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1. Introduction. One of the interesting chapters in the calculus of variations

is the theory of indices. It has two aspects, the theory in the large and the theory

in the small. An important part of the latter is the theory of indices of the second

variation, that is, of integrals that are quadratic in their arguments. Such a theory

includes the Sturm-Liouville theory for self-adjoint differential systems. The theory

of the second variation can be approached from many points of view. It can be

developed by means of the theory of differential equations and the associated

boundary value problems. A description of this method together with references to

the many writers on this subject can be found in the works of Bliss [3 4J and

Keid [ l4; 15J . The first of these papers by Reid is an excellent introduction

to the present paper; in it is found an extensive bibliography on boundary value

problems together with a description of various methods of studying such problems.

The second variation can also be studied by the use of the theory of broken ex-

tremals, as has been done by Aiorse [ l3] . A third method is by means of "natural

isoperimetric conditions"; this was done by Birkhoff and Πestenes [2J and also

by Hazard [?] , Karush [lO] , and Ritcey [17] .

The author has been convinced for some time that the theory of the second

variation can be obtained from an appropriate theory of quadratic forms in Hubert

space. The purpose of the present paper is to show how this can be done. The

theorems in Hubert space which we shall use can be found in standard references

on Hubert space [ l8; 19] . In order to apply these results to the calculus of vari-

ations, it is more convenient to emphasize the quadratic form, itself, instead of

the self-adjoint transformation associated with the quadratic form. For this reason

a portion of the paper is devoted to rephrasing known results concerning transfor-

mations in terms of quadratic forms.
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526 MAGNUS R. HESTENES

In order to apply the theory of quadratic forms in Hubert space to the calculus

of variations, an appropriate generalization of the condition of Legendre is needed.

This condition in the calculus of variations appears in two forms, the weaker and

the stronger form. The generalizations we make are the following: a quadratic form

Q{x) satisfies the Legendre condition in its weaker form if it is lower semicon-

tinuous relative to the weak topology, that is, if Q(x) is expressible in the form

Q(x) — P(x) — K(x), where P(x) is nonnegative and K(x) is continuous relative to

the weak topology. A quadratic form /(%) will be said to satisfy the strengthened

condition of Legendre if it is expressible in the form J(x) = D(x) — K(x), where

D(x) is positive definite and K(x) is continuous relative to the weaker topology.

Essentially this condition is satisfied if and only if weak convergence and con-

vergence of the corresponding values of ]{x) imply strong convergence. Forms ]{χ)

which satisfy this latter condition will be called Legendre forms. Since we may

take D{x)/2 as a norm, the study of Legendre forms is equivalent to the study of

completely continuous linear transformations. The literature on these transforma-

tions is extensive; see [19] However, their connection with the calculus of

variations does not appear to have been treated adequately heretofore.

It will be seen in §11 below that Legendre forms have a finite (negative) index

and finite nullity. These indices are fundamental in the calculus of variations.

The nullity, for example, may be used to describe the number of linearly inde-

pendent solutions of a certain differential or integrodifferential equation satisfying

given boundary conditions. The index can be used to describe the number of oscil-

lations of solutions of these differential equations. This latter result is a conse-

quence of the theory of focal points. In §17 below we develop a theory of focal

points which not only yields the standard theory of focal points in the calculus of

variations but also suggests new interpretations for integrodifferential and integral

equations. Of particular interest is the fact that to each resolution of the identity

there corresponds a theory of focal points. When interpreted in terms of differential

systems the theory of focal points yields the Sturm-Liouville theory.

Legendre forms have another property that is of significance in the calculus of

variations. This property will be called quasi-nons insularity. If one examines the

literature in the calculus of variations one finds that this property plays a funda-

mental role in proofs. The form in which this property normally appears is de-

scribed in Theorem 12.3. An interesting by-product of the concept of quasi-non-

singularity is a new proof of the Lagrange multiplier rule given in §14 below.

An attempt has been made to give a sufficient number of illustrations so as to

indicate the connections between theorems and their applications in the calculus



QUADRATIC FORMS IN HILBERT SPACE 527

of variations. Only the simplest examples have been used. We have omitted, for

example, most of the applications to isoperimetric problems, to problems of Bolza,

to parametric problems, to the case of discontinuous solutions, and to multiple

integrals. Except in the case of multiple integrals, it is a relatively simple matter

to apply the results here given if one is familiar with the problem considered. In

the case of multiple integrals further study of the theory in the calculus of vari-

ations seems to be necessary to bring the theory to a state of completeness compa-

rable with that for simple integrals.

2. Hypotheses and preliminary remarks. Let U be a linear space over the field

of reals. The elements of Q, called vectors, will be denoted by x9 y9 z9 . Real

numbers, called scalars, will be denoted by a9b9c9 . The sum of two vectors

x and y will be denoted by x + γ9 and the product of x by a scalar b by bx or xb.

A subclass B of d that is closed relative to addition and scalar multiplication is

called a linear subclass of CL By the dimension of B will be meant the number of

linearly independent vectors in B in a maximal set of such vectors. W7e shall have

occasion to distinguish only between finite and infinite dimensional linear sub-

classes of U. A set of vectors x ί9 , xn will be said to generate the linear

subclass B of U comprised of all vectors of the form flι%ι + + anxn. If the

vectors xl9* * , xn are linearly independent, they will be said to form a basis for

the subclass w which they generate. A linear subclass B of U will be said to be

the direct sum of linear subclasses B t , , B n if every vectors in B is express-

ible uniquely as a sum x — xx + + xn with %; in 8/ (i = 1, , n) and if

every such sum is in ID .

It will be assumed throughout that we are given a symmetric function (x9y) on

QCL to reals, called the inner product of x and y, having the following properties:

(a) {x9 x) > 0, the equality holding only in case x — 0; (b) (x9ay + bz) — a{x9y) +

b{x9 z); (c) every Cauchy sequence has a limit; that is, given a sequence \Xq\

such that

lim \xp — xq I = 0 ,

where | x = {x9 xf/2, there is a vector x0 in G, such that

(2.1) lim \xq ~ x0 I = 0 .

The quantity \x\ = {x9 x)V2 is called the norm or length of x and satisfies the

relations
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\x\ > 0 , |α

The quantity | # ~~ y denotes the distance from Λ; to y.

Two vectors % and y are orthogonal if (#, y) = 0. A vector Λ; is orthogonal to a

subclass 13 of U if it is orthogonal to each vector y in 13. Two subclasses 13 and

C are said to be orthogonal if every vector x in 13 is orthogonal to every vector y

in C. The set of all vectors orthogonal to a subclass 13 will be called the orthogo-

nal complement of 13.

A sequence of vectors \xq\ will be said to converge strongly to a vector x0,

written Xg = > χQ, in case (2.1) holds. It will be said to converge weakly to x0 ,

written xq —> xQ , in case

(2.2) lim (xq,y) = (*o,y)
q-co *

for every vector y in CL It is bounded in case the sequence of its norms \\ xq \\ is

bounded. The symbol aq—>α0 will be used to signify that the sequence of scalars

\aq] converges to a0. By a closed subset of Q will be meant one that is closed

relative to strong convergence.

A real-valued function f(x) on d is said to be continuous if f(xq) —> f(%o)

whenever xq =Ξ> χQ. It will be said to be w-continuous in case f(xq) —> f(%o)

whenever xq —> x0. If

lim inf f(xq) >f(xo)
q=oo

whenever xq —> # 0 , then f(x) is said to be wls-continuous on Q, that is, lower

semicontinuous on Q with respect to weak convergence. The function f(χ) will be

said to be additive in case it satisfies the identity

f(ax +by) =af(x) + 6/(y) .

