Jan Jastrzębski, Department of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland. e:mail jjas@ksinet.univ.gda.pl Tomasz Natkaniec, Department of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland. e:mail: mattn@ksinet.univ.gda.pl

ON SUMS AND PRODUCTS OF EXTENDABLE FUNCTIONS

Abstract

We study the maximal additive, multiplicative and lattice-like families for the class of all extendable functions. This article is a continuation of earlier papers, in which the same questions concerning other Darboux-like functions have been studied.

Preliminaries 1

Our terminology is standard. By \mathbb{R} and \mathbb{I} we denote the set of all reals and the interval [0,1], respectively. The letters X, Y and Z will denote topological spaces. The symbols \overline{A} , int(A) and bd(A) denote the closure, interior and boundary of a set A, respectively.

No distinction is made between a function and its graph. For functions $f: X \to Y$ and $g: X \to Z$, the symbol (f, g) denotes the diagonal of f and g, i.e., $(f,g): X \to Y \times Z$, (f,g)(x) = (f(x),g(x)) for every $x \in X$.

For a function $f : \mathbb{R} \to \mathbb{R}$ and $x \in \mathbb{R}$ the symbols $C^{-}(f, x), C^{+}(f, x)$ denote the cluster sets from the left and right, respectively, of the function f at the point x.

By C(X, Y) and Const(X, Y) we denote the family of all continuous functions and constant functions from X to Y, respectively. We shall write C and Const when X and Y are clear from the context.

We shall consider the following classes of functions from X to Y.

589

Key Words: extendable functions, peripherally continuous functions, family of peripheral intervals, maximal additive family, maximal multiplicative family.

Mathematical Reviews subject classification: Primary 26A15; Secondary 54C08.

Received by the editors April 16, 1998 *Both authors are supported by UG Research Grant No BW/5100-5-0282-7 and by NSF Cooperative Research Grant INT-9600548 with its Polish part financed by KBN.

- PC(X, Y) the class of all peripherally continuous functions. A function $f: X \to Y$ is *peripherally continuous* if for every $x \in X$ and for all pairs of open sets U and V containing x and f(x), respectively, there exists an open subset $W \subset U$ such that $x \in W$ and $f(bd(W)) \subset V$.
- E(X, Y) the class of all functions with property \mathcal{E} . A function $f: X \to Y$ has property \mathcal{E} if it is extendable to a peripherally continuous function, i.e., if there exists a peripherally continuous function $F: X \times \mathbb{I} \to Y$ such that f(x) = F(x, 0) for all $x \in X$.
- $\operatorname{Conn}(X,Y)$ the class of all connectivity functions. A function $f: X \to Y$ is *connectivity*, if the restriction $f \upharpoonright C$ is a connected subset of $X \times Y$ whenever C is a connected subset of X.
- $\operatorname{Ext}(X,Y)$ the family of *extendable* functions, i.e., functions $f: X \to Y$ for which there exists a connectivity function $F: X \times \mathbb{I} \to Y$ with property that F(x,0) = f(x) for every $x \in X$.

It is well-known that $PC(\mathbb{R}^2, \mathbb{R}) = Conn(\mathbb{R}^2, \mathbb{R})$. (The inclusion " \subset " was proved by Hamilton [OH] and by Stallings [JS], and the inclusion " \supset " by Hagan [H].) Therefore, $E(\mathbb{R}, \mathbb{R}) = Ext(\mathbb{R}, \mathbb{R})$.

Moreover, we shall consider the following class of real functions of one real variable that was introduced by R. Fleissner [RF].

M – the class of all functions $f: \mathbb{R} \to \mathbb{R}$ such that if x_0 is a right (left) point of discontinuity of f, then $f(x_0) = 0$ and there is a sequence (x_n) converging to x_0 such that $x_n > x_0$ $(x_n < x_0)$ and $f(x_n) = 0$.

