (G, E). We define the inverse limit of $(J_{(G,E)}, \sigma)$

$$\lim (J_{(G,E)}, \sigma) = \{(x_0, x_1, x_2, \ldots) \colon x_i \in J_{(G,E)} \text{ and } \sigma(x_i) = x_{i-1}\}.$$

Then, $\varprojlim (J_{(G,E)}, \sigma)$ carries an induced homeomorphism, which we also denote as σ , given by

$$\sigma: (x_0, x_1, x_2, \ldots) \longmapsto (\sigma(x_0), x_0, x_1, x_2, \ldots).$$

Theorem 2.10 ([9, Proposition 5.7.3]). The limit solenoid $(S_{(G,E)}, \sigma)$ is topologically conjugate to the inverse limit system $(\underline{\lim}(J_{(G,E)}, \sigma), \sigma)$.

3. Quotient maps and shift maps. For a self-similar graph action (G, E), we show that the quotient maps

$$q: E^{-\omega} \longrightarrow J_{(G,E)}$$

and

$$q \colon E^{\pm \omega} \longrightarrow S_{(G,E)}$$

are open maps and that the shift map

$$\sigma \colon J_{(G,E)} \longrightarrow J_{(G,E)}$$

is a positively expansive map if (G, E) is contracting and regular.

3.1. Quotient maps. Suppose that (G, E) is a self-similar graph action with the left-infinite path space $E^{-\omega}$. First, we consider a principal groupoid defined by the asymptotic equivalence relation on $E^{-\omega}$

$$H = \{(\xi, \eta) \in E^{-\omega} \times E^{-\omega} : \xi \text{ is asymptotically equivalent to } \eta\}.$$

Then, $E^{-\omega}$ is the unit space of H and its coarse moduli space

$$|H| = E^{-\omega}/H = \{ [\xi] : \xi \in E^{-\omega} \}$$

is $J_{(G,E)}$. Here, $[\xi]=\{\eta\in E^{-\omega}\colon (\xi,\eta)\in H\}$, i.e., $\eta\in [\xi]$ if and only if $q(\eta)=q(\xi)$.

Remark 3.1. In order to give a locally compact Hausdorff topology on H, for each natural number n, we define a binary relation \sim_n on $E^{-\omega}$ by $\xi \sim_n \eta$ if and only if

- (1) there are $\xi', \eta' \in E^{-\omega}$ such that ξ' is asymptotically equivalent to η' , and
- (2) $\xi_{-n} \cdots \xi_{-1} = \xi'_{-n} \cdots \xi'_{-1}$ and $\eta_{-n} \cdots \eta_{-1} = \eta'_{-n} \cdots \eta'_{-1}$.

Then, it is easy to see that \sim_n is an equivalence relation due to the asymptotical equivalence between ξ' and η' . Now, we let

$$H_n = \{(\xi, \eta) \in E^{-\omega} \times E^{-\omega} \colon \xi \sim_n \eta \}$$

with the subspace topology of $E^{-\omega} \times E^{-\omega}$.

Since the complement of H_n is open in $E^{-\omega} \times E^{-\omega}$, each H_n is a compact Hausdorff space satisfying $H \subset H_{n+1} \subset H_n$ with the inclusion map $i_n \colon H \to H_n$. We give H the initial topology induced from $(H_n, i_n)_{n \in \mathbb{N}}$. Then, H is a compact Hausdorff space by [17, Example 29.10, Theorem 29.11]. It is not difficult to verify that the initial topology on H is compatible with the groupoid structure. A left Haar system on H is described in [14, Example I.2.5(c)]. See [14, Section I.2] for more details.

We learned the following from an unpublished lecture note by Freed [5].

Proposition 3.2 ([5, Lemma 15.66]). The quotient map $q: E^{-\omega} \to J_{(G,E)}$ is an open map.

Proof. Let H be as above. We identify $E^{-\omega} = H^{(0)}$ and $J_{(G,E)} = |H|$. For every open set U in $E^{-\omega}$, q(U) is open in $J_{(G,E)}$ if and only if $q^{-1} \circ q(U)$ is open in $E^{-\omega}$. On the other hand, the structure of the groupoid H implies $d \circ r^{-1}(U) = q^{-1} \circ q(U)$, where d and r are the domain and range maps, respectively, of H. Since H is a locally compact Hausdorff groupoid with a left Haar system, d and r are open maps by [14, Proposition I.2.4]. Hence, $d \circ r^{-1}(U)$ is an open subset of $E^{-\omega}$, and thus, is $q^{-1} \circ q(U)$ for every open set $U \subset E^{-\omega}$. Therefore, the quotient map q is an open map.

When (G, E) is a contracting self-similar graph action such that E is an n-bouquet, every asymptotic equivalence class on $E^{-\omega}$ has no more than $|\mathcal{N}|$ elements by [9, Proposition 3.2.6]. We can obtain the same result for finite graphs.

Proposition 3.3. Suppose that (G, E) is a contracting self-similar graph action. For each $x \in J_{(G,E)}$, $|q^{-1}(x)| \leq |\mathcal{N}|$, where $|\cdot|$ is the cardinality and \mathcal{N} is the nucleus.

Proof. We fix one element $\xi = \cdots x_{-n} \cdots x_{-1} \in q^{-1}(x)$ and consider an arbitrary element $\eta = \cdots y_{-n} \cdots y_{-1} \in E^{-\omega}$. Let

$$X = \{\{g_n\}: g_n \in \mathcal{N} \text{ for every } n \in \mathbb{N} \text{ and } g_{n-1} = g_n|_{x_{-n}} \text{ for every } n \ge 2\}.$$

Then, $\eta \in q^{-1}(x)$ if and only if there is at least one sequence $\{g_n\} \in X$ such that $g_n(x_{-n}) = y_{-n}$ for every $n \in \mathbb{N}$. Thus, we have an injective map $q^{-1}(x) \to X$ that sends each $\eta \in q^{-1}(x)$ to one of such sequences in X, which implies $|q^{-1}(x)| \leq |X|$.

In order to show $|X| \leq |\mathcal{N}|$, we consider X as a subset of $\prod \mathcal{N}$. For every $n \in \mathbb{N}$, let $X_n = \mathcal{N}$ and

$$p_n: \prod \mathcal{N} = \prod X_n \longrightarrow X_1 \times \cdots \times X_n$$

be the projection map given by

$$(g_1,\ldots,g_n,g_{n+1},\ldots)\longmapsto (g_1,\ldots,g_n).$$

Due to

$$g_n|_{x_{-n},x_{-n+1}} = (g_n|_{x_{-n}})|_{x_{-n+1}} = g_{n-1}|_{x_{-n+1}} = g_{n-2},$$

