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TOPOLOGICAL ENTROPY AND THE
PREIMAGE STRUCTURE OF MAPS

Abstract

My aim in this article is to provide an accessible introduction to
the notion of topological entropy and (for context) its measure theoretic
analogue, and then to present some recent work applying related ideas
to the structure of iterated preimages for a continuous (in general non-
invertible) map of a compact metric space to itself. These ideas will be
illustrated by two classes of examples, from circle maps and symbolic
dynamics. My focus is on motivating and explaining definitions; most
results are stated with at most a sketch of the proof. The informed
reader will recognize imagery from Bowen’s exposition of topological
entropy [Bow78] which I have freely adopted for motivation.

1 Measure-Theoretic Entropy

How much can we learn from observations using an instrument with finite
resolution?

A simple model of a single observation on a “state space” X is a finite
partition P = {A1, . . . , AN} of X into atoms, grouping the points (states) in
X according to the reading they induce on our instrument. A measure µ on
X with total measure µ(X) = 1 defines the probability of a given reading as

pi = µ(Ai), i = 1, . . . , N.

Shannon [Sha63] (see also [Khi57]) noted that the “entropy” of the partition

H(P) := −
N∑

i=0

pi log pi
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measures the a priori uncertainty about the outcome of an observation—or
conversely the information we obtain from performing the observation. The
extreme values of entropy among partitions with a fixed number N of atoms
are H(P) = 0, when the outcome is completely determined (some pi = 1, all
others = 0), and H(P) = log N , when all outcomes are equally likely (pi = 1

N ,
i = 1, . . . , N).

To model a sequence of observations at different times, we imagine a dy-
namical system generated by the (µ-measurable) map f :X→X, so the state
initially at x ∈ X evolves, after k time intervals, to the state located at fk(x),
where

fn := f◦...◦f︸ ︷︷ ︸
n times

.

An observation made after k time intervals is modelled by the partition f−k[P] =
{f−k[A1], . . . , f−k[AN ]}, where the kth iterated preimage of A ⊂ X is

f−k[A] := {x ∈ X | fk(x) ∈ A}.

Assuming that µ is an f -invariant measure (f−1[A] = A), the outcomes of
observations made at different times are identically distributed. The joint
distribution of n successive observations performed one time unit apart is
modelled by the mutual refinement

Pn := P ∨ f−1[P] ∨ . . . f−(n−1)[P]

whose typical atom, Ai0 ∩ f−1[Ai1 ] ∩ · · · ∩ f−(n−1)[Ain−1 ], consists of the
points with a given itinerary of length n with respect to P (i.e., f j(x) ∈ Aij

,
j = 0, . . . , n − 1). The asymptotic average information per observation for a
sequence of successive observations

H(f,P) := lim
n→∞

1
n

H(Pn)

is the entropy of f relative to P.
For example, suppose f :X→X is the restriction to the unit circle S1 :=

{x ∈ C | |x| = 1} of x 7→ x2. If we parametrize S1 by θ ∈ R using exp(θ) :=
e2πiθ ∈ S1, our map corresponds to θ 7→ 2θ (mod Z), the angle-doubling
map. (Lebesgue) arclength measure is invariant under this map, and if P is a
partition into two semicircles, say A1 = {0 ≤ θ ≤ 1

2}, A2 = { 1
2 ≤ θ ≤ 1}, then

Pn is a partition into 2n intervals of equal arclength. Thus H(Pn) = n log 2,
so

H(f,P) = log 2.
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Note that in this case the observations at different times are (probabilistically)
independent: knowing the itinerary of length n does not help us predict the
next position of a random point.

An equivalent model of this situation comes from expressing the angle in
binary notation:

θ =
∞∑

i=0

xi

2i+1
, xi ∈ {0, 1}, i = 0, 1, . . .

which is ambiguous only on the Lebesgue-null set of dyadic rational values for
θ. Up to this ambiguity, we have a bijection with the set {0, 1}N of sequences
x = x0, x1, . . . in {0, 1}. For any finite sequence w = w0, . . . , wn−1 ∈ {0, 1}n,
the cylinder set

C(w) := {x ∈ {0, 1}N |xi = wi for i = 0, . . . , n− 1}

of sequences which begin with w corresponds to an arc in S1 of length 2−n,
and we can define a measure µ on {0, 1}N via

µ(C(w)) = 2−n for all w of length n,

which is equivalent to arclength measure on S1. The angle-doubling map
corresponds to the shift map on sequences

s(x0x1x2 . . . ) = x1x2 . . . .

More generally, if A is a finite set (“alphabet”) and we assign a “weight”
p(a) ≥ 0 to each “letter” a ∈ A so that

∑
a∈A p(a) = 1, then the formula

µ(C(w0 . . . wn−1)) = p(w0)p(w1) · · · p(wn−1)

defines a probability measure on the space of sequences 1

AN := {x = x0x1 . . . |xi ∈ A, i = 0, 1, . . . }

and the natural shift map on AN with this measure is called a Bernoulli shift.
The partition P = {C(a) | a ∈ A} has entropy

H(P) = −
∑
a∈A

p(a) log p(a).

1It will be convenient to abuse notation and include 0 in N.
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The refinement Pn consists of all cylinder sets C(w) as w ranges over “words”
w = w0 . . . wn−1 ∈ An of length |w| = n, and a straightforward calculation
shows that successive observations are independent, and

H(Pn) = nH(P), H(s,P) = H(P).

The quantity H(f,P) depends on our observational device. We obtain
a device-independent measurement of the predictability of the dynamics of
the measure-theoretic model f : (X, µ)→(X, µ) by maximizing over all finite
partitions: this is the entropy of f with respect to µ:

hµ(f) := sup{H(f,P) | P a finite measurable partition of X}.

It can be shown that the partition P of S1 into semicircles maximizes
H(f,P) for the angle-doubling map, so hµ(f) = log 2 in this case. For the
general Bernoulli shift (determined by the weights p(a), a ∈ A), the partition
P = {C(a) | a ∈ A} into cylinder sets again maximizes entropy, so in this case

hµ(f) = −
∑
a∈A

p(a) log p(a).

For example, the Bernoulli shift corresponding to a biased coin flip, say p(0) =
1
3 , p(1) = 2

3 , has entropy hµ(f) = log 3− 2
3 log 2.

The idea of using Shannon’s entropy in this way was suggested by Kol-
mogorov [Kol58] (and refined by Sinai [Sin59]), who showed that hµ(f) is
invariant under measure-theoretic equivalence of dynamical systems, and used
this to prove the existence of non-equivalent Bernoulli shifts. Subsequently
Ornstein [Orn74] showed that for a large class of ergodic systems (includ-
ing Bernoulli shifts [Orn70]) hµ(f) is a complete invariant: two systems from
this class are equivalent precisely if they have the same (measure-theoretic)
entropy.

2 Topological Entropy

Adler, Konheim and McAndrew [AKM65] formulated an analogue of hµ(f)
when the measure space (X, µ) is replaced by a compact topological space
and f is assumed continuous. They replaced the partition P with an open
cover and the entropy H(P) with the logarithm of the minimum cardinality
of a subcover. The resulting topological entropy, htop(f), is an invariant of
topological conjugacy between continuous maps on compact spaces.