Recall that if $f \in M$, then the set D of all points at which f is not continuous is nowhere dense, $D \subset f^{-1}(0)$, the set $f^{-1}(0)$ is closed, and f is continuous on the closure of every component of $\mathbb{R} \setminus \mathrm{bd}(f^{-1}(0))$. Consequently, f is a Darboux Baire one function. Thus it is also an extendable function. (See [BHL].)

Let \mathcal{X} be a class of real functions. The maximal additive (multiplicative, lattice-like, respectively) class for \mathcal{X} is defined to be the class of all $f \in \mathcal{X}$ for which $f + g \in \mathcal{X}$ ($fg \in \mathcal{X}$, $\max(f,g) \in \mathcal{X}$ and $\min(f,g) \in \mathcal{X}$, respectively) whenever $g \in \mathcal{X}$. The respective classes are denoted by $\mathcal{M}_a(\mathcal{X})$, $\mathcal{M}_m(\mathcal{X})$ and $\mathcal{M}_l(\mathcal{X})$. Those classes for some families of Darboux-like functions from \mathbb{R} to \mathbb{R} were studied by several authors. (See, e.g., [Ra] and [Fa] for the class of all Darboux functions, [AB] and [RF] for the class of all Darboux, Baire one functions, [KB] for the class of all perfect road functions and for the class of all peripherally continuous functions and [JJN] for the class of almost continuous functions, for the class of connectivity functions and for the class of functionally connected functions. See also the survey [GN] for definitions and relations between those properties.) The first systematic study of the operators $\mathcal{M}_{a}(_)$, $\mathcal{M}_{m}(_)$ and $\mathcal{M}_{l}(_)$ was done by Jastrzębski, Jędrzejewski and Natkaniec in [JJN]. In particular, they proved the following two basic lemmas.

Lemma 1.1. ([JJN, Lemma 2.1]) Let Φ be a property of functions and X be a topological space. For i = 1, 2 let \mathcal{X}_i be the class of all functions $f: X \to \mathbb{R}^i$ with property Φ . Suppose the classes \mathcal{X}_1 and \mathcal{X}_2 fulfill the following conditions.

- (1.1) If $g \in \mathcal{X}_2$ and $h \in C(\mathbb{R}^2, \mathbb{R})$, then $h \circ g \in \mathcal{X}_1$.
- (1.2) If $f \in \mathcal{X}_1$ and $g \in C(X, \mathbb{R})$, then $(f, g) \in \mathcal{X}_2$.

Then $C(X, \mathbb{R}) \subset \mathcal{M}_a(\mathcal{X}_1) \cap \mathcal{M}_m(\mathcal{X}_1) \cap \mathcal{M}_l(\mathcal{X}_1).$

Lemma 1.2. ([JJN, Lemma 2.2]) Let \mathcal{X} be a family of real functions defined on intervals that fulfills the following conditions.

- (2.0) If $f \in \mathcal{X}$ and x belongs to the domain of f, then the sets $C^+(f,x)$, $C^-(f,x)$ are connected and $f(x) \in C^+(f,x) \cap C^-(f,x)$.
- (2.1) If $f: I \to \mathbb{R}$, $f \in \mathcal{X}$ and J is a subinterval of an interval I, then $f \mid J \in \mathcal{X}$.
- (2.2) If $h: (a,b) \to \mathbb{R}$, $h \in \mathcal{X}$, $y \in C^+(h,a)$, $z \in C^-(h,b)$, then the functions $h_1: [a,b) \to \mathbb{R}$, $h_2: (a,b] \to \mathbb{R}$ and $h_3: [a,b] \to \mathbb{R}$ belong to \mathcal{X} , where $h_1 = h \cup \{(a,y)\}, h_2 = h \cup \{(b,z)\}, h_3 = h_1 \cup h_2$.
- (2.3) If $I \subset \mathbb{R}$ is an interval, $a \in I$ and $f \upharpoonright (I \cap (-\infty, a]) \in \mathcal{X}$, $f \upharpoonright (I \cap [a, +\infty)) \in \mathcal{X}$, then $f \in \mathcal{X}$.
- (2.4) Const $\subset \mathcal{M}_a(\mathcal{X})$ and $-1 \in \mathcal{M}_m(\mathcal{X})$.
- (2.5) If $f: I \to (0, \infty)$ and $f \in \mathcal{X}$, then $1/f \in \mathcal{X}$.

