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DEGREES OF CLOSED CURVES IN THE PLANE

MARKO KRANJC

ABSTRACT. In the present article we extend the notion
of degree from regular closed curves to closed locally one-to-
one curves and prove that the extended notion has analogous
properties. In particular, a natural generalization of Whitney-
Graustein’s theorem is still true. A proof of a mean value
theorem for nonstop curves is given using only the elementary
ideas of this paper.

1. Introduction. Let us first recall some important definitions.

A curve C : I → R2 is regular if it is continuously differentiable and
if C ′(t) �= 0 for all t ∈ I.

The map H : I × I → R2 is a regular homotopy if the curve
Hu(t) = H(u, t) is regular for each u and if both Hu and its derivative
vary continuously with u. If H is a regular homotopy, then H0 and H1

are said to be regularly homotopic.

If C : I → R2 is a (continuous) curve such that C(t) �= 0 for all t ∈ I,
then the winding number W (C) of C around 0 is defined as follows.
Identify R2 with the complex plane, and write C as C(t) = r(t)e2πia(t)

where both r and a are continuous functions and r is positive. Let
W (C) be the difference a(1) − a(0). If C is a closed curve W (C)
is clearly an integer. W is also homotopy invariant in the following
sense: if two curves C1, C2 : I → R2 are homotopic by a homotopy
H : I × I → R2 − {0} such that Hu, defined by Hu(t) = H(u, t), is a
closed curve for all u ∈ I, then W (C1) = W (C2). The winding number
of a curve counts the algebraic number of times the curve goes around
the origin. If C is a closed curve it follows from the definition of the
winding number that the vector C(t) points in every direction for at
least |W (C)| different values of t. A very readable discussion of the
winding number is given in [1].

If C Is a regular closed curve, then C ′ is a closed curve in R2 missing
the origin. Therefore, W (C ′) can be defined. D(C) = W (C ′) is called
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the degree of C and measures the number of turns of C. C ′(t) points
in every direction for at least |D(C)| different values of t.

In 1937, H. Whitney classified regular homotopy classes of regular
closed curves in the plane using the notion of degree (see [5]). He proved
that two regular closed curves in the plane are regularly homotopic
if and only if their degrees are equal (Whitney-Graustein’s theorem).
He also showed that the degree and the self-intersection number have
different parity.

In this paper we introduce the notion of a “gentle homotopy” and
extend the definition of degree to (continuous) locally one-to-one curves
by defining it to be the winding number of short enough secant vectors.
The main results are the following generalizations of Whitney’s results.

Theorem 1. Suppose C0, C1 : I → R2 are closed locally 1 1 curves.
Then

D(C0) = D(C1)

if and only if C0 is gently homotopic to C1.

Theorem 2. If C : I → R2 is a normal curve, then

D(C) ≡ 1 + self (C) (mod 2).

We also discuss degrees of differentiable closed locally 1 1 curves
which are not necessarily continuously differentiable but have nonvan-
ishing derivative. We prove that in that case the tangent vector also
points in every direction at least n times if n is the absolute value of
the degree (Theorem 3). This is followed by mean-value theorems for
nonstop curves (Corollaries 1 and 2) which generalize a result of [4]. In
the final section we give a different proof of that result (Proposition 4).

The material is organized as follows. Section 2 contains a technical
lemma needed in the proof of Theorem 1. Section 3 gives proofs of
Theorems 1 and 2. In Section 4 we study degrees of differentiable curves
and prove Theorem 3. Mean-value theorems are proved in Section 5,
and a proof of Proposition 4 is given in the last section.

The only section where the tools go beyond the winding number is
Section 2 in which we use Schönflies theorem. We use that section only
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for construction of gentle homotopies needed in the proof of Theorem 1.
That material is not used in the rest of the paper. Therefore, all other
results can be studied without reference to Section 2. In particular,
this is the case with the proof of Proposition 4. Therefore, the proof
given in the last section is more elementary than the original proof in
[4] which uses the Jordan curve theorem.

2. Approximating locally 1 1 curves by regular curves. If
C : I → R2 (I = [0, 1]) is a closed curve let C̃ : R → R2 be the periodic
extension defined by C̃(t) = C(t − [t]) ([t] is the integer part of t).

We shall say that a closed curve C : I → R2 is locally 1 1 if its
extension C̃ : R → R2 is. In that case there exists a λ > 0 such that
C̃(s) �= C̃(t) whenever 0 < |s − t| < λ. A closed curve C : I → R2 is
differentiable if C̃ : R → R2 is.

We shall say that a homotopy H : I × I → R2 is locally 1 1 if the
function H̃ : I × R → R2 defined by (u, t) → H(u, t − [t]) is locally
1 1. If H : I × I → R2 is a locally 1 1 homotopy, then we will say
that H0 and H1 are gently homotopic. We require that Hu be a closed
curve for all u ∈ I.

If a homotopy H : I×I → R2 is locally 1 1, then there exists a λ > 0
such that H̃(u, s) �= H̃(u, t) whenever 0 < |s − t| < λ, for all u ∈ I.
This follows from the compactness of I.

Clearly all regular curves and regular homotopies are locally 1 1.

The following lemma is the main result of this section.

Lemma 1. Any closed locally 1 1 curve is gently homotopic to a
regular curve.

Proof. Let C : I → R2 be a closed locally 1 1 curve. Choose a λ > 0
such that C̃(s) �= C̃(t) whenever 0 < |t − s| < λ. Let μ = 3λ/4. We
shall construct a sequence of maps hi : [t0, ti] × I → R2 such that

(i) hi(t, 0) = C(t).

(ii) hi(t, u) �= hi(s, u) whenever 0 < |t − s| < μ/3, u ∈ I,

(iii) the maps [t0 − 2μ/3, t0 + μ/3]× 0∪ [t0, t0 + μ/3]× I → R2 and

(∗) [ti − μ/3, ti + 2μ/3] × 0 ∪ [ti − μ/3, ti] × I → R2,
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defined to be C̃ on [t0−2μ/3, t0+μ/3]×0 and on [ti−μ/3, ti+2μ/3]×0,
and of hi on [t0, t0 + μ/3] and on [ti − μ/3, ti], are embeddings.

(iv) hi | [t0, ti] × 1 is piecewise-linear.

We shall assume that the reader is familiar with a proof of Schönflies
theorem as given, for example, in [3]. We shall also use the terminology
of [3].

Construction of h1. Connect the endpoints of C([0, λ]) by an arc A
so that the curve J = A∪C([0, λ]) is an embedded 1-sphere (see Figure
1). Choose points s0 ≤ s1 ≤ s2 ≤ s3 in (0, λ) such that

(i) C(sj), j = 0, 1, 2, 3, are linearly accessible from the interior R
of J (by the interior of J we mean the bounded component of R2\J),

(ii) sj+1 − sj > μ/3 for j = 0, 1, 2.