A continuous additive function will be said to be linear and normally will be de-

noted by L {x) with or without subscripts.

We shall make frequent use of the standard properties of weak and strong con-

vergence. In particular, one should recall that a closed linear subclass of U, on

which every weakly convergent sequence is strongly convergent, is of finite di-

mension.

Recall also that if Lγ{x), , L/ςU) are k linear forms, the class 13 of all

vectors x such that Li(x) — 0 (i — 1, , k) is a closed linear subclass of U.

Every linear form L (x) vanishing on 13 is expressible in the form
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(2.3) L{χ) = h i L ! ( x ) + ••• +hkLk(χ) .

The multipliers hχ9 9hk are unique if Lχ{x)f * , L ^ W a r e linearly independent.

Given a linear form L (x), there is unique vector y in Q such that L (x) — (y, x)

A function ΓΛ; on U to d will be called a linear trans for mat ion if it is continu-

ous and additive in the sense that

(2.4) T(ax + by) = aTx + bTy

is an identity. For a linear transformation Tx of this type there is a number M such

that

(2.5) \Tx\ < M\x I .

If Txn =^> TXQJ whenever χq—ΪXQ, then ΓΛ; will be said to be completely continu-

ous on CL

A real-valued function B(x, y) on 0,0, will be called a bilinear form in case it is

linear in y for each x and linear in x for each y. To each bilinear form B{x, y) there

corresponds a unique pair of linear transformations T and T , called ad joints of

each other, such that

(2.6) B ( x , y ) = { T x , y ) = { x , T * y ) .

O b s e r v e t h a t \B(x, y)\ <Mx \y if Λ/ i s s u i t a b l y c h o s e n . M o r e o v e r i f xq =^> x0,

and yq—> y0, then B(xq>yq)—> B(xo,yo). If B{xφyq)—>B(xo,yo) whenever

xq —> x0 and yq—>yo> then B(x,y) is said to be completely continuous and will

normally be denoted by K(x, y). If K (x, γ) — K(y,x), then K(x,y) is completely

continuous if and only if K(x) — K(x9x) is ^-continuous on G, as can be seen by

the use of the identity

2K(x,y) = K{x + y) ~ K(x) - K(y) .

The present paper will be devoted to the study of quadratic forms Q(x)~Q (x,x)

defined by a symmetric bilinear form Q(x,y). For a quadratic form we have the

fundamental identity

Q(ax + by) = o2Q(x) + 2abQ(x,y) + b2Q(y) .

A quadratic form is a continuous function of x but is not in general u -continuous.

A u -continuous quadratic form will normally be denoted by K(x) and the corre-

sponding bilinear form by K{x, y).
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The linear transformation T (x) corresponding to a quadratic form is identical

with its adjoint and is accordingly self-adjoint. The study of quadratic forms is

accordingly equivalent to the study of self-adjoint linear transformations. In the

applications to the calculus of variations to be made below, it appears to be more

convenient to state our results in terms of quadratic forms rather than in terms

of the corresponding linear transformations. The interpretation of these results

in terms of transformations will be left to the reader.

3 Example I In the development of the theory given below the author kept in

mind certain standard problems in the calculus of variations which will be de-

scribed in the next two sections. In the present section we shall consider a space

G that is of interest in the theory of integral equations with a symmetric kernel as

well as in the calculus of variations.

The space & with which we shall be concerned is one in which the vector x is

a vector-valued function x (t) = [xι(t), , xr(t)] , where t = (ί 1, , tp) is a

point in a p-dimensional Euclidean space restricted to lie in a fixed interval

S : α α < ta<ba (α = 1, ,p). Each component x}\t) is assumed to be a Lebesgue

square integrable function on S. The inner product of two vectors x and γ is given

by the formula

(x,y)=fs*
j(t)yHt)dt ( j = l , " , r ) .

Here and elsewhere a repeated index in a term denotes summation with respect to

that index unless otherwise specified or implied. The norm of x is

1*1= [ζχ](t)χJ(t)dt]

The class d together with the inner product (xf y) satisfies the hypotheses made in

the last section. Strong convergence is equivalent to convergence in the mean of

order two, and weak convergence is weak convergence in the class Z2 of Lebesgue

square integrable functions. In fact, Xq —> x0 if and only if the integrals

fsχ'q(t)x'q(t)dt (g = 1,2,3, •••)

are uniformly bounded and
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lim fs x]

q(t)dt= ^ ^ ( O ^ ( j = l , , r)

for every subinterval So of S.

We proceed to prove three theorems that will be useful in our applications to

the calculus of variations.

THEOREM 3.1. Let Aβ(s,t) (j,k = 1, , r) be r2 Lebesgue square inte-

grable functions on SS. Then the bilinear form

(3-D K(x,y) = f f Ajk(s,t)χJ(s)yk(t)dsdt

o o

is a completely continuous bilinear form on Cl.

This result is well known. A simple proof can be made as follows: Observe that
L(z) = fs fsAjk(s,t)zJk(s,t)dsdt

is a linear form on the class G, of Lebesgue square integrable functions zJJ (s,t)

(y, k — 1, , r) on SS. By the criterion for weak convergence described above it

is seen that the relations Xq —> xθ9 jq —> y 0 on U imply the relation Zq —> z0 on

d*, where zJ'£(s,t) = xJ

q(s)yk

q(t) (Q = 0,1,2, •). Consequently

L{zq) = K(xq,yq) —^L(zo) = K(xo,yo) ,

as was to be proved.

T H E O R E M 3.2. Let Rj^it) = /?&/(ί) (/, k ~ 1, , r) 6e r(r + l )/2 essentially

bounded integrable functions on S,

(3.2) Q ( ^ , y ) = fsRjk{t)χ]{t)yk{t)dt.

Then the quadratic form Q(x) — Q (x, x) is wls-continuous on U i/" α̂ c/ only if at

almost all points of S the inequality

(3.3) Bjk(t)aJak > 0

holds for every' set (α) ψ (0). /rc /αcί, Q{x) is wls-continuous on & if and only if

Q(x) > 0 on CL

The condition (3.3) is commonly called the weak Legendre condition in the
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calculus of variations.

Suppose now that Q(x) is w Zs-continuous on CL Recall that for almost all points

t0 interior to S the relation

(3.4) l i m nΓq

2 J Γ R j k ( t ) d t = R j k ( t 0 )

holds, where Sq is the set of points in S at a distance at most 1/q from ί0, and mq

is the positive square root of the measure of Sq. Let t0 be an interior point of S at

which this limit exists. Consider a set of numbers a , , aΓ such that afa^ — 1.

For each integer q let xJ{t) = a)/mq on Sq and xJ(t) — 0 elsewhere. The sequence

\xq} so defined converges weakly to x0 = 0, and we have \xq\ — l , a s one readily

verifies. Moreover,

< ? ( * , ) = a J a k m - q

2 f R j k ( t ) d t .
1

It follows from (3.4) that

lim Q(xq)=Rjk (to V α f e .

q=oo

Inasmuch as (?(%) is u>Zs-continuous we also have

limQ(xq) >Q(x0) =0 .
q=oo

The relation (3.3) therefore holds at t0 and hence almost everywhere on S. Con-

versely the condition (3,3) implies that Q(x) > 0 on Q, and hence Q(x) is M ZS-

continuous on CL, as we shall see in Lemma 8.1 below.

