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SINGULARITIES OF BOUNDED
HARMONIC FUNCTIONS

Abstract

In a harmonic space, the property that k is a compact set of remov-
able singularities for bounded harmonic functions defined in a neighbor-
hood of k is independent of the neighborhood chosen.

1 Introduction

Let k be compact and w be open such that k ⊂ w ⊂ Rn (n ≥ 2). Suppose
that any bounded harmonic function in w \ k extends as a harmonic function
in w. Then, it can be shown (Theorem 9.9, Axler et al [4]) that for any open
set w0 ⊃ k, if u is bounded harmonic in w0 \ k, u extends harmonically in
w0. Using a slightly different method, it is proved here that this result is true
in Riemannian manifolds and in Riemann surfaces also; actually we work in
the context of the Brelot axiomatic potential theory in harmonic spaces and
mention some of its consequences.

2 Preliminaries

Let Ω be a connected and locally compact space which is not compact, provided
with a sheaf of harmonic functions satisfying the 3 axioms of Brelot [5]. We
assume that the constants are harmonic in Ω. There may or may not be any
potential > 0 in Ω. In case there is no potential > 0 in Ω, we fix an unbounded
harmonic function H ≥ 0 outside a compact set (Théorème 1.17 [1]); this
function is the axiomatic analogue of log |x| in R2 and the Evans potential in
a parabolic Riemann surface or in a parabolic Riemannian manifold (Nakai
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[7]). Then Lemma l [2] and Theorem 2.2 [3] together allow us to state the
following useful assertion.

Lemma. In a harmonic space Ω with or without potentials > 0, let k be a
compact set and w be an open set such that k ⊂ w. Let u be a harmonic
function in w \ k. Then there exist a harmonic function s in Ω \ k and a
harmonic function t in w such that u = s − t in w \ k. Moreover, s can be
assumed bounded near infinity if there are potentials > 0 in Ω; otherwise, for
a suitable α, s− αH is bounded near infinity.

3 Nonremovable Singularities

Recall (p.142 [1]) that a set e in a harmonic space is locally polar (resp. polar)
in an open set w ⊃ e, if and only if there exists a superharmonic function
(resp. a potential) s in w such that s(x) = ∞ on e; and a locally polar set e
in w is polar if there exist potentials > 0 in w (p.47, Brelot [5]).

Theorem. In a harmonic space Ω with potentials > 0, let k be compact and
w be open such that k ⊂ w. Suppose there exists a bounded harmonic function
in w \ k which does not extend harmonically in w. Then for any open set
w0 ⊃ k, there exists a bounded harmonic function in w0 \ k which does not
extend harmonically in w0. The same is true in a harmonic space without
positive potentials also, provided every point in Ω is locally polar.

Proof. Clearly it is enough to prove the theorem assuming w0 = Ω. Note
that k is not locally polar in w since there exists a bounded harmonic function
u in w \ k which is not extendable as a harmonic function in w.

1) Assume that there are potentials > 0 in Ω. In this case k is not polar
in Ω (p.47, Brelot [5]). Let h = R̂k

1 in Ω. Recall that

Rk
1 = inf{v : v superharmonic ≥ 0 in Ω and v ≥ 1 on k}

and R̂k
1 is its lower semicontinuous regularization so that h is a bounded har-

monic function in Ω \ k which does not extend harmonically to Ω.
2) Suppose now that there are no potentials > 0 in Ω. Since every point

in Ω is locally polar in this case by the assumption, k should contain at least
two points xi (i = 1, 2) such that u does not extend harmonically to any
neighborhood of xi. Consequently we can find two compact sets ki which are
not locally polar and two open sets wi such that k ⊃ k1∪k2, ki ⊂ wi ⊂ wi ⊂ w
and w1 ∩ w2 = ∅. Let ui = (R̂ki

1 )w in w where the suffix w indicates that the
infimum is with respect to the functions defined in w, so that ui is a positive
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superharmonic function in w, harmonic in w \ ki ⊃ w \ k but not harmonic in
the whole w.

Then using the lemma above, write ui = si−ti in w\k where si is harmonic
in Ω \ k, ti is harmonic in w, and (si − αiH) is bounded near infinity. Here
αi 6= 0. For otherwise, define

vi =

{
si in Ω \ k
ui + ti in w.

Then vi is a nonharmonic bounded superharmonic function in Ω, a contradic-
tion.