we observe that, for $(g_1,\ldots,g_n)\in p_n(X)$, g_n determines g_{n-1},\ldots,g_1 . Therefore, $|p_n(X)|\leq |X_n|=|\mathcal{N}|$ for every $n\in\mathbb{N}$. Since a map $p_{n+1}(X)\to p_n(X)$ defined by $(g_1,\ldots,g_n,g_{n+1})\mapsto (g_1,\ldots,g_n)$ is surjective, we have $|p_n(X)|\leq |p_{n+1}(X)|$. Thus, the sequence $\{|p_n(X)|\}$ is a bounded increasing sequence of natural numbers, and $\{|p_n(X)|\}$ is a convergent sequence by the monotone convergence theorem. Hence, there is a natural number N such that $|p_N(X)|=|p_{N+k}(X)|$ for every $k\geq 1$ since $\{|p_n(X)|\}$ is a convergent sequence of natural numbers. Then, for each $(g_1,\ldots,g_N)\in p_N(X)$, there is a unique $(g_1,\ldots,g_N,g_{N+1})\in p_{N+1}(X)$ and, by induction, a unique $(g_1,\ldots,g_N,\ldots,g_{N+k})\in p_{N+k}(X)$, for every $k\in\mathbb{N}$. Therefore, we can choose an element $(g_1,\ldots,g_N,\ldots,g_{N+k},\ldots)\in p_N^{-1}(g_1,\ldots,g_N)\subset X$ for each $(g_1,\ldots,g_N)\in p_N(X)$. We define

$$s_{N+k} \colon p_N(X) \longrightarrow p_{N+k}(X)$$

by

$$(g_1,\ldots,g_N)\longmapsto (g_1,\ldots,g_N,\ldots,g_{N+k})$$

and

$$t: p_N(X) \longrightarrow X$$

by

$$(g_1,\ldots,g_N)\longmapsto (g_1,\ldots,g_N,\ldots,g_{N+k},\ldots).$$

Then, it is clear that s_{N+k} is bijective and $p_{N+k} \circ t = s_{N+k}$ for every $k \in \mathbb{N}$.

Now, we show that $t: p_N(X) \to X$ is surjective. Then, we will have $|X| \leq |p_N(X)| \leq |\mathcal{N}|$. Assume that $t: p_N(X) \to X$ is not surjective. Then, $X \setminus t(p_N(X))$ is not an empty set so that there is an $h = (h_1, \ldots, h_N, \ldots) \in X \setminus t(p_N(X))$. When we compare h and each $(g_1, \ldots, g_N, \ldots) \in t(p_N(X))$, there is at least one index n such that $h_n \neq g_n$, i.e., $(h_1, \ldots, h_n) \neq (g_1, \ldots, g_n)$, so that, for every $k \in \mathbb{N}$,

$$(h_1, \ldots, h_n, \ldots, h_{n+k}) \neq (g_1, \ldots, g_n, \ldots, g_{n+k}).$$

Here, it is clear that n > N due to the fact that $p_N(h) = (h_1, \ldots, h_N) \in p_N(X)$. Since $t(p_N(X))$ has finitely many elements, there is a natural number K such that $(h_1, \ldots, h_{N+K}) \neq (g_1, \ldots, g_{N+K})$ for every $(g_1, \ldots, g_N, \ldots) \in t(p_N(X))$, i.e.,

$$(h_1,\ldots,h_{N+K}) \notin p_{N+K} \circ t(p_N(X)).$$

However, $(h_1, \ldots, h_{N+K}) = p_{N+K}(h) \in p_{N+K}(X)$ means that there exists at least one $(a_1, \ldots, a_N, \ldots, a_{N+K}) \in p_{N+K}(X)$ such that

$$(h_1, \dots, h_{N+K}) = (a_1, \dots, a_N, \dots, a_{N+K})$$

$$= s_{N+K}(a_1, \dots, a_N)$$

$$= p_{N+K} \circ t(a_1, \dots, a_N) \in p_{N+K} \circ t(p_N(X)),$$

a contradiction. Hence, $t \colon p_N(X) \to X$ is a surjective map, which implies that $|X| \le |p_N(X)| \le |\mathcal{N}|$. Therefore, we have $|q^{-1}(x)| \le |X| \le |p_N(X)| \le |\mathcal{N}|$ for every $x \in J_{(G,E)}$.

By the same argument, we have similar results for the limit of the solenoid:

Proposition 3.4.

- (1) The quotient map $q: E^{\pm \omega} \to S_{(G,E)}$ is an open map.
- (2) For each $x \in S_{(G,E)}, |q^{-1}(x)| \leq |\mathcal{N}|$.
- **3.2. Shift maps.** For a contracting and regular self-similar graph action (G, E), we show that the shift map $\sigma: J_{(G,E)} \to J_{(G,E)}$ is positively expansive.

Definition 3.5 ([15]). Let (X,d) be a metric space. A continuous map $f: X \to X$ is called *positively expansive* if there exists a constant $\rho > 0$ such that, for any distinct points $x, y \in X$, there exists an $n \ge 0$ such that $d(f^n(x), f^n(y)) > \rho$.

Suppose that X is a locally compact metrizable space with diagonal $\Delta = \{(x, x) \colon x \in X\}$ and that $f \colon X \to X$ is a continuous map.

Definition 3.6 ([15]). An expansivity neighborhood for f is a closed neighborhood $N \subset X \times X$ of Δ such that, for any distinct $x, y \in X$, there is an $n \geq 0$ such that $(f^n(x), f^n(y)) \notin N$. We say that f is weakly positively expansive if it has an expansivity neighborhood.

Theorem 3.7 ([15, Theorem 4]). Let $f: X \to X$ be a continuous map on a locally compact metrizable space X. Then, f is positively expansive if and only if it is weakly positively expansive with respect to some metric compatible with the topology of X.

Now, we consider a self-similar graph action (G, E). For each natural number m, we define

$$U_m = \{(\cdots a_{-1}, \cdots b_{-1}) \in E^{-\omega} \times E^{-\omega} : g(a_{-m} \cdots a_{-1})$$
$$= b_{-m} \cdots b_{-1} \text{ for some } g \in \mathcal{N}\}$$

and

$$V_m = (q \times q)(U_m) \subset J_{(G,E)} \times J_{(G,E)}.$$

Lemma 3.8. For every natural number m, V_m is a closed neighborhood of the diagonal Δ of $J_{(G,E)} \times J_{(G,E)}$.

Proof. First, we show that U_m is a closed subset of $E^{-\omega} \times E^{-\omega}$. Let

$$\xi = \cdots x_{-m} \cdots x_{-1}$$
 and $\eta = \cdots y_{-m} \cdots y_{-1}$

be elements of $E^{-\omega}$ such that (ξ, η) is a boundary element of U_m . Then, for a neighborhood $W = Z(x_{-m} \cdots x_{-1}) \times Z(y_{-m} \cdots y_{-1})$ of (ξ, η) we have $W \cap U_m \neq \emptyset$. Choose an element $(\alpha, \beta) \in W \cap U_m$ such that

$$\alpha = \cdots a_{-m} \cdots a_{-1}$$
 and $\beta = \cdots b_{-m} \cdots b_{-1}$.