A more intuitive formulation of htop(f), given independently by Bowen
[Bow71] and Dinaburg [Din70], uses separated sets in a (compact) metric
space.



Topological Entropy and the Preimage Structure of Maps 13

2.1 Separated Sets

Let us again model observations via instruments with finite resolution, but
this time using a (compact) metric d on our space X. We assume that our
instrument can distinguish points x, x′ ∈ X precisely if d(x, x′) ≥ ε for some
positive constant ε. A subset E ⊂ X is ε-separated2 if our instrument can
distinguish the points of E. Compactness puts a finite upper bound on the
cardinality of any ε-separated set in X, and we can define

maxsep[d, ε, X] := max{card[E] |E ⊂ X is ε-separated with respect to d}.

On the circle, using d the normalized arclength

d(exp(θ), exp(θ′)) = min
j∈Z

|θ − θ′ + j|

any set of N equally spaced points

EN (exp(θ)) := {exp(θ +
j

N
) | j = 0, . . . , N − 1}

is a maximal ε-separated set whenever 1
N+1 < ε ≤ 1

N , so

maxsep[d,
1
N

,S1] = card[EN (x)] = N.

The sequence space AN has a natural topology as the countable product of
copies of the alphabet A (which is given the discrete topology); this is captured
in the metric

d(x,x′) := 2−δ(x,x′)

where
δ(x,x′) := 1 + min{i |xi 6= x′i}.

Note that if two sequences x, x′ have different initial words w,w′ of length n
(i.e., x ∈ C(w), x′ ∈ C(w′), |w| = |w′| = n and w 6= w′), then δ(x,x′) ≤ n, so
C(w) and C(w′) are at mutual distance at least 2−n, and each such cylinder
has diameter 2−(n+1). It follows that a set consisting of one representative
from each cylinder set C(w), w ∈ An, is a maximal 2−n-separated set, and
since there are (card[A])n words of length n,

maxsep[d, 2−n,AN] = (card[A])n.

2In §6, we mention the complementary notion of ε-spanning, and note that all of the
definitions which follow can be reformulated in terms of this notion.
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2.2 Bowen-Dinaburg Definition of Topological Entropy

Now we introduce dynamics via a continuous map f :X→X, and ask about
the resolution of n successive observations separated by unit time intervals.
This is captured in the Bowen-Dinaburg metrics, defined for n = 1, 2, . . .
by

df
n(x, x′) := max

0≤i<n
d(f i(x), f i(x′)).

Two points x, x′ ∈ X cannot be distinguished by our sequence of measurements
if they (n,ε)-shadow each other (i.e., d(f i(x), f i(x′)) < ε for i = 0, . . . , n−1),
so the points of E ⊂ X are distinguished precisely if any two x 6= x′ ∈ E have
df

n(x, x′) ≥ ε–that is, E is ε-separated with respect to df
n, or (n, ε)-separated.

The number of distinguishable orbit segments of length n is thus

maxsep[df
n, ε,X] = max{card[E] |E ⊂ X is (n, ε)− separated}.

For the angle-doubling map, note that if d(x, x′) ≤ 1
4 then d(f(x), f(x′)) =

2d(x, x′). In particular, if
d(x, x′) = 2−k

for some k ≥ 1 then

d(f j(x), f j(x′)) =

{
2j−k for j < k

0 for j ≥ k.

and, noting that f(E2k(x)) = E2k−1(f(x)), we see that E2k(x) is

• 2−k-separated with respect to d, and

• (n, ε)-separated for any ε ≤ 1
2 if n ≥ k.

In particular, for 0 < ε < 1
2 and n > log 1

2
ε,

maxsep[df
n, ε, S1] = card[E2n(x)] = 2n.

An (n, ε)-separated set is analogous to a collection of different itineraries
of length n (with respect to some partition whose atoms have diameter ε).
Since the number of conceivable itineraries grows exponentially with n, it is
natural to look at the exponential growth rate of the cardinalities above. For
any sequence {cn} of positive real numbers, we write

GR{cn} := lim sup
n

1
n

log cn.
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The complexity of the dynamics emanating from any subset K ⊂ X is reflected
in

htop(f,K) := lim
ε→0

GR{maxsep[df
n, ε,K]}.

Our primary interest is when K = X: the topological entropy of f :X→X
is

htop(f) := htop(f,X).

We have seen that the angle doubling map has topological entropy log 2;
in fact the analogous angle-stretching maps ζk : x 7→ xk (k ≥ 2) satisfy

htop(ζk) = log k.

A beautiful general relation between measure-theoretic and topological
entropy was established through the work of Goodwyn [Goo69], Dinaburg
[Din70] and Goodman [Goo71]:

Theorem 1 (Restricted Variational Principle for Entropy) For f :X→X
any continuous map on a compact metric space,

htop(f) = sup{hµ(f) |µ is an f-invariant Borel probability measure on X}.

2.3 One-sided Subshifts

The shift map on the sequence space AN

s(x0x1x2 . . . ) = x1x2 . . .

is a card[A]-to-one map, continuous with respect to the product topology. By
a (one-sided3) subshift we mean the restriction f :X→X of the shift to a
closed invariant4 subset X ⊂ AN. Such a set is determined by its admissible
words: for n = 1, 2, . . . , let

Wn(X) := {w = w0 . . . wn−1∈An | ∃x∈X, i ∈ N with xi+j = wj , j = 0, . . . , n−1}.

Note that a word which appears starting at position i in x ∈ X appears as
the initial subword of f i(x), which also belongs to X if X is shift-invariant.
Thus Wn(X) equals the set of words w ∈ An with X ∩ C(w) nonempty, and
it follows that a maximal 2−n-separated set En ⊂ X results from picking one

3The space AZ of bisequences also has a natural shift map, and invariant subsets are
called two-sided subshifts. (cf §5.3)

4we require only f(X) ⊆ X
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representative from each such nonempty intersection. Thus for 2−(k+1) < ε <
2−k, En+k is a maximal (n, ε)-separated set, and

maxsep[df
n, ε,X] = card[Wn+k(X)]

giving us for any subshift f :X→X

htop(f) = lim
k→∞

GR{card[Wn+k+1(X)]} = GR{card[Wn(X)]}.

We spell out the results of this calculation for several examples.

Full shift: When Wn(X) = An, so X = AN, we have

htop(f) = GR{card[A]n} = log card[A]

“Golden Mean” Shift: Define X as the set of all sequences of 0’s and 1’s in
which 1 is never followed immediately by itself, so W2(X) = {00, 01, 10}.
If we list all words of length n, then the words of length n+1 come from
either following an arbitrary word of length n with 0, or following a word
of length n that ends in 0 with a 1. If we set

wn := card[Wn(X)],

we see that there are wn words of length n+1 which end in 0, and hence
wn−1 words of length n + 1 which end in 1: this gives the recursive
relation

wn+1 = wn + wn−1

showing that wn grows at the same rate as the Fibonacci numbers Fn

(in fact, wn = Fn+3). This rate is known [LM95, p. 101] to be the
logarithm of the golden mean, so

htop(f) = GR{wn} = GR{Fn} = log

(
1 +

√
5

2

)
.