Then

- (i) $\mathcal{M}_a(\mathcal{X}) \cup \mathcal{M}_l(\mathcal{X}) \subset C;$
- (*ii*) $\mathcal{M}_m(\mathcal{X}) \subset \mathcal{M}$.

We shall employ those lemmas for description of the maximal additive, multiplicative and lattice-like classes for the family of all extendable functions. In our study we shall use the characterization of extendable functions via families of peripheral intervals. (See [GR].) **Definition 1.** Let $f: \mathbb{I} \to \mathbb{I}$ be a function. A family of peripheral intervals (or simply, a PI family) for f consists of a sequence of ordered pairs (I_n, J_n) of subintervals of \mathbb{I} such that

- (1) I_n is open in \mathbb{I} and the length of I_n converges to 0;
- (2) for each $x \in \mathbb{I}$ and for any $\varepsilon > 0$ there exists (I_n, J_n) such that $x \in I_n$, $f(x) \in J_n$ and the length of I_n and J_n are less than ε ;
- (3) both endpoints of I_n map into J_n ;
- (4) if I_n and I_m have points in common but neither is a subset of the other, then J_n and J_m have points in common.

Gibson and Roush in [GR, Theorems 1 and 2] proved the following theorem.

Theorem 1.1. If $f: \mathbb{I} \to \mathbb{I}$ is an extendable function, then there exists a PI family for f. On the other hand, if for $f: \mathbb{I} \to \mathbb{I}$ there exists a PI family, then f is an extendable function. Moreover, then f is the restriction of connectivity function $F: \mathbb{I}^2 \to \mathbb{I}$ such that F is continuous on the complement of $\mathbb{I} \times \{0\}$.

It is easy to observe that the analogous characterization is valid for any real function defined on an interval.

2 Extendable Functions

Lemma 2.1. If $g \in PC(X, Y)$ and $h \in C(Y, Z)$, then $h \circ g \in PC(X, Z)$.

PROOF. Let $x \in X$, U and V be open neighborhoods of x and h(g(x)), respectively. Then there exists an open neighborhood $W \subset Y$ of the point g(x) such that $h(W) \subset V$ and there exists an open neighborhood $U_0 \subset U$ of the point x such that $g(\operatorname{bd} U_0) \subset W$. Hence $h(g(\operatorname{bd} U_0)) \subset V$.

Corollary 2.1. If $g \in E(X, Y)$ and $h \in C(Y, Z)$, then $h \circ g \in E(X, Z)$.

PROOF. There exists a peripherally continuous function $G: X \times \mathbb{I} \to Y$ such that g(x) = G(x, 0) for all $x \in X$. Then, by Lemma 2.1, the function $h \circ G: X \times \mathbb{I} \to Z$ is peripherally continuous, and $h \circ g(x) = h \circ G(x, 0)$ for all $x \in X$. So $h \circ g$ has property \mathcal{E} .

Lemma 2.2. Assume that X is a regular topological space. If $f \in PC(X, Y)$ and $g \in C(X, Z)$, then $(f, g) \in PC(X, Y \times Z)$.

PROOF. Fix $x_0 \in X$. Let U be an open neighborhood of x_0 and V be an open neighborhood of $(f(x_0), g(x_0))$. There exist open neighborhoods $V_1 \subset Y$ and $V_2 \subset Z$ of $f(x_0)$ and $g(x_0)$, respectively, such that $V_1 \times V_2 \subset V$. Let U_1 be an open subset of U such that $x_0 \in U_1$, $g(U_1) \subset V_2$ and let U_2 be an open set such that $\overline{U_2} \subset U_1$, $x_0 \in U_2$ and $f(\operatorname{bd} U_2) \subset V_1$. Hence

$$(f,g)(\operatorname{bd} U_2) \subset f(\operatorname{bd} U_2) \times g(\operatorname{bd} U_2) \subset V_1 \times V_2 \subset V_2$$

Thus (f, g) is a peripherally continuous function at x_0 .