Since (α, β) is an element of U_m , there is a group element $g \in \mathcal{N}$ such that $g(a_{-m} \cdots a_{-1}) = b_{-m} \cdots b_{-1}$. On the other hand, $(\alpha, \beta) \in W$ means

$$\alpha \in Z(x_{-m} \cdots x_{-1})$$
 and $\beta \in Z(y_{-m} \cdots y_{-1}),$

which imply

$$a_{-m}\cdots a_{-1}=x_{-m}\cdots x_{-1}$$

and

$$b_{-m}\cdots b_{-1} = y_{-m}\cdots y_{-1}.$$

Thus, we have

$$g(x_{-m}\cdots x_{-1}) = y_{-m}\cdots y_{-1},$$

and (ξ, η) is included in U_m ; hence, U_m is a closed subset of $E^{-\omega} \times E^{-\omega}$. Then, $V_m = (q \times q)(U_m)$ is a closed subset of $J_{(G,E)} \times J_{(G,E)}$ since $E^{-\omega}$ and $J_{(G,E)}$ are compact spaces and the quotient map $q: E^{-\omega} \to J_{(G,E)}$ is continuous.

Moreover, U_m is an open set in $E^{-\omega} \times E^{-\omega}$. Let $(\alpha, \beta) \in U_m$ be given by $\alpha = \cdots a_{-m} \cdots a_{-1}$ and $\beta = \cdots b_{-m} \cdots b_{-1}$. Then, the existence of some $g \in \mathcal{N}$ such that

$$g(a_{-m}\cdots a_{-1})=b_{-m}\cdots b_{-1}$$

implies

$$Z(a_{-m}\cdots a_{-1})\times Z(b_{-m}\cdots b_{-1})\subset U_m.$$

Thus, (α, β) is an interior point of U_m , and U_m is an open subset of $E^{-\omega} \times E^{-\omega}$. Hence, $V_m = (q \times q)(U_m)$ is open in $J_{(G,E)} \times J_{(G,E)}$ by Proposition 3.2.

In order to show $\Delta \subset V_m$, consider any $(z,z) \in \Delta$ and $\zeta = \cdots z_{-m} \cdots z_{-1} \in q^{-1}(z)$. Then, it is trivial that $(\zeta,\zeta) \in U_m$ and $(q \times q)(\zeta,\zeta) = (z,z) \in V_m$. Therefore, V_m is a closed neighborhood of the diagonal Δ .

In order to show that V_m is an expansivity neighborhood for the shift map, we need to extend [10, Lemma 6.3] a little further.

Lemma 3.9. If (G, E) is a contracting and regular self-similar graph action, then there is a natural number k_0 such that, for every $k \ge k_0$, any $w \in E^k$ and any two elements $g, h \in \mathcal{N}$, either $g(w) \ne h(w)$ or g(w) = h(w) and $g|_w = h|_w$ hold.

Proof. It is proven in [10, Lemma 6.3] that there is a natural number k_0 such that, for any $w \in E^{k_0}$ and any two elements $g, h \in \mathcal{N}$, either $g(w) \neq h(w)$ or g(w) = h(w) and $g|_w = h|_w$ hold. For every $k > k_0$, let $w_0 \in E^{k_0}$, $w_1 \in E^{k-k_0}$ and $w_2 \in E^*$ be arbitrary words with the conditions $r(w_0) = d(w_1)$ and $r(w_1) = d(w_2)$ so that $w_0w_1 \in E^k$ and $w_0w_1w_2 \in E^*$. We must show that, for any $g, h \in \mathcal{N}$, $g(w_0w_1) = h(w_0w_1)$ implies $g|_{w_0w_1} = h|_{w_0w_1}$.

If $g(w_0w_1) = h(w_0w_1)$, then $w_0 \in E^{k_0}$ implies

$$g(w_0w_1) = g(w_0)g|_{w_0}(w_1) = h(w_0)h|_{w_0}(w_1) = h(w_0w_1)$$

such that $g(w_0) = h(w_0)$ and $g|_{w_0} = h|_{w_0}$ hold. Thus, for any $w_2 \in E^*$ such that $w_0 w_1 w_2$ is allowed, we obtain

$$g(w_0w_1w_2) = g(w_0)g|_{w_0}(w_1w_2) = g(w_0w_1)g|_{w_0w_1}(w_2)$$

= $h(w_0)h|_{w_0}(w_1w_2) = h(w_0w_1)h|_{w_0w_1}(w_2) = h(w_0w_1w_2).$

Therefore, we have $g|_{w_0w_1} = h|_{w_0w_1}$, and this completes the proof. \square

Lemma 3.10. Suppose that $m \ge k_0 + 1$ is any natural number, where k_0 is given in Lemma 3.9, and that U_m and V_m are as in Lemma 3.8. Then, V_m is an expansivity neighborhood for $\sigma: J_{(G,E)} \to J_{(G,E)}$.

Proof. We prove the following. If $(x,y) \in J_{(G,E)} \times J_{(G,E)}$ satisfies $(\sigma^n x, \sigma^n y) \in V_m$ for every $n \geq 0$, then x = y.

Let $\xi = \cdots x_{-m} \cdots x_{-1} \in q^{-1}(x)$ and $\eta = \cdots y_{-m} \cdots y_{-1} \in q^{-1}(y)$. Since the shift maps on $E^{-\omega}$ and $J_{(G,E)}$ and the quotient map are commutative to each other, $(\sigma^n x, \sigma^n y) \in V_m$ means $(\sigma^n \xi, \sigma^n \eta) \in U_m$. Thus, for every $n \geq 0$, there is a group element $g_n \in \mathcal{N}$ such that $g_n(x_{-m-n} \cdots x_{-1-n}) = y_{-m-n} \cdots y_{-1-n}$. In order to obtain x = y, we show

$$g_n(x_{-m-n}\cdots x_{-1-n}\cdots x_{-1}) = y_{-m-n}\cdots y_{-1-n}\cdots y_{-1},$$

which implies an asymptotic equivalence between ξ and η such that

$$x = q(\xi) = q(\eta) = y.$$

For n = 0, 1, we have

$$g_0(x_{-m}\cdots x_{-1}) = g_0(x_{-m}\cdots x_{-2}x_{-1})$$

$$= g_0(x_{-m}\cdots x_{-2})g_0|_{x_{-m}\cdots x_{-2}}(x_{-1})$$

$$= y_{-m}\cdots y_{-2}y_{-1}$$

and

$$g_1(x_{-m-1}\cdots x_{-2}) = g_1(x_{-m-1}x_{-m}\cdots x_{-2})$$

$$= g_1(x_{-m-1})g_1|_{x_{-m-1}}(x_{-m}\cdots x_{-2})$$

$$= y_{-m-1}y_{-m}\cdots y_{-2}.$$

Since we choose $m-1 \ge k_0$, by Lemma 3.9,

$$g_0(x_{-m}\cdots x_{-2})=y_{-m}\cdots y_{-2}=g_1|_{x_{-m-1}}(x_{-m}\cdots x_{-2})$$

implies

$$g_0|_{x_{-m}\cdots x_{-2}} = (g_1|_{x_{-m-1}})|_{x_{-m}\cdots x_{-2}} = g_1|_{x_{-m-1}x_{-m}\cdots x_{-2}}$$

and

$$g_1(x_{-m-1}\cdots x_{-2}x_{-1}) = g_1(x_{-m-1}\cdots x_{-2})g_1|_{x_{-m-1}x_{-m}\cdots x_{-2}}(x_{-1})$$

$$= g_1(x_{-m-1}\cdots x_{-2})g_0|_{x_{-m}\cdots x_{-2}}(x_{-1})$$

$$= y_{-m-1}y_{-m}\cdots y_{-2}y_{-1}.$$

Then, by induction, we have $g_n(x_{-m-n}\cdots x_{-1-n}\cdots x_{-1})=y_{-m-n}\cdots y_{-1-n}\cdots y_{-1}$ for every $n\geq 0$. Therefore, ξ is asymptotically equivalent to η , and V_m is an expansivity neighborhood for $\sigma\colon J_{(G,E)}\to J_{(G,E)}$.

