PSEUDO-DISCRIMINANT AND DICKSON INVARIANT

Jean Dieudonné

1. Let E be a vector space of finite dimension over a field K. To a bilinear symmetric form $f(x, y)$ defined over $E \times E$ is attached classically the notion of discriminant: it is an element of K which is not entirely defined by f; however, it is entirely determined when in addition a basis of E is chosen, and when the basis is changed, the discriminant is multiplied by a square in K. More precisely, let u be a linear mapping of E into E, and let $f_{1}(x, y)=f(u(x), u(y))$ the form "transformed" by u; if $\Delta(f), \Delta\left(f_{1}\right)$ are the discriminants of f and f_{1} with respect to the same basis of E, and $D(u)$ the determinant of u with respect to that basis, then one has the classical relation

$$
\begin{equation*}
\Delta\left(f_{1}\right)=(D(u))^{2} \Delta(f) . \tag{1}
\end{equation*}
$$

When K has characteristic $\neq 2$, the preceding results may be expressed in terms of the "quadratic form" $f(x, x)$ associated to $f(x, y)$. However, when K has characteristic 2, the one-to-one association between bilinear symmetric forms and quadratic forms no longer subsists. More precisely, to a given alternate symmetric form $f(x, y)$ (that is, $f(x, x)=0$ for all $x \in E$) is associated a whole family of quadratic forms $Q(x)$, satisfying the fundamental identity

$$
\begin{equation*}
Q(x+y)=Q(x)+Q(y)+f(x, y) \tag{2}
\end{equation*}
$$

and to all these Q is associated the same discriminant of f (with respect to a given basis).

Now C. Arf [1] has introduced an element $\Delta(Q)$ attached to Q and to a given symplectic basis of E (with respect to the form f) which we shall call the pseudo-discriminant of Q. He proved moreover that under a change of symplectic basis, $\Delta(Q)$ is transformed in the following way : let γ be the homomorphism $\xi \rightarrow \xi+\xi^{2}$ of the additive group K into itself; then the pseudo-discriminants of Q with respect to two different symplectic bases have a difference which has the form $\gamma(\lambda)$. Arf's proof is rather lengthy and proceeds by induction on n. We propose to show how the pseudo-discriminant is related to the Clifford algebra of Q in a way which parallels the well-known relation between the discriminant of f and the Clifford algebra of f over a field of characteristic $\neq 2$. At the same time, this will clear up the origin of a curiously isolated result obtained by L. E. Dickson for the orthogonal

[^0]group $O_{n}(K, Q)$ over a finite field of characteristic 2: the transformations u of that group are defined by the condition $Q(u(x))=Q(x)$, and Dickson showed [4, p. 206] that a certain bilinear polynomial $D(u)$ in the elements of the matrix of u (with respect to a symplectic basis), turns out to be always equal to 0 or 1 for elements of $O_{n}(K, Q)$ (the first case occurring if and only if u is a product of an even number of transvections of $O_{n}(K, Q)$; see [6, p. 301]). Now the connection with the Clifford algebra which we mentioned above leads one in a natural way to form the polynomial $D(u)$ for an arbitrary symplectic transformation u; if $Q_{1}(x)=Q(u(x))$ is then the "transformed" of Q by u, and $\Delta(Q), \Delta\left(Q_{1}\right)$ and $D(u)$ are computed with respect to the same symplectic basis, we will prove the following identity, which can be considered as the counter-part of (1)
\[

$$
\begin{equation*}
\Delta\left(Q_{1}\right)=\Delta(Q)+\gamma(D(u)) . \tag{3}
\end{equation*}
$$

\]

