
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 48, Number 1, 2018

ON QUASI-NORMALITY OF FUNCTION RINGS

THEMBA DUBE

ABSTRACT. An f -ring is called quasi-normal [26] if the
sum of any two different minimal prime ℓ-ideals is either a
maximal ℓ-ideal or the entire f -ring. Recall that the zero-
component of a prime ideal P of a commutative ring A is the
ideal

OP = {a ∈ A | ab = 0 for some b ∈ A \ P}.

Let C(X) be the f -ring of continuous real-valued functions
on a Tychonoff space X. Larson proved that C(βX) is quasi-
normal precisely when C(X) is quasi-normal and the zero-
component of every hyper-real ideal of C(X) is prime. We
show that this result is actually purely ring-theoretic and
thus deduce its extension to the f -rings RL of continuous
real-valued functions on a frame L. A subspace of X is
called a 2-boundary subspace if it is of the form clX(C) ∩
clX(D) for some disjoint cozero-sets C and D of X. For
normal spaces, Kimber [25] proved that C(X) is quasi-
normal precisely when every 2-boundary subspace of X
is a P -space. By viewing spaces as locales, we obtain a
characterization along similar lines which does not require
normality, namely, for any Tychonoff space X, C(X) is
quasi-normal if and only if every 2-boundary sublocale of
the Lindelöf reflection of X in the category of locales is a
P -frame.

Introduction. All f -rings that play a significant role in this paper
are reduced and have a multiplicative identity. The concept of quasi-
normality was introduced by Larson [26]. She defined an f -ring A to
be quasi-normal if the sum of any two different minimal prime ℓ-ideals
is either a maximal ℓ-ideal or the entire f -ring. In order to clarify the
meaning of quasi-normality somewhat, recall that the sum I + J of
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two ℓ-ideals in an f -ring (actually, in any ℓ-ring) A is an ℓ-ideal, and,
in fact, is the join I ∨ J in the frame of ℓ-ideals of A. It follows that
I+J = A if and only if there is no maximal ℓ-ideal that contains both I
and J .

Larson gave several characterizations of quasi-normal f -rings. Sub-
sequently, other authors such as Kimber [25] and Henriksen, Mart́ınez
and Woods [22] paid some attention to these f -rings. In particular,
Kimber sharpened a number of Larson’s results, including the charac-
terization stated in the abstract. Henriksen, Mart́ınez and Woods [22]
improved a result of Larson stating that, if Y is a C-embedded sub-
space ofX and C(X) is quasi-normal, then C(Y ) is quasi-normal. They
showed that, in fact, this is true for all z-embedded subspaces.

Throughout, we shall use the notation of Gillman and Jerison [19]
regarding the ring C(X) and its ideals. Our goal in this paper is to
further extend and strengthen the results mentioned above, and also to
make fully algebraic the result [26, Theorem 3.8] of Larson which states
that, if X is a Tychonoff space, then C(βX) is quasi-normal if and only
if C(X) is quasi-normal and the ideal O p of C(X) is a prime ideal for
each p ∈ βX \ υX, where υX denotes the Hewitt real compactification
of X. We shall show that this is actually an f -ring result; following
is how we proceed. We recalled in the abstract the definition of the
zero-component of a prime ideal. It is worth pointing out that, if A is
reduced and P is a prime ideal in A, then the zero-component of P is
also expressible as

OP =
∩

{Q ∈ SpecA | Q ⊆ P},

where SpecA denotes, as usual, the set of prime ideals of A. We prove
in Theorem 2.2 that, if A is an f -ring with bounded inversion and
the sum of two minimal prime ideals of A is a prime ideal if it is
proper (as is the case in C(X)), then A∗, the bounded part of A, is
quasi-normal if and only if A is quasi-normal and OM is a prime ideal
for every maximal ideal M of A which is “hyper-real-like.” We will
make precise this adjective when we get to it. This result will be the
content of Section 2, and, from it, we will derive as a corollary a localic
version of [26, Theorem 3.8], from which Larson’s result may actually
be deduced.
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It was mentioned in the abstract that Kimber proved in [25, The-
orem 4.3] that, if X is a normal Tychonoff space, then the f -ring
C(X) is quasi-normal if and only if, for every pair C and D of dis-
joint cozero-sets of X, the subspace clX(C) ∩ clX(D) is a P -space. In
Section 3, we extend this result to the f -rings RL. Since λL is nor-
mal and RL ∼= R(λL), we obtain a characterization (Theorem 3.6)
along the lines of [25, Theorem 4.3] without the requirement that the
frame L be normal.

As mentioned above in [22, Proposition 3.2], the authors showed
that, if Y is a z-embedded subspace of X and C(X) is quasi-normal,
then C(Y ) is quasi-normal. We conclude the paper by extending
this result to locales (Theorem 3.8). The proof in [22] uses results
of Montgomery [29, 30]. Our proof is not modeled on that in [22]
and does not use (frame-theoretic analogues of) Montgomery’s results.
Instead, it uses an artifact that is not available in the category of
topological spaces, namely, the Lindelöf reflection.

1. Preliminaries.

1.1. Frames and their homomorphisms. We refer to [24, 31] for
the theory of frames. As in those texts, we use the terms “frame” and
“locale” interchangeably. Also, we shall at times speak of a sublocale
of a frame. For instance, if L is a frame and a ∈ L, we shall write
c(a) (or cL(a)) for the closed sublocale of L corresponding to a. We
denote by ≺≺ the familiar completely below relation. All of our frames
are completely regular, which is to say, every element is the join of
elements completely below it.