THEOREM 3.3. The quadratic form Q(x) defined by (3.2) satisfies the relation

(3.5) Q(x) >h\x\2

on G with a positive constant h if and only if the inequality

\o.o) ιίjk{t)cιJCL >_ h aJaJ

holds almost everywhere on S.

This result is obtained by applying Theorem 3.2 to the quadratic form

Q(x) -h\x\2 = £[Rjk(t)-hδjk]χJ(t)xk(t)dt,
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where bjj — 1 and δŷ  = 0 (/ ψ k) The condition (3.6) is called the strengthened

condition of Legendre.

Of particular interest is a quadratic form of the type

(3.7) J(x) = K(x) +Q(*) ,

where the bilinear forms Q (x9 γ) and K{x, y) corresponding to Q(x) and K{x) are

given by (3.2) and (3.1) with Aj^(s9t) = Ahj(t9s) In the case r — 1 we have as a

special case the quadratic form

(3.8) j(x) = fb [x(t)]2 dt - fbfb A(s,t)x(s)x{t) dsdt

with the symmetric kernel A(s, t) — A(t, s). This quadratic form plays a significant

role in the Hilbert-Schmidt theory of integral equations with a symmetric kernel.

4. Example II. In the present paper we shall be primarily interested in the

case in which & is the totality of arcs x in (ί, xι, , xp )-space defined by a set

of p real-valued functions

x : (t) (α < t < b, j = 1, ••• , p )

t h a t are a b s o l u t e l y cont inuous and have s q u a r e integrable d e r i v a t i v e s xJ{t) on

a < t < b. T h e numbers a and b are held fa s t . As the inner product of x and y we

t a k e

(4.1) (x,y)=χJ(a)yHa) + fb V {t)y> {t) dt .

The norm | x — (x, x)ι/2 of x is accordingly given by the formula

(4.2) I* | 2 = * > ( α ) * > ( α ) + Jb V (t)x> (t) dt .

With the help of the remarks made below it is easily verified that the hypotheses

made in §2 are satisfied.

LEMMA 4.1. The relation xq ==> x0 holds if and only if xHa) —> x£(a) and

Xq{t) —^x^it) in the mean of order two. Similarly Xq—> x0 if and only if xHa)

—>x^(a) and xHt)—> xJ

Q (t) weakly in the class of Lebesgue square integrable

functions. In either case xJ (t) —> x^ (t) uniformly on a < t < b.

From this lemma one obtains readily the following:
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THEOREM 4 . 1 . Let Pjk(t) = Pkj(t) (j9k = 1, , r ) be integrable functions

and Qjk(t) square integrable functions on a < t <b9 and let

(4.3) H(x) = AjkχJ (a)xk(a) + 2Bjkχi (a)xk(b) + Cjkx> (b)xk(b) .

Then the quadratic form

(4.4) K(x) =H(x) + fa

b (Pjk xJxk + 2Qjkχiik) dt

is a w-continuous quadratic form on d

A second type of w -continuous quadratic form is described in the following:

THEOREM 4.2. Let Ω(s,t,x,x9y,y) be defined by the formula

Ω = Ajk (s, t)χ}yk + Bjk (s, t)(χJyk + yjχk) + Cjk (s, t)i>yk ,

where Ajji{s91) — Ajij{t9s) are integrable functions of s and t9 Bjjt{s9t) = Bkj(t9 s)

are square integrable functions of s and t9 and Cjjc{s9t) — C^j^^s) are essentially

bounded integrable functions of s and t. Then the symmetric bilinear form

(4.5) K(x,y) = fa

bfa

bn[s,t,x(s), i(s), y(t), y(t)]dsdt

is completely continuous.

This result follows readily from Lemma 4.1 and Theorem 3.1. In view of Theo-

rem 3.2 we have the following:

THEOREM 4.3. Let Rjk(t) = Rkjti) (/, A; = 1, , r) be essentially bounded

integrable functions on a < t < b and let K(x) be a w-continuous quadratic form

on U. Then the quadratic form

(4.6) J(x)=K(x) + fa

b Rjk(t)χί(t)xk(t)dt

is wls-continuous on U if and only if the inequality

(4.7) Rjk(t)πJπk > 0 (j,k = l, •••, r)

holds almost everywhere on a < t < b for every set (rr) ψ1 (0)

Condition (4.7) is known as the Legendre condition.

With the help of Theorem 3.3 and Lemma 8.1 below we obtain:
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THEOREM 4.4. Let D(x) be the quadratic form

(4.8) D(x) = χ)(a)χ](a) + £ R]k (t)χ}(t)xk(t) dt ,

where R.j^(t) — R^jit) are essentially bounded and integrable on a < t < b. Then

an inequality of the form

x\2D{x) >h

holds, with a positive constant h < 1, if and only if the inequality

(4.9) tijk(t)πJ πk > hπJ 77 >

almost everywhere on a < t < b for every set (Ή) ψ (0).

Condition (4.9) is known as the strengthened condition of Legendre.

In a later section we shall consider extensions of Theorems 4.3 and 4.4 to the

case when our arcs are required to satisfy differential side conditions.

The linear forms on ϋ, with which we shall be concerned are of the type

( 4 . 1 0 ) L { x ) = akx
k{a) + bkx

k(b) + fb [ λ k ( t ) x k ( t ) + B k ( t ) x k ( t ) ] dt ,

where Aι(t), , Ar(t) are integrab le funct ions and B^t). •••, Br{t) a re s q u a r e

integrable funct ions on a < t ^ b. C o n c e r n i n g s u c h a form we h a v e :

THEOREM 4.5. The linear form (4.10) is expressible uniquely in the form

L{x) — (y, x), where y is the arc in U determined by the conditions

y k ( t ) = B k ( t ) + f(

b A k ( s ) d s + b k .

This result is readily verified by substitution.

THEOREM 4.6. The linear form (4.10) is identically zero on the class 13 of

arcs in & having xJ (a) — xJ (b) ~ 0 if and only if there exist constants c^ such

that the equations

(4.12) Bk{t) = / * Ak(s) ds +ck (fe = l , , r )
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hold almost everywhere on a < t < b.

This result can be established with the help of Theorem 4.5. It is also an easy

consequence of the fundamental lemma in the calculus of variations [4,pp.10-11 ] .

In our illustrations we shall not consider the most general quadratic form that

can be constructed but shall limit ourselves to the one normally studied in the

calculus of variations. This quadratic form is of the type (4.6) with K(x) defined

by (4.4). It is frequently designated by the symbol

(4.13) J(x) =2q[x(a), x(b)] + f^ 2ω(t,x,x) at ,

where 2q is the right member of (4.3) and

(4.14) 2ω=PjkχJχk + 2Qjkx
Jik +RJkx*Jx'k.

The corresponding bilinear form is

(4.15) J(x,y) = g f e α(x)y f e(α) + <?feί>(*)/(6) + jΓ* (ωχky
k + ω.ky

k) dt ,

where qkaix), qkb(χ) are the derivatives of 2q[x(a),x(b)] with respect to x (α),

c (b), respectively. As was remarked in §2, there is a self-adjoint linear transfor-

nation y — Tx such that ]{x9z) — (y, z) for all z on 8 . This transformation is

lescribed in the following:

THEOREM 4.7. Given an arc x in CL, the bilinear form (4.15) is expressible

Ίiquely in the form J{x9 z) — (y, 2), where y is the arc in & having

.16) yk(a) =qka(x) + ?*&(*) + fa

 ω

xk [s, x(s),i (s)] ds ,

yk(t) =ω.χk[t,x(t),x(t)] + ft

b ωχk[s,x(s)fx(s)]ds + gkb(x) .