Now, we have the following from Theorem 2.8, Theorem 3.7 and Lemma 3.10.

Theorem 3.11. If (G, E) is a contracting and regular self-similar graph action, then $\sigma: J_{(G,E)} \to J_{(G,E)}$ is a positively expansive surjective local homeomorphism.

Since a local homeomorphism is an open map, [13, Theorem 2] implies the following.

Corollary 3.12. If (G, E) is a contracting and regular self-similar graph action, then $\sigma: J_{(G,E)} \to J_{(G,E)}$ is expanding.

Remark 3.13. The metric mentioned in Theorem 3.7 is given as follows. Let U_m and V_m be as above. Then,

$$g(x_{-m-1}x_{-m}\cdots x_{-1}) = g(x_{-m-1})g|_{x_{-m-1}}(x_{-m}\cdots x_{-1})$$

implies $U_{m+1} \subset U_m$ and $V_{m+1} \subset V_m$, and it is easy to see that $\{V_m\}$ satisfies the conditions of [6, page 185, Lemma 12]. For $x, y \in J_{(G,E)}$, we define

$$\tau(x,y) = \sup\{m \in \mathbb{N} \cup \{0\} : (x,y) \in V_m\} \text{ and } \delta(x,y) = 2^{-\tau(x,y)}.$$

Let $\overline{d}(x,y)$ be the infimum of $\sum \delta(a_{i-1},a_i)$ over all finite sequences a_0,a_1,\ldots,a_n in $J_{(G,E)}$ such that $a_0=x$ and $a_n=y$. Then, \overline{d} is the metric on $J_{(G,E)}$ induced from $\{V_m\}$ by the aforementioned citation.

Proposition 3.14. For every $x, y \in J_{(G,E)}$, $\delta(x,y) = \overline{d}(x,y)$.

Proof. First, we remark that $\tau(x,y) < \infty$ if and only if $x \neq y$ in $J_{(G,E)}$. Trivially, $\delta(x,x) = \overline{d}(x,x) = 0$ and $\delta(x,y) \geq \overline{d}(x,y)$ by the definition. In order to show $\delta(x,y) \leq \overline{d}(x,y)$, let a_0, a_1, \ldots, a_n be any finite sequence in $J_{(G,E)}$ such that $a_0 = x$ and $a_n = y$. We observe that, if there is at least one $i \in \{1, \ldots, n\}$ such that $\tau(a_{i-1}, a_i) \leq \tau(x, y)$, then

$$\delta(x,y) = 2^{-\tau(x,y)} \le 2^{-\tau(a_{i-1},a_i)} \le \sum_{j=0}^n 2^{-\tau(a_{j-1},a_j)} = \sum_{j=0}^n \delta(a_{j-1},a_j).$$

Thus, we assume that $\tau(a_{i-1}, a_i) \geq \tau(x, y)$ for every $i = 1, \ldots, n$, and obtain a contradiction. For each a_i , choose $\alpha_i = \cdots = a_{i,-2}a_{i,-1} \in q^{-1}(a_i)$. Then, we have

$$(\alpha_{i-1}, \alpha_i) \in U_{\tau(a_{i-1}, a_i)} \subset U_{\tau(x, y) + 1}$$

since $U_{m+1} \subset U_m$ for every m and $\tau(a_{i-1}, a_i) \geq \tau(x, y) + 1 \geq \tau(x, y)$. Thus, there is a group element $g_i \in \mathcal{N}$ for every $i = 1, \ldots, n$ such that

$$g_i(a_{i-1,-\tau(x,y)-1}\cdots a_{i-1,-1})=a_{i,-\tau(x,y)-1}\cdots a_{i,-1}$$

and

$$g_n \cdots g_1(a_{0,-\tau(x,y)-1} \cdots a_{0,-1}) = a_{n,-\tau(x,y)-1} \cdots a_{n,-1}.$$

Then, we have $(\alpha_0, \alpha_n) \in U_{\tau(x,y)+1}$ and $(q(\alpha_0), q(\alpha_n)) = (x, y) \in V_{\tau(x,y)+1}$ such that $\tau(x,y) \geq \tau(x,y)+1$, a contradiction. Hence, there is at least one $i \in \{1, \ldots, n\}$ such that $\tau(a_{i-1}, a_i) \leq \tau(x, y)$, which implies that $\delta(x,y) \leq \sum_{j=0}^n \delta(a_{j-1}, a_j)$. Since a_0, \ldots, a_n is any finite sequence satisfying $a_0 = x$ and $a_n = y$, we conclude that $\delta(x,y) \leq \overline{d}(x,y)$. Therefore, $\delta(x,y) = \overline{d}(x,y)$ for all $x,y \in J_{(G,E)}$.

4. Smale spaces. We omit the definitions and fundamental properties of Smale spaces and their corresponding C^* -algebras. The interested reader may consult [11, 12] for details.

For a contracting and regular self-similar graph action (G, E), where E is an n-bouquet, Nekrashevych showed [10, Proposition 6.10] that its limit solenoid is a Smale space. We extend his result to finite graphs.

Theorem 4.1. If (G, E) is a contracting and regular self-similar graph action, then its limit solenoid $(S_{(G,E)}, \sigma)$ is a Smale space.

Proof. When (G, E) satisfies contracting and regular conditions,

$$\sigma: J_{(G,E)} \longrightarrow J_{(G,E)}$$

is a positively expansive surjective local homeomorphism by Theorem 3.11. Then, Theorem 2.10 and [16, Lemma 4.18] imply the conclusion.

4.1. Unstable Ruelle algebras. We show that, under contracting, regular, pseudo free and G-transitive conditions, the unstable Ruelle

algebra of $(S_{(G,E)}, \sigma)$ is strongly Morita equivalent to the groupoid algebra $\mathcal{O}_{G,E}$ of Exel and Pardo.

Instead of the formal definition of unstable equivalence given in [11], we use [10, Proposition 6.8].