We write CozL for the set of cozero elements of L. We denote by βL
the Stone-Čech compactification of L, and we take it to be the frame of
completely regular ideals of CozL. The coreflection map from compact
completely regular frames to L will be denoted by

jL : βL −→ L,

and its right adjoint by rL. For any a ∈ L,

rL(a) = {c ∈ CozL | c ≺≺ a};

and for any c, d ∈ CozL,

rL(c ∨ d) = rL(c) ∨ rL(d).
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By a point of a frame we mean a meet-irreducible element. We
denote by Pt(L) the set of points of L. If

h : L −→ M

is a frame homomorphism, then h∗(p) ∈ Pt(L), for every p ∈ Pt(M),
where h∗ denotes the right adjoint of h. Every frame homomorphism
h : L → M has a Stone-extension,

βh : βL −→ βM,

which is the unique frame homomorphism making the square

βL

jL

��

βh // βM

jM

��
L

h
// M

commute. Explicitly, for any I ∈ βL,

βh(I) = {z ∈ CozM | z ≤ h(u) for some u ∈ I}.

Completely regular Lindelöf frames form a coreflective subcategory
of CRFrm [28]. The completely regular Lindelöf coreflection of L,
denoted λL, is the frame of σ-ideals of CozL. The join map

eL : λL −→ L

is a dense onto frame homomorphism, and it is the coreflection map to
L from Lindelöf completely regular frames. For any a ∈ L, let

[[a]] = {c ∈ CozL | c ≤ a}.

The right adjoint of eL : λL → L is given by a 7→ [[a]], and the cozero
part of λL is related to that of L as follows:

Coz(λL) = {[[c]] | c ∈ CozL}.

1.2. f-Rings. We recall a few facts about f -rings that are relevant to
our discussion. An ideal I of an f -ring A is called an ℓ-ideal if, for any
a, b ∈ A, |a| ≤ |b| and b ∈ I imply a ∈ I. An ideal is semiprime if,
whenever it contains the square of an element, then it already contains
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the element. An f -ring is reduced (or semiprime) if it has no non-zero
nilpotent elements. We write Max(A) for the space of maximal ideals
of A with the Zariski topology.

In a reduced f -ring, a prime ideal is minimal prime if and only if
every member of the ideal is annihilated by some non-member [21].
Using this, it may easily be verified that, in a reduced f -ring, every
minimal prime ideal is an ℓ-ideal. An f -ring has bounded inversion if
every a ≥ 1 is a unit. In a reduced f -ring with bounded inversion,
maximal ℓ-ideals are precisely the maximal ring ideals.

Frequently, we shall use the extension and contraction notation. To
recall, let B be a subring of A, I be an ideal of B and J an ideal of A.
The extension of I, denoted Ie, is the (possibly improper) ideal of A
generated by I. The contraction of J , denoted Jc, is the ideal J ∩ B
of B. We always have

(I1 + I2)
e = Ie1 + Ie2

and
Jc
1 + Jc

2 ⊆ (J1 + J2)
c.

We denote by A∗ the bounded part of an f -ring A, and recall that

A∗ = {a ∈ A | |a| ≤ n · 1 for some n ∈ N}.

It is proved in [12] that, if A is a reduced f -ring with bounded inversion,
and

S = {a ∈ A∗ | a is invertible in A},

then A = A∗[S−1], that is, A is the ring of fractions of A∗ with respect
to S. An upshot of this is that, for any ideal I of A∗,

Ie = {us−1 | u ∈ I and s ∈ S},

and every ideal of A is of the form Ie for some ideal I of A∗. If A has
bounded inversion, so does A∗.

1.3. The f-ring RL and some of its ideals. Our approach to the
f -ring RL follows that of [2]; thus, the elements of RL are frame
homomorphisms

L(R) −→ L,
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where L(R) is the frame of reals. The f -ringRL has bounded inversion,
and every prime ideal in RL is an ℓ-ideal [14, Lemma 3.5]. For any
L, the f -rings RL and R(λL) are isomorphic. Every frame homo-
morphism

h : L −→ M

induces an ℓ-ring homomorphism

Rh : RL −→ RM,

given by Rh(α) = h · α. Furthermore, coz(h · α) = h(cozα).

An ideal Q of RL is a z-ideal if, for any α, β ∈ RL, cozα = cozβ
and α ∈ Q imply β ∈ Q. It is shown in [15] that, exactly as in C(X),

the sum of z-ideals of RL is a z-ideal. For any I ∈ βL, the ideals M I

and O I of RL are defined by

M I = {α ∈ RL | rL(cozα) ⊆ I},

and

O I = {α ∈ RL | rL(cozα) ≺≺ I} = {α ∈ RL | cozα ∈ I}.

Clearly, these ideals are z-ideals. We abbreviate M rL(a) as Ma, and
remark that

Ma = {α ∈ RL | cozα ≤ a}.

Maximal ideals of RL are precisely the ideals M I , for I ∈ Pt(βL) [6].
At this juncture, it is proper to draw the reader’s attention to the fact
that, just as the ideal O p is the zero-component of the maximal ideal
M p of C(X) for any p ∈ βX [19], the ideal O I is the zero-component

of the maximal ideal M I of RL for every I ∈ Pt(βL) [6, Lemma 5.3].

A surjective frame homomorphism h : M → L is called a C-quotient

map [1] if, for every f ∈ RL, there is a (necessarily unique) f̂ ∈ RM
such that the triangle below commutes.