Dickson's result follows obviously from this relation.
2. We shall always suppose that the alternate form f is nondegenerate, which implies that $n=2 m$ is even, and that the forms Q associated with f are nondefective [5, p. 39-40]. For the definition of the Clifford algebra $C(Q)$ of a quadratic form Q associated to f, we refer the reader to [3] or [6]. If $\left(e_{i}\right)_{1 \leq i \leq n}$ is a symplectic basis of E, such that

$$
f\left(e_{i}, e_{m+j}\right)=\delta_{i j}, \quad f\left(e_{i}, e_{j}\right)=0, \quad f\left(e_{m+i}, e_{m+j}\right)=0 \quad 1 \leq i, j \leq m
$$

then the unit element and the $e_{i}(1 \leq i \leq n)$ constitute a system of generators for $C(Q)$, with the relations

$$
\left\{\begin{array}{ccc}
e_{i}^{2}=Q\left(e_{i}\right), \quad e_{m+i}^{2}=Q\left(e_{m+i}\right), \quad e_{i} e_{j}=e_{j} e_{i} & \tag{4}\\
e_{m+i} e_{m+j}=e_{m+j} e_{m+i}, & e_{i} e_{m+j}+e_{m+j} e_{i}=\delta_{i j} & 1 \leq i, j \leq m .
\end{array}\right.
$$

From this it follows that $C(Q)$ is an algebra of rank $2^{2 m}$ over K. Moreover, the elements of even degree of $C(Q)$ (generated by the products of an even number of the e_{i} 's) constitute a subalgebra $C^{+}(Q)$ of rank $2^{2 m-1}$ over K, and it can be shown that the center Z of that algebra has rank 2 over K [3, p. 44]. Now, it is readily verified from (4) that the element

$$
\begin{equation*}
z=e_{1} e_{m+1}+e_{2} e_{m+2}+\cdots+e_{m} e_{2 m} \tag{5}
\end{equation*}
$$

commutes with all products $e_{h} e_{k}$, and therefore constitutes with the unit element a basis for Z over K. From (4) it follows that $z^{2}+z$ $=\Delta(Q)$, where

$$
\begin{equation*}
\Delta(Q)=Q\left(e_{1}\right) Q\left(e_{m+1}\right)+Q\left(e_{i}\right) Q\left(e_{m+2}\right)+\cdots+Q\left(e_{m}\right) Q\left(e_{2 m}\right) \tag{6}
\end{equation*}
$$

is precisely the pseudo-discriminant of Q relative to the basis (e_{i}) considered by Arf. Now the fact that $\Delta(Q)$ has the form $\gamma(\lambda)$ expresses the fact that the equation $z^{2}+z=\Delta(Q)$ has a solution in K, in other words, that Z is not a field. When Z is a field, it is a separable quadratic field over K, and if it is generated by the roots of any equation $t^{2}+t=\mu$, then μ and $\Delta(Q)$ differ by an element of the form $\gamma(\lambda)[2, p .177$, exerc. 8]. This proves immediately that when the pseudo-discriminant is computed with respect to two different symplectic bases, the values obtained have a difference of the form $\gamma(\lambda)$.
3. We are now going to make the above result more precise by proving (3). If u is a symplectic transformation, the elements $u\left(e_{i}\right)$ ($1 \leq i \leq 2 m$) constitute again a symplectic basis for E, hence also a system of generators for the Clifford algebra $C(Q)$, satisfying relations similar to (4) (with $Q\left(u\left(e_{i}\right)\right.$) replacing $Q\left(e_{i}\right)$). The element

$$
\begin{equation*}
z^{\prime}=u\left(e_{1}\right) u\left(e_{m+1}\right)+\cdots+u\left(e_{m}\right) u\left(e_{2 m}\right) \tag{7}
\end{equation*}
$$

constitutes therefore, with the unit element, a basis for Z over K, in other words, z^{\prime} has the form $p+q z$, where p, q are in K. Now it is easy to compute z^{\prime} as a function of the coefficients of the matrix of u with respect to $\left(e_{i}\right)$: let

$$
\begin{aligned}
u\left(e_{i}\right) & =\sum_{j=1}^{m} a_{i j} e_{j}+\sum_{j=1}^{m} b_{i j} e_{m+j} \\
u\left(e_{m+i}\right) & =\sum_{j=1}^{m} c_{i j} e_{j}+\sum_{j=1}^{m} d_{i j} e_{m+j} .
\end{aligned}
$$