Let vjC(sj), j = 0, 1, 2, 3, be disjoint linear intervals such that
vjC(sj) − C(sj) lies in R for all j. There exists an embedding
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H : [s0, s3] × I → R2 satisfying

(1)
(i) H(t, 0) = C(t) for t ∈ [s0, s3],

(ii) the curve t → H(t, 1) is piecewise-linear,
(iii) H(sj × I) is contained in vjC(sj), for each j.

Let t0 = s1, t1 = s2. By changing H, if necessary, the map
h1 = H | [t0, t1] × I will satisfy (∗) (i.e., in order to satisfy (iii), one
might have to replace H by H◦k where k : [t0, t1] × I → [t0, t1] × I is
given by k(t, u) = (t, cu) for some small enough constant c).

Suppose now that hi−1 : [t0, ti−1] × I → R2, satisfying (∗), has been
constructed. Connect hi−1(ti−2, 1) to C(ti−2 + λ) by an arc A so that
the union

A ∪ hi−1([ti−2, ti−1] × 1) ∪ hi−1(ti−1 × I) ∪ C([ti−1, ti−2 + λ])

is an embedded 1-sphere J . Choose A so that hi−1([ti−2, ti−1]×I) does
not intersect the interior R of J (see Figure 2).

Choose points s0 ≤ s1 ≤ s2 in (ti−1, ti−2 + λ) such that

(i) s0 = ti−1,
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(ii) μ/3 < sj+1 − sj ≤ λ/3, for j = 0, 1,

(iii) C(sj) are linearly accessible from R.

Let vjC(sj), j = 1, 2, be disjoint linear intervals such that vjC(sj) −
C(sj) lies in R, for j = 1, 2. There exists an embedding H : [s0, s2] ×
I → R2 satisfying (1). Let ti = s1 and extend hi−1 to hi by letting

hi | [ti−1, ti] × I = H | [ti−1, ti] × I.

Again, H might need an adjustment in order to have hi satisfy property
(iii) of (∗).

We shall now use the maps hi to construct a mapping h : [t0, t0 +1]×
I → R2 satisfying properties (i), (ii) and (iv) of (∗) and such that the
curve t → h(t, u) is closed for every u ∈ I.

From the sequence t0, t1, t2, . . . , choose the first ti such that 1−λ/3 <
ti − t0 < 1 (thus 0 < (t0 +1)− ti < λ/3). If necessary, adjust hi so that
hi([ti−1, ti]×I) and hi([t0, t1]×I) do not intersect. Connect hi(ti−1, 1)
so hi(t1, 1) by an arc A so that the union

A ∪ hi({ti−1, t1} × I) ∪ C([ti−1, t1 + 1])

is an embedded 1-sphere J containing hi(ti × (0, 1]) in its interior and
such that J ∩ hi(t0 × (0, 1]) = ∅. Suppose hi(t0, 1) does not lie in R.
Let α be a curve in R from hi(ti, 1) to C(t0) (see Figure 3). Then
the closed curve defined by the union of hi([t0, ti] × 1), hi(t0 × I) and
α intersects C with nonzero intersection number. (Recall that the
intersection number of two curves in the plane is the reduction modulo
2 of the number of intersections when the two curves are put in general
position.) Since this is clearly impossible, hi(t0, 1) also has to lie in
R. There exists an embedding H : [ti, t0 + 1] × I → R2 satisfying (1).
Using H we can extend hi to a map h : [t0, t0+1]×I → R2 with desired
properties. This map clearly defines a gentle homotopy from C to a
piecewise-linear locally one-to-one closed curve. Since any piecewise-
linear locally one-to-one closed curve can be homotoped to a regular
curve by an arbitrarily small gentle homotopy (see the Appendix), the
proof of Lemma 1 is completed.

3. Degrees of curves. In this section we define the degree of a
closed locally 1 1 curve and prove that it completely determines the
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gentle homotopy class of such a curve. We also prove that there is a
relation between the degree and the self-intersection number.

Suppose that C : I → R2 is a closed locally 1 1 curve. If h > 0,
define ch : I → R2 by

ch(t) =
C̃(t + h) − C̃(t)

h
.

If k > 0 is another number, then ch and ck are homotopic by the
homotopy u → c(1−u)h+uk. Let λ > 0 be a number such that
C̃(t) �= C̃(s) if 0 < |t − s| ≤ λ. Then cz(t) �= 0 for all t ∈ I, and
for all z such that 0 < z ≤ λ. Therefore, c(1−u)h+uk(t) is also nonzero
for all u, t ∈ I and for all nonnegative numbers h, k which are less than
or equal to λ. It follows from the homotopy invariance of the winding
number that W (ch) = W (ck) whenever 0 < h, k ≤ λ. (Recall that
W (f) denotes the winding number of f around 0.)

Definition. If C : I → R2 is a closed locally 1 1 curve, let the degree
D(C) of C be equal to

lim
h→0+

W (ch).
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By the preceding remarks, D(C) exists.

Note that this definition coincides with the original definition when
C is a regular closed curve. To see that, choose a positive number λ
such that C̃(t) �= C̃(s) whenever |t − s| ≤ λ and define a homotopy
H : I × I → R2 − {0} as follows:

H(u, t) =
{

C ′(t), u = 0
cuλ(t), u �= 0.

By the homotopy invariance of winding numbers, we get W (C ′) =
W (cλ) = D(C).

Now we are ready to prove Theorem 1.

Proof of Theorem 1. If C0 is gently homotopic to C1, then there exists
a homotopy H : I × I → R2 from C0 to C1 and a λ > 0 such that
H̃u(s) �= H̃u(t) whenever 0 < |s − t| ≤ λ for all u ∈ I. Therefore, the
mapping hλ : I × I → R2 − 0 defined by

hλ
u(t) =

H̃u(t + λ) − H̃u(t)
λ

is a nonzero homotopy from cλ
0 to cλ

1 . By the homotopy invariance of
the winding number we get

D(C0) = W (hλ
0 ) = W (hλ

1 ) = D(C1).

Suppose now that D(C0) = D(C1). By Lemma 1 we can find locally
1 1 homotopies H0 and H1 such that Hj

j = Cj , j = 0, 1, and such
that H0

1 and H1
0 are regular closed curves. By the first half of proof,

we have D(H0
1 ) = D(C0) and D(H1

0 ) = D(C1). Since D(C0) = D(C1),
the degrees of H0

1 and H1
0 are equal. Therefore, the curves H0

1 and
H1

0 are regularly homotopic by a regular homotopy F (see [5]). The
following homotopy

H(u, t) =

⎧⎨
⎩

H0(3u, t), u ∈ [0, 1/3]
F (3u − 1, t), u ∈ [1/3, 2/3]
H1(3u − 2, t), u ∈ [2/3, 1]

is a gentle homotopy from C0 to C1.
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This finishes the proof of Theorem 1.