L(R)

f̂

}}{{
{{
{{
{{
{{
{

f

!!C
CC

CC
CC

CC
CC

M
h

// L.
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A completely regular frame L is realcompact if every ring homomor-
phism

RL −→ R

is a point evaluation, and it is pseudocompact if R∗L = RL.

2. Larson’s result made algebraic. In [26, Theorem 3.8], Larson
showed that C(βX) is quasi-normal if and only if C(X) is quasi-normal
and O p is a prime ideal for every p ∈ βX\υX. We show that this holds
in more general f -rings than rings of continuous functions. We then
deduce the same result for RL. In preparation for this, we recite the
following result of Banaschewski [3] and then interpret it in a manner
suitable for our purposes. Denote by [a] the principal ℓ-ideal of an
f -ring A generated by a ∈ A, and recall that, for any x ∈ A,

x ∈ [a] ⇐⇒ |x| ≤ r|a| for some r ≥ 0.

The result from [3] we shall use states the following:

For any f -ring A, the identical embedding A∗ → A in-
duces a homeomorphism Max(A∗) → Max(A) taking P
to {a ∈ A | [a] ∩A∗ ⊆ P}.

Given a maximal ideal P of A∗, let us put

P̃ = {a ∈ A | [a] ∩A∗ ⊆ P},

and observe that P̃ is the largest proper ideal J of A such that
J ∩ A∗ = P . Thus, for every maximal ideal M of A, there is a unique

maximal ideal M∗ of A∗ such that M = M̃∗.

Lemma 2.1. Let A be an f -ring with bounded inversion, M a maximal

ideal in A and M∗ the unique maximal ideal in A∗ such that M = M̃∗.

(a) If M∗ contains a unit of A, then M c ⊂ M∗ (proper inclusion).
(b) If M∗ contains no unit of A, then M c = M∗.

Proof.

(a) Let a ∈ M c. Since M = M̃∗, this implies [a] ∩ A∗ ⊆ M∗, and
since a ∈ [a] ∩ A∗, it follows that a ∈ M∗. Therefore, M c ⊆ M∗.
By hypothesis, M∗ contains a unit of A, which cannot belong to M
since M is a proper ideal of A. Thus, M c ⊂ M∗.
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(b) Exactly as above, we have M c ⊆ M∗. Let b ∈ M∗. In order
to show that b ∈ M , we must show that [b] ∩ A∗ ⊆ M∗. Thus, let
x ∈ [b] ∩ A∗. Choose r ≥ 0 in A such that |x| ≤ r|b|. Since A has a
bounded inversion, (1 + r)−1 exists, and

|x| · 1

1 + r
≤ |b| · r

1 + r
∈ M∗.

Since M∗ is an ℓ-ideal, it follows that

|x| · 1

1 + r
∈ M∗,

and hence, by primeness, |x| ∈ M∗ since

1

1 + r
/∈ M∗

as it is a unit of A. Therefore, x ∈ M∗, and we deduce from this that
b ∈ M , showing that M∗ ⊆ M c, and hence, equality. �

Recall the zero-component OP of a prime ideal P . As previously
mentioned, if A is a reduced ring, then OP is the intersection of all
minimal prime ideals of A contained in P [23, Lemma B]. In RL, we

have that, for any I ∈ Pt(βL), OM I = O I [6, Lemma 5.3(2)]. Recall
that in C(X) (and hence in C∗(X)) the sum of prime ideals is a prime
ideal [19, Problem 14.B]; hence, the condition we impose in the next
theorem holds in RL since R∗L is isomorphic to C(X).

Theorem 2.2. Let A be a reduced f -ring with bounded inversion.
Suppose that the sum of two minimal prime ideals in A∗ is a prime
ideal if it is proper. Then, A∗ is quasi-normal if and only if A is quasi-
normal, and OM is a prime ideal for every maximal ideal M of A for
which M∗ contains a unit of A.

Proof.

(⇒). Let M be a maximal ideal of A such that M∗ contains a unit
of A. We show that M contains exactly one minimal prime ideal, in
which case it will follow that OM is this minimal prime ideal. Suppose,
by way of contradiction, that P and Q are distinct minimal prime ideals
of A contained in M . Then, P c and Qc are minimal prime ideals of A∗

contained in M c, and hence, in the maximal ideal M∗ of A∗. Since A∗
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is quasi-normal, by the present hypothesis, we have

M∗ = P c +Qc ⊆ (P +Q)c ⊆ M c,

which is a contradiction since M c ⊂ M∗, by Lemma 2.1 (a). Therefore,
OM is a minimal prime ideal.

Now, to show that A is quasi-normal, let P and Q be distinct
minimal prime ideals of A contained in some maximal idealM of A, say.
Then, by what we have just proved above, M∗ contains no unit of A
so that M c = M∗, by Lemma 2.1 (b). Now, P c and Qc are minimal
prime ideals of A∗ each contained in M c = M∗. Thus, since A∗ is
quasi-normal, P c + Qc = M∗. We argue from this that P + Q = M .
Let a ∈ M . Then

a

1 + |a|
∈ M c = M∗,

so there exist u ∈ P c and v ∈ Qc such that

a

1 + |a|
= u+ v,

which implies

a = u(1 + |a|) + v(1 + |a|) ∈ P +Q.

Thus, M ⊆ P + Q, and hence, P + Q = M . Therefore, A is quasi-
normal.