A generalization of this example arises from any finite alphabet A =
{a1, . . . , aN} and a list Wa ⊂ A2 of allowed pairs: X is then defined
as the set of all sequences in AN for which every subword of length 2
belongs to Wa. This information can be encoded in a square transition
matrix A of size N = card[A] whose (i, j) entry is 1 (resp. 0) if the word
aiaj belongs (resp. does not belong) to Wa. Note that the (i, j) entry of
a power Ak of A equals the number of admissible words of length k + 1
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which begin with ai and end with aj , so wn := card[Wn(X)] equals the
sum ‖ An−1 ‖ of the entries of An−1, and we have

htop(f) = GR{wn} = GR{‖ An−1 ‖} = log(spectral radius of A).

In the special case of the “golden mean” shift, we have

A =
[
1 1
1 0

]
whose characteristic polynomial, t2 − t − 1, has the golden mean as its
larger root.

Even Shift: Let X be the set of sequences of 0’s and 1’s in which two succes-
sive appearances of 1 are separated by a block of consecutive 0’s of even
length (which may be the empty block, of length zero). This is most
easily described by giving a list Wd of disallowed words, in this case

Wd = {1(0)2n+11 |n = 0, 1, . . . }

and specifying that X consists of all sequences in which no word from
Wd appears (anywhere).

In general, such a description essentially specifies a basis of open subsets
of the complement AN \X. When such a list is (or can be made) finite,
a recoding allows us to construct X as a subshift on more symbols, but
specified as in the previous case by the allowed (or disallowed) pairs. This
is called a subshift of finite type (or topological Markov chain).

The “even” shift is clearly not of finite type, as no test on words of
bounded length can detect long forbidden words. However, it can be
shown [LM95, p. 103] that in this case card[Wn] = Fn+3 − 1 (where
again Fn is the nth Fibonacci number), so the even shift has

htop(f) = GR{Fn+3 − 1} = log

(
1 +

√
5

2

)
.

Dyck Shift: This beautiful example, first suggested by Krieger [Kri72] and
named after an early contributor to the study of free groups and formal
languages, codifies the rules of matching parentheses. As it is not readily
accessible in the literature, I give a detailed account5 based on ideas I
learned from Doris and Ulf Fiebig.

5I thank Eugen Mihailescu for pointing out a substantial error in an earlier version of
this account.
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The alphabet consists of N pairs of matching left and right delimiters

A = {`1, r1, . . . , `N , rN}.

For example, when N = 2, we can think of

`1 = “(”, r1 = “)”, `2 = “{”, r2 = “}”.

Call a word w = w0, ..., w2k−1 of even length balanced if its entries can
be paired subject to

• a pair of entries consists of a left delimiter to the left of a matching
right delimiter: if wα is paired with wβ , where 0 ≤ α < β ≤ 2k− 1,
then wα = `i for some index i and wβ = ri for the same index;

• distinct pairs are nested or disjoint: given α < β as above, every
intermediate wγ (α < γ < β) is paired with some other intermediate
wδ (α < δ < β).

Note that a pairing of this type is unique if it exists. We regard the
empty word as balanced.

Now we specify the (infinite) list of disallowed words as

Wd = {`ibrj | b is a balanced word and i 6= j}.

The subshift on the set of sequences DN ⊂ AN in which no element of
Wd appears is the (one-sided) Dyck shift on N pairs. When N = 1, Wd

is empty, so D1 is the full shift on two symbols; we will tacitly assume
that N ≥ 2.

Proposition 1 The Dyck shift f :DN →DN on N pairs has

htop(f) = log(N + 1).

Proof. An admissible word has the general form

w = b0ri1b1ri2 . . . bk−1rik
bk`j1bk+1 . . . `jmbk+m

where each bα, α = 0, . . . , k+m, is a (possibly empty) balanced subword,
and the k ≥ 0 right delimiters which are not matched in w all occur to
the left of the m ≥ 0 unmatched left delimiters in w. This leads to
a natural decomposition of any admissible word as a concatenation of
three (possibly empty) subwords

w = ABC
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where B = bk is balanced, while A = b0 . . . rik
(resp. C = `j1 . . . bk+m)

ends (resp. starts) with an unmatched right (resp. left) delimiter.

To calculate the topological entropy, note first that every admissible
word w is the initial subword of at least N + 1 admissible words of
length |w|+1: the N words w`i, i = 1, . . . , N are always admissible, and
wrjm

is admissible if m ≥ 0 while all words wri are admissible if m = 0.
Thus

card[Wn+1] ≥ (N + 1)card[Wn]

for all n, and so

htop(f) = GR{card[Wn]} ≥ log(N + 1).

To handle the opposite inequality, we first estimate the cardinality of the
sets An, Bn, Cn of admissible words of length n whose decomposition has
only one nonempty factor, of the type indicated by the letter.

We begin with balanced words: since Bn = ∅ for n odd, assume n = 2p.
To estimate card[Bn], we note that the number of possible configurations
of p “`”’s and p “r”’s in a balanced word of length n is bounded above

by
(

n
p

)
, and for each such configuration, once we have assigned an index

to each ` (which we can do in Np ways), the uniqueness of the pairing
insures that the word has been determined. Thus,

card[Bn] ≤
(

n
p

)
Np < (N + 1)n,

where the last inequality is a consequence of the binomial theorem.

We now consider the set Cn of words beginning with an unmatched
left delimiter, noting that the initial length k subword of any w ∈ Cn

itself belongs to Ck. Given w ∈ Cn, we immediately have w`i ∈ Cn+1

for i = 1, . . . , N , and wri ∈ Cn+1 provided that w has at least two
unmatched left delimiters, the last of which is `i. This gives us

card[Cn+1] ≤ (N + 1)card[Cn]

and since card[C1] = N ,

card[Cn] ≤ (N + 1)n.

A similar estimate can be obtained for card[An], either by repeating the
argument or by noting the bijection between An and Cn obtained by
reversing letter order and interchanging ` with r (keeping indices).
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Finally, to estimate card[Wn] we consider, for each ordered triple (i, j, k)
of nonnegative integers summing to n, the set of words of the form
w = ABC with |A| = i, |B| = j, and |C| = k. Since an arbitrary
factoring is possible, the number of such words is

card[Ai] · card[Bj ] · card[Ck] ≤ (N + 1)i+j+k = (N + 1)n.

But the number of possible triples (i, j, k) summing to n is less than
(n + 1)3, so

card[Wn] ≤ (n + 1)3(N + 1)n.

The growth rate of the right-hand quantity is log(N + 1), so

htop(f) = log(N + 1).

2

Square-Free Sequences: An even more complicated subshift is defined by
forbidding any subword to immediately follow a copy of itself:

Wd = {w2 := ww |w ∈ A+ :=
∞⋃

k=1

Ak}.

An elementary argument shows that A must have at least three letters for
this to give a nonempty subshift. For three (or more) letters, there exist
square-free sequences6and it is known [Bri63] that htop(f) > 0. Although
there are some bounds for the entropy [Gri01, She81a, She81b, SS82], a
precise value has not been determined.