Corollary 2.2. Assume that X is a regular topological space. If $f \in E(X, Y)$ and $g \in C(X, Z)$, then $(f, g) \in E(X, Y \times Z)$.

Now, Corollaries 2.1, 2.2 and Lemma 1.1 imply the following inclusions.

Corollary 2.3.

$$\mathcal{C}(\mathbb{R},\mathbb{R}) \subset \mathcal{M}_a(\mathcal{E}(\mathbb{R},\mathbb{R})) \cap \mathcal{M}_m(\mathcal{E}(\mathbb{R},\mathbb{R})) \cap \mathcal{M}_l(\mathcal{E}(\mathbb{R},\mathbb{R}))$$

Corollary 2.4.

$$\mathcal{C}(\mathbb{R},\mathbb{R}) \subset \mathcal{M}_a(\mathrm{Ext}(\mathbb{R},\mathbb{R})) \cap \mathcal{M}_m(\mathrm{Ext}(\mathbb{R},\mathbb{R})) \cap \mathcal{M}_l(\mathrm{Ext}(\mathbb{R},\mathbb{R}))$$

Now we shall verify that the class of all extendable real functions satisfies all assumptions of Lemma 1.2.

Lemma 2.3. Assume that $g: (c, \infty) \to \mathbb{R}$ is an extendable function and $y \in C^+(g,c) \cap \mathbb{R}$. Then $f = g \cup \{(c,y)\}$ is also an extendable function.

PROOF. Let \mathcal{J}_0 be a PI family for g. For every $n \in \mathbb{N}$ choose $c_n \in (c, c+1]$ such that

- (a) $c_0 = c + 1;$
- (b) $c_n < \min(c + \frac{1}{n}, c_{n-1});$
- (c) $|g(c_n) y| < \frac{1}{n}$.

Put $C = \{c_n : n \in \mathbb{N}\} \cup \{c\}$. Now we shall construct a PI family \mathcal{J} for f. A pair (I, J) belongs to \mathcal{J} iff either

- (i) $I = [c, c_n)$ and $J = (y \frac{1}{n}, y + \frac{1}{n})$ for some $n \in \mathbb{N}$; or
- (ii) $(I, J) \in \mathcal{J}_0, I \cap C = \{c_m\} \text{ and } g(c_m) \in J; \text{ or }$
- (iii) $(I, J) \in \mathcal{J}_0$ and $C \cap I = \emptyset$.

We shall verify that \mathcal{J} is a PI family for f. Arrange all elements of \mathcal{J} in a sequence $(I_n, J_n)_{n \in \mathbb{N}}$. Then all I_n are open in $[c, \infty)$ and the lengths of I_n converge to 0; so condition (1) from Definition 1 is satisfied.

For x = c condition (2) is clear by (i). For $x \neq c$, (2) follows easily from the fact that \mathcal{J}_0 is a PI family for g.

Condition (3) is also obvious. Thus we have to verify only condition (4). Fix n, m such that $I_n \cap I_m \neq \emptyset$ and neither is a subset of the other. Note that either $c \notin I_n$ or $c \notin I_m$. If $c \notin I_n \cup I_m$, then $(I_n, J_n), (I_m, J_m) \in \mathcal{J}_0$ and therefore $J_n \cap J_m \neq \emptyset$. So, suppose that $c \in I_n$ and $c \notin I_m$. Then $I_n = [c, c_{k_n})$ for some $k_n \in N$ and $c_{k_n} \in I_m$. By (ii), $g(c_{k_n}) \in J_m$ and, by (i) and (c), $g(c_{k_n}) \in J_n$. Thus $J_n \cap J_m \neq \emptyset$.