(⇐). We begin by showing that, under the current hypothesis, if
M is a maximal ideal of A such that M∗ contains a unit of A, then
OM∗ is a prime ideal of A∗, which will then make it the only minimal
prime ideal of A∗ contained in M∗. By hypothesis, OM is a prime ideal
in A; thus, Oc

M is a prime ideal in A∗ with Oc
M ⊆ M c ⊂ M∗. Since

OM∗ is the intersection of minimal prime ideals of A∗ contained in M∗,
we have OM∗ ⊆ Oc

M . We want to show that this inclusion is actually
equality. Hence, let a ∈ Oc

M . Then, a ∈ OM , and thus, there exists

some b ∈ A \M such that ab = 0. Since b /∈ M = M̃∗, we must have
[b] ∩ A∗ * M∗. Take c ∈ [b] ∩ A∗ with c /∈ M∗. Take r ≥ 0 in A such
that |c| ≤ r|b|. Then,

|ca| = |c||a| ≤ r|b||a| = 0,
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which implies ca = 0. This shows that a ∈ OM∗ , so that Oc
M ⊆ OM∗ ,

and hence, equality. Thus, if M∗ contains a unit of A, then there are
no two distinct minimal prime ideals of A∗ contained in M∗.

Now, let p and q be distinct minimal prime ideals of A∗ contained in
some maximal ideal m, say, of A∗. From the result of Banaschewski [4],
there is a maximal ideal M of A such that m = M∗. As just
observed, M∗ contains no unit of A. Since minimal prime ideals in
reduced rings consist entirely of zero divisors, pe and qe are proper
ideals in A. We show that they are minimal prime ideals. This is only
done for pe. Let S be the set of units of A that belong to A∗. Assume
that ab ∈ pe for some a, b ∈ A. Choose c ∈ p and s ∈ S such that
ab = cs−1. Then,

s

1 + |s|
· a

1 + |a|
· b

1 + |b|
=

c

(1 + |s|)(1 + |a|)(1 + |b|)
∈ p,

which implies that at least one of the factors on the left is in p. Since

s

1 + |s|
/∈ p

as it is a non-zerodivisor, we may assume

a

1 + |a|
∈ p,

whence a ∈ pe since

a =
a

1 + |a|

(
1

1 + |a|

)−1

.

Therefore, pe is prime. In order to see that it is minimal prime, consider
an arbitrary ps−1 ∈ pe, with p ∈ p and s ∈ S. Choose r ∈ A∗ \ p such
that rp = 0. Then, r(ps−1) = 0. It is easy to see that r /∈ pe; therefore,
pe is minimal prime.

Next, we show that pe and qe are distinct. Take a ∈ p \ q. If a were
in qe, there would exist q ∈ q and s ∈ S such that a = qs−1, whence
we would have

a · s

1 + |s|
= q · 1

1 + |s|
∈ q,

implying either a ∈ q or
s

1 + |s|
∈ q,
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neither of which is true. Therefore, a ∈ pe \qe, and thus, these minimal
prime ideals are distinct. Furthermore, they are contained in M since
p ⊆ M∗ implies

pe ⊆ (M∗)e = M ce ⊆ M.

Since A is quasi-normal and pe and qe are distinct minimal prime ideals
of A contained in M , we have pe+ qe = M . Let m ∈ M∗ = M c. Then,

m ∈ M = pe + qe = (p+ q)e,

so that m = as−1 for some a ∈ p+q and s ∈ S. Thus, sm is an element
of the prime ideal p+ q, which implies m ∈ p+ q since s /∈ p+ q as it
is a unit in A. So, M∗ ⊆ p + q, and hence, equality. Therefore, A∗ is
quasi-normal. �

We shall deduce the equivalence of (1) and (2) in Theorem 2.7 below
from this foregoing theorem. We require more background to prove the
other two statements in Theorem 2.7 that are equivalent to the quasi-
normality of R(βL). Observe that, since, for any α ∈ RL and I ∈ βL,

α ∈ O I if and only if cozα ∈ I, we have that O I is a prime ideal in RL
if and only if I is a prime ideal in the regular σ-frame CozL. Hence,
by [18, Lemma 3.8], O I is prime if and only if, for any α, β ∈ RL,

αβ = 0 implies α ∈ O I or β ∈ O I . In fact, any z-ideal of RL is
prime if and only if it contains at least one of any two functions that
annihilate each other, exactly as in C(X) [19, Theorem 2.9].

Next, recall that an ideal Q of RL is called free in the case∨
{cozα | α ∈ Q} = 1,

and fixed otherwise. It is shown in [8, Lemma 4.7] that a frame L
is compact if and only if every maximal ideal in RL is fixed. In [5,
Lemma 4.4] it is shown that, for any I ∈ βL,∨

{cozα | α ∈ M I} =
∨

I.

Consequently, L is compact if and only if
∨
I ̸= 1 for every I ∈ Pt(βL).

In [17, Lemma 5.1], it is proved that, if h : L → M is a frame homo-
morphism, then

(βh)∗(I) =
∨

{rLh∗(u) | u ∈ I} =
∪

{rLh∗(u) | u ∈ I},
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for any I ∈ βM . That the join is a union is not mentioned in [17],
but it holds since the set whose join is indicated is upward directed. In
particular, if a ∈ L and κa : L → ↑a is the homomorphism

x 7−→ a ∨ x,

then
(β(κa))∗(I) =

∪
{rL(u) | u ∈ I}

since (κa)∗ is the inclusion map ↑a → L.

In [25], Kimber calls a subspace of a Tychonoff spaceX a 2-boundary
subspace if it is of the form clX(C) ∩ clX(D) for some disjoint cozero-
sets C and D of X. We wish to adapt her terminology to locales.
Denote the pseudocomplement of an element a in a frame by a∗, and
recall that a∗ is the largest element disjoint from a. We say that a
sublocale of L is a 2-boundary sublocale if it is of the form c(c∗)∩ c(d∗)
for some c, d ∈ CozL with c ∧ d = 0. Observe that, as a frame,

c(c∗) ∩ c(d∗) = ↑(c∗ ∨ d∗).