Let s = α2s1 − α1s2 in Ω \ k; s is harmonic and bounded near infinity. In
w\k, s = (α2u1−α1u2)+(α2t1−α1t2) and hence it is bounded and harmonic
in w \ k. Thus, s is bounded harmonic in Ω \ k, but s cannot be extended
harmonically in Ω. For suppose s extends harmonically in w; this in particular
would imply that s extends harmonically in w1 and consequently (since u2, t1
and t2 are all harmonic in w1) u1 = (R̂k1

1 )w is harmonic in w1 and hence in
w, a contradiction.

Remark. On the necessity of requiring in the above theorem that every point
in Ω should be locally polar if Ω has no potentials> 0: Suppose Ω is a harmonic
space without positive potentials and k is a compact set as in the theorem.
Then it may happen that k reduces to a single point which is not locally polar.
This necessitates the consideration of two different possibilities.

1) k = {x0} and Ω \ k is not connected. In this case there is no problem
proving the above theorem; for, define a harmonic function h in Ω \ k, equal
to 1 in one component and equal to 2 in the other components of Ω \ k. Then
h is bounded and harmonic to Ω \ k which does not extend harmonically to
Ω. For an example of such a possibility, let Ω = R with the affine functions as
harmonic and take k = {0}.

2) On the other hand, if k = {x0} and Ω\k is connected, the above theorem
may fail; for, it may happen that there exists a bounded harmonic function
in w \ k which does not extend harmonically to w whereas every bounded
harmonic function in Ω\k extends harmonically to Ω. For an example of such
a possibility, let Ω = [0,∞) and define h harmonic in (a, b), a > 0, if it is
affine and in [0, c) if it is constant. Let k = {0}. Then, given any open set
w = [0, c), c < ∞ we can find bounded harmonic functions in (0, c) which do
not extend harmonically in w = [0, c); but any bounded harmonic function
in (0,∞) being constant, every bounded harmonic function in Ω \ k extends
harmonically to Ω.
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Converse. Let e be a closed set in a harmonic space Ω. We know that if e
is locally polar in Ω, then e0 = φ and for any open set w, if h is bounded
harmonic in w \ e, h extends harmonically to w. Let us propose its converse
in the form: Let e be a closed set contained in an open set w, e0 = φ; if every
bounded harmonic function in w\e extends harmonically to w, then e is locally
polar in Ω.

In this form the converse is true if there are potentials > 0 in Ω (see 6.2.16,
p.149 Constantinescu and Cornea [6]). For, if e is not locally polar, we can
find a compact set k ⊂ e which is not locally polar, since Ω is σ-compact.
Then, (R̂k

1) is a bounded harmonic function in w \ e ⊂ w \ k which does not
extend harmonically to w, a contradiction. (Note that the condition e0 = φ is
necessary. For, consider the example of Ω = (0,∞) with harmonic functions as
locally affine functions; take e = (0, 1]. Then any bounded harmonic function
in Ω\e being a constant extends harmonically to Ω. But e is not locally polar;
however, if e is compact, the condition e0 = φ is redundant.)

But, as the above remark shows, this converse need not be true if Ω does
not have potentials > 0 in Ω. However, if we assume that each point is locally
polar when there is no potential > 0 in Ω (as in parabolic Riemann surfaces
and in parabolic Riemannian manifolds), the above theorem shows that this
converse is valid. For, if e is not locally polar, let us choose a compact set
k ⊂ e which is not locally polar. Let w0 be a relatively compact domain in Ω
containing k; then (R̂k

1)w0 is a potential > 0 in w0. Now (R̂k
1)w0 is bounded

and harmonic in w0 \ k which does not extend harmonically to w0; hence by
the above theorem there exists a bounded harmonic function (in w \ k and
hence) in w \ e which does not extend harmonically to w, a contradiction.

In particular, if R is a Riemann surface or a Riemannian manifold of di-
mension ≥ 2, hyperbolic or parabolic, and if e is a closed set in R, e0 = φ,
then e is locally polar in R if and only if every bounded harmonic function in
R \ e extends harmonically in R.

Proposition. Let Ω be a harmonic space without potentials > 0 in Ω where
each point is locally polar. Let e be a closed set in Ω, e0 = φ. There exists a
nonconstant positive harmonic function in Ω \ e if and only if there exists a
nonconstant bounded harmonic function in Ω \ e.

Proof. Let s > 0 be a nonconstant harmonic function in Ω \ e. Clearly e is
not locally polar since there are no potentials > 0 in Ω. Then as shown above,
there exists a bounded harmonic function u in Ω \ e which does not extend
harmonically in Ω. Clearly u is a bounded nonconstant harmonic function in
Ω \ e.
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Remark. The assertion in the above proposition may not be valid in a har-
monic space having potentials > 0 (for example, Ω = R3 and e = {0}); nor in
a harmonic space where points are not necessarily locally polar.
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