A point P ∈ R2 is a singular point of C if C−1(P ) contains more than
one point. P is a double point of C if C−1(P ) contains two points.

Suppose P is a double point of C, say P = C(t1) = C(t2), t1 < t2. P
is a normal crossing if

(i) there exist disjoint closed intervals I1, I2 ⊂ R such that tj ∈ Ij ,
j = 1, 2,

(ii) there exists a closed disc D with center at P such that C | Ij :
(Ij , ∂Ij) → (D, ∂D) is an embedding, and such that (C | Ij)−1(∂D) =
∂Ij , j = 1, 2,

(iii) C(I1) ∩ C(I2) = {P},
(iv) C(∂I1) and C(∂I2) are linked in ∂D.

Definition. A closed curve C : I → R2 is normal if it is locally 1 1
and if all its singularities are normal crossings.

A normal curve can have only finitely many double points because
they form a discrete subset of a compact set.

If C : I → R2 is a normal curve, let the self-intersection number
self (C) of C be the number of double points of C.

Note. The self-intersection number of the curve t → C(t + x) is
equal to self (C).

Proposition 1. Suppose that C : I → R2 is a locally 1 1 curve,
and suppose that P is a double point of C, say P = C(t1) = C(t2),
t1 �= t2. If C ′(t1) and C ′(t2) are linearly independent, then P is a
normal crossing.

Before proving this, we need the following proposition:

Proposition 2. Suppose that C : I → R2 is differentiable at t ∈ I,
and suppose that C ′(t) �= 0. Given α > 0, there exists a δ > 0 such
that if |h| < δ, then
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(i) |C(t + h) − C(t)| > (1/2)|C ′(t)| |h|
(ii) the angle between C ′(t)h and C(t + h) − C(t) is less than α.

Proof. Let

φ(h) =

⎧⎨
⎩

(C(t + h) − C(t)) · C ′(t)h
|C(t + h) − C(t)| |C ′(t)| |h| if h �= 0

1 if h = 0

and

Ψ(h) =

⎧⎨
⎩

|C(t + h) − C(t)|
|h| if h �= 0

|C ′(t)| if h = 0
Both φ and Ψ are continuous at 0; therefore, there exists a δ > 0 such
that

(−δ, δ) ⊂ φ−1((cosα, 1]) ∩ Ψ−1((|C ′(t)|/2,∞)).

Therefore, if 0 < |h| < δ we have∣∣∣∣C(t + h) − C(t)
h

∣∣∣∣ >
1
2
|C ′(t)|

which implies (i) and
φ(h) > cos α.

But φ(h) is the cosine of the angle between C(t + h)−C(t) and C ′(t)h
which proves (ii).

Proof of Proposition 1. Choose λ > 0 so that C̃(s) �= C̃(t) if
0 < |s − t| < λ. If αj is the angle between C ′(t1) and (−1)jC ′(t2),
for j = 1, 2, let α = min{α1, α2}. Since C ′(t1) and C ′(t2) are linearly
independent, α is positive. By Proposition 2, there exists a positive
number δ < λ such that if |h| ≤ δ, then

(a) |C(ti + h) − C(ti)| ≥ (1/2)|C ′(ti)| |h|
(b) the angle between C(ti + h)−C(ti) and C ′(ti)h is less than α/3

for i = 1, 2.

Let r = (δ/2) min{|C ′(t1)|, |C ′(t2)|}, and let D be the closed disc of
radius r with center at P . Define functions φ+

j and φ−
j , j = 1, 2, by

φ±
j (τ ) = |C(tj ± τ ) − C(tj)|, for τ ∈ [0, δ].



DEGREES OF CLOSED CURVES IN THE PLANE 961

Since |φ±
j (δ)| ≥ (1/2)|C ′(tj)| · | ± δ| ≥ r, and since φ±

j (0) = 0, for
j = 1, 2, the compact sets A±

j = (φ±
j )−1(r), j = 1, 2, are nonempty.

Let Ij be the interval

[min A−
j , min A+

j ], for j = 1, 2.

Then C(Ij) ∩ ∂D = C(∂Ij), j = 1, 2. Let Zj be the set of all points
Q such that the vector from P to Q forms an angle smaller than α/3
with the line which passes through P in the direction of C ′(tj). Then
Z1 ∩ Z2 = {P}. By (b) the set C(Ij) is contained in Zj , j = 1, 2.
Therefore, C(I1) ∩ C(I2) = {P}. C(∂I1) and C(∂I2) are linked in ∂D
because the components of Z(Ij) ∩ ∂D lie in different components of
∂D − Z(I3−j) for j = 1, 2. This proves the proposition.

A proof from [5] can be modified to get the following proof of Theorem
2.

Proof of Theorem 2. Let S be the set of pairs (s, t) such that
0 ≤ s < t < s + 1 ≤ 2. If l(s, t) = min{t − s, 1 + s − t} define
fC : S → R2 by

fC(s, t) =
C̃(t) − C̃(s)

l(s, t)
.

Clearly, fC is continuous.

Whenever needed we shall assume that C(0) is not a double point
of C. For, if C(0) is a double point of C, then we can choose a
number x such that C(x) is not a double point. Define a curve Cx by
Cx(t) = C̃(t+x). Let Hu(t) = C̃(t+ux). Then H is a gentle homotopy
from C to Cx: if 0 < |t − s| < λ, then 0 < |(t + ux) − (s + ux)| < λ,
and therefore

Hu(s) = C̃(s + ux) �= C̃(t + ux) = Hu(t).

Suppose that P1, . . . , Pk are the double points of C, and let tj , sj ,
where tj < sj , be the elements of C−1(Pj), for j = 1, . . . , k. For each j,
choose a closed disc Dj with center at Pj and a pair of disjoint intervals
Ij = [uj , vj ] ⊂ I and Jj = [xj , yj ] ⊂ I, such that tj ∈ Ij , sj ∈ Jj , and
which satisfy the four conditions in the definition of a normal crossing.
Assume, furthermore, that the discs D1, . . . , Dk are pairwise disjoint.
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Let Qj ⊂ S be the rectangle Ij × Jj . Suppose that the pair
(C(yj) − Pj , C(vj) − Pj) determines the standard orientation of R2.
We will show that the winding number of fC as we go around ∂Qj

once in the positive direction is 1.

If s ∈ Ij , then C(s) ∈ Dj . Therefore, the vector fC(s, xj) =
(C̃(xj) − C̃(s))/l(s, xj) does not point in the direction of Pj − C(xj)
if s ∈ Ij . It follows that the winding number ω1 of fC as we go from
(uj , xj) to (vj , xj) along a straight line is equal to the angle between
fC(uj , xj) and fC(vj , xj) divided by 2π. Clearly, 0 < ω1 < 1/2.
Similarly, the winding numbers ω2, ω3, ω4 of fC as we go along the
other three sides of ∂Qj in the counterclockwise direction also satisfy
the same condition. Therefore, the winding number ω1 + ω2 + ω3 + ω4

of fC as we go once around ∂Qj in the counterclockwise direction is
between 0 and 2. Since it is an integer, it has to be +1.