The next lemma should be compared with [22, Theorem 1.4].

Lemma 2.3. The following are equivalent for a normal frame L:

(1) O I is prime for every I ∈ Pt(βL) with
∨
I = 1.

(2) Every 2-boundary sublocale of L is compact.

Proof.

(1) ⇒ (2). Assume that (1) holds, and let c ∧ d = 0 in CozL.
In order to prove that ↑(c∗ ∨ d∗) is compact, we use the compactness
criterion quoted above. For brevity, write a = c∗ ∨ d∗. Suppose, by
way of contradiction, that ↑a is not compact. Then, there exists an
I ∈ Pt(β(↑a)) such that

∨
I = 1. Suppress a, and write

κ : βL −→ β(↑a)

for the Stone extension of the homomorphism

κa : L −→ ↑a.
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The argument employed in the proof of [8, Proposition 4.8] shows that∨
κ∗(I) = 1. Now, κ∗(I) ∈ Pt(βL), and, as remarked above,

κ∗(I) =
∪

{rL(u) | u ∈ I}.

By hypothesis, O κ̄∗(I) is a prime ideal in RL; thus, κ∗(I) is a prime
ideal in CozL. Since c ∧ d = 0, we may assume that c ∈ κ∗(I), which
implies c ≺≺ u for some u ∈ I. However, this implies c∗ ∨ u = 1, and
hence, (c∗ ∨ d∗) ∨ u = 1. Since I is an ideal in the frame ↑(c∗ ∨ d∗), it
contains the bottom of this frame, which then implies 1 ∈ I. This is
false since I is a point in β(↑a). This contradiction proves that ↑(c∗∨d∗)
is compact.

(2) ⇒ (1). Assume that (2) holds, and let I ∈ Pt(βL) be such that∨
I = 1. In order to show that O I is prime, consider any two functions

α, β ∈ RL such that αβ = 0 and α /∈ O I . We must show that β ∈ O I .
Set a = cozα and b = cozβ. Then, a and b are cozero elements with
a∧ b = 0. Thus, by (2), ↑(a∗ ∨ b∗) is compact, and therefore, the cover

{a∗ ∨ b∗ ∨ s | s ∈ I}

of ↑(a∗ ∨ b∗) has a finite subcover. In light of I being an ideal, this
implies that there exists some c ∈ I such that a∗ ∨ b∗ ∨ c = 1. Since L
is normal, there are cozero elements u ≤ a∗ and v ≤ b∗ such that
u ∨ v ∨ c = 1, see [1, Corollary 8.3.2]. Choose ρ ≥ 0 and τ ≥ 0 in RL
with u = coz ρ and v = coz τ . Observe that αρ = 0 since a ∧ u = 0
such that coz(αρ) = 0. Since α /∈ O I and O I = OM I , it follows that

ρ ∈ M I . Since coz(γ + ρ+ τ) = 1, the function γ + ρ+ τ is invertible,

and is therefore not in M I . Observe that γ ∈ M I because c ∈ I
implies rL(coz γ) ⊆ I. Thus, γ + ρ ∈ M I , which then implies τ /∈ M I .

However, τβ = 0 as v ∧ b = 0; thus, it follows that β ∈ O I since O I is
the zero-component of M I . Therefore, O I is a prime ideal. �

Next, we interpret Banaschewski’s result quoted above inRL. Recall
from [10] that maximal ideals of R∗L are in a one-to-one correspon-

dence with the points of βL and are denoted by M ∗I for I ∈ Pt(βL).

We do not need their description here; all we need is how each M ∗I

relates to M I with regard to contraction, and for that we refer to [10,
Lemma 4.1].
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Lemma 2.4. For any I ∈ Pt(βL), M̃ ∗I = M I .

Proof. From Banaschewski’s result, there is a J ∈ Pt(βL) such that

M I = M̃ ∗J . By Lemma 2.1, (M I)c ⊆ M ∗J . From [10, Lemma 4.1],

(M I)c ⊆ M ∗I . Since (M I)c is a prime ideal in R∗L contained in the

maximal ideals M ∗I and M ∗J , we must have M ∗I = M ∗J because
every prime ideal in R∗L is contained in a unique maximal ideal. Now,
by [10, Proposition 3.8], we conclude that I = J . �

A point I of βL is σ-proper in the case for every countable S ⊆ I,∨
S < 1. Otherwise, it is σ-improper. Collecting results from [9,

Corollary 3.7] and [10, Proposition 4.2], we have the following facts
that we shall use below.

Facts 2.5. The following are equivalent for a maximal ideal M I of
RL.

(1) M I is hyper-real.

(2) M ∗I contains a unit of RL.
(3) I is σ-improper.

We also recite the following result from [11, Lemma 3.9].

Lemma 2.6. Let h : M → L be a dense C-quotient map with M
realcompact. Then, for the ring isomorphism Rh : RM → RL, the
map

Q 7−→ Rh[Q]

is a bijective correspondence between the free maximal ideals of RM
and the hyper-real maximal ideals of RL.

We are now equipped to state the following theorem regarding
when the f -ring R(βL) is quasi-normal. The reader will recall that
R(βL) ∼= R∗L.

Theorem 2.7. The following are equivalent for any completely regular
frame L.