3 Pointwise Preimage Entropy

There is a curious asymmetry in the definitions of entropy in §§1-2, which look
only at the future behavior of points. When f is invertible, it turns out that
the inverse map f−1 has the same entropy: for htop(f), this follows from the
observation that x and x′ (n, ε)-shadow each other under a homeomorphism
f precisely if their f (n−1)-images (n, ε)-shadow each other under f−1.

However, when f is not invertible the iterated preimages f−n[x] of a point
are in general sets rather than points, so the formulations in §2 cannot be
“reversed” in time. In 1991, Langevin and Walczak [LW91] built on ideas from
their earlier work with Ghys (on the “entropy” of a foliation) to formulate an

6For experts, one example is the sequence xi = mi+1 − mi ∈ {−1, 0, 1}, where {mi} is
the Morse-Thue sequence of 0’s and 1’s—I believe this was first observed by Thue.
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invariant based on the behavior of preimages. We direct the interested reader
to their original paper or to [NP99] for more details on this invariant, whose
definition is rather involved; it is related to, and often equals, the branch
preimage entropy which we present in §5.

Instead we begin with a more accessible pair of invariants defined by Hurley
[Hur95] in 1995, looking at the growth rate of the size of iterated preimages of a
point, measured via the Bowen-Dinaburg metrics. The two invariants differ in
the stage at which one globalizes the pointwise measurements by maximizing
over x ∈ X:

hp(f) := sup
x∈X

lim
ε→0

GR{ maxsep[df
n, ε, f−n[x]]}

hm(f) := lim
ε→0

GR{max
x∈X

maxsep[df
n, ε, f−n[x]]}

We refer to hp and hm collectively as pointwise preimage entropies; both
are invariants of topological conjugacy [NP99] and we have the trivial inequal-
ities

hp(f) ≤ hm(f) ≤ htop(f).

There are examples for which either of these inequalities is strict: any home-
omorphism with htop(f) > 0 works for the second inequality (since f−n[x] is
a single point, both pointwise preimage entropies are zero) and an example
for the first is given in [FFN03]. However, the thrust of our discussion in this
section and the next is that there are many cases when the three invariants
agree. (We will also see this from a different perspective in §5.2.)

For the angle-doubling map, we note that the nth iterated preimage of a
point consists of 2n equally spaced points:

f−n[x] = E2n(xn)

where xn is any nth preimage of x: for example if x = exp(θ) we can take
xn = exp(2−nθ). Since this set is (n, ε)-separated if ε ≤ 2−n (or n ≥ log 1

2
ε),

we have, independent of x ∈ S1,

maxsep[df
n, ε, f−n[x]] = card[f−n[x]] = 2n

so
hp(f) = hm(f) = log 2.

A similar argument gives the common value log k for hp(ζk) and hm(ζk) where
ζk is the angle-stretching map x 7→ xk, k = 3, 4, . . . .
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3.1 Pointwise Preimage Entropy for Subshifts

If x ∈ X ⊂ AN is a point in the shift-invariant set X, its nth predecessor set
(in X) consists of all the words w ∈ An of length n such that the concatenation
wx also belongs to X:

Pn(x) = Pn(x, X) := {w ∈ An |wx ∈ X}.

Note that by definition Pn(x, X) ⊂ Wn(X). Clearly, the nth iterated preimage
of x under the subshift f :X→X is the set of all concatentations wx, w ∈
Pn(x, X), so from our earlier calculations, when 0 < ε ≤ 1

2 and x ∈ X

maxsep[df
n, ε, f−n[x]] = card[Pn(x)].

This immediately gives

hp(f) :=sup
x∈X

GR{ card[Pn(x)]}

hm(f) := GR{max
x∈X

card[Pn(x)]}

Again, we trace the application of this through our examples of subshifts:

Full Shift: Clearly, Pn(x,AN) = An for all x ∈ AN, so

hp(f) = hm(f) = log card[A].

Subshifts of Finite Type: When X is defined by the transition matrix A,
the predecessor set of any x ∈ X is determined by its initial entry, x0:

Pn(x,X) = {w ∈ Wn(X) |wx ∈ Wn+1(X)}

and the cardinality of this is the column sum in An corresponding to x0.
If we pick x0 so that this column sum grows (with n) at least as fast as
all the other columns, then any x ∈ X beginning with x0 has a maximal
growth rate, and this equals the growth rate of ‖ An ‖, so

hp(f) = hm(f) = GR{‖ An ‖} = log(spectral radius of A).

Even Shift: The predecessor set of a sequence in the even shift is determined
by the parity of the location of the first 1 in the sequence: if x = 0∞

then Pn(x) = Wn(X), while if xk = 1 and xi = 0 for all i < k, then
w ∈ Wn(X) belongs to Pn(x) if either w = 0n or w ends with 10`, where
` has the same parity as k. Thus Pn(x) is in one-to-one correspondence
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with the set of admissible words of length n+2 (resp. n+1) ending with
01 (resp. 1) if k is odd (resp. if k is even or x = 0∞), and our earlier
considerations show that all of these sets grow at the rate

hp(f) = hm(f) = log

(
1 +

√
5

2

)
.

Dyck Shift: If x is a sequence formed by concatenating infinitely many bal-
anced words, then

Pn(x,DN ) = Wn(DN )

so

hp(f) = hm(f) = GR{card[Wn(DN )]} = log(N + 1).

Square-Free Sequences: The predecessor sets in this subshift vary wildly
from point to point (cf §5.1) and the tools used in the other cases tell
us nothing about pointwise preimage entropy in this case.

The alert reader will have noted that in all the cases except the last, the
pointwise preimage entropies hp(f) and hm(f) agree not only with each other
but also with the topological entropy htop(f). This is no accident:

Theorem 2 ([FFN03]) For any one-sided subshift f :X→X, if

GR{WnX} = log λ

then there exists a point p ∈ X such that

card[Pn(p, X)] ≥ λn for all n = 1, 2, . . . .

The argument for this rests on a combinatorial lemma7 concerning the
growth of branches in a tree, saying roughly that if we pick a “root” vertex
and have, for some N , more than λN vertices at distance N from the root,
then for some k (depending on λ, N , and the maximum valence of vertices
in the tree) there exists a vertex v such that for i = 1, . . . , k the number of
vertices at distance i from v , in a direction away from the root, is at least λi.

7A related result was apparently obtained by Furstenberg and Ledrappier & Peres.
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4 Entropy Points

The phenomenon described for one-sided subshifts in the preceding section—
that the preimages of some point determine the topological entropy—never
occurs for homeomorphisms with positive topological entropy (e.g., most two-
sided subshifts), since any preimage of a point is still a single point. However,
it is possible to resolve this cognitive dissonance via a calculation of topological
entropy in the spirit of pointwise preimage entropy—looking at preimages of
local stable sets instead of points.

For ε > 0, the ε-stable set of x ∈ X under the map f :X→X is

S(x, ε, f) := {y ∈ X | d(f i(x), f i(y)) < ε for all i ≥ 0}.