In the same way we can see that the winding number of fC as we go
around ∂Qj in the counterclockwise direction is −1 provided that the
pair (C(yj)−PjC(vj)−Pj) determines the negative orientation of R2.

If necessary, reindex the quadrilaterals Qj , j = 1, . . . , k in such a
way that the winding number of fC as we go once around ∂Qj in the
counterclockwise direction is −1 for j ≤ m, and +1 if j > m.
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Choose a number 0 < λ < 1/2 such that C̃(t) �= C̃(s) whenever
0 < |t − s| ≤ λ. Let Qλ be the quadrilateral with vertices (0, λ),
(1 − λ, 1), (λ, 1), and (0, 1 − λ). Clearly, Qλ ⊂ S and all the zeros
of fC lie in int (Qλ). Therefore, all the rectangles Qi can be made
small enough to be contained in int (Qλ). Subdivide the rest of Qλ

into triangles. By the homotopy invariance of the winding number, the
winding number of fC as we go once around any one of these triangles
is zero. If we add the winding numbers of fC as we go once in the
counterclockwise direction around each of these triangles and around
∂Q1, . . . , ∂Qk, we get −m + (k − m) = k − 2m = self (C) − 2m. On
the other hand, this sum is also equal to the winding number W of
fC as we go once around ∂Qλ in the counterclockwise direction. This
winding number is equal to the winding number of fC as we follow the
curves α1, α2, and α3 where

α1(t) = (t, t + λ), t ∈ I

α2(t) =

{
(1 − 2tλ, 1 + λ − 2tλ), t ∈ [0, 1/2]

(2 − 3λ − 2t + 4tλ, 1), t ∈ [1/2, 1]

α3(t) =

{
(λ(1 − 2t), 1 − 2tλ), t ∈ [0, 1/2]

(0, 2 − 3λ − 2t + 4tλ), t ∈ [1/2, 1].

By definition of degree, the winding number of fC along α1 is equal
to D(C). It is easy to verify that (fC◦α2)(t) and (fC◦α3)(t) point
in the opposite direction. Therefore, W (fC◦α2) = W (fC◦α3). Since
(fC◦α2)(0) = (C̃(1+λ)−C̃(1))/λ = −(C̃(1)−C̃(λ))/λ = −(fC◦α2)(1)
the winding number of fC along α2 is equal to 1/2+K for some integer
K.

Therefore, we get

−2m+self (C)=W (fC◦α1)+W (fC◦α2)+W (fC◦α3) = D(C)+1+2K.

This proves Theorem 2.

Using the results of the next section, this theorem can be strengthened
to get the same result as in [5] provided that C ′(0) exists and that C(I)
lies entirely on one side of the tangent line to C at C(0). Instead of Qλ,
one has to take the triangle Tλ with vertices (0, λ), (0, 1), and (1−λ, 1),
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and note that the winding number of fC as we go once around ∂Tλ in
the positive sense is the same as if we follow σλ,Π (see the notation of
the next section; Π is the partition 0 < 1), and the line segments from
(1,1) to (0,1), and from (0,1) to (0,0).

4. Degrees of differentiable curves. Suppose that C : I → R2 is
a closed locally 1 1 curve. If C is differentiable at t ∈ I we can extend
the definition of fC (as defined in the proof of Theorem 2) to S∪{(t, t)}
by setting fC(t, t) = C ′(t). Note that this extension need no longer be
continuous.

Let Q be a triangle with vertices (t − x, t), (t, t), and (t, t + x) such
that (t − x, t) ∈ S, t ∈ I. Suppose that C ′(t) exists. We shall prove
that the winding number of fC , as we go around ∂Q once, is 0 provided
fC has no zeros on Q.

Suppose that fC has no zeros in Q. In particular, C ′(t) �= 0. By
Proposition 2, there exists a δ > 0 such that if |h| ≤ δ, then the angle
between C(t + h) − C(t) and C ′(t)h is less than π/4. Take δ ≤ x,
δ ≤ 1/2. Let Q1 be the triangle with vertices (t − δ, t), (t, t) and
(t, t + δ). Clearly, it is enough to show that the winding number of fC

as we go around the boundary of Q1 is zero. The positively oriented
boundary ∂Q1 is the product αβγ of curves α, β, γ : I → R2 given by

α(s) = ((1 − s)(t − δ) + st, t)
β(s) = (t, (1 − s)t + s(t + δ))
γ(s) = ((1 − s)t + s(t − δ), (1 − s)(t + δ) + st).

Since C is differentiable at t, the function fC◦(αβγ) is continuous.
Therefore, W (fC◦(αβγ)) is defined.

If τ ∈ [t− δ, t), then the angle between fC(τ, t) = (1/(t− τ ))(C(τ )−
C(t)) and −(1/(t− τ ))(C ′(t)(τ − t)) = C ′(t) = fC(t, t) is less than π/4.
Therefore, the winding number ω1 of fC◦α is less than 1/4 in absolute
value.

Similarly, if τ ∈ (t, t + δ], then the angle between fC(t, τ ) = (1/(τ −
t))(C(τ ) − C(t)) and (1/(τ − t))C ′(t)(τ − t) = C ′(t) = fC(t, t) is less
than π/4. Therefore, the winding number ω2 of fC◦β is also less than
1/4 in absolute value.

Let Rk be the region containing all points P ∈ R2 such that the
angle between P − C(t) and (−1)kC ′(t) is less than π/4 for k = 1, or
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k = 2. Clearly, C([t − δ, t)) ⊂ R1 and C((t, t + δ]) ⊂ R2. Since the
angle between any vector starting in R1 and ending in R2 and C ′(t)
is less than π/4, the winding number ω3 of fC◦γ is less than 1/4 in
absolute value.

The winding number of fC as we move once around the boundary
∂Q1 in the counterclockwise direction is equal to ω1 + ω2 + ω3. Since
|ω1 + ω2 + ω3| < 3/4 and since ω1 + ω2 + ω3 is an integer, it has to be
zero which proves our claim.

By a partition we mean a sequence of points Π : 0 ≤ t1 < t2 < · · · <
tk < 1. Define the mesh m(Π) of Π to be the maximum of ti − ti−1,
i = 2, . . . , k, and t1 + 1 − tk.

Suppose λ is a positive number such that C̃(t) �= C̃(s) if 0 < |s− t| ≤
λ. Let Π : 0 ≤ t1 < · · · < tk < 1 be a partition of I, and suppose
that C ′(ti) exists and is nonzero for i = 1, . . . , k. Suppose p ≤ λ is a
positive number such that p ≤ m(Π). Define a PL curve σp,Π : I → R2

by

σp,Π(t) =

⎧⎨
⎩

(t, t + p) if t ∈ I − ∪k
i=1(ti − p, ti)

(2t + p − ti, ti) if t ∈ [ti − p, ti − p/2]
(ti, 2t + p − ti) if t ∈ [ti − p/2, ti].