(1) R(βL) is quasi-normal.
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(2) RL is quasi-normal, and OM is prime for every hyper-real
maximal ideal M of RL.

(3) RL is quasi-normal, and O I is prime for every σ-improper
I ∈ Pt(βL).

(4) RL is quasi-normal, and every 2-boundary sublocale of λL is
compact.

(5) RL is quasi-normal, and every 2-boundary sublocale of λL is
pseudocompact.

Proof.

(1) ⇔ (2) ⇔ (3). Since R∗L is isomorphic to a C(X), the sum of
two prime ideals in R∗L is a prime ideal if it is proper; thus, we may
apply Theorem 2.2. Now, if M = M I is a maximal ideal of RL, the

maximal ideal M∗ of R∗L for which M = M̃∗ is M ∗I , by Lemma 2.4.
Therefore, the maximal ideals P of RL, for which the corresponding
maximal ideals P ∗ of R∗L, contain a unit of RL, are precisely those
which are hyper-real. The stated equivalences therefore follow from
Theorem 2.2 and Facts 2.5.

(2) ⇒ (4). Assume that (2) holds. We only need prove that ↑(C∗ ∨
D∗) is compact for all C,D ∈ Coz(λL) with C ∧D = 0. Denote by ϕ
the ring isomorphism

R(eL) : R(λL) −→ RL

induced by the frame homomorphism

eL : λL −→ L.

Since λL is realcompact (as it is Lindelöf), the free maximal ideals of
R(λL) are precisely its hyper-real maximal ideals ([9, Proposition 4.1]).
Now, let M be a free maximal ideal of R(λL). Then, by Lemma 2.6,
ϕ[M ] is a hyper-real maximal ideal of RL. Thus, by (2), Oϕ[M ]) is
prime, which clearly implies OM is a prime ideal in RL. We have thus
shown that the zero-component of every free maximal ideal in the ring
R(λL) is prime; therefore, in light of λL being normal, Lemma 2.3
proves the desired result.

(4) ⇒ (1). Assume that (4) holds. ThenR(λL) is quasi-normal. The
latter condition in (4) assures, by Lemma 2.3, that the zero-component
of every free maximal ideal of R(λL) is prime, and hence, that the
zero-component of every hyper-real maximal ideal of R(λL) is prime.
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As observed in the proof of the first three statements, this implies, by
Theorem 2.2, that R(β(λL)) is quasi-normal. Since βL is (isomorphic
to) β(λL), the result follows.

(4) ⇔ (5). A closed sublocale of a Lindelöf frame is Lindelöf, and a
Lindelöf (in fact, a realcompact) frame is pseudocompact if and only if
it is compact. �

In the special case of normal realcompact frames, we have the
following extension of [22, Theorem 1.6].

Corollary 2.8. The following are equivalent for a normal realcompact
frame L:

(1) R(βL) is quasi-normal.
(2) RL is quasi-normal and OM is prime for every hyper-real max-

imal ideal M of RL.
(3) RL is quasi-normal and every 2-boundary sublocale of L is

compact.

Remark 2.9. The requirement that, in a reduced f -ring A with
bounded inversion, the sum of two minimal prime ideals in A∗ be prime
if it is proper forces the same for A. For, if P and Q are minimal prime
ideals in A with P +Q ̸= A, then P c and Qc are minimal prime ideals
in A∗ with P c +Qc ̸= A∗. Thus, (P +Q)c is prime, and, if ab ∈ P +Q
for a, b ∈ A, then

a

1 + |a|
· b

1 + |b|
∈ (P +Q)c,

so that we may assume

a

1 + |a|
∈ (P +Q)c,

which implies a ∈ P +Q, showing that P +Q is prime.

We end this section with a curious observation regarding compact-
ness of 2-boundary sublocales. We show that, if this condition holds
in L, then it holds in λL, but not conversely. It is not difficult to check
that, for any I ∈ λL, I∗ = [[(

∨
I)∗]]. Recall the characterization that L

is pseudocompact if and only if every sequence (sn) in L for which
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sn ≺≺ sn+1 for every n and
∨
sn = 1 terminates, which is to say, there

is an index m for which sm = 1.

Proposition 2.10. If every 2-boundary sublocale of L is compact, then
every 2-boundary sublocale of λL is compact. The converse fails.

Proof. Let C ∧D = 0 in Coz(λL). Choose c, d ∈ CozL with C = [[c]]
andD = [[d]], and observe that c∧d = 0, so that ↑(c∗∨d∗) is compact, by
hypothesis. Observe that C∗ = [[c∗]] andD∗ = [[d∗]]. Write I = C∗∨D∗.
In order to show that ↑(C∗ ∨D∗) is compact, it suffices to show that
it is pseudocompact. Therefore, consider a sequence (Jn) in Coz(↑I)
with

Jn ≺≺ Jn+1 and
∨
n

Jn = 1λL.

We must show that this sequence terminates. Since the homomorphism
κI : λL → ↑I is a C-quotient map, and, in the language of [1], (Jn) is
a regular cozero tower in ↑I, we can apply [1, Theorem 7.2.7] to find
cozero elements cn in L such that

I ∨ [[cn]] ≤ Jn, [[cn]] ≺≺ [[cn+1]],
∨
n

[[cn]] = 1λL.

For each n, put sn =
∨
Jn. Applying the join map eL : λL → L to the

equality
∨

nJn = 1λL yields
∨

nsn = 1, which shows that {sn | n ∈ N}
is a cover of the frame ↑(c∗ ∨ d∗) since c∗ ∨ d∗ =

∨
I ≤ sn for each n.