Lemma 2.4. If $c \in \mathbb{R}$, $f \colon \mathbb{R} \to \mathbb{R}$ and $f \upharpoonright (-\infty, c]$, $f \upharpoonright [c, \infty)$ are extendable functions, then f is also an extendable function.

PROOF. Let \mathcal{J}_0 and \mathcal{J}_1 denote PI families for $f \upharpoonright (-\infty, c]$ and $f \upharpoonright [c, \infty)$ respectively. For every $n \in \mathbb{N}$ choose $(I_n^-, J_n^-) \in \mathcal{J}_0$, $(I_n^+, J_n^+) \in \mathcal{J}_1$ such that $c \in I_n^- \cap I_n^+$ and the lengths of $I_n^- \cup I_n^+$ and $J_n^- \cup J_n^+$ are less than $\frac{1}{n}$. Now we shall define a PI family \mathcal{J} for f. A pair (I, J) belongs to \mathcal{J} iff either

- (i) $(I, J) \in \mathcal{J}_0 \cup \mathcal{J}_1$ and $c \notin I$; or
- (ii) $I = I_n^- \cup I_n^+$ and $J = J_n^- \cup J_n^+$ for some $n \in \mathbb{N}$.

It is easy to verify that \mathcal{J} is a PI family for f. From Lemmas 1.2, 2.3 and 2.4 we obtain the following inclusions.

Corollary 2.5.

$$\mathcal{M}_{a}(\mathrm{Ext}(\mathbb{R},\mathbb{R})) \cup \mathcal{M}_{l}(\mathrm{Ext}(\mathbb{R},\mathbb{R})) \subset \mathrm{C}(\mathbb{R},\mathbb{R})$$
$$\mathcal{M}_{m}(\mathrm{Ext}(\mathbb{R},\mathbb{R})) \subset \mathrm{M}$$

Thus, Corollaries 2.4 and 2.5 yield the following equalities:

Theorem 2.1.

$$\mathcal{M}_a(\operatorname{Ext}(\mathbb{R},\mathbb{R})) = \operatorname{C}(\mathbb{R},\mathbb{R}) = \mathcal{M}_l(\operatorname{Ext}(\mathbb{R},\mathbb{R}))$$

Lemma 2.5. Assume that C is a nowhere dense closed subset of \mathbb{R} and $g: \mathbb{R} \to \mathbb{R}$ satisfies

- (a) g(x) = 0 for $x \in C$;
- (b) if $J \subset \mathbb{R}$ is a component of $\mathbb{R} \setminus C$, then $g \mid \overline{J}$ is an extendable function.

594

Then g is an extendable function.

PROOF. Let $\{(a_n, b_n)\}_n$ be the sequence of all components of $\mathbb{R} \setminus C$. For each n let \mathcal{K}_n be a PI family for $g|(a_n, b_n)$. For every positive integer n choose a finite family \mathcal{I}_n of open intervals such that

- $C \subset \bigcup \mathcal{I}_n;$
- the length of each $I \in \mathcal{I}_n$ is less than 1/n;
- the end-points of every $I \in \mathcal{I}_n$ belong to $I \setminus C$;
- if $I \in \mathcal{I}_n$, $\inf(I) \in (a_i, b_i)$, $\sup(I) \in (a_j, b_j)$, $I^- = I \cap (a_i, b_i]$ and $I^+ = I \cap [a_j, b_j)$, then there are intervals J^-, J^+ such that $(I^-, J^-) \in \mathcal{K}_i$, $(I^+, J^+) \in \mathcal{K}_i$ and the length of $J^- \cup J^+$ is less than 1/n.

We shall define a PI family \mathcal{J} for g. A pair (I, J) belongs to \mathcal{J} iff either

- (i) there exists n such that $(I, J) \in \mathcal{K}_n$ and $I \cap C = \emptyset$; or
- (ii) $I \in \mathcal{I}_n$ for some n and $J = J^- \cup J^+$, where J^-, J^+ are described above.