Definition 4.2 ([10, Proposition 6.8]). Suppose that $(S_{(G,E)}, \sigma)$ is the limit solenoid of a contracting and regular self-similar graph action (G, E). For $x, y \in S_{(G,E)}$, let

$$\xi = \cdots x_{-1} \cdot x_0 x_1 \cdots \in q^{-1}(x)$$

and

$$\eta = \cdots y_{-1} \cdot y_0 y_1 \cdots \in q^{-1}(y).$$

We say that x is unstably equivalent to y if and only if there exist $n \in \mathbb{Z}$ and $g \in \mathcal{N}$ such that

$$g(x_n x_{n+1} \cdots) = y_n y_{n+1} \cdots.$$

The unstable groupoid and its induced groupoid of $(S_{(G,E)},\sigma)$ are given by

$$R^u = \{(x,y) \in S_{(G,E)} \times S_{(G,E)} \colon x \text{ is unstably equivalent to } y\}$$

and

$$R^u \rtimes \mathbb{Z} = \{(x, l-k, y) \in S_{(G,E)} \times \mathbb{Z} \times S_{(G,E)} : l, k \in \mathbb{N}, (\sigma^l(x), \sigma^k(y)) \in R^u\}.$$

It is a well-known fact that R^u and $R^u \rtimes \mathbb{Z}$ are locally compact Hausdorff groupoids. The groupoid C^* -algebra $C^*(R^u \rtimes \mathbb{Z})$ is called the *unstable Ruelle algebra* of the Smale space $(S_{(G,E)}, \sigma)$. See [11, 12] for details.

4.2. Strong Morita equivalence between $C^*(R^u \rtimes \mathbb{Z})$ **and** $\mathcal{O}_{G,E}$. For a self-similar graph action (G,E), the following groupoid is constructed in [4, Theorem 8.19]:

$$\mathcal{G}_{G,E} = \left\{ \begin{aligned} (\alpha; [\{g_i\}], l-k; \beta) \colon \alpha, \beta \in E^{\omega}, \ g_i \in G, l, k \in \mathbb{N}, \\ \text{there exists an } n \geq l \text{ such that} \\ g_i \cdot \alpha_i = \beta_{i-l+k} \cdot g_{i+1} \text{ for all } i \geq n. \end{aligned} \right\}$$

Here, $[\{g_i\}]$ is the equivalence class of $\{g_i\}$ under \sim such that, for sequences of group elements, $\{g_i\} \sim \{h_i\}$ if and only if there is an

 $m \geq 0$ such that $g_i = h_i$ for every $i \geq m$. A suitable topology of $\mathcal{G}_{G,E}$ is described in [4, Proposition 9.5].

Theorem 4.3 ([4, Theorem 9.6]). If (G, E) is pseudo free, then the Cuntz-Pimsner algebra $\mathcal{O}_{G,E}$ is *-isomorphic to the groupoid algebra $C^*(\mathcal{G}_{G,E})$.

Now, we show that there is a groupoid equivalence between $R^u \times \mathbb{Z}$ and $\mathcal{G}_{G,E}$ in the sense of Muhly, Renault and Williams [8]. We begin by mentioning a well-known groupoid equivalence result reviewed in [7, Section 5]: Let Γ be a locally compact Hausdorff groupoid and X a locally compact Hausdorff space. If there is a continuous open surjection $\psi \colon X \to \Gamma^{(0)}$, we set

$$\Gamma^{\psi} = \{(\xi,\gamma,\eta) \colon \xi, \ \eta \in X, \ \gamma \in \Gamma, \ \psi(\xi) = d(\gamma), \ \psi(\eta) = r(\gamma) \}$$

with the subspace topology of $X \times \Gamma \times X$.

Lemma 4.4 ([7, Lemma 5.1]). The groupoid Γ is equivalent to Γ^{ψ} .

Suppose that (G, E) is a contracting and regular self-similar graph action with the two-sided infinite path space $E^{\pm \omega}$ and the induced unstable groupoid $R^u \rtimes \mathbb{Z}$. Then, $E^{\pm \omega}$ is a compact Hausdorff space, $R^u \rtimes \mathbb{Z}$ is a locally compact Hausdorff groupoid whose unit space is $S_{(G,E)}$ and $q \colon E^{\pm \omega} \to S_{(G,E)}$ is a continuous open surjection by Proposition 3.4. Thus, the following is true by Lemma 4.4.

Proposition 4.5. The groupoid $R^u \rtimes \mathbb{Z}$ is equivalent to

$$(R^u\rtimes\mathbb{Z})^q=\left\{\begin{matrix} (\xi,(x,l-k,y),\eta)\colon \xi,\ \eta\in E^{\pm\omega},\ q(\xi)=x,\ q(\eta)=y,\\ l,k\in\mathbb{N},\ (\sigma^lx,\sigma^ky)\in R^u. \end{matrix}\right\}$$

In order to compare $(R^u \rtimes \mathbb{Z})^q$ with $\mathcal{G}_{G,E}$, whose unit space is E^ω , we need to reduce the unit space of $(R^u \rtimes \mathbb{Z})^q$. For this purpose, we use a *transversal* in [8, Example 2.7]. Fix a left-infinite word $z = \cdots z_{-2}z_{-1} \in E^{-\omega}$, and consider

$$T = \{ z \cdot w \in E^{\pm \omega} \colon w \in E^{\omega} \}.$$

Then, T is trivially a closed subspace of $E^{\pm\omega}$. Since $(R^u \rtimes \mathbb{Z})^q$ has the subspace topology of $E^{\pm\omega} \times (R^u \rtimes \mathbb{Z}) \times E^{\pm\omega}$, so does

$$(R^u \rtimes \mathbb{Z})_T^q = \{ \gamma \in (R^u \rtimes \mathbb{Z})^q \colon d(\gamma) \in T \}.$$

Then, $d|_{(R^u \rtimes \mathbb{Z})^q_T}$ and $r|_{(R^u \rtimes \mathbb{Z})^q_T}$, respectively, are open maps since they are projection maps to the first and the third coordinate spaces, respectively, of $(R^u \rtimes \mathbb{Z})^q_T$. Now, we show that T meets every orbit in the unit space of $(R^u \rtimes \mathbb{Z})^q$.

Lemma 4.6 ([4, Proposition 13.2]). If (G, E) is a self-similar graph action such that E is G-transitive, then, for any vertices u and v of E there are $a \in E^*$, $p \in E^0$ and $g \in G$ such that a is a path from u to p and g(p) = v.

Lemma 4.7. If (G, E) is a contracting and regular self-similar graph action such that E is G-transitive, then, for every $\xi = \cdots x_{-1} \cdot x_0 x_1 \cdots \in E^{\pm \omega}$, there is an $\eta = \cdots z_{-1} \cdot w \in T$ such that

$$(\xi, (q(\xi), l - k, q(\eta)), \eta) \in (R^u \rtimes \mathbb{Z})^q$$

for some nonnegative integers l, k.