Thus, by compactness, there is an index k such that sk = 1. However,
now Jk ≺≺ Jk+1 implies J∗

k ∨ Jk+1 = 1λL, that is, [[s∗k]] ∨ Jk+1 = 1λL,
which implies Jk+1 = 1λL, as required. �

Example 2.11. Let L be the completely regular pseudocompact frame
without points constructed in [16]. Since L is pseudocompact, λL is
isomorphic to βL, and is therefore compact, which makes every closed
sublocale of λL compact, and hence, every 2-boundary sublocale of
λL, compact. Since L has no points, and since points of a sublocale
are points in the ambient locale, L has no non-void compact sublocale
because every non-trivial compact locale has at least one point [24,
Lemma 1.9 III]. Note that, being non-trivial and completely regular, L
does have disjoint cozero elements, and thus, the condition fails legiti-
mately, and not vacuously, for L.
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3. When L is quasinormal. In this section, we adopt the termi-
nology of [22] and say a space X is quasinormal (note the absence
of a hyphen) if the f -ring C(X) is quasi-normal. Similarly, we say a
frame L is quasinormal if RL is quasi-normal. We aim to give a charac-
terization of quasinormal frames which does not require the imposition
of normality on the frames, that is, we shall remove normality from
quasi-normality, so to speak. We need some other tools that we now
recall. We shall somewhat paraphrase. In [25, Theorem 5.5], Kimber
proves the following result. If A is a ring and a ∈ A, we write a⊥ for
the annihilator of a.

Theorem 3.1 ([25]). The following are equivalent for a commutative
reduced f -ring A with identity in which the sum of two distinct minimal
prime ideals is a prime ℓ-ideal :

(1) A is quasi-normal.
(2) For any positive a, b ∈ A with a ∧ b = 0, every prime ℓ-ideal of

A containing a⊥ + b⊥ is a maximal ℓ-ideal.

We interpret this result for the rings RL, keeping in mind that in
RL prime ideals are ℓ-ideals. First, a lemma regarding sums of prime
ideals in RL is required.

Lemma 3.2. The sum of two prime ideals in RL is a prime ideal.

Proof. Recall that Henriksen [20] calls an ideal I of an f -ring A
square dominated if

I = {a ∈ A | |a| ≤ x2 for some x ∈ A with x2 ∈ I}.

It is clear that an ℓ-ideal in an f -ring in which positive elements are
squares (as is the case in RL [2, Proposition 11]) is square dominated.
Since prime ideals in RL are ℓ-ideals, it follows from Corollary 3.11
of [20] that the sum of two prime ideals in RL is a prime ideal. �

In [7, Lemma 3.1] it is shown that, for any α ∈ RL, α⊥ = M(cozα)∗ .
The lattice Z(RL) of z-ideals of RL is a frame [13]. It is shown in [13,
Lemma 3.6] that, for any c, d ∈ CozL, Mc ∨ Md = Mc∨d, where
the join is calculated in Z(RL). If L is normal, then the equality
Ma ∨ Mb = Ma∨b holds for all a, b ∈ L, [15, Lemma 4.2], in other
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words, since the sum of z-ideals in RL is a z-ideal, Mc +Md = Mc∨d

for any c, d ∈ CozL, and, if L is normal, then Ma + Mb = Ma∨b for
all a, b ∈ L. The result in Theorem 3.1 now states the following:

Corollary 3.3. A normal completely regular frame L is quasinormal
if and only if, for any c, d ∈ CozL with c ∧ d = 0, every prime ideal of
RL containing Mc∗∨d∗ is a maximal ideal.

In [25, Theorem 4.3], Kimber proves that a normal space X is
quasinormal if and only if every 2-boundary subspace of X is a P -
space. We seek a similar characterization which, however, relaxes the
normality requirement. Our pattern of proof follows that of Kimber.

Lemma 3.4. Let L be a frame and a ∈ L. Let κa : L → ↑a be the
frame homomorphism x 7→ x ∨ a, and denote by ϕ : RL → R(↑a) the
ring homomorphisms induced by κa. Then, ker(ϕ) = Ma.

Proof. For any α ∈ RL we have

α ∈ ker(ϕ) ⇐⇒ ϕ(α) = 0 ⇐⇒ κa · α = 0

⇐⇒ coz(κa · α) = 0↑a ⇐⇒ κa(cozα) = a

⇐⇒ a ∨ cozα = a ⇐⇒ cozα ≤ a,

which shows that ker(ϕ) = Ma. �

A consequence of this lemma is that, if L is normal (so that ϕ is
onto), then we have an isomorphism RL/Ma

∼= R(↑a). By a standard
algebraic fact, we then have

Spec(RL/Ma) = {P/Ma | P ∈ Spec(R(↑a))}.

Recall that a frame M is a P -frame if CozL is a Boolean algebra. This
is so precisely when the ring RM is von Neumann regular. This, in
turn, is the case precisely when every prime ideal inRM is maximal (or,
equivalently, minimal). Now, every prime ideal in R(↑a) is maximal if
and only if every prime ideal in RL containing Ma is maximal. Thus,
given c, d ∈ CozL with c ∧ d = 0, and setting a = c∗ ∨ d∗, we deduce
from Corollary 3.3 the following result.
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Corollary 3.5. A normal frame is quasinormal if and only if each of
its 2-boundary sublocales is a P -frame.

Since RL ∼= R(λL), and since λL is a normal frame, we have the
following result.

Theorem 3.6. A completely regular frame L is quasinormal if and
only if every 2-boundary sublocale of λL is a P -frame.