Proposition 3. Under the above conditions,

D(C) = lim
p→0+

W (fC◦σp,Π).

Proof. We shall divide the proof into two cases.

Case 1. t0 > 0. Let p > 0 be smaller than λ, t1, 1 − tk, and m(Π).
Let Ti be the triangle with vertices (ti − p, ti), (ti, ti), and (ti, ti + p).
As t goes from ti − p to ti, σp,Π(t) goes from (ti − p, ti) to (ti, ti + p)
along the short sides of Ti. Since fC does not vanish on Ti, the winding
number of fC◦σp,Π as t goes from ti − p to ti is equal to the winding
number of fC as we go from (ti − p, ti) to (ti, ti + p) along a straight
line. This shows that W (fC◦σp,Π) = W (fC◦σ′

p,Π) where Π′ is obtained
from Π by removing ti. By successively removing points of Π, we get

W (fC◦σp,Π) = W (fC◦σp,∅).
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But fC◦σp,∅ = cp; therefore,

W (fC◦σp,Π) = W (cp) = D(C).

Since this is true for all such p > 0, the result is proved for this case.

Case 2. t0 = 0. Let 0 < p ≤ (1/2) min{m(Π), λ, 1 − tk}. Denote
by Tx : R → R the translation t → t + x. If γ is a closed curve, let
γx = γ◦T−x. The mapping u → γ◦T−ux defines a homotopy from γ to
γx. Let Πp = Π + p. Then we have the following equality (recall that
C̃p(t) = C̃(t + p)):

fCp
◦σp,Πp

◦Tp = fC◦σp,Π.

Since t1 + p > 0 it follows from Case 1 that D(Cp) = W (fCp
◦σp,Πp

).
C and Cp are gently homotopic and fCp

◦σp,Πp
◦Tp is homotopic to

fCp
◦σp,Πp

in R2 − {0}; therefore,

D(C) = D(Cp) = W (fCp
◦σp,Πp

) = W (fCp
◦σp,Πp

◦Tp) = W (fC◦σp,Π).

Since this is true for all small enough p > 0, the proposition is proved.

Suppose that C : I → R2 is a differentiable closed curve such that
C ′(t) �= 0 for all t ∈ I. Let φC(t) = C ′(t)/|C ′(t)|. Define N(C) by

N(C) = min{#φ−1
C (p) | p ∈ S1}

if the right side exists, otherwise let N(C) = ∞. (#S denotes the
number of elements in S.)

Theorem 3. If C : I → R2 is a differentiable closed curve such that

(i) C ′(t) �= 0 for all t ∈ I,

(ii) C is locally 1 1

then N(C) ≥ |D(C)|.

We shall need the following proposition.
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Proposition 4. If A : I → R2 is a continuous embedding (I = [0, 1])
such that

(i) A′(t) exists and is nonzero on (0, 1) and

(ii) A(0) �= A(1),

then there exists a t ∈ (0, 1) such that A′(t) points in the direction of
A(1) A(0).

Proposition 4 was proved in [4]. In Section 5 we give a more
elementary proof.

Proof of Theorem 3. Let λ > 0 be chosen so that C̃(t) �= C̃(s)
whenever 0 < |t − s| ≤ λ.

Suppose that #φ−1
C (q) < n = |D(C)| for some point q ∈ S1. The

elements of φ−1
C (q) define a partition Π (possibly Π is empty). If r > 0

is small enough, then D(C) = W (fC◦σr,Π) by Proposition 3. Assume
that r ≤ λ. Since |D(C)| = n, (fC◦σr,Π)(t) points in the direction of q
for at least n values of t ∈ I. Therefore, there has to be a τ /∈ φ−1

C (q)
such that (fC◦σr,Π)(τ ) points in the direction of q. But (fC◦σr,Π)(τ )
is of the form (C̃(v) − C̃(u))/l(u, v) where (u, v) ∩ φ−1

C (q) = ∅ and
v − u ≤ λ. Using Proposition 4, we get a ξ ∈ (u, v) such that C ′(ξ)
points in the direction of q. This shows that ξ is contained in φ−1

C (q),
which is a contradiction.

5. An application of degree to nonstop curves.

Definition. C : I → R2 is a nonstop curve if

(i) C ′(t) exists and is nonzero for all t ∈ (0, 1)

(note: we do not require C ′ to be continuous),

(ii) C is locally 1 1,

(iii) C(0) �= C(1).

Theorem 4. Suppose that C : I → R2 is a nonstop curve, and let
Ĉ be the product of C and the straight path from C(1) to C(0), i.e.,

Ĉ(t) =
{

C(2t), t ∈ [0, 1/2]
C(1) − (2t − 1)V t ∈ [1/2, 1]
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where V = C(1) − C(0).

If Ĉ is locally 1 1, then C ′(t) points in the direction of V for at least
M = |D(Ĉ)| values t ∈ (0, 1). If Ĉ is not locally 1 1, then C ′(t) points
in the direction of V for infinitely many values of t ∈ (0, 1).

Proof. Without loss of generality, we can assume that C(0) = (0, 0),
C(1) = (0, 1).

Since C is locally 1 1, there exists a λ > 0 such that C̃(s) �= C̃(t)
whenever 0 < |s − t| < λ. As before, we shall use the symbol C̃ to
denote the periodic extension C̃ : R → R2 of C.

Suppose that Ĉ(s) = Ĉ(t) where t < s, s − t < λ/2 and s, t ∈
[1/4, 5/4]. Since Ĉ is an embedding on ((1 − λ)/2, 1/2], on (1/2, 1],
and on [1, 1 + λ/2), this is possible only if t ∈ ((j − λ)/2, j/2),
s ∈ (j/2, (j + λ)/2) where j ∈ {1, 2}.

Suppose Ĉ is not locally 1 1. Then for j ∈ {1, 2} there exist two
sequences {tn}, {sn} such that

(i) {tn} ⊂ ((j − λ)/2, j/2), {sn} ⊂ (j/2, (j + λ)/2),

(ii) Ĉ(tn) = Ĉ(sn) for all n,

(iii) limn→∞(tn − sn) = 0.

Assume that j = 1. From (i) and (iii) we see that

lim
n→∞ tn = lim

n→∞ sn = 1/2.

Since Ĉ(s) = (0, 2 − 2s) if s ∈ [1/2, 1] it follows that limn→∞ Ĉ(tn) =
limn→∞ Ĉ(sn) = Ĉ(1/2) = (0, 1). If C(t) = (x(t), y(t)) this implies
that

lim
n→∞ y(2tn) = 1.