(This is just the intersection of ε-balls with respect to the various Bowen-
Dinaburg metrics.) We can define a kind of “ε-local preimage entropy” by

hs(f, x, ε) := lim
δ→0

GR{maxsep[df
n, δ, f−n[S(x, ε, f)]]}.

Recall that a map f :X→X is forward-expansive if for some expansive-
ness constant c > 0, every ε-stable set for 0 < ε ≤ c is a single point (i.e.,
S(x, ε, f) = {x} whenever ε ≤ c and x ∈ X). Every one-sided shift, as well
as each of the angle-stretching maps on S1, is forward-expansive. Clearly, for
forward-expansive maps,

hp(f) = sup
x∈X

hs(f, x, ε)

whenever 0 < ε ≤ c. More generally, though, we have

Theorem 3 ([FFN03]) If X is a compact metric space of finite covering
dimension, then for every continuous map f :X→X and every ε > 0,

sup
x∈X

hs(f, x, ε) = htop(f).

It is possible, adapting an argument of Mañé [Mañ79], to show [FFN03]
that forward-expansiveness of f :X→X implies finite covering dimension for
X (if it is compact metric), immediately implying the equality hp(f) = hm(f) =
htop(f) in this case. Theorem 2 shows that for one-sided shifts, the supremum
in Theorem 3 is actually a maximum. This leads us to consider the set of
entropy points of a continuous map f :X→X, defined as

E(f) := {x ∈ X | lim
ε→0

hs(f, x, ε) = htop(f)}.
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Points of E(f) are those near which the local “backward” behavior reflects the
topological entropy of f .

How big is the set E(f) of entropy points for a general map f :X→X? For
one-sided subshifts, E(f) is always nonempty, but there are examples where it
is nowhere dense in X, and there are examples of other continuous maps with
E(f) = ∅ [FFN03]. A number of conditions, given in [FFN03], imply E(f) 6= ∅;
the most general of these was defined by Misiurewicz (modifying a notion due
to Bowen): a continuous map f :X→X is asymptotically h-expansive if

lim
ε→0

sup
x∈X

htop(f, S(x, ε, f)) = 0.

In effect, this says that ε-stable sets for small ε > 0 look almost like points
from the perspective of topological entropy. We have

Theorem 4 ([FFN03]) Every asymptotically h-expansive map on a compact
metric space has

E(f) 6= ∅.

Forward-expansive maps are automatically asymptotically h-expansive, but
the latter class is far larger; in particular

Theorem 5 ([Buz97]) Every C∞ diffeomorphism of a compact manifold is
asymptotically h-expansive.

5 Branch Preimage Entropy

In formulating the pointwise preimage entropies, one focuses on the preimage
sets f−n[x] of individual points. These sets have a natural tree-like structure,
with preimage points as “vertices” and an “edge” from z ∈ f−n[x] to f(z) ∈
f−(n−1)[x], and one can try to examine the structure of branches in this tree—
sequences {zi} with z0 = x and f(zi+1) = zi for all i. The idea of the Langevin-
Walczak invariant [LW91], which is to compare points x, x′ ∈ X by means of
their respective branch structures, was used by Hurley [Hur95] to formulate
an invariant that fits our general context and in many natural cases8 equals
that defined by Langevin and Walczak [LW91].

A complication for both formulations is that, if a map is not surjective,
some branches may terminate at points with no preimage; to avoid this largely
technical distraction, we will assume tacitly that f :X→X is a surjection.

8(but not all—see [NP99] for an example)
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Recall that for any compact metric space (X, d), there is an associated
Hausdorff metric Hd which makes the collection H(X) of nonempty closed
subsets of X into a compact metric space: for K0,K1 ∈ H(X),

Hd(K0,K1) := max
i=0,1

{ sup
x∈Ki

[ inf
x′∈K1−i

d(x, x′)]}.

Given f :X→X a continuous surjection, we can apply the Hausdorff ex-
tension to the Bowen-Dinaburg metrics df

n to define a sequence of branch
metrics on X via

db
n(x, x′) := Hdf

n(f−n[x], f−n[x′]).

That is, x ∈ X is “branch close” to x′ ∈ X if every branch at x is shadowed
by some branch at x′, and vice-versa. Applying the usual mechanism to these
metrics yields the branch preimage entropy

hb(f) := lim
ε→0

GR{maxsep[db
n, ε,X]}.

Standard arguments apply to show that topologically conjugate maps have
equal branch preimage entropy. When f is a homeomorphism, this equals the
topological entropy, but in general hb(f) acts very differently from htop(f)—a
number of general equalities for htop(f) become inequalities (sometimes strict)
for hb(f) [NP99].

One can think of hb(f) as measuring the homogeneity of the preimage
structure of f . For example, the preimage sets of two points x, x′ ∈ S1 un-
der the angle-doubling map are rotations of each other, yielding db

n(x, x′) =
d(x, x′) and hence hb(f) = 0; this argument has a natural extension to any
self-covering map f :X→X.

5.1 Branch Preimage Entropy for Subshifts

Suppose that f :X→X is the restriction of the shift map to some (shift-
invariant) closed subset X ⊂ AN. We have already seen that preimage sets
can be identified with predecessor sets

f−n[x] = {wx |w ∈ Pn(x,X)}.

Suppose now that x, x′ ∈ X have different (n + k)th predecessor sets, say
w = w0...wn+k−1 ∈ Pn+k(x) \ Pn+k(x′), which means that z = wx belongs
to f−(n+k)[x], but for any z′ ∈ f−(n+k)[x′] we have z′ = w′x′, where w′ =
w′0...w

′
n+k−1 and w′j 6= wj for some j < n + k. If we let i = min(j, n), then the

initial k-words of f i(z) and f i(z′) are distinct, so

df
n(z, z′) ≥ 2−k,
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and this shows that whenever Pn+k(x) 6= Pn+k(x′) as sets,

db
n(x, x′) ≥ 2−k.

But if w ∈ Pn+k(x) ∩ Pn+k(x′) then z = wx and z′ = w′x′ satisfy df
n(x, x′) ≤

2−k; it follows that

maxsep[db
n, 2−k, X] = NPn+k[X].

where NPm[X] denotes the number of distinct mth predecessor sets Pm(x) (as
x ranges over X). So we have, for any one-sided subshift f :X→X,

hb(f) = lim
k→∞

GR{NPn+k[X]} = GR{NPn[X]}.

Here are the details of this calculation for our earlier examples:

Full Shift: Since Pn(x,AN) = An for all x ∈ AN, NPn[AN] = 1 for all n and

hb(f) = 0.

Subshifts of Finite Type: We saw earlier that Pn(x) is determined by x0,
so NPn[X] ≤ card[A] for all n, and

hb(f) = 0.

Sofic Subshifts: We saw that the even shift has precisely two distinct nth

predecessor sets for each n, so NPn[X] = 2 for all n and hb(f) = 0. In
general, a subshift f :X→X is called sofic if NPn[X] has a finite upper
bound as n →∞; Benjamin Weiss [Wei73] showed that f :X→X is sofic
precisely if there is a subshift of finite type g :Y →Y and a continuous
surjection p :Y →X such that p◦g = f◦p (i.e., f is a factor of g). All
sofic subshifts clearly have

hb(f) = 0.