Now we shall verify that \mathcal{J} is a PI family for g. We can arrange all elements of \mathcal{J} in a sequence $\{(I_n, J_n)\}_n$ such that the lengths of I_n converge to 0; so condition (1) from Definition 1 is satisfied.

To prove condition (2), fix $x \in \mathbb{R}$ and $\varepsilon > 0$. If $x \notin C$, then $x \in (a_m, b_m)$ for some m. There exists $(I, J) \in \mathcal{K}_m$ that fulfills (2) and, by (i), $(I, J) \in \mathcal{J}$. If $x \in C$, then there exist $n \in \mathbb{N}$ and $(I, J) \in \mathcal{J}$ such that $I \in \mathcal{I}_n$, $1/n < \varepsilon$ and $x \in I$. Then $g(x) = 0 \in J$ and the lengths of I and J are less than 1/n; so the pair (I, J) satisfies (2).

Statement (3) is obvious by the definition of \mathcal{J} .

To verify (4), fix (I_n, J_n) and (I_m, J_m) such that $I_n \cap I_m \neq \emptyset$ and neither is a subset of the other. Note that $0 \in J_k$ whenever $I_k \cap C \neq \emptyset$. Thus, if $I_n \cap C \neq \emptyset \neq I_m \cap C$, then $0 \in J_n \cap J_m$. If $(I_n \cup I_m) \cap C = \emptyset$, then $I_n \cup I_m \subset (a_i, b_i)$ for some $i \in \mathbb{N}$ and therefore $(I_n, J_n), (I_m, J_m) \in \mathcal{K}_i$. Thus $J_n \cap J_m \neq \emptyset$. So, assume that $I_n \cap C \neq \emptyset$ and $I_m \cap C = \emptyset$. Then $I_m \subset (a_i, b_i)$ for some $i \in \mathbb{N}$ and either $a_i \in I_n$ or $b_i \in I_n$. Suppose that $b_i \in I_n$. By the definition of \mathcal{J} there exist $(I_0, J_0) \in \mathcal{K}_i$ such that $I_0 = I_n \cap (a_i, b_i]$ and $J_0 \subset J_n$. Because $(I_m, J_m), (I_0, J_0) \in \mathcal{K}_i$ and $I_m \cap I_0 \neq \emptyset$, we get $J_m \cap J_0 \neq \emptyset$. Consequently, $J_m \cap J_n \neq \emptyset$; so \mathcal{J} satisfies condition (4).

Theorem 2.2.

$$\mathcal{M}_m(\operatorname{Ext}(\mathbb{R},\mathbb{R})) = \mathrm{M}.$$

PROOF. By Corollary 2.5, it is enough to prove that $M \subset \mathcal{M}_m(\operatorname{Ext}(\mathbb{R},\mathbb{R}))$. Assume that $f \in \operatorname{Ext}(\mathbb{R},\mathbb{R})$ and $g \in M$. Then $D = \operatorname{bd}(f^{-1}(0))$ is a closed and nowhere dense set. Let J be a component of the complement of D. Then gis continuous on \overline{J} and, by Corollary 2.4, fg is extendable on \overline{J} . Moreover, fg(x) = 0 for $x \in D$, and according to Lemma 2.5, fg is an extendable function. \Box

3 Applications

The next lemma shows that in the definition of extendability (for real functions) we can replace the compact interval \mathbb{I} by whole real line.

Lemma 3.1. For a function $f : \mathbb{R} \to \mathbb{R}$ the following conditions are equivalent.

- (i) $f \in \operatorname{Ext}(\mathbb{R}, \mathbb{R})$.
- (ii) there is $F \in PC(\mathbb{R}^2, \mathbb{R})$ such that f(x) = F(x, 0) for each $x \in \mathbb{R}$.