Since tn < 1/2 and y(2tn) < 1 for all n, we can choose a subsequence
of {tn} which we shall again denote by {tn} such that tn < tn+1 and
y(2tn) < y(2tn+1) for all n. Note that x(2tn) = 0 for all n. Since
2tn+1−2tn = 2(tn+1− tn) < 2(λ/2) = λ, it follows that C | [2tn, 2tn+1]
is an embedding. Also, C(2tn+1) − C(2tn) points in the direction of
(0, 1) = V . Therefore, by Proposition 4, there exists a τn ∈ (2tn, 2tn+1)
such that C ′(τn) points in the direction of V .
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Since the numbers τn lie in disjoint intervals, they are distinct;
therefore, C ′(t) points in the direction of V for infinitely many t ∈ (0, 1).

The case j = 2 is treated in the same way.

If Ĉ is locally 1 1, then D(Ĉ) is defined. There exists a 0 < μ < 1/2

such that ˜̂
C : R → R2 restricts to an embedding on every interval of

length less than or equal to μ.

Suppose that there are less than M points in (0,1) where the deriva-
tive C ′ points in the direction of V . Let Π be the partition which has
these points for elements (possibly Π = φ). Let Π̂ be the corresponding
partition of I such that Ĉ ′ points in the direction of V at the elements
of Π̂. Choose μ small enough so that D(Ĉ) = W (fĈ◦σμ,Π̂). Since
there are less than M values τ ∈ (0, 1/2) such that Ĉ ′(τ ) points in the
direction of V , there exists a point t ∈ I such that Ĉ(t + ν) − Ĉ(t)
points in the direction of V for some ν such that ν ≤ μ, and such that
(t, t + ν) ∩ Π̂ = φ. Clearly, [t, t + ν] is not contained in [1/2, 1]. If
[t, t + ν] ⊂ [0, 1/2], then, since Ĉ | [t, t + ν] is an embedding, there
exists a τ ∈ (t, t + ν) such that C ′(τ ) = (1/2)Ĉ ′(τ/2) points in the
direction of V (see Proposition 4), a contradiction. Suppose now that
(t, t + ν) intersects both [0, 1/2] and [1/2, 1]. We shall treat the case
t ∈ (1/2 − ν, 1/2), the case t ∈ (1 − ν, 1) being analogous. Since
Ĉ(t + ν) − Ĉ(t) points in the direction of V , there exists a constant
k > 0 such that Ĉ(t + ν) − Ĉ(t) = kV . Using the definition of Ĉ, we
get Ĉ(t) = (0, 2 − 2t − 2ν) − (0, k). If Ĉ(t) = (x, y), we therefore get

x = 0, y = 2 − 2t − 2ν − k < 1.

Thus, the vector Ĉ(1/2) − Ĉ(t) points in the direction of V . Since
Ĉ | [t, 1/2] is an embedding, there exists a τ/2 ∈ (t, 1/2) such that
Ĉ ′(τ/2) = 2C ′(τ ) points in the direction of V . Since τ /∈ Π, this is a
contradiction.

If C : I → R2 is a nonstop curve let YC be the set of pairs
(s, t) such that s < t and such that C(s) = (1 − μ)C(0) + μC(1),
C(t) = (1 − ν)C(0) + ν(C(1)) where μ < ν. For (s, t) ∈ YC , let
Ĉs,t : I → R2 be the closed curve

Ĉs,t(τ ) =
{

C((1 − 2τ )s + 2τt), τ ∈ [0, 1/2]
(2τ − 1)C(s) + (2 − 2τ )C(t), τ ∈ [1/2, 1].
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Define the order 0(C) of C by

0(C) = max{|D(Ĉs,t)|; (s, t) ∈ YC}
if the right side exists; otherwise, let 0(C) = ∞.

The following generalization of Proposition 4 follows from Theorem
4:

Corollary 1. Suppose that C : I → R2 is a nonstop curve. If
X is the set of points t ∈ I such that C ′(t) points in the direction of
C(1) − C(0), then

#X ≥ 0(C).

Proof. We shall distinguish three cases.

Case 1. For some (s, t) ∈ YC , the degree D(Ĉs,t) does not exist. In
this case it follows from Theorem 4 that C ′(t) points in the direction
of V = C(1) − C(0) for infinitely many values τ ∈ (s, t).

Case 2. D(Ĉs,t) exists for all (s, t) ∈ YC , but 0(C) = ∞. Suppose
that X is finite, say #X = n. Then there exists (s, t) ∈ YC such that
|D(Ĉs,t)| = m > n. By Theorem 4, we get m points τ ∈ (s, t) such
that C ′(τ ) points in the direction of V , a contradiction.

Case 3. 0(C) = n < ∞. Then there exists (s, t) ∈ YC such that
n = |D(Ĉs,t)|. The conclusion follows again from Theorem 4.

Corollary 2. If C : I → R2 is a nonstop curve and if, for some
(s, t) ∈ YC , the curve Ĉs,t is normal and has even self-intersection
number, then C ′(τ ) points in the direction of C(1) − C(0) for some
τ ∈ (0, 1).

Proof. See Theorems 4 and 2.

6. A proof of Proposition 4. First we prove the following
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Proposition 5. If A : [a, b] → R2 is a nonstop arc (i.e., a nonstop
curve which is 1 1), then there exists an interval [a1, b1] ⊂ (a, b) of
length less than (1/2)(b − a) such that A(b1) − A(a1) points in the
direction of the vector V = A(b) − A(a).

Proof. Let R be rotation of the plane which maps V to a positive
multiple of the vector (0, 1). Let C1 be defined by C1(t) = R(A(t) −
A(a)). If C1(t) = (x1(t), y1(t)), let

y0 = max{y1(t); t ∈ x−1
1 (0)},

and let t0 be equal to C−1
1 (y0). Define C : I → R2 by

C(t) =
C1((1 − t)a + t · t0)

y0
.

Clearly C(0) = (0, 0), C(1) = (0, 1) and, if C(t) = (x(t), y(t)), then
y(1) = sup{y(t); t ∈ x−1(0)}.

Case 1. x−1(0) = {0, 1}. In this case x(t) does not change the sign
on I, say x(t) < 0 for t ∈ (0, 1). Let Ĉ : I → R2 be the closed curve
obtained from C and the line segment from (0,1) to (0,0), i.e.,

Ĉ(t) =
{

C(2t), t ∈ [0, 1/2],
(0, 2 − 2t), t ∈ [1/2, 1].