This result follows from Theorem 4.5 with L(z) — J(x9 z)

5. Example III. The example with which we shall be concerned is a special

e of the general multiple integral problem. Let S denote the interval

a> < t> <6> (j = 1, , r)

l> * * > i r)-space, and denote by Cl the class of real-valued functions
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x : x(t) = x{tl , ••«, tr) (t o n S)

having the following properties:

(a) The functions x(t) are absolutely continuous in each component t for

almost all ( ί 1 , , tk~ι, tk*1, , tr).

(b) The functions x(t) vanish on the boundary of S. We can suppose x{t) = 0 on

the complement of S.

(c) The derivatives xj^it) with respect to tk [and hence also x{t)] are square

integrable on S.

Two functions are identified if they differ at most on a set of measure zero

on S.

The inner product of two functions x and y in & is taken to be

From the results given by Calkin [5] , Morrey [ 11,12] , and Hestenes [s] , it is

seen that the space U with (x, y) as the inner product defines a Hubert space.

Let P(t), Qk(t), RJk(t) ~ RkJ(t) (j,k = 1, , p ) be continuous functions of t

on 5. In fact we can suppose that they are continuous for all values of t. We shall

be interested in the properties of the quadratic form

(5.1) J(x) = f (Px2 +2Qkχik +Rjkχjik)dt.
o

The following theorems are of interest.

THEOREM 5.1. The quadratic form

(5.2) K(x) - ΐ {Px2 +2Qkx xk)dt
o

is w-continuous on U.

A result of this type under weaker hypothesis has been given by the author

[ 8 ] .

T H E O R E M 5.2. The quadratic form

(5.3) D(x) = f R>kxjXkdt
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is wls-continuous on U if and only if the Legendre condition

(5.4) Rjk(t)τrjπk > 0

holds on S for all (ττ)^(O).

The proof of this result follows from the proof of the necessary condition of

Weierstrass for multiple integral problems [6] together with Theorem 7.1 below.

The condition of Legendre is a well-known consequence of that of Weierstrass.

THEOREM 5.3. The quadratic form D(x) defined by(5.3) satisfies an inequality

of the form

(5.5) D(χ) > h \x\2 (h > 0)

on U if and only if the strengthened condition of Legendre

(5.6) RJk(t)πjπk > 0

holds on S for every set (rr) ψ (0).

Inasmuch as the coefficients in (5 6) are continuous in t9 the inequality (5.6)

is equivalent to an inequality of the form

(5.7) )j jj

holding on S, where A is a suitably chosen positive number. In this event we have

(5.8)

where hkk = 1, δ / / c = 0 (/ φ k). Consequently (5.5) holds on fl. Conversely if

(5.5) holds, the left member of (5.8) is a nonnegative quadratic form and hence is

u?Zs-continuous (see Lemma 8.1 below). It follows from Theorem 5.2 that (5.7) and

hence (5.6) hold as stated.

6. Elementary properties of quadratic forms* The results in this section hold

even if the space G, is not complete. A quadratic form Q{x) will be said to be non-

negative on a subclass S of Q in case the inequality Q(x) > 0 holds on 13. If

Q(x) > 0 for every x ψ 0 in B , then Q{x) will be said to be positive on 13. The

terms "nonpositive" and "negative" are defined similarly by reversing the ine-

qualities.

Two vectors x and y will be said to be Q-orthogonal in case Q{x, y) — 0. If x
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is (^-orthogonal to every vector y in a subclass 13 of U, then x will be said to be

Q-orthogonal to 13 . The set of all vectors (^-orthogonal to 13 will be called the

Q-orthogonal complement of 13 . Two classes 13 and C are said to be Q-orthogonal

in case each vector in 13 is (^-orthogonal to C .

Let 13 be a linear subclass of CL Introducing a terminology that is very de-

scriptive in the calculus of variations we shall say that a vector x is a Q-trans-

versal of 13 if it is in 13 and is (^-orthogonal to 13 . Normally, the symbol 130 will be

used to denote the set of (^-transversals of 13 .

LEMMA 6.1. The set of Q-transυersals of a linear subclass 13 of & forms a

linear subclass 130 of \Ό. It is closed if 13 is closed. Moreover, Q(x) — 0 on \o0.

This result follows readily from the definition of (^-transversals.

LEMMA 6«2. If Q(x) is nonnegative on a linear subclass 13 of Cl, then a vector

x in 13 is a Q-transversal of 13 if and only if Q{x) — 0.

For if x is in 13 and Q{x) = 0, then given a vector y in 13 one has

Q(x + ty) = 2tQ(x,y) + t2Q(y) > 0

identically in t. This is possible only in case Q (%, y) = 0, that is, only in case x

is a (^-transversal of 13. The converse follows from Lemma 6.1.

As a further result we have:

LEMMA 6.3. Let C he the set of all the vectors x in U satisfying a set of m

equations

(6.1) La(x) = 0 (α = 1, •••, m)

defined by linear forms LαW If J * s Q-orthogonal to C, then there is a set of

multipliers hί9 * * , hm such that we have

(6.2) Q(y,x) + haLa(x) = 0

for all x in U. // L i U ) , , Lm{x) are linearly independent on U, these multi-

pliers are unique.

This result follows from equation (2.3) for L {x) — ~~ Q{y9x).

LEMMA 6.4. Let \o he a linear subclass of Cl of finite dimension and let 0 be

its Q-orthogonal complement. Let Uo, Ϊ3O, Co he the sets of Q-transversals of Cl,
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13, C respectively. Then:

(a) A vector z is in C o if and only if it is the sum z — x + y of a vector x in

d0 and γ in 130 .

(b) If a linear form L(x) vanishes on 130, there is a unique vector y in 13 or-

thogonal to 130, such that L(x) — Q(y,x) on 13.

(c) To every vector x in Ci Q-orthogonal to 13 0 , there corresponds a unique

vector y in 13 orthogonal to 130 such that z — x ~~ y is in C.

(d) Let ID be a linear subclass of U such that every vector common to 130 and

13 is Q-orthogonal to 13 . // the dimension of 13 exceeds that of 13, then there is

a vector x f1 0 in 13 that is Q-orthogonal to 13 and is not in 13.

In order to prove Statement (b), select vectors yl9* ' , ym to be a maximal set

of linearly independent vectors in 13 orthogonal to 130. A vector x in 13 is in B o if

and only if Q (yα> *) = 0 (Gi = 1, , m). Hence if L{x) = 0 on 130, there exists a

unique set of multipliers £>α such that for each x in 13 we have

L(x) = b^Q(ya,x) = Q(y,x) ,

where y — y\χba, as was to be proved. Statement (c) follows from (b) by taking

L(x) — Q(x,x) and selecting y as described in(b). For in this case Q {x — y, x) = 0

for all x in 13 .

In order to prove Statement (d), let 131 be the set of vectors in 130 belonging to

13 . Select a maximal set of linearly independent vectors ylf , ym in 13 orthogo-

nal to ISx Since the dimension of 13 exceeds that of 6 we can select linearly

independent vectors xu* , xm+ι in 13 orthogonal to 13x. Choose a\9 * , ^m+i?

not all zero, such that

Q(y/3, * α ) α α = 0 (α = 1, •• , m + 1; /3 = 1, , m ) .

The vector x = x<χaa has the property described in (d).

In order to prove Statement (a), let C be the (^-orthogonal complement of 130.

By (c) the vectors x in C are of the form x = y + z with y in 13 and z in C. It

follows that the class C o is the class of (^-transversals of C as well as of C.