Proof. For two vertices $r(z_{-1})$ and $d(x_0)$, by Lemma 4.6, there are a vertex p, a path a from $r(z_{-1})$ to p and a $g \in G$ such that $g(p) = d(x_0)$. Then,

$$q^{-1}(x_0x_1\cdots)=y_0y_1\cdots\in E^{\omega}$$

satisfies $d(g^{-1}(x_0x_1\cdots)) = d(g^{-1}(x_0)) = g^{-1}(d(x_0)) = p$. Thus, we have

$$\eta = \cdots z_{-2} z_{-1} \cdot a \cdot g^{-1} (x_0 x_1 \cdots) = \cdots z_{-2} z_{-1} \cdot a \cdot y_0 y_1 \cdots \in T.$$

Now, we verify that $\sigma^n(\xi) = \cdots x_{-n-2}x_{-n-1} \cdot x_{-n} \cdots x_{-1}x_0 \cdots$ is unstably equivalent to η , where n is the length of a. For $g^{-1} \in G$, the contracting condition implies that there is a natural number m such that $g^{-1}|_b \in \mathcal{N}$ for every $b \in E^m$. Then, we obtain from Remark 2.3 that

$$g^{-1}(x_0x_1\cdots)=y_0y_1\cdots=g^{-1}(x_0\cdots x_{m-1})g^{-1}|_{x_0\cdots x_{m-1}}(x_m\cdots)$$

such that $g^{-1}|_{x_0\cdots x_{m-1}} \in \mathcal{N}$ and $g^{-1}|_{x_0\cdots x_{m-1}}(x_m x_{m+1}\cdots) = y_m y_{m+1}\cdots$. Therefore, $\eta = \cdots z_{-1} \cdot a \cdot g^{-1}(x_0\cdots) \in T$ satisfies $(\xi, (q(\xi), n - 0, q(\eta)), \eta) \in (R^u \rtimes \mathbb{Z})^q$.

Thus, T meets every orbit in the unit space of $(R^u \rtimes \mathbb{Z})^q$, and T is a transversal to $(R^u \rtimes \mathbb{Z})^q$. Then, we have the following from [8, Example 2.7].

Proposition 4.8. If (G, E) is a contracting and regular self-similar graph action such that E is G-transitive, then $(R^u \rtimes \mathbb{Z})^q$ is equivalent to $(R^u \rtimes \mathbb{Z})^q^T$.

We show that $(R^u \rtimes \mathbb{Z})^{q_T^T}$ is equivalent to $\mathcal{G}_{G,E}$. First, recall that

$$T = \{z \cdot w \in E^{\pm \omega} \colon z \in E^{-\omega} \text{ is fixed, } w \in E^{\omega}\},$$
$$(R^u \rtimes \mathbb{Z})^q_T^T = \{(\xi, (q(\xi), l - k, q(\eta)), \eta) \in (R^u \rtimes \mathbb{Z})^q \colon \xi, \eta \in T\}$$

and

$$\mathcal{G}_{G,E} = \left\{ \begin{aligned} (\alpha; [\{g_i\}], l-k; \beta) \colon \alpha, \ \beta \in E^{\omega}, \ g_i \in G, \ l, k \in \mathbb{N}, \\ \text{there exists an } n \geq l \text{ such that} \\ g_i \cdot \alpha_i = \beta_{i-l+k} \cdot g_{i+1} \text{ for all } i \geq n. \end{aligned} \right\}$$

We simplify $(R^u \rtimes \mathbb{Z})^{q_T^T}$ and $\mathcal{G}_{G,E}$. On $(R^u \rtimes \mathbb{Z})^{q_T^T}$, consider

$$\xi = \cdots z_{-2}z_{-1} \cdot x_0x_1 \cdots$$
 and $\eta = \cdots z_{-2}z_{-1} \cdot y_0y_1 \cdots$.

Then, $(q(\xi), l - k, q(\eta)) \in \mathbb{R}^u \times \mathbb{Z}$ means that $\sigma^l(q(\xi)) = q(\sigma^l(\xi))$ is unstably equivalent to $\sigma^k(q(\eta)) = q(\sigma^k(\eta))$, which is equivalent to the existence of a natural number $m \geq l$ and some $g_m \in \mathcal{N}$ exist such that

$$g_m(x_m x_{m+1} \cdots) = y_{m-l+k} y_{m-l+k+1} \cdots.$$

Remark 4.9. Let m and g_m be as above.

- (1) For every j>m, let $g_j=g_m|_{x_m\cdots x_{j-1}}$. Then, we have $g_j\cdot x_j=y_{j-l+k}\cdot g_{j+1}$ by Remark 2.3.
- (2) A natural number m and a nucleus element g_m are not unique. However, if n is another natural number with $n \geq m$ and h_n is another nucleus element such that

$$h_n(x_n x_{n+1} \cdots) = y_{n-l+k} y_{n-l+k+1} \cdots,$$

then, for every $j \ge \max\{m, n\} + k_0 = n + k_0$, where k_0 is the number given in Lemma 3.9, we have

$$g_j = g_m|_{x_m \cdots x_{j-1}} = (g_m|_{x_m \cdots x_{n-1}})|_{x_n \cdots x_{j-1}} = g_n|_{x_n \cdots x_{j-1}}$$
$$= h_n|_{x_n \cdots x_{j-1}} = h_j$$

by Lemma 3.9, in other words, $[\{g_j\}] = [\{h_j\}]$ where $[\{g_j\}]$ was defined at the beginning of this subsection.

Lemma 4.10. Suppose that (G, E) is a contracting and regular self-similar graph action such that E is G-transitive and that T is the above transversal to $(R^u \rtimes \mathbb{Z})^q$. Then, for every $x \in S_{(G,E)}$, $q^{-1}(x) \cap T$ has at most one element.

Proof. For $x \in S_{(G,E)}$ such that $q^{-1}(x) \cap T \neq \emptyset$, we denote $\alpha, \beta \in q^{-1}(x) \cap T$ as

$$\alpha = \cdots z_{-2}z_{-1} \cdot a_0a_1 \cdots$$
 and $\beta = \cdots z_{-2}z_{-1} \cdot b_0b_1 \cdots$

and show $\alpha = \beta$.

First, we note that, by Lemma 3.9, there is a natural number k such that, for every $w \in E^k$ and $g \in \mathcal{N}$, either $g(w) \neq w$ or g(w) = w and $g|_w = 1$. Since α and β are elements of $q^{-1}(x)$, α and β are asymptotically equivalent, and there is a $g_{-k} \in \mathcal{N}$ such that

$$g_{-k}(z_{-k}\cdots z_{-1}\cdot a_0a_1\cdots) = z_{-k}\cdots z_{-1}\cdot b_0b_1\cdots$$

By the definition of the G-action on E^{ω} (see Remark 2.3), the above equality means that, for every $l \geq 0$,

$$g_{-k}(z_{-k}\cdots z_{-1}\cdot a_0\cdots a_l) = g_{-k}(z_{-k}\cdots z_{-1})\cdot g_{-k}|_{z_{-k}\cdots z_{-1}}(a_0\cdots a_l)$$

= $z_{-k}\cdots z_{-1}\cdot b_0\cdots b_l$.

Then, $g_{-k}(z_{-k}\cdots z_{-1})=z_{-k}\cdots z_{-1}$ implies $g_{-k}|_{a_{-k}\cdots a_{-1}}=1$ by Lemma 3.9. Hence, we have $a_0\cdots a_l=b_0\cdots b_l$ for every $l\geq 0$, which induces $\alpha=\beta$. Therefore, $q^{-1}(x)\cap T$ has at most one element for every $x\in S_{(G,E)}$.