Dyck Shift: Any balanced word can precede any sequence in DN : more
generally, if w = ABC ∈ Wn (as in §2.2.3) then, if C is empty, w ∈
Pn(x, DN ) for all x ∈ DN . If C 6= ∅, the unmatched left delimiters in C
must match the first unmatched right delimiters (if any) in x. To be pre-
cise, suppose w ∈ Wn has m ≥ 0 unmatched left delimiters, `j1 , ..., `jm

(reading left-to-right in w) and x ∈ DN has 0 ≤ p ≤ ∞ unmatched
delimiters; let q = min(m, p) ≤ n and suppose the first q unmatched
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right delimiters in x are rs0 , ..., rsq (reading left-to-right in x). Then
w ∈ Pn(x) precisely if the indices match, moving in opposite directions
in x and w:

si = jm−i for 0 ≤ i < q.

This shows that the predecessor set Pn(x) is determined by the indices
of the first n (or fewer, if x has fewer) unmatched right delimiters in
x. NPn[DN ] thus equals the number of sequences of length n or less of
indices from {1, . . . , N}, or

NPn[DN ] =
n∑

i=0

N i ≤ (n + 1)Nn

which has growth rate

hb(f,DN ) = GR{(n + 1)Nn} = log N.

(For comparison, recall that htop(f,DN ) = log(N + 1).)

Square-Free Sequences We show, as in [NP99], that if A is an alphabet on
six or more letters then the shift f :X→X on square-free sequences in
A has infinite branch preimage entropy.

Pick three distinguished letters from A, and

β = b0b1b2...

a square-free sequence in just these three letters. The complement A∗ of
these letters in A still has at least three letters, so we have the nonempty
subset X∗ ⊂ X of square-free sequences which have no letter in common
with β.

We will produce, for every subset E ⊂ Wn(X∗) of square-free words in
A∗, a sequence xE ∈ X whose predecessor set in X intersects Wn(X∗)
precisely in E:

Pn(xE , X) ∩ (A∗)n = Pn(xE , X) ∩Wn(X∗) = E.

When E = Wn(X∗), xE = β works, since for A ∈ Wn(X∗) the sequence
Aβ is square-free. Otherwise, we work with the complementary set of
words

F := Wn(X∗) \ E = {A0, A1, . . . , Ak}.

Our sequence will have the form

xE = WEβ
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where the initial word WE is designed so that WEb0 has no squares,
but AWEb0 has a square if A ∈ F and not if A ∈ E. If WEb0 has no
squares, then AWEb0 has a square if WEb0 has an initial word of the
form wAw, where w is some (possibly empty) word. We construct WE

using induction on the cardinality of F . Set

w0 = b0

and note that
W0 = b0A0

leads to W0b0 = w0Aw0, so any sequence beginning with W0b0 cannot
be preceded by A0. If F = {A0}, then WE = W0 gives us the desired
sequence in the form

xE = WEβ = W0β = b0A0b0b1 . . . .

To also exclude a second word A1, we use

w1 = W0b0

and
W1 = w1A1W0 = b0A0b0A1b0A0.

If F = {A0, A1}, then xE = W1β has w0A0w0 and w1A1w1 as initial
words, but no other word of Wn(X∗) appears (anywhere) in xE ; fur-
thermore, it is easy to check that xE is square-free.

Inductively, if for j = 1, . . . , k − 1 we set

wj := Wj−1b0

Wj := wjAjWj−1

it is easy to check that each word Wjb0 is square-free, has xiAiwi as
an initial word for i = 0, . . . , j, and contains no word in Wn(X∗) \
{A0, ..., Aj}. It follows that

xE := Wkβ

has the required properties.

This shows that the number NPn[X] of distinct nth predecessor sets for
X is at least the number of distinct subsets of Wn(X∗), or 2wn (where
wn = card[Wn(X∗)]). But we know that wn has positive exponential
growth rate (since X∗ has positive topological entropy), and hence

hb(f) = GR{NPn[X]} ≥ GR{2wn} =
(

lim sup
n→∞

wn

n

)
· log 2 = ∞.
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5.2 Hurley’s Inequalities

The main result of Hurley’s paper [Hur95] is a beautiful inequality relating
pointwise, branch and topological entropy:

Theorem 6 ([Hur95]) For any continuous map f :X→X on a compact met-
ric space,

hm(f) ≤ htop(f) ≤ hm(f) + hb(f).

In particular, for any map with branch preimage entropy zero, pointwise
preimage entropy automatically agrees with topological entropy. We have
seen that this occurs for subshifts of finite type and more generally for sofic
subshifts, but for other subshifts Theorem 2 appears to provide the only proof
that hm(f) = htop(f).

Several other classes of maps are known to have hb(f) = 0 (and hence
hm(f) = htop(f)):

• A forward-expansive map on a compact manifold is automatically
a self-covering map [HR69] and so has branch entropy zero (as noted
earlier in this section).

• Any rational map f(z) = p(z)
q(z) (p, q polynomials) on the Riemann

sphere has zero branch preimage entropy [LP92].

• If X is homeomorphic to a finite graph (including the interval and cir-
cle) then every continuous map f :X→X has branch preimage entropy
zero [NP99].

5.3 Natural Extensions

Given f :X→X a continuous map on a compact space, define the space

X̂ = X̂f := {x̂ = ...x−1x0x1... ∈ XZ | f(xi) = xi+1 for all i ∈ Z}

(with the induced product topology) and the projection π :X̂→X via

π(x̂) = x0.

The image of the projection is the eventual range of f

π[X̂] =
∞⋂

i=0

f i[X]



Topological Entropy and the Preimage Structure of Maps 31

which is homeomorphic to the quotient space X̂/π. The shift map f̂ :X̂→X̂

[f̂(x̂)]i = xi+1, i ∈ Z

is a homeomorphism called the natural extension (or inverse limit) of
f :X→X. In effect, X̂f separates the various prehistories of points; note
that for x̂ ∈ X̂, x0 = π(x̂) determines all xi with i ≥ 0.

The natural extension of the angle-doubling map can be identified with the
“solenoid” of Smale [Shu86, 4.9], [KH95, 17.1], while the natural extension of
a one-sided subshift X ⊂ AN is the two-sided subshift X̂ ⊂ AZ specified by
the same list of disallowed words. In general, htop(f̂) = htop(f).

Of course, topologically conjugate maps have topologically conjugate nat-
ural extensions, but the converse is not always true. The following example
was shown to me by Bob Burton.

Consider the coding ϕ :A2→B which assigns to each word w ∈ A2 of length
2 in the alphabet A = {0, 1} a letter ϕ(w) ∈ B in the alphabet B = {1, 2, 3}
via

ϕ(01) = 1
ϕ(11) = 2

ϕ(00) = ϕ(10) = 3.

Any such coding induces a continuous map ĥ :AZ→BZ via ĥ(x̂) = ŷ, where

yi = ϕ(xi−1xi).

The image ĥ[AZ] is the subshift X̂ ⊂ BZ with the transition matrix

A =

0 1 1
0 1 1
1 0 1

 .