Moreover 130, Uo

 a r e subsets of Co« The orthogonal complement J9 of C has no

element x, with x φ 0, @" o r t n og o n a l to ΐ3 0. By (d) the dimension of J9 therefore

does not exceed that of 130. If xl9 , xr forms a basis for J9 we can find vectors

Ju * * '9 Jr in 130 such that

l<?(*α,y/?)l ^ 0 (α, £ = l . , r) .
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Consider a vector z in C o . Choose constants bR such that

bβ = Q(χoL>z)

The vector x — z "* yβ bβ is in C o , is (^-orthogonal to Xγ9* , %Γ and to C, and

hence also to Q,. It follows that Λ; is in Qo and yβ bβ is in 130. This proves State-

ment (a) and thus completes the proof of the lemma.

ILLUSTRATION 1. Turning to Example I in §3 with J (x) defined by (3.8), we

see that a vector x is a /-transversal of U if and only if the equation

(6.3) χ(t) = fa

h A(t,s)x{s)ds

holds almost everywhere on a < t < b.

ILLUSTRATION 2. Turning to Example II in §4 with J (x) defined by (4.13),

we see, by Theorem 4.6, that an arc x in U is /-orthogonal to the class 13 of arcs

that vanish at t — a and t = b if and only if there exist constants ck such that

(6.4) ω.k = f ω k dt + Ck (k = 1, , p)

almost everywhere on a < t < b. These equations are the Euler equations in inte-

gral form; their solutions are called extremals. When the strengthened condition^ of

Legendre (4.9) holds, it follows from the theory of differential equations that the

extremals form a linear subclass of d of dimensions 2p. Given an extremal x we

denote the right member of (6.4) by ̂ ( ί ) , thus:

(6.5) ξk(t) = fj ωχkdt + ck .

This notation will be found useful in further applications.

ILLUSTRATION 3. In Example II of §4 let 13 denote the class of arcs x in d

satisfying a set of m linear equations

(6.6) La(x) = a{χkx
k{a) + b{χkx

k{b) - 0 (<X= 1, •••, m) .

Let / (x) be given by (4.13). An arc % in 6 is a /-transversal of 13 if and only if it

satisfies (6.4) with constants c ̂  and in addition it satisfies the transversality

conditions,
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(6.7) ~"ζk(a) + <lka + ^(xa(χk — 0 ,

ζk(b) + qkb + hab^k ~ 0 ,

where ^ ( ί ) is given by equation (6.5), and q/ςa, qkb a r e the partial derivatives of

q [x(a), x{b)] with respect to x (a), x {b). For by virtue of Lemma 6.3 there exist

constants ha such that the equation

J\xty) "^"α-^αvyj = 0

holds for all γ in &. In view of the result in Illustration 2, equations (6.4) hold

almost everywhere on a < t < b. Consequently we have

J(χ,y) = qkay
k{a) + <ikbyk(b) + JΓ {ω^^ y^ + ω.χk y

k] dt

= L<?*α - ^ W ] y * ( α ) + [^6 +^(6)]y*(ί>) ,

where ξ^ (t) is given by (6.5). Using the last two equations one obtains (6.7). The

multipliers /ια are unique whenever the matrix \\aak ^ak\\ has rank m.

The result just described suggested the terminology "/-transversal of 13" for

an arc in S that is /-orthogonal to B

ILLUSTRATION 4. In Example II of §4 denote by B the set of arcs in Cλ van-

ishing at t — a and t = b which also satisfy the isoperimetric conditions

a

in which A(χk is integrable and Bak^) is square integrable on a < t < b. By the

use of Theorems 6.3 and 4.6 it is seen that an arc x is /-orthogonal to B if and

only if there exist constants c^ and multipliers Aa such that the equations

(6.8) Ω.* = fj ί1χk dt + cfe

hold almost everywhere on a < t < b, where

The multipliers ha

 a r e unique if the linear forms Lx{x\ % Lm{x) are linearly

independent on U, that is, if there is no set of multipliers yθα and constants dfo

such that the equations
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pt

"a

hold almost everywhere on a < t < b. This is the so-called "normal case" in the

calculus of variations.

ILLUSTRATION 5. Turning to Example III in §5, we observe that a function x

of class C" in Q is a /-transversal of (1, where J(x) is given by (5.1), if and only

if we have

l i t X/j I \s XJ Sς %k ' *• ^ *

This result follows from the fundamental lemma for multiple integral problems in

the calculus of variations.

7. A fundamental property of quadratic forms. A significant portion of the

results to be found below is based on the following:

THEOREM 7.1. Given a quadratic form Q(x) on G, the class G, is expressible

in a unique manner as the direct sum of three linear subclasses U-, Uo, U+ having

the following properties: (a) The classes Q-, Qo, G+ are mutually orthogonal and

Q-orthogonal; (b) Q (x) is negative on Q-, zero on Qo>
 anά positive on U + .

The class Ci0 is the class of (^-transversals of Cί.

In order to prove this result recall that there is a self-adjoint linear transfor-

mation T such that Q(x) — (Tx,x). As has been shown by Nagy [19, p. 23] and

others, the transformation T is expressible uniquely as the sum T — T ~~~ T of

two self-adjoint linear transformations T and T such that the relations

(7.1) P{x) = (T+x,x) > 0, N(x) = (r~x,x) > 0 ,

(7.2) (Ί-χ,T+y)=0

hold for all x and y in U . Observe that

(7.3) Q(x) =P(x) -N(x), Q(x,y)=P(x,y) -N(x,y) .

Let P be the set of P-transversals of d , that is, the set of all vectors x such that

Γ+% = 0. Denote the orthogonal complement of P by Cί + . Similarly let CL be the

orthogonal complement of the class Γl of Λ-transversals of U In view of (7.2) we

have T*T~x = 0 and T~T+x = 0 for all x in Q,. Consequently T~x is in P and T*x
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is in U . It follows that if x is in Q+ we have

N(x) = (T~x,x) = 0, Q(x) = P(*) > 0

unless x — 0. Similarly

P(*) = 0, Q(x)=-N(x)<0

for all Λ; 7̂  0 on G_. Since N(x) — 0 on Cί+ and N(x)> 0 on G it follows from Lemma

6.2 that U+ is a subclass of U and is accordingly orthogonal to U-, Moreover if

x is in Q+ and y is in CL, then Γ~Λ; = 0 and Γ+y = 0. Consequently

Q{x,y)= (x,T+y) - {Γx,y) = 0.

The classes U+ and U_ are therefore (^-orthogonal. Let Cί0 be the class of vectors

common to P and Π,. If x is in &0 , then T*x = Γlc = 0 and hence Tx = 0; that is,

x is a ( ) - t r a n s v e r s a l of & . The class Qo is therefore <2"o r th°go n al to Q+ and G_ ,

as well as being orthogonal to these classes. Since P is the direct sum of &0 and

G-, and Cί is the direct sum of Cί+ and P, it follows that (1 is the direct sum of

U+, CL0 , and U-, as was to be proved.

The result just established can be restated as follows:

THEOREM 7.2. A quadratic form Q(x) on CL is expressible uniquely as the

difference

Q(x)=P(x)-N(x)

of two quadratic forms P(x) and N(x) with the property that (a) P(x) — 0 on the

orthogonal complement of the N-transversals of Q>; (b) N(x) = 0 on the orthogonal

complement of the P-transversals of CL; (c) P{x) — N(x) ~ 0 on the class of Q~

transversals o/Cl,

8. Wls-continuous quadratic forms. The quadratic forms in which we shall be

interested are wls-continuous. Combining the results given in the present section

with those given in Theorems 3,2, 4.3, and 5.2, we see that, in the applications

referred to above, a quadratic form is wls -continuous if and only if it satisfies the

condition of Legendre in its weaker form.