PROOF. Let $f \in \text{Ext}(\mathbb{R}, \mathbb{R})$. Then there exists $F_0 \in \text{PC}(\mathbb{R} \times \mathbb{I}, \mathbb{R})$ such that $f(x) = F_0(x, 0)$ for $x \in \mathbb{R}$. According to [GR, Theorem 2], we can assume that F_0 is continuous on $\mathbb{R} \times (0, 1]$. Thus $F_+ : \mathbb{R} \times [0, \infty) \to \mathbb{R}$ defined by

$$F_{+}(x,y) = \begin{cases} F_{0}(x,y) & \text{ for } (x,y) \in \mathbb{R} \times \mathbb{I} \\ F_{0}(x,1) & \text{ for } (x,y) \in \mathbb{R} \times [1,\infty) \end{cases}$$

is a peripherally continuous function and consequently $F \colon \mathbb{R}^2 \to \mathbb{R}$ defined by

$$F(x,y) = \begin{cases} F_+(x,y) & \text{for } (x,y) \in \mathbb{R} \times [0,\infty) \\ F_+(x,-y) & \text{for } (x,y) \in \mathbb{R} \times (-\infty,0] \end{cases}$$

is also a peripherally continuous function with f(x) = F(x, 0) for every $x \in \mathbb{R}$.

Now, if $F \in PC(\mathbb{R}^2, \mathbb{R})$ and f(x) = F(x, 0) for each $x \in \mathbb{R}$, then $F \mid (\mathbb{R} \times \mathbb{I})$ is also a peripherally continuous extension of f. Thus $f \in Ext(\mathbb{R}, \mathbb{R})$. \Box

Theorem 3.1.

$$\mathcal{M}_a(\mathrm{PC}((\mathbb{R}^2,\mathbb{R})) = \mathrm{C}(\mathbb{R}^2,\mathbb{R}) = \mathcal{M}_l(\mathrm{PC}(\mathbb{R}^2,\mathbb{R}))$$

PROOF. By Lemmas 2.1 and 2.2, $C(\mathbb{R}^2, \mathbb{R}) \subset \mathcal{M}_a(PC(\mathbb{R}^2, \mathbb{R}))$. On the other hand, $\mathcal{M}_a(PC(\mathbb{R}^2, \mathbb{R})) \subset PC(\mathbb{R}^2, \mathbb{R})$ because $f \equiv 0$ belongs to $PC(\mathbb{R}^2, \mathbb{R})$. Suppose that $g \in PC(\mathbb{R}^2, \mathbb{R})$ is discontinuous at $x_0 \in \mathbb{R}^2$. Let $h \colon \mathbb{R} \to \mathbb{R}^2$ be a homeomorphic injection of \mathbb{R} into \mathbb{R}^2 such that

- $h(0) = x_0$ and $g \circ h$ is discontinuous at 0;
- there is a homeomorphism $h_1 \colon \mathbb{R}^2 \to \mathbb{R}^2$ such that $h_1(x,0) = h(x)$ for $x \in \mathbb{R}$.

By Corollary 2.5, there is $f_0 \in \text{Ext}(\mathbb{R}, \mathbb{R})$ such that $f_0 + g \circ h \notin \text{Ext}(\mathbb{R}, \mathbb{R})$. Let $f_1 \colon \mathbb{R}^2 \to \mathbb{R}$ be a peripherally continuous extension of f_0 , i.e., $f_1(x, 0) = f_0(x)$ for $x \in \mathbb{R}$. Then $f = f_1 \circ h_1^{-1} \in \text{PC}(\mathbb{R}^2, \mathbb{R})$. Suppose that $f + g \in \text{PC}(\mathbb{R}^2, \mathbb{R})$. Then

$$f_1 + g \circ h_1 = (f + g) \circ h_1 \in \mathrm{PC}(\mathbb{R}^2, \mathbb{R}).$$

On the other hand, for each $x \in \mathbb{R}$ we have

$$(f_1 + g \circ h_1)(x, 0) = f_1(x, 0) + g(h_1(x, 0)) = f_0(x) + g \circ h(x).$$