Furthermore, yi determines xi, so ĥ is a homeomorphism between AZ and
X̂ ⊂ BZ which conjugates the shift maps on these spaces.

However, the one-sided subshift f :X→X defined by the transition matrix
A cannot be conjugated to the (full) shift on AN, because for y = y0y1... ∈ X,
f−1[y] has cardinality numerically equal to y0 ∈ {1, 2, 3}, while every x ∈ AN

has precisely two preimages.
The two one-sided subshifts are both of finite type, so automatically satisfy

hb(f) = 0. But more generally, the following is true:
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Theorem 7 If f :X→X and g :Y →Y are both forward-expansive with topo-
logically conjugate natural extensions f̂ :X̂→X̂, ĝ : Ŷ → Ŷ , then

hb(f) = hb(g).

This theorem was first conjectured by Bob Burton, with whom I unsuc-
cessfully sought a proof several years ago. I know of two arguments for this
fact, both unpublished. One proceeds by analyzing the structure of conju-
gacies between natural extensions (which for forward-expansive maps come
from a kind of generalized coding) and using it to estimate the growth rate
of maxsep[db

n, ε,X] for ε < c. The other is based on “lifting” hb(f) to f̂ by a
trick similar to our replacement of points with local stable sets in §4. Unlike
the situation there, the resulting quantity has not been shown invariant under
conjugacy of f̂ , except when f is forward-expansive. Both arguments are due
to Doris and Ulf Fiebig, with some contribution on my part to the first one.

6 Pressure and Hausdorff Dimension

In the context of an abstract “thermodynamic formalism” for dynamical sys-
tems, Ruelle [Rue73, Rue78] modified the concept of topological entropy, re-
placing the number maxsep[df

n, ε,X] of n-orbit segments with a “weighted”
count, the weights coming from a function ϕ, to get the topological pressure
of ϕ with respect to f . To be precise9 given f :X→X a continuous map and
ϕ :X→R a continuous real-valued function, the sum of ϕ along the n-orbit
segment starting at x ∈ X is denoted

Snϕ(x) :=
n−1∑
i=0

ϕ(f i(x))

and for ε > 0 we consider

N(f, ϕ, ε, n) := sup
E

∑
x∈E

eSnϕ

the supremum taken over all (n, ε)-separated sets in X. The topological
pressure of ϕ with respect to f is then

Pf (ϕ) := lim
ε→0

GR{N(f, ϕ, ε, n)}.

9We loosely follow [KH95, §20.2], which together with [Wal82, Chap. 9] is a good refer-
ence for details.
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It can be shown that Pf (ϕ) is either always finite or always infinite for all
ϕ ∈ C(X), the space of continuous real-valued functions on X, and when finite
Pf :C(X)→R is monotone, convex and continuous. It is also clear that the
topological pressure of the constant zero function is the topological entropy:

Pf (0) = htop(f).

There is a fascinating connection between topological pressure and the
Hausdorff dimension of certain invariant sets. This connection was first noted,
in the context of Fuchsian groups, in Bowen’s last paper [Bow79] (published
posthumously), and is generally referred to as Bowen’s formula. For any
strictly negative ϕ ∈ C(X), the function t 7→ Pf (t · ϕ) has a unique zero
tϕ. Ruelle showed [Rue82] that if f is C1+α and J is a conformal repellor (J is
the closure of some recurrent f -orbit, and the derivative multiplies the length
of all vectors at x ∈ J by a factor α(x), where α(x) > 1 for all x ∈ J) then
the Hausdorff dimension HD(J) of J equals tϕ, where ϕ(x) = − log α(x).

Analogous results for saddle sets of surface diffeomorphisms were obtained
by Manning et al [Man81, MM83]. A saddle set for a diffeomorphism of a sur-
face is an invariant set Λ such that at each x ∈ Λ there exist two independent
vectors v+, v− ∈ TxΛ with ‖ Dfn(v±) ‖ going to zero at a (uniform) exponen-
tial rate as n → ±∞. Every point x ∈ Λ then has an invariant curve W s(x)
(its stable manifold) which goes through x tangent to v+. The prototype of
this is the Smale “horseshoe” ([Shu86, KH95]), where v± are coordinate vec-
tors. The stable dimension at x ∈ Λ of a saddle set Λ is the Hausdorff
dimension of the intersection of Λ with the stable manifold of x:

sd(Λ, x) := HD(Λ ∩W s(x)).

If we define φs ∈ C(X) by

φs(x) := log ‖ Df(v+) ‖

then, under a few mild technical assumptions10 we again have [MM83] Bowen’s
formula

sd(Λ, x) = tφs .

The same formula was obtained for the C2 version of the Hénon map by
Verjovsky and Wu [VW96].

When the map is not invertible, the situation becomes more complicated.
Mihailescu [Mih01] showed that in a complex two-dimensional setting, the
stable dimension of a saddle set for a holomorphic endomorphism (with no

10Λ is a basic set
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critical points in the set) has tφs as an upper bound, but the inequality can be
strict. By taking account of the minimum number of preimages of points in
Λ, Mihailescu and Urbański [MU01] obtained a better upper bound on sd(Λ).

In the same paper [MU01], Mihailescu and Urbański also obtained a lower
bound, using a new “entropy” invariant h−(f) which we shall sketch below;
they showed that this invariant, for the restriction of f to Λ, is a lower bound
for the stable dimension times the supremum of |φs| on Λ. Subsequently
[MU02] they defined two new notions of pressure, P−f (ϕ) and Pf,−(ϕ) and used
Bowen type formulas to obtain lower and upper bounds for stable dimension.

A notion complementary to that of an ε-separated set is an ε-spanning11

set: E ⊂ X ε-spans X if every point of X is within distance < ε of some
point of E. A (set-theoretically) maximal ε-separated subset of X automati-
cally ε-spans X, and a minimal ε-spanning set is ε

3 -separated, so in all of our
definitions of “entropy” we could replace maxsep[d, ε, X] with the number

minspan[d, ε, X] := min{card[E] |E ⊂ X ε-spans X}.

For the Mihailescu-Urbański invariants it is more natural to work with this
number.

The difference between htop(f) and hb(f), when phrased in terms of span-
ning sets, can be clarified (at least when f is surjective) by noting that each
n-branch z0, z1, ...zn−1 of f−1 has a well-defined “root” x = z0 and “tip”
z = zn−1 ∈ f−n[x]; the latter determines the branch via f(zi) = zi−1. A set
E ⊂ X ε-spans X in the branch metric db

n if the collection of branches rooted
at points in E, or in terms of “tips”, Ef,n := {f−n[x] |x ∈ E} ⊂ H(X), ε-spans
Xf,n in the Hausdorff Bowen-Dinaburg metric Hdf

n—which is to say for any
x ∈ X we can find x′ ∈ E such that every branch rooted at one of x or x′

is (n, ε)-shadowed by at least one branch rooted at the other. However, if we
consider branches without regard to their roots, merely asking for a collection
of branches which includes an (n, ε)-shadow of every branch, we are simply
asking for a collection of tips which ε-spans X in the Bowen-Dinaburg metric
df

n, and so the usual machinery in this case leads to htop(f).
The Mihailescu-Urbański definitions mix these two notions. Let us say

that a collection of n-branches weakly ε-spans n-branches in X if for any
x ∈ X we can find at least one n-branch at x which is (n, ε)-shadowed by
one from our collection. Looking at “tips”, this amounts to saying we have a
collection E′ ⊂ X of tips such that the minimum Bowen-Dinaburg distance
df

n of any preimage set f−n[x], x ∈ X from our set E′ is at most ε. Denote
the minimum cardinality of a set E′ which weakly ε-spans n-branches in X

11The phrase ε-dense denotes the same idea.