As a first result we have:

LEMMA 8.1* // Q(x) is nonnegative on a closed linear subclass 6 o/Ci, then

Q(x) is wls-continuous on B.
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In view of the identity

Q(χq) - Q(*o) Ξ 2Q(χq - *o>*o) + Q(*g - *o) ,

we see that whenever xq —> xQ on 8, then Q (xq — x0, x0) —• 0 and

lim inf [Q(χ ) - <X*0)] - Urn inf Q(xq - x0) > 0

inasmuch as Q (x) > ϋ on 13.

LEMMA 8.2. If Q(x) is nonpositive and wLs-continuous on a closed linear sub-

class Id of U ί/ien (?Gc) is to-continuous on 13.

For in this case (̂  (Λ;) and ~~{̂ (%) are ẑ  /s-continuous on Θ by virtue of Lemma

8.1. Hence Q (x) is ^-continuous on 13.

Combining this result with Theorem 7.1 we obtain:

THEOREM 8.1. A quadratic form Q(x) is wls-continuous on 0. if and only if

it is W'continuous on the class U- related to Q (x), as described in Theorem 7.1.

In particular, if CL is of finite dimension then Q (x) is wls-continuous.

As a consequence we have:

THEOREM 8.2. A quadratic form Q{x) is wls-continuous on Cl if and only if

it is expressible as the difference

(8.1) Q(χ) =P(x) ~K(x)

of a nonnegative form P{x) and a w-continuous form K(x). In fact, K{x) can be

restricted to be nonnegative and to vanish on the class orthogonal to the P-trans-

versals of U,

If Q(x) is w /s-continuous on Q,, then the quadratic form ~N(x) described in

Theorem 7.2 is nonpositive and u Zs-continuous on U and hence w -continuous on

U, by Lemma 8.2. Consequently Q(x) is expressible in the form (8.1). The converse

is immediate.

COROLLARY. If Q(X) is wls-continuous on & and Q*{x) > Q(x) on d9 then

Q (x) is wls-continuous on U.

For if P{x) and K(x) are related to Q (x) as described in Theorem 8.2, then

p*(x) =Q*(χ) +K(x) >Q(x) +K(x) =P(x) > 0
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on G . Hence Q (x) is w /s-continuous on & .

THEOREM 8.3. // Q(x) is nonnegative on the orthogonal (or Q-orthogonal)

complement of a linear subclass C of U of finite dimension, then Q(x) is wls-

continuous on U.

For in this case the dimension of the class (J- described in Theorem 7.1 cannot

exceed that of C and hence must be finite. Consequently, Q (x) is w Zs-continuous

on U, by Theorem 8.1.

9 Quadratic forms of finite index and nullity Given a quadratic form Q{x),

the dimensions of the classes G_ and Uo related to Q (x) as described in Theorem

7.1 will be called, respectively, the index i and the nullity n of Q(x) on (1 In the

present section we shall be concerned with the case where i is finite and the case

where i + n is finite. In these cases Q(x) is w Zs-continuous on G. Consequently

in the examples given in §§3, 4, and 5, the condition of Legendre must hold in its

weaker form whenever the quadratic form under consideration is of finite index.

The above definition of index and nullity is valid when CL is replaced by a

closed linear subclass 6. It fails to hold when 13 is not closed since the decompo-

sition described in Theorem 7.1 is based upon the completeness of our space. We

shall accordingly define the nullity of Q(x) on a linear subclass B of U to be the

dimension of the class of (Mransversals of B and the index of Q{x) on B to be

the dimension of a maximal linear subclass of B on which Q(x) is negative. The

definition of index is unambiguous in view of the following:

LEMMA 9.1. Let B be a linear subclass of (X and let B o be the class of its

Q-transversals. Suppose there exists a maximal linear subclass C of 13 of finite

dimension on which Q(x) is negative. Then Q(x) > 0 on the class J9 of vectors x

in B that are Q-orthogonal to C, the inequality holding only in case x is in B o .

// C is a maximal linear subclass of B on which Q(x) < 0 and such that C has no

vector x ψ 0 in common with B o , then the dimension of C is equal to that o / C

The first conclusion in the lemma follows from our choice of C as a maximal

linear subclass of B on which Q(x) is negative. In order to prove the second con-

clusion suppose that the dimension of C exceeds that of C . Then by Lemma 6.4

(with 0/ = 13) it is seen that there is a vector x φ 0 in C that is (^-orthogonal to

C and hence in Jδ Clearly Q (x) = 0. Hence x must be in Bo by virtue of the first

conclusion. The dimension of C therefore does not exceed that of C. If the di-

mension of C were greater than that of C , then by Lemma 6.4 we could choose a
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vector x f1 0 in C , that is (^-orthogonal to C and not in C . The vectors of the

form bx + y, where b is any real number and y is in C , would generate a class

having the properties ascribed to C . Hence C could not be maximal. The lemma

is therefore established.

The following theorem is valid even if ft is not assumed to be complete.

THEOREM 9.1. The index i of Q(x) on ι l , if finite, is given by one of the

following quantities : (a) the dimension of a maximal linear subclass \o of u on

which Q {x) is negative; (b) the dimension of a maximal linear subclass C of ft on

which Q(x) < 0 and which contains no nonnull Q-transversal of ft; (c) the least

integer k such that Q(x) > 0 on the Q-orthogonal complement of a linear subclass

l o / G of dimension k (d) the least integer k such that Q{x) > 0 on the orthogonal

complement of a linear subclass $ of d of dimension k; (e) the least integer k

such that there exist k linear forms L\ (x), *, L^ix) such that Q(x) > 0 when-

ever L α W — 0 (Cί=l, , k).

The criteria given in (a) and (b) are equivalent by Lemma 9.1. Moreover a class

C having the property described in (b) also has the property given in (c). The con-

verse is also true. For if there existed a vector z with Q (z) > 0 in the class C

described in (c), the set C of all vectors x in C that are ζ)-orthogonal to z would

have the following property: A vector x that is (^-orthogonal to C is expressible

in the form x — y + bz, where y is ()-orthogonal to z. Consequently

<?(*) = Q(y) + b2Q(z) > o ,

contrary to our choice of C . The criteria in (b) and (c) are therefore equivalent. It

is easily seen that the criteria given in (d) and (e) are equivalent to that given in

(c). The class J9 = CL described in Theorem 7.1 has the properties described in

(c) and (d).

COROLLARY. If Q(x) is nonnegative on the orthogonal (or Q-orthogonal)

complement of a linear subclass C o / U of finite dimension k, then Q(x) is of index

We have also the following further result.

THEOREM 9.2. The sum m = i + n of the index i and the nullity n of Q(x) on

ft, if finite, is given by each of the following quantities : (a) the dimension of a

maximal linear subclass 13 of ft on which Q (x) < 0; (b) the least integer ksuch

that Q{x) is positive on the orthogona\ complement of a linear subclass \o of Cl of
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dimension k (c) the least integer k such that there exist k linear forms Lι{x),

U) such that Q(x) > 0 whenever x ^ 0 am/ L a (*) = 0 (a = 1, , k).

This result is readily established with the help of Theorem 9.1. The direct sum

lϋ of the classes J,-. and Uo described in Theorem 7.1 has the properties described

in Theorem 9.2.

COROLLARY. // Q(x) is positive on the orthogonal complement of a linear

subspace C of Ci of finite dimension k, the sum of the index and nullity of Q(x) on

U does not exceed k.

The following result is immediate.

THEOREM 9.3. If (X is a linear subclass of U, and i, i* are the indices and

n, n* the nullities of Q (x) on d , Q, , respectively, then

(9.1) i* < i9 i* + n* ,< i + d < i + n ,

where d is the dimension of the class J9 of vectors that are simultaneously Q-

transversals of U and U .

An analogous result is the following:

THEOREM 9.4. Suppose Q {x) > Q{x) on d. If i, i* are the indices and n, n*

are the nullities of Q(x), Q (x) on U, then (9.1) holds, where d is the dimension

of the class J9 of the vectors x that are simultaneously Q-transversals and Q -

transversals of CL If Q (x) > Q(x) for all x ψ 0 on G, then

(9.2) i* -f π* ,< i .

A somewhat more complete set of inequalities than those given in Theorem 9.3

can be obtained when & is the orthogonal complement of a linear subclass of d

of finite dimension. The result is described in the following:

THEOREM 9.5. Let L t(%), , L^ix) be k linearly independent linear forms

on & and let Q- be the set of all vectors x such that

Iα(*) = 0 ( α = 1, •••, ft).

Then the numbers i9 £*, n9 n*f d described in Theorem 9.3 satisfy, besides (9.1),

the further relation

(9.3) i + n ,< i* + d +k .
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lO Nonsingular and positive definite quadratic forms. A quadratic form Q (x)

will be said to be nonsingular on a linear subclass 13 of U if given a linear form

L{x) there is a unique vector y in !3 such that the relation

(10.1) L(x)=Q(y,x)

holds for all x in 13. It will be said to be positive definite on B if there is a posi-

tive number h such that the inequality

(10.2) Q(x)>h\x\2

holds on 13. Normally, a quadratic form that is positive definite on & will be de-

noted by D{x) and the corresponding bilinear form by D{x9 γ).

LEMMA 10.1. // Q(x) is nonsingular on a linear subclass \o of U, then \o is

closed and U is the direct sum of 13 and its Q-orthogonal complement C.

For given a vector x0 in Cί, there is a unique vector y0 in 13 such that Q{XQ, y)

~ Q(jo 9 7) f°Γ a H 7 ι n ^ Consequently z0 — x0 ~ y0 is in C , and & is the direct

sum of 8 and C.

To show that 8 is closed, consider a sequence {yq\ of vectors in 13 converging

to a vector χ0 in U. Choose γ0 in 13 and z0 in C such that x0 — y 0 + z 0 . Choose

y in 13 such that (x0 — y0, y) = Q (y9 y) for all y in 13. Since yq is in 13 we have

| 2 = lim (x ~ y yq ~ yo) = lim Q(y, yq - y 0 )

Q(y, yq -" *o) = 0 ,

q=co

g=00

Hence x0

 = y0 , as was to be proved.

Criteria for positive definiteness are given in the following:

THEOREM 10.1. // a positive quadratic form D{x) has one of the following

properties on U it has them all:

(a) D(x) is positive definite.

(b) Xq :=5> 0 whenever D(xq) —> 0.

(c) Xq => XQ whenever xq —> x0 and D{xq) —> D(x0).

(d) If {ϋ{xq)\ is bounded9 then {xq\ converges weakly in subsequence.

(e) // \ϋ{xq9 y)\ is bounded for each y in Q,, then {xq} converges weakly in

subsequence.

(f) D(x) is nonsingular on (X.

(g) // 13 is a closed linear subspace of &, then & is the direct sum of 13 and

its D-orthogonal complement.
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Clearly (a) implies (b). Moreover (b) implies (c) by virtue of the identity

D(xq) -D(x0) = 2D(xq - χo, x0) +D(xq - x0) .

I f ( c ) f a i l e d t o i m p l y ( a ) w e c o u l d s e l e c t v e c t o r s xq, x0 s u c h t h a t Xg\ = 1 , D(xg)

< l/q9 Xg — > x 0 a n d h e n c e s u c h t h a t

0 = lim D{xq) >D{x0) = 0 .
g = 00

Consequently, x0

 = 0, so that Xg :==^> 0 by (c), contrary to the relations \Xg — 1.

If (a) holds and {D{xq)} is bounded, then { Xq\] is bounded. Consequently

(a) implies (d). If (d) failed to imply (a) we could se lect vectors Xg, x0 such that

1 — D(xg) < (1/q) Xg 2 and such that Xg —> x0 , which is impossible.

In order to show that (a) or (d) implies (f), observe that the function f(x) = D{x)

~~ 2L{x), where L(x) is linear, is w/s-continuous, and has a bounded minimizing

sequence and hence attains its minimum at a vector y. Setting g(t) — f(y + tx), we

have

g'(0) =2D(y,x) -2L(x) = 0

for all vectors x in U . Moreover, y is unique since D is positive. Hence (f) holds.

If (f) holds, then (z,x) is expressible in the form (z,x) = D(y,x), and conversely.

A sequence {ϋ(y,xq)\ is therefore bounded for all y in G if and only if \{z9Xq)\ is

bounded for every z in (X and hence if and only if \ \ xq \ ] is bounded. Consequently

(e) follows from (f). Since D(x, y)\2 < D(x) D{y), property (e) implies (d) and

hence (a).

Using Lemma 10.1, we see that (g) follows from (f) and (a). Conversely (g)

implies (f). For given a linear form L(x) — (x0, x) with x0 ψ 0, let 13 be the class

of vectors having L(x) = 0. Select y0 in 13, and z0 in the D-orthogonal complement

C of 13, so that x0 = y0 + z0. Clearly z0 f1 0. Since D(z0, x) = 0 whenever L(x) —

0, there is a constant k such that D{z0, x) — kL(x). Consequently, L(x) — D(z,x),

where z — (I/A;) z0 .

LEMMA 10.2. Let 13 and C be Q-orthogonal subclasses of (1 whose direct sum

is d. Then Q(x) is nonsingular on & if and only if Q(x) is nonsingular on 13 and

on C.

For consider a linear form L(x). If Q (x) is nonsingular on &, there is a unique

vector x0 in (X such that L(x) — Q{XQ, X) on d. Select y0 in 13 and z0 in C such

that xΌ = y0 + z0 . Then L(y) = 0(y0 + z0 , y) = Q (y0 , y) for all y in 13. Similarly
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L(z) — Q(zθ9 Z) on ^ . It is easily seen that these representations are unique.

Conversely if (J (x) is nonsingular on \o and L, we may choose y0 in 8 and z0 in C

such that L{y) — Qiγ0 , y) on 8 and L{z) — Q(zθ9 z) on C. Since G is the direct

sum of the O-orthogonal classes B and C we have L(x) — Q {y0 + z0 , x) on G.

Again this representation is unique, and the lemma is proved.

THEOREM 10.2. If Q(x) is nonsingular on every closed linear subclass ofU,

then either Q{x) or —Q{x) is positive definite on G.

Suppose there is a vector x0 ψ 0 having Q (x0) — 0. Then the (^-orthogonal

complement 13 of xG is closed and contains x0. If y is in B, we have Q(y + xθ9 x)

— Q{y,x) for every x in 8. Consequently 0 {x) cannot be nonsingular on B, con-

trary to our assumption. It follows that either Q(x) or ~Q{x) is positive and non-

singular on Ct and hence positive definite on U, as was to be proved.

In a similar manner we may prove:

THEOREM 10.3. // for every closed linear subclass S of d , the class G is

the direct sum of \o and its (J-orthogonal complement, then either Q (x) or ~~Q{x)

is positive definite on U.

Examples of positive definite forms are described in Theorems 3.3, 4.4, and

5.3.

11. Legendre forms. A quadratic form J(x) will be called a Legendre form in

case (a) it is w /s-continuous on u and (b) Xq z=^> x0 whenever Xg —> xQ and

J(xq)—> J(xo) A Legendre form normally will be denoted by J(x) and the corre-

sponding bilinear form by J{x9y) It will be seen that, in the applications to the

calculus of variations, Legendre forms are those that satisfy the strengthened

condition of Legendre.

In view of (c) in Theorem 10.1 we have:

THEOREM 11.1. A positive Legendre form is positive definite.

As a further result we have:

THEOREM 11.2. A linear subspace B of G on which a Legendre form J(x) is

nonpositive is of finite dimension.

For in this case } (x) is to-continuous on B , by Lemma 8.2. Consequently,

whenever the relation χq—> χQ holds on B we also have J{xq) —> J(XQ) and hence

also Xq:=>x0, by property (b) of ]{x). It follows that weak and strong convergence
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are equivalent on B. This is possible only if 3 is of finite dimension, as was to

be proved.

In view of this result the classes ί l 0 and &- related to a Legendre form J(x),

as described in Theorem 7.1, are of finite dimension. Hence we have:

THEOREM 11.3. A Legendre form is of finite index and nullity.

Combining Theorems 11.3 and 11.1 we obtain:

THEOREM 11.4. A quadratic form J(x) is a Legendre form on U if and only if

there is a linear subset \Ό of U of finite dimension such that J{x) is positive defi-

nite on the orthogonal complement of B. If J(x) is a Legendre form on the orthogonal

complement of a linear subclass B of U of finite dimension, then J(x) is a Legendre

form on U.

The following result is immediate.

THEOREM 11.5. The sum J{x) + K{x) of a Legendre form J(x) and a w-contίnu-

ous quadratic form K(x) is again a Legendre form.

Using this fact we can prove:

THEOREM 11.6. A quadratic form J(x) is a Legendre form on U if and only if

it is expressible as the difference

(11.1) J(x) =D(x) -K(x)

of a positive definite form D(x) and a w-continuous form K(x). In fact K{x) can be

restricted to be nonnegative on U.

If J{x) is of the form (11.1) it is a Legendre form, by virtue of Theorem 11.5.

In order to prove the converse, let xγ, , xn be a basis for the /-orthogonals of

&. Select P(x), N(x) related to J(x), as described in Theorem 7.2. Then J(x) =

P(x) ~ Nix), and

D(x) =P(x) +Λ/(x) + ( * α , * ) ( * α , * )

is positive on U. As was seen in proof of Theorem 8.2, the form IM(x) is w -continu-

ous on d and hence so is the form

K(x) =D(x) -J(x) =2N(x) + (xa.,x)(xa,x).

Since D{x) differs from J{x) by a w-continuous form, D(x) is a Legendre form on Q.
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Since D(x) is positive, it is positive definite, by Theorem 11.1, and Theorem 11.6

is thus proved.

COROLLARY 1. // ]{x) is a Legendre form, then there is a nonnegative iv-

continuous form K{x) such that J(x) > 0 for all x φ 0 in d having K{x) ~ 0.

COROLLARY 2. // J{x) is a Legendre form on d and J*{x) is a quadratic form

such that J (x) > J{x) in U, then J (x) is a Legendre form on d.

For if I)(x), K(x) are related to J{x) as described in the theorem, then

D*(x) = J*(x) +K(x) >J(x) +K(x) =D(x).

Consequently, D (x) is positive definite on U, and J*(x) is a Legendre form, as

was to be proved.

The condition (b) in the definition of Legendre forms characterizes Legendre

forms, apart from sign, as is seen from the following:

THEOREM 11.7. If a quadratic form Q{x) has the property that xq ==> x0 when-

ever Xq —> x0 and Qixq) — > Q(xo)9 then either Q{x) or ~Q(x) is a Legendre form

on U.

It is sufficient to show that either Q (x) or —Q(x) is w Zs-continuous on U • If

this were not so we could select sequences lyql9 \zq\ converging weakly to

vectors y0 , z0 such that Q(yq), Q(yq 9 zq), Q{zq) converge respectively to numbers

A, B, C, such that

(11-2) A<Q(yo), C> Q(z0) .

The equation

(11.3) [A - φo)]a2 + 2a[B ~ Q(y0, z0)] + C - Q(z0) = 0

would accordingly have two distinct real roots ax and a2 Then we would have

x

qa
 = aa yq + z.q —> *oα = ^α ϊo + zo (θC = 1, 2) .

Moreover, since

Q(xqa) =Q(yq)a2

a + 2aaQ{yq, zq) + Q(zq) ,

we would have, by (11.3),

lim Q(xqa.) = A α i + 2 α α ΰ + C = Q(xoa) .
q = co
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According to our hypothesis, Xga =Ξ> xoa. Since aγfza2 this is possible only in

case yq = > y0 and zq => z0 . But this would imply that A = Q(yo)9 C — Q(z0),

contrary to (11.2). This proves the theorem.

ILLUSTRATION 1. Turning to Example II in §4, we see by virtue of Theorems

4.1 and 4.4 that the integral /(%) defined by (4.6) is a Legendre form on G, if and

only if the strengthened condition of Legendre (4.9) holds. In fact by virtue of

Theorem 11.4 the quadratic form J(x) is a Legendre form on a linear subclass 13

of arcs in U satisfying a set of conditions of the form

LM =aajx
J(a) +bajxHb) + £ {Aja(t)xJ + BJ(x(t) £> } dt = 0

( α = 1, ••• , m)

if and only if the strengthened condition of Legendre (4.9) holds. If the arcs are

required to satisfy a system of differential equations, the criterion (4.9) must be

modified, as will be seen in §14 below.

ILLUSTRATION 2. Turning to Example III in §5 we see by Theorems 5.1 and

5.3 that the integral J(x) defined by (5.1) is a Legendre form if and only if the

strengthened condition (5.6) of Legendre holds on S

These illustrations serve to justify the nomenclature "Legendre form."

12 Quasi-nonsingular quadratic forms. A quadratic form Q(x) will be said to

be nondegenerate on a linear subclass 13 of G if there exists no nonnull ()-trans-

versal of 13. It will be said to be quasi-nonsingular on U if it is nonsingular on

each closed linear subclass on which it is nondegenerate. If Q(x) is quasi-non-

singular on d it is quasi-nonsingular on every closed linear subset of U.

The condition of quasi-nonsingularity can be restated as described in the

following:

THEOREM 12.1. A quadratic form Q{x) is quasi-nonsingular on U if and only

if given a closed linear subclass 13 of U» and a linear form L(x) that vanishes

identically on the class 130 of Q-transversals of 13 there is a vector y in 13 such

that the equation

L(χ)=Q(y,x)

holds for every vector x in 13. The vector y can be chosen to be orthogonal to \oQ,

and if so chosen is unique.
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A second criterion for quasi-nonsingularity is given in the following:

THEOREM 12.2. A quadratic form Q (x) is quasi-nonsingular on G if and only

if, given a closed linear subclass B of U on which Q{x) is nondegenerate, (1 is

the direct sum of \o and its Q-orthogonal complement.

The necessity of this criterion follows from Theorem 10.1. In order to prove its

sufficiency, let B be a closed linear subclass of Q on which Q(x) is nondegener-

ate, and consider a linear form L{x) that does not vanish identically on 13. Denote

by C the subset of 13 on which L(x) — (). We shall show first that