Since Ĉ is a normal curve with no self-intersections, it follows from
Theorem 2 that D(Ĉ) �= 0. By definition of degree, D(Ĉ) is equal
to W (ĉ1/6). Therefore, there exists a point τ ∈ I such that Ĉ(τ +
1/6)− Ĉ(τ ) points in the direction of V . Clearly, τ is not contained in
[1/2, 5/6]. If τ ∈ [2/6, 1/2)∪(5/6, 1], then one of the points Ĉ(τ +1/6),
Ĉ(τ ) lies on C((0, 1)) while the other lies on the line x = 0. Since
x(t) < 0 for t ∈ (0, 1), it follows that Ĉ(τ + 1/6) − Ĉ(τ ) cannot have
the first coordinate equal to zero. Therefore, it cannot point in the
direction V . Thus τ ∈ (0, 2/6) which implies that [τ, τ+1/6] ⊂ (0, 1/2).
Let a1 = (1− 2τ ) · a + 2τ · t0, b1 = (1− (2τ + 1/3)) · a + (2τ + 1/3) · t0.
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Then b1 − a1 = (1/3)(t0 − a) < (1/2)(b − a) and

A(b1) − A(a1) = R−1(C1(b1) − C1(a1))
= R−1(C1((1 − (2τ + 1/3)) · a + (2τ + 1/3) · t0)

− C1((1 − 2τ ) · a + 2τ · t0))
= y0 · R−1(C(2τ + 1/3) − C(2τ ))

= y0 · R−1(Ĉ(τ + 1/6) − Ĉ(τ ))

points in the direction of V .

Case 2. There exists a sequence {tn} of distinct points in x−1(0)
which converges to 1. Since y(1) = max{y(t); t ∈ x−1(0)}, we can
assume (by choosing a subsequence, if necessary) that {tn} and {y(tn)}
are strictly increasing sequences. There exists a positive integer m such
that tm+1 − tm < 1/2.

Let a1 = (1 − tm)a + tmt0, b1 = (1 − tm+1)a + tm+1t0.

Case 3. 1 is an isolated point of x−1(0). Let t0 = max{[0, 1) ∩
x−1(0)}. Then C | [t0, 1] intersects the line x = 0 only at t = t0 and
t = 1. This reduces the situation to Case 1.

Proof of Proposition 4. Let R be a rotation of the plane which maps
A(1)−A(0) to a positive multiple of the vector (0, 1). Define C : I → R2

by

C(t) =
R(A(t) − A(0))
|A(1) − A(0)| .

Then C(0) = (0, 0) and C(1) = (0, 1). Suppose that C(t) = (x(t), y(t)).
By Proposition 5, there exists a sequence of intervals [sn, tn] such that:

(i) [s1, t1] = I,

(ii) [sn+1, tn+1] ⊂ (sn, tn),

(iii) tn+1 − sn+1 < (1/2)(tn − sn), and

(iv) C(tn) − C(sn) points in the direction of vector (0, 1), i.e.,
y(tn) − y(sn) > 0 and x(tn) − x(sn) = 0.

Let {τ} = ∩∞
n=1[sn, tn]. Clearly τ �= tn, sn for all n. Since x(tn) −

x(sn) = 0, the product (x(tn) − x(τ ))(x(τ ) − x(sn)) is non-positive.
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Therefore,

lim
n→∞

(
x(tn) − x(τ )

tn − τ
· x(τ ) − x(sn)

τ − sn

)
= (x′(τ ))2

is nonpositive. Thus, x′(τ ) = 0. Since y(tn) − y(sn) > 0 for all n, it
follows that either y(tn)− y(τ ) or y(τ )− y(sn) is positive for infinitely
many values of n. We shall assume that y(tn) − y(τ ) is positive for
infinitely many values on n, say n = k1, k2, . . . , the other possibility
being treated similarly. Then we have

y′(τ ) = lim
j→∞

((y(tkj
) − y(τ ))/(tkj

− τ )) ≥ 0.

Since x′(τ ) = 0 and C ′(τ ) �= 0, it follows that y′(τ ) > 0. Therefore,
C ′(τ ) points in the direction of the vector (0, 1). Since C ′(τ ) =
R(A′(τ ))/|A(1) − A(0)|, we have A′(τ ) = |A(1) − A(0)| · R−1(C ′(τ )).
This shows that A′(τ ) points in the direction of A(1) − A(0).

Appendix

In this section we are going to prove that every piecewise-linear locally
1 1 curve is gently homotopic to a regular curve.

Suppose that C is a closed piecewise-linear curve such that for some
λ > 0 the points C̃(t) and C̃(s) are distinct whenever |s − t| < λ. We
shall assume that there exist numbers 0 < t1 < · · · < tn < 1 in the unit
interval [0, 1] such that C̃ restricted to each of the intervals [tn − 1, t1]
and [ti−1, ti], i = 2, . . . , n, is linear. If this is not the case we can use
a gentle homotopy of the type (x, t) → C̃(t + x) to homotope C to a
curve having this property (compare with Section 3).

For every integer k define points tk as follows. If k = qn + j, where
0 < j ≤ n, let tk = tj + q. Then C̃ restricted to [ti, ti+1] is defined by

C̃(t) = C̃(ti) + (t − ti)ai = C̃(ti+1) − (ti+1 − t)ai

where

ai =
C̃(ti+1) − C̃(ti)

ti+1 − ti
.
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Let s be a positive number smaller than or equal to M = (1/4) min{ti−
ti−1; i ∈ Z}. Define the curve hs : R → R2 as follows:

hs(t) =
{

C̃(t), t /∈ ∪{[ti − s, ti + s]; i ∈ Z},
αit

2 + βi + δi, t ∈ [ti − s, ti + s],

where the constants αi, βi and δi are given by the following expressions

αi = Ai/4s, βi = Bi/2 − (Ai/2s)ti

δi = C̃(ti) + (Ai/4s)(ti − s)2 − tiai−1.

By Ai we denote the difference ai − ai−1 and by Bi the sum ai + ai−1.
Thus Ai + Bi = 2ai and Ai − Bi = −2ai−1.

The function hs will be used to define a gentle homotopy from C to
a regular curve. First we are going to study the properties of hs.

Let xi(ξ) be the function αi(ti + ξ)2 + βi(ti + ξ) + δi. By a straight-
forward computation, one can show that xi(ξ) is equal to

(Ai/4s)(ξ2 + s2) + (Bi/2)ξ + C̃(ti).

Clearly xi(−ξ) = xi(ξ) − Biξ.

Using the expression for xi(ξ), we get

hs(ti+s) = xi(s) = Ais/2+Bis/2+C̃(ti) = ais+C̃(ti) = C̃(ti+s)

hs(ti−s) = xi(−s) = ais+C̃(ti)−Bis = C̃(ti)−ai−1s = C̃(ti−s),

which shows that hs is continuous.

Next we calculate the derivatives of hs at ti + s and ti − s. We have

(hs)′(ti ± s) = 2αi(ti ± s)+βi = (Ai/2s)(ti ± s)+Bi/2−(Ai/2s)ti
= ±Ai/2+Bi/2.

This gives us

(hs)′(ti + s) = ai and (hs)′(ti − s) = ai−1,

which implies that hs is continuously differentiable.
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Claim. The derivative of hs does not vanish.