Topological Entropy and the Preimage Structure of Maps 35

by w[f, n, ε,X], and let

hw(f) := lim
ε→0

GR{w[f, n, ε,X]}.

Note that since any set which (n, ε) spans X also weakly ε-spans n-branches
in X, we have

w[f, n, ε,X] ≤ minspan[df
n, ε,X]

so
hw(f) ≤ htop(f).

Going further, we say that a collection E ⊂ X (of “roots”) very weakly
ε-spans n-branches in X if the collection of all branches rooted at points of
E weakly ε-spans n-branches in X. The minimum cardinality of a set which
very weakly ε-spans n-branches in X, which we will denote v[f, n, ε,X], is
bounded above by w[f, n, ε,X], since if E′ is the set of “tips” for a weakly ε-
spanning set of n-branches, then the corresponding set E = fn[E′] of “roots”
is a very weakly ε-spanning set with cardinality less than or equal to card[E′].
Thus, the “entropy” defined using v[f, n, ε,X],

hv(f) := lim
ε→0

GR{v[f, n, ε,X]}

satisfies
hv(f) ≤ hw(f) ≤ htop(f).

Furthermore, any set which ε-spans X in the branch metric db
n also weakly

ε-spans n-branches in X, so

v[f, n, ε,X] ≤ minspan[db
n, ε,X]

which implies
hv(f) ≤ hb(f).

To define the corresponding notions of pressure, we set, for f :X→X and
ϕ ∈ C(X),

P−f (ϕ) := lim
ε→0

GR{inf
E′

∑
z∈E′

eSnϕ(z)}

where the infimum is taken over sets E′ of “tips” for collections which weakly
ε-span n-branches in X, and

Pf,−(ϕ) := lim
ε→0

GR{inf
E

∑
x∈E

min
z∈f−n[x]

eSnϕ(z)}
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where the infimum is taken over sets E (of “roots”) which very weakly ε-span
n-branches in X.

It can be shown [MU02] that these are invariant in the sense that if
f :X→X and g :Y →Y are maps conjugated by the homeomorphism h :X→Y
(h◦f = g◦h), then for any ϕ ∈ C(X),

P−f (ϕ) = P−g (ϕ◦h−1)

Pf,−(ϕ) = Pg,−(ϕ◦h−1)

Note that when ϕ is the constant zero function, then eSnϕ(z) = 1 for all z ∈ X
and n ∈ N, so

P−f (0) = hw(f)

Pf,−(0) = hv(f).

The invariance of pressure implies the invariance of these “entropies”; in
[MU01, MU02] hv (resp. hw) is denoted h− (resp. h−).

The bounds on stable dimension given by Mihailescu-Urbański can then
be stated as follows:

Theorem 8 ([MU02]) Suppose f is a holomorphic Axiom A map of P2 and
Λ is a basic saddle set for f with no critical points of f . Let

φs(x) := log ‖ Df(v+) ‖

where v+ is the “contracting” vector at x ∈ Λ, and denote by ts (resp. ts−) the
(unique) zero of the function t 7→ P−f (t · φs) (resp. t 7→ Pf,−(t · φs)).

Then for all x ∈ Λ
ts− ≤ sd(Λ, x) ≤ ts.

7 Other Directions

I would like to close with some brief speculative comments on two other pos-
sible directions of study in the spirit of preimage entropy:

Variational Principle: The relation between measure-theoretic and topo-
logical entropy given by Theorem 1 has an extension to topological pres-
sure [Rue73, Wal76, Mis76]:

Theorem 9 (Variational Principle) For any continuous map f :X→X
on a compact metric space and any ϕ ∈ C(X),

Pf (ϕ) = sup
µ

{
hµ(f) +

∫
ϕ dµ

}
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where the supremum is taken over all f-invariant Borel probability mea-
sures µ.

It is natural to ask whether there is an analogue of this for preimage
entropy: one needs to find an appropriate version of pressure and of
measure-theoretic entropy, probably based on the branch structure of
preimages. Mihailescu and Urbański have some ideas and results in this
direction.

As this survey was going to press, I learned of important new results
related to the restricted variational principle (Theorem 1) by Cheng and
Newhouse [CN].

Cheng and Newhouse define two new kinds of “preimage entropy” in-
variants. The first can be regarded as a modification of the pointwise
preimage entropy hm(f) sketched in §3. Instead of looking at (n, ε)-
separated sets in the nth preimage sets of points, they look inside all
possible kth preimage sets, either for k ≥ n or for all k ≥ 1:

hpre(f) := lim
ε→0

GR{max
k≥n

max
x∈X

maxsep[df
n, ε, f−k[x]]}

h′pre(f) := lim
ε→0

GR{max
k≥1

max
x∈X

maxsep[df
n, ε, f−k[x]]}.

Clearly for any map

hm(f) ≤ hpre(f) ≤ h′pre(f) ≤ htop(f).

A second class of invariants defined in [CN] is measure-theoretic. Denot-
ing by B the Borel σ-algebra, note that the preimage map A 7→ f−1[A]
is a Boolean endomorphism of B; its eventual range is the “infinite past”
σ-algebra

B− :=
⋂
k≥0

f−k[B].

A standard procedure [Pet83, §5.2] is to condition the entropy on a
subalgebra: given a finite partition P, and fixing an f -invariant Borel
probability measure µ, denote by p−i the conditional probability of the
ith atom, given B−. Then the uncertainty about the position relative to
P, given the infinite past B−, is

H(P,B−) := −
N∑

i=0

pi log p−i .
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Using this in place of H(P) as in §1 we obtain Cheng-Newhouse’s “preim-
age entropy of f with respect to µ and B−”

hpre,µ(f) := sup{ lim
n→∞

1
n

H(Pn,B−) | P a finite measurable partition of X}.

Cheng-Newhouse obtain a number of basic properties of this invariant,
such as affineness with respect to µ and a Shannon-Breiman-McMillan
theorem, which they use to prove the following preimage analogue of
Theorem 1:

Theorem 10 (Restricted Variational Principle for Preimage En-
tropy, [CN]) For f :X→X any continuous map on a compact metric
space,

hpre(f) = h′pre(f) =

sup{hpre,µ(f) |µ is an f-invariant Borel probability measure on X}.

Semigroup Actions: The dynamics of a single map f :X→X can be viewed
as an action of the semigroup N on X. Andrzej Bís [Bís02] has formulated
analogues of the various preimage entropies in the context of an action
of any finitely-generated semigroup of continuous maps on a compact
metric space. One might speculate that a combination of these ideas
with those of Mihailescu and Urbański might yield more general results
on the dimension of fractals defined by iterated function systems.
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