Now, we no longer need $q(\xi)$ and $q(\eta)$ since $q|_T$ is a homeomorphism by Proposition 3.4 and Lemma 4.10. Thus, when (G, E) is a contracting and regular self-similar graph action, $(R^u \rtimes \mathbb{Z})^{q_T^T}$ is isomorphic to a

groupoid

$$\mathcal{A} = \left\{ \begin{aligned} &(\xi; l-k; \eta) \colon \xi, \eta \in T, \ l, k \in \mathbb{N}, \text{ there exist an } m \geq l \text{ and a} \\ &g_m \in \mathcal{N} \text{ such that } g_m(x_m x_{m+1} \cdots) = y_{m-l+k} y_{m-l+k+1} \cdots \end{aligned} \right\}$$

by a map $(\xi, (q(\xi), l-k, q(\eta)), \eta) \mapsto (\xi; l-k; \eta)$. Then, \mathcal{A} with the induced topology from $(R^u \rtimes \mathbb{Z})^{q_T^T}$ is topologically isomorphic to $(R^u \rtimes \mathbb{Z})^{q_T^T}$.

Remark 4.11. We can explain the induced topology on \mathcal{A} as follows. Let

$$\mathcal{A}_n = \{(\xi; 0; \eta) : \xi, \eta \in T, \text{ there exists a } g \in \mathcal{N} \text{ such that}$$

$$g(x_n x_{n+1} \cdots) = y_n y_{n+1} \cdots \}$$

with the subspace topology of $T \times T$, and

$$\mathcal{A}_{\infty} = \bigcup_{n=0}^{\infty} \mathcal{A}_n$$

with the inductive limit topology. Then, the map $\mathcal{A}_{\infty} \times \mathbb{Z} \to \mathcal{A}$ sending $((\xi; 0; \eta), n)$ to $(\xi; n; \sigma^n(\eta))$ is a bijection, and the product topology of $\mathcal{A}_{\infty} \times \mathbb{Z}$ is transferred to \mathcal{A} . Since R^u has an inductive limit topology (see [11, 12] for details), it is routine to verify that this topology is the same as the induced topology.

On the other hand, with

$$\mathcal{G}_{G,E} = \left\{ \begin{aligned} (\alpha; [\{g_i\}], l-k; \beta) \colon \alpha, \beta \in E^\omega, g_i \in G, \ l, \ k \in \mathbb{N}, \\ \text{there exists an } n \in \mathbb{N} \text{ such that} \\ g_i \cdot \alpha_i = \beta_{i-l+k} \cdot g_{i+1} \text{ for all } i \geq n \end{aligned} \right\},$$

it is not difficult to observe that $g_i \cdot \alpha_i = \beta_{i-l+k} \cdot g_{i+1}$ for every $i \geq n$ is the same as $g_n(\alpha_n \alpha_{n+1} \cdots) = \beta_{n-l+k} \beta_{n-l+k+1} \cdots$ by Remark 2.3. In addition, we can say a little more about $[\{g_i\}]$.

Lemma 4.12. Suppose that (G, E) is a contracting and regular self-similar graph action and $(\alpha; [\{g_i\}], l-k; \beta) \in \mathcal{G}_{G,E}$. Then:

- (1) g_i is an element of the nucleus for every large i, and
- (2) the equivalence class $[\{g_i\}]$ is uniquely determined by $\alpha, \beta, l k$.

Proof.

(1) Let $n \in \mathbb{N}$ and $g_n \in G$ be such that

$$g_n(\alpha_n\alpha_{n+1}\cdots)=\beta_{n-l+k}\beta_{n-l+k+1}\cdots$$

Then, the contracting condition implies that there is a natural number t such that $g_n|_{\alpha_n\cdots\alpha_{n+t-1}} = g_{n+t} \in \mathcal{N}$. Thus, we have $g_i \in \mathcal{N}$ for every $i \geq n+t$.

(2) We show that, if $(\alpha; [\{g_i\}], l-k; \beta)$ and $(\alpha; [\{h_i\}], l-k; \beta)$ are elements of $\mathcal{G}_{G,E}$, then $[\{g_i\}] = [\{h_i\}]$, i.e., there is an m such that $g_i = h_i$ for every $i \geq m$. Suppose that n_1 and n_2 are natural numbers such that $g_i \cdot \alpha_i = \beta_{i-l+k} \cdot g_{i+1}$ for every $i \geq n_1$ and $h_i \cdot \alpha_i = \beta_{i-l+k} \cdot h_{i+1}$ for every $i \geq n_2$. Let $n = \max\{n_1, n_2\}$. Without loss of generality, we may say that g_i and h_i are elements of \mathcal{N} for every $i \geq n$ by (1). Let k_0 be the natural number given in Lemma 3.9. Then

$$g_n(\alpha_n \cdots \alpha_{n+k_0-1}) = \beta_{n-l+k} \cdots \beta_{n-l+k+k_0-1} = h_n(\alpha_n \cdots \alpha_{n+k_0-1})$$

implies $g_i = g_n|_{\alpha_n \cdots \alpha_{n+i-1}} = h_n|_{\alpha_n \cdots \alpha_{n+i-1}} = h_i$ for every $i \ge n + k_0$. Hence, we have $[\{g_i\}] = [\{h_i\}]$.

Thus, we may delete $[\{g_i\}]$ from $(\alpha; [\{g_i\}], l-k; \beta)$, and $\mathcal{G}_{G,E}$ is topologically isomorphic to a groupoid

$$\mathcal{B} = \left\{ \begin{aligned} (\alpha; l-k; \beta) \colon \alpha, \beta \in E^{\omega}, \ l, k \in \mathbb{N}, \ \text{there exist an } n \in \mathbb{N} \ \text{and} \\ g_n \in \mathcal{N} \ \text{such that} \ g_n(\alpha_n \alpha_{n+1} \cdots) = \beta_{n-l+k} \beta_{n-l+k+1} \cdots \end{aligned} \right\}$$

which has the induced topology from $\mathcal{G}_{G,E}$.

Similarly to the case of \mathcal{A} in Remark 4.11, the induced topology on \mathcal{B} can be explained from the product topology on

$$\mathcal{B}_n = \{(\alpha; 0; \beta) : \alpha, \beta \in E^{\omega}, \text{ there exists a } g_n \in \mathcal{N} \text{ such that}$$

$$g_n(\alpha_n \alpha_{n+1} \cdots) = \beta_n \beta_{n+1} \cdots \},$$

the inductive limit topology on \mathcal{B}_{∞} and the induced topology from the product topology on $\mathcal{B}_{\infty} \times \mathbb{Z}$.

Now, we compare $(R^u \rtimes \mathbb{Z})^q_T^T$ and $\mathcal{G}_{G,E}$ via \mathcal{A} and \mathcal{B} . Then, it is clear that there is a strong relation between $(R^u \rtimes \mathbb{Z})^q_T^T \simeq \mathcal{A}$ and $\mathcal{G}_{G,E} \simeq \mathcal{B}$. The only differences are the unit spaces $T = \{z \cdot w \colon z \in E^{-\omega} \text{ is fixed, } w \in E^{\omega}\}$ for \mathcal{A} and E^{ω} for \mathcal{B} .