We only need to verify this on [ti − s, ti + s] where i is an arbitrary
integer. If ai and ai−1 are linearly independent, then αi and βi are
also linearly independent which implies that (hs)′(t) cannot be equal
to zero. If ai and ai−1 are linearly dependent, then ai−1 = uai for some
positive number u (u has to be positive because otherwise C̃ cannot
be locally 1 1). A straightforward calculation gives us the following
expression for (hs)′(ti + t):

(hs)′(ti + t) = (ai/2)[(t/s)(1 − u) + (u + 1)].

The expression vanishes when t/s is equal to (u+1)/(u−1). The last
quotient, however, is greater than one by absolute value if u is positive;
therefore, the equation (hs)′(ti + t) = 0 has no solution when ti + t lies
in [ti − s, ti + s] because in this case t/s cannot be greater than one by
absolute value.

Since hs is a regular curve, it is locally 1 1. We show next that hs is
1 1 on [ti−1 + s, ti+1 − s] for all i. It suffices to show that the function
αit

2 + βit + δi = xi(t − ti), restricted to [ti − s, ti + s], is 1 1 and that
it intersects the line segments from C̃(ti−1) to C̃(ti)− s ·ai−1 and from
C̃(ti) + s · ai to C̃(ti+1), only in the points C̃(ti − s) and C̃(ti + s),
respectively. Suppose first that ai and ai−1 are linearly independent.
Denote by bj , j = i − 1, i, a unit vector perpendicular to aj . Then

(xi(τ ) − C̃(ti)) · bj =
(

Ai

4s
(τ2 + s2) +

Bi

2
τ

)
· bj

=
(a2i−j−1 · bj)

4s
((−1)i+j−1(τ2 + s2) + 2sτ )

=
(a2i−j−1 · bj)

4s
(−1)i+j−1(τ + (−1)i+j−1s)2.

If j = i−1, the above expression is equal to zero only if τ is equal to −s;
therefore, αit

2+βit+δi intersects the line through C̃(ti) in the direction
of ai−1 only at t = ti − s. Similarly, if j = i, the above expression is
equal to zero only if τ is equal to s; therefore, αit

2+βit+δi intersects the
line through C̃(ti) in the direction of ai only at t = ti + s. Assume now
that ai and ai−1 are linearly dependent. Then, as before, ai−1 = uai
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for some positive number u. Suppose that xi(τ ) = C̃(ti) − z · ai−1.
Then

0 = xi(τ ) − C̃(ti) + z · ai−1 =
Ai

4s
(τ2 + s2) +

Bi

2
τ + z · ai−1

=
ai

4s
((1 − u)(τ2 + s2) + 2s(1 + u)τ + 4s · u · z).

Thus, z = −(1/(4s·u))[(1−u)(τ2+s2)+2s(1+u)τ ] = −(1/(4s·u))[(τ +
s)2 − u(τ − s)2]. If |τ | ≤ s, we get the following estimate for z:

z ≤ − (1/(4s · u))[−u(2s)2] = s,

which shows that xi(τ ) restricted to [−s, s] intersects the line segment
from C̃(ti−1) to C̃(ti) − s · ai−1 only at C̃(ti) − s · ai−1. If xi(τ ) =
C̃(ti) + z · ai, then

0 = xi(τ ) − C̃(ti) − z · ai =
Ai

4s
(τ2 + s2) +

Bi

2
τ − z · ai

=
ai

4s
((1 − u)(τ2 + s2) + 2s(1 + u)τ − 4s · z).

Thus z = (1/(4s))[(1− u)(τ2 + s2) + 2s(1 + u)τ ] = (1/(4s))[(τ + s)2 −
u(τ − s)2]. If |τ | ≤ s, we get the following estimate for z:

z ≤ (1/(4s))[(2s)2] = s

which shows that xi(τ ) restricted to [−s, s] intersects the line segment
from C̃(ti)+s·ai to C̃(ti+1) only in the point C̃(ti+s). Now we show that
the restriction of hs to [ti−s, ti+s] is 1 1. This is equivalent to showing
that xi is 1 1 on [−s, s]. If xi(τ ) = xi(σ), for some τ, σ ∈ [−s, s], then
we get

Ai

4s
(τ2 + s2) +

Bi

2
τ =

Ai

4s
(σ2 + s2) +

Bi

2
σ,

which implies that

Ai

4s
(τ2 − σ2) =

Bi

2
(σ − τ )

and, therefore,

(σ − τ )
[
Bi

2
+

Ai

4s
(τ + σ)

]
= 0.
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If ai and ai−1 are linearly independent, then so are Ai and Bi. There-
fore the second factor in the above expression cannot vanish which
implies that σ is equal to τ and, therefore, xi is 1 1 on [−s, s]. Assume
now that ai and ai−1 are linearly dependent. Then, again, ai−1 = uai

for some positive number u. Therefore, the above equation becomes

(ai/(4s))(σ − τ )[2s(1 + u) + (1 − u)(τ + σ)] = 0.

Since τ and σ are smaller than s by absolute value, τ + σ is less than
2s by absolute value. Also, (u − 1)/(u + 1) is less than 1 by absolute
value because u is positive. If the last factor was zero, then we would
have the following estimate for |2s|:

|2s| =
∣∣∣∣u − 1
u + 1

(τ + σ)
∣∣∣∣ < 2s,

which is a contradiction. Thus, as before, we see that σ is equal to τ .

From the above it is clear now that hs(t1) is different from hs(t2)
whenever |t1 − t2| is less than M .

Define a homotopy H : I × I → R2 by

H(u, t) =
{

hMu(t), u ∈ (0, 1]
C(t), u = 0.

From the definition of hs it follows that Hu is a regular closed curve
for all u ∈ (0, 1]. We show next that H is continuous. It is clear from
the definition of hs that H is continuous on (0, 1]× I. Suppose (0, t) is
a point in {0} × I such that t �= ti for all i. Choose δ to be a positive
number which is less than (1/2) min{|ti − t|; i ∈ Z}. Then H(u, τ ) is
equal to C(τ ) for all (u, τ ) such that |t − τ | is less than δ and u is less
than δ/M . Therefore, H is continuous at (0, t). We still have to check
that H is continuous at every point (0, ti). To do that it is enough to
estimate the value |C(ti) − hMu(t)|. Let s = Mu. Using the notation
from above, we get

|C(ti) − hMu(t)| = |C(ti) − xi(t − ti)|
=

∣∣∣∣Ai

4s
((t − ti)2 + s2) +

Bi

2
(t − ti)

∣∣∣∣
≤ |Bi|

2
|t − ti| + |Ai|

4s
((t − ti)2 + (Mu)2).
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Since Ai, Bi and M do not depend on u and t, the last expression
goes to zero as (u, t) approaches (0, ti). Thus, H is continuous. Since
H(u, t1) is different from H(u, t2) whenever |t1− t2| is less than M , the
homotopy H is a gentle homotopy from C to the regular curve HM .
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