Thus $f_0 + g \circ h \in \text{Ext}(\mathbb{R}, \mathbb{R})$, contrary to the choice of f_0 . Consequently,

$$\mathcal{M}_a(\mathrm{PC}(\mathbb{R}^2,\mathbb{R})) \subset \mathrm{C}(\mathbb{R}^2,\mathbb{R}).$$

In a similar way we can prove that

$$\mathcal{M}_l(\mathrm{PC}(\mathbb{R}^2,\mathbb{R})) = \mathrm{C}(\mathbb{R}^2,\mathbb{R}).$$

To see it, note that $\mathcal{M}_l(\mathrm{PC}(\mathbb{R}^2,\mathbb{R})) \subset \mathrm{PC}(\mathbb{R}^2,\mathbb{R})$. Indeed, suppose that $f: \mathbb{R}^2 \to \mathbb{R}$ is not peripherally continuous at $x_0 \in \mathbb{R}^2$. Then there is an open neighborhood W of x_0 and $\varepsilon > 0$ such that $f(\mathrm{bd}(U)) \subset (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$ for no open neighborhood U of x_0 with $U \subset W$. Then the function $\max(f, f(x_0) - \varepsilon)$ is not peripherally continuous at x_0 and the constant function $f(x_0) - \varepsilon$ is peripherally continuous. Thus $f \notin \mathcal{M}_l(\mathrm{PC}(\mathbb{R}^2,\mathbb{R}))$.

Finally, note that Lemmas 2.1 and 2.2 yield $C(\mathbb{R}^2, \mathbb{R}) \subset \mathcal{M}_m(PC(\mathbb{R}^2, \mathbb{R}))$. On the other hand, it is easy to verify that $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \sin(||x||^{-1}) & \text{if } x \neq 0; \\ 0 & \text{if } x = 0 \end{cases}$$

is a discontinuous function that belongs to $\mathcal{M}_m(\mathrm{PC}(\mathbb{R}^2,\mathbb{R}))$. Thus we finish with the following problem:

Problem 1. Characterize the class $\mathcal{M}_m(\mathrm{PC}(\mathbb{R}^2,\mathbb{R}))$.

References

- [KB] K. Banaszewski, Algebraic properties of *E*-continuous functions, Real Anal. Exchange 18 (1992–93), 153–168.
- [BHL] J. Brown, P. Humke and M. Laczkovich, *Measurable Darboux functions*, Proc. Amer. Math. Soc. **102** (1988), 603–610.
- [AB] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, Vol. 659 Springer-Verlag, Berlin, Heidelberg, New York, 1978.
- [Fa] J. Farková, About the maximum and the minimum of Darboux functions, Mat. Čas. Slov. Akad. Vied 21 (1971), 110–116.
- [RF] R. J. Fleissner, A note on Baire 1 Darboux functions, Real Anal. Exchange 3 (1977–78), 104–106.
- [GN] R. G. Gibson and T. Natkaniec, *Darboux like functions*, Real Anal. Exchange 22 (1996–97), 492–534.
- [GR] R. G. Gibson and F. Roush, A characterization of extendable connectivity functions, Real Anal. Exchange 13 (1987–88), 214–222.
- [H] M. R. Hagan, Equivalence of connectivity maps and peripherally continuous transformations, Proc. Amer. Math. Soc. 17 (1966), 175–177.
- [OH] O. H. Hamilton, Fixed points for certain noncontinuous transformations, Proc. Amer. Math. Soc. 8 (1957), 750–756.
- [JJN] J. Jastrzębski, J. Jędrzejewski and T. Natkaniec, On some subclasses of Darboux functions, Fund. Math. 138 (1991), 165–173.
- [Ra] T. Radaković, Über Darbouxsche und stetige Funktionen, Monat. Math. Phys. 38 (1931), 111–122.
- [JS] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249–263.