As mentioned in the last paragraph of the introduction, Henriksen,
Mart́ınez and Woods proved in [22, Proposition 3.2] that a z-embedded
subspace of a quasinormal space is quasinormal. Recall that a sub-
space Y of X is z-embedded (in X) if every zero-set of Y is a trace
on Y of some zero-set of X. This naturally may be extended to lo-
cales by saying a sublocale M of a frame L is z-embedded if, for every
c ∈ CozM , there is a d ∈ CozL such that cM (c) = M ∩ cL(d). In frame
language, this states that, if h : L → M is a quotient map, then h is
coz-onto, meaning that, for every c ∈ CozM , there is a d ∈ CozL such
that h(d) = c.

In preparation for the following result we recall a few facts, the first
of which is [18, Proposition 3.3]. The other two are folklore.

Facts 3.7. Let h : L → M be a frame homomorphism.

(1) h is coz-onto if and only if, for all a, b ∈ CozM with a ∧ b = 0,
there exist c, d ∈ CozL such that c ∧ d = 0, h(c) = a, and h(d) = b.

(2) The induced map λh : λL → λM has the property that, for any
c ∈ CozL, (λh)(c) = [[h(c)]] since, for any I ∈ λL and z ∈ CozM ,

z ∈ (λh)(I) ⇐⇒ z ≤ h(a) for some a ∈ I.

(3) h(a∗) ≤ h(a)∗ for every a ∈ L.

Observe that, for any a ∈ L, [[a∗]] = [[a]]∗ since [[a]] = (eL)∗(a),
for the dense onto homomorphism eL : λL → L, and the right adjoint
of a dense onto homomorphism commutes with pseudocomplements.
Hence, if c ∈ CozL, then

(†) λh([[c∗]]) = λh([[c]]∗) ≤ (λh([[c]]))∗ = [[h(c)]]∗ = [[h(c)∗]].
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Theorem 3.8. A z-embedded sublocale of a quasinormal frame is
quasinormal.

Proof. Let h : L → M be a coz-onto frame homomorphism with L
quasinormal. We must show that M is quasinormal, and for that, we
show that every 2-boundary sublocale of λM is a P -frame. Consider
then u, v ∈ CozM with [[u]] ∧ [[v]] = 0. Then, u ∧ v = 0. Since h
is coz-onto, there exist a, b ∈ CozL with a ∧ b = 0, h(a) = u, and
h(b) = v. Then, [[a]] ∧ [[b]] = 0 in Coz(λL), which, by hypothesis and
Theorem 3.6, implies ↑([[a∗]] ∨ [[b∗]]) is a P -frame. Let J be a cozero
element in ↑([[u∗]]∨ [[v∗]]). Since λM is normal, the closed-quotient map
λM → ↑([[u∗]] ∨ [[v∗]]) is coz-onto (see [1, Theorem 8.3.3]), and thus,
there exists a w ∈ CozM such that

J = [[u∗]] ∨ [[v∗]] ∨ [[w]].

Since h is coz-onto, there is a c ∈ CozL such that h(c) = w. Now

[[a∗]] ∨ [[b∗]] ∨ [[c]]

is a cozero element in the P -frame ↑([[a∗]] ∨ [[b∗]]), and thus, it is
complemented in this frame. Its complement is a cozero element in
this frame, which means that there exists a d ∈ CozL such that

(A) ([[a∗]] ∨ [[b∗]] ∨ [[c]]) ∨ ([[a∗]] ∨ [[b∗]] ∨ [[d]]) = 1λL

and

(B) ([[a∗]]∨ [[b∗]]∨ [[c]])∧ ([[a∗]]∨ [[b∗]]∨ [[d]]) = 0↑([[a∗]]∨[[b∗]]) = [[a∗]]∨ [[b∗]].

From (A), we have [[a∗]] ∨ [[b∗]] ∨ [[c]] ∨ [[d]] = 1λL, which, on applying
the map λh and taking into account the inequality in (†), yields
[[h(a)∗]] ∨ [[h(b)∗]] ∨ [[h(c)]] ∨ [[h(d)]] = 1λM , and consequently,

(C) ([[u∗]] ∨ [[v∗]] ∨ [[w]]) ∨ ([[u∗]] ∨ [[v∗]] ∨ [[h(d)]]) = 1λL.

From (B), we have ([[a∗]] ∨ [[b∗]]) ∨ ([[c]] ∧ [[d]]) = [[a∗]] ∨ [[b∗]], whence
[[c]] ∧ [[d]] ≤ [[a∗]] ∨ [[b∗]]. Applying the map λh to this inequality gives

[[h(c)]] ∧ [[h(d)]] ≤ [[h(a)∗]] ∨ [[h(b)∗]] = [[u∗]] ∨ [[v∗]].

Calculating the join ([[u∗]] ∨ [[v∗]]) ∨ ([[h(c)]] ∧ [[h(d)]]), and keeping in
mind that h(c) = w, gives

([[u∗]] ∨ [[v∗]] ∨ [[w]]) ∧ ([[u∗]] ∨ [[v∗]] ∨ [[h(d)]]) = [[u∗]] ∨ [[v∗]],
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which, together with (C), shows that J is complemented in the frame
↑([[u∗]] ∨ [[v∗]]), thus making this frame a P -frame. Therefore, M is
quasinormal by Theorem 3.6. �

As in spaces, this tells us that every cozero-sublocale, and every
Lindelöf sublocale, of a quasinormal frame is quasinormal.

Acknowledgments. Thanks are due to the referee for several com-
ments and suggestions that have helped improve the presentation of
the paper.
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