Let on the other hand $Q\left(e_{i}\right)=\alpha_{i}, Q\left(e_{m+i}\right)=\beta_{i}$. Then z^{\prime} is a linear combination of elements $e_{h} e_{k}$, and it follows from (4) and (5) that we need only consider among those elements the squares e_{i}^{2} and the products $e_{i} e_{m+i}, e_{m+i} e_{i}$ since we know in advance that z^{\prime} can contain no other elements from the basis of $C^{+}(Q)$. We thus obtain

$$
\begin{equation*}
p=\sum_{i=1}^{m} \sum_{j=1}^{m}\left(\alpha_{j} \alpha_{i j} c_{i j}+\beta_{j} b_{i j} d_{i j}+b_{i j} c_{i j}\right) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
q=\sum_{i=1}^{m}\left(a_{i j} d_{i j}+b_{i j} c_{i j}\right) . \tag{9}
\end{equation*}
$$

But it follows, from the fact that the transposed matrix of u is again the matrix of a symplectic transformation, that $q=1$. The expression on the right of (8) is the Dickson invariant $D(u)$; as the relation $z^{\prime}=p+z$ yields $z^{\prime 2}+z^{\prime}=z^{2}+z+p^{2}+p$, the identity (3) follows immediately from (6).
4. We cannot expect, of course, that the mapping $u \rightarrow D(u)$ should be a homomorphism of the symplectic group $S p_{2 m}(K)$ into the additive group of K, if only because we know that $S p_{2 m}(K)$ is a simple group. However, there are some relations between the Dickson invariants of
two symplectic transformations u, v and the Dickson invariant of their product. In fact, it follows immediately from the expression of z^{\prime} obtained in § 3, that we have

$$
\begin{equation*}
D(v u)=D(u)+D_{u}(v) \tag{10}
\end{equation*}
$$

where $D(u)$ and $D(v u)$ are the Dickson invariants of u and $v u$ with respect to the basis $\left(e_{i}\right)$, and $D_{u}(v)$ the Dickson invariant of v with respect to the basis $\left(u\left(e_{i}\right)\right)$. This general formula takes a simpler shape when u is an orthogonal transformation, because then $Q\left(u\left(e_{i}\right)\right)=Q\left(e_{i}\right)$ for $1 \leq i \leq 2 m$; on the other hand, the matrix of v with respect to the basis ($u\left(e_{i}\right)$) is the same as the matrix of $u^{-1} v u$ with respect to $\left(e_{i}\right)$, and we thus obtain

$$
\begin{equation*}
D(v u)+D\left(u^{-1} v u\right)=D(u) . \tag{11}
\end{equation*}
$$

But in this identity we can replace v by $u v u^{-1}$; therefore we also have

$$
\begin{equation*}
D(u v)=D(u)+D(v) \tag{12}
\end{equation*}
$$

when u is an orthogonal transformation, v an arbitrary symplectic transformation ($D(u)$ being equal to 0 or 1 , as recalled above).

References

1. C.Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristik 2 (Teil I), J. Reine Ang. Math., 183 (1941), 148-167.
2. N.Bourbaki, Eléments de Mathématique, Livre II: Algèbre, chap. IV-V, Actual. Scient. et Ind., n° 1102, Paris (Hermann), 1950.
3. C.Chevalley, The algebraic theory of spinors, Columbia Univ. Press, New-York, 1954.
4. L.E.Dickson, Linear groups, Leipzig (Teubner), 1901.
5. J. Dieudonné, Sur les groupes classiques, Actual. Scient. et. Ind., n° 1040, Paris (Herman), 1948.
6. _-_, Algebraic homogeneous spaces over fields of characteristic two. Proc. Amer. Math. Soc., 2 (1951), 295-304.

Northwestern University

Added in proof (November 1955): Since this paper was submitted for publication, the following papers, containing substantially the result of $\S 2$, have appeared:
M. Kneser, Bestimmung des Zentrums der Cliffordschen Algebren einer quadratischen Form über einem Körper der Charakteristik 2, J. Reine Angew. Math., 193 (1954), 123-125.
E. Witt, Über eine Invariante quadratische Formen mod. 2, J. Reine Angew. Math., 193 (1954), 119-120.
E. Witt and W. Klingenberg, 光ber die Arfsche Invariante quadratischer Formen mod. 2, J. Reine Angew. Math., 193 (1954), 121-122.

[^0]: Received May 11, 1954.