Let $\pi: T \to E^{\omega}$ be defined by $z \cdot w \mapsto w$ and $\overline{\pi}: (R^u \rtimes \mathbb{Z})^q {}_T^T \to \mathcal{G}_{G,E}$ by

$$(\xi; l-k; \eta) \longmapsto (\pi(\xi); l-k; \pi(\eta)).$$

In order to simplify the notation, we denote the image of $(R^u \rtimes \mathbb{Z})^{q_T^T}$ by $\overline{\pi}$ as I. It is easy to show that $\overline{\pi}$ is a continuous groupoid monomorphism so that I is a subgroupoid of $\mathcal{G}_{G,E}$. However, $\overline{\pi}$ is not an epimorphism since the unit space of I is

$$I^{(0)} = \{ w \in E^{\omega} : d(w) = r(z_{-1}) \} = \bigcup_{\substack{e \in E^1 \\ d(e) = r(z_{-1})}} Z(e),$$

which is a proper subset of E^{ω} if the graph E has more than one vertex.

Fortunately, $I^{(0)}$ is a transversal to $\mathcal{G}_{G,E}$. It is trivial to see that $I^{(0)}$ is a clopen subspace of E^{ω} since E is a finite graph. In the proof of Lemma 4.7, we showed that, for every $w \in E^{\omega}$, there are a finite path a and $g \in G$ such that $a \cdot g^{-1}(w) \in I^{(0)}$ and $(w; |a| - 0; a \cdot g^{-1}(w)) \in \mathcal{G}_{G,E}$ where |a| is the length of a; thus, $I^{(0)}$ meets every orbit in the unit space of $\mathcal{G}_{G,E}$. In order to show that $d|_{\mathcal{G}_{G,E_I(0)}}$ and $r|_{\mathcal{G}_{G,E_I(0)}}$ are open maps, we remark that $\mathcal{G}_{G,E_I(0)} = d^{-1}(I^{(0)})$ is an open subspace of $\mathcal{G}_{G,E}$ since $I^{(0)}$ is an open subspace of E^{ω} . Then, every open subset U of $\mathcal{G}_{G,E_I(0)}$ is an open set in $\mathcal{G}_{G,E}$ such that $d|_{\mathcal{G}_{G,E_I(0)}}(U) = d(U)$ and $r|_{\mathcal{G}_{G,E_I(0)}}(U) = r(U)$ are open sets by [14, Proposition I.2.4]. Hence, $d|_{\mathcal{G}_{G,E_I(0)}}$ and $r|_{\mathcal{G}_{G,E_I(0)}}$ are open maps, and $I^{(0)}$ is a transversal to $\mathcal{G}_{G,E}$. Therefore, $\mathcal{G}_{G,E}$ is equivalent to $\mathcal{G}_{G,E_I(0)}$ by [8, Example 2.7]. Moreover, it is clear that $\mathcal{G}_{G,E_I(0)} = I$ and that I is isomorphic to $(R^u \rtimes \mathbb{Z})^{q_T}$ by $\overline{\pi}$. Thus, we have the following.

Proposition 4.13. If (G, E) is a contracting and regular self-similar graph action such that E is G-transitive, then $\mathcal{G}_{G,E}$ is equivalent to $(R^u \rtimes \mathbb{Z})^{q_T^T}$.

Combining Propositions 4.5, 4.8 and 4.13, we have a groupoid equivalence between $R^u \rtimes \mathbb{Z}$ and $\mathcal{G}_{G,E}$:

Theorem 4.14. If (G, E) is a contracting and regular self-similar graph action such that E is G-transitive, then $R^u \rtimes \mathbb{Z}$ is equivalent to $\mathcal{G}_{G,E}$ in the sense of [8].

Adding up Theorem 4.3, we summarize the above argument.

Theorem 4.15. If (G, E) is a contracting, regular and pseudo free self-similar graph action such that E is G-transitive, then the unstable Ruelle algebra of $(S_{(G,E)}, \sigma)$ is strongly Morita equivalent to the Cuntz-Pimsner algebra $\mathcal{O}_{G,E}$ of [3].

Remark 4.16. In [2], the authors stated that the stable Ruelle algebras of limit solenoids from self-similar graph actions are studied in [1].

Acknowledgments. I express my deep gratitude to the referee for many helpful suggestions and comments.

REFERENCES

- 1. N. Brownlowe, A. Buss, D. Goncalves, A. Sims and M. Whittaker, K-theoretic duality for self-similar group actions on graphs, in preparation.
- 2. R. Deely, M. Goffeng, B. Mesland and M. Whittaker, Wieler solenoids, Cuntz-Pimsner algebras and K-theory, Ergodic Th. Dynam. Syst., to appear.
- 3. R. Exel and E. Pardo, *The tight groupoid of an inverse semigroup*, Semigroup Forum **92** (2016), 274–303.
- 4. _____, Self-similar graphs a unified treatment of Katsura and Nekrashevych C*-algebras, Adv. Math **306** (2017), 1046-1129.
- D. Freed, K-theory, unpublished lecture note, available at https://www.ma.utexas.edu/users/dafr/M392C-2015/Notes/lecture15.pdf.
 - 6. J. Kelly, General topology, Springer-Verlag, New York, 1955.
- **7**. A. Kumjian and D. Pask, Actions of \mathbb{Z}^k associated to higher rank graphs, Ergodic Th. Dynam. Syst. **23** (2003), 1153–1172.
- 8. P. Muhly, J. Renault and D. Williams, Equivalence and isomorphism for groupoid C*-algebras, J. Oper. Th. 17 (1987), 3–22.
 - 9. V. Nekrashevych, Self-similar groups, Math. Surv. Mono. 117 (2005).
- 10. _____, C^* -algebras and self-similar groups, J. reine angew. Math. 630 (2009), 59–123.
- 11. I. Putnam, C^* -algebras from Smale spaces, Canadian J. Math. 48 (1996), 175–195.
- 12. I. Putnam and J. Spielberg, The structure of C^* -algebras associated with hyperbolic dynamical systems, J. Funct. Anal. 163 (1999), 279–299.
- 13. W. Reddy, Expanding maps on compact metric spaces, Topol. Appl. 13 (1982), 327–334.

- 14. J. Renault, A groupoid approach to C^* -algebras, Springer Verlag, New York, 1980.
- 15. D. Richeson and J. Wiseman, *Positively expansive dynamical systems*, Topol. Appl. 154 (2007), 604–613.
- 16. K. Thomsen, C*-algebras of homoclinic and heteroclinic structure in expansive dynamics, Mem. Amer. Math. Soc. 970 (2010).
 - 17. S. Willard, General topology, Addison-Wesley, New York, 1970.
- 18. I. Yi, Limit dynamical systems and C*-algebras from self-similar graph actions, Banach J. Math. Anal. 11 (2017), 764–784.

EWHA WOMANS UNIVERSITY, DEPARTMENT OF MATHEMATICS EDUCATION, SEOUL, KOREA

Email address: yih@ewha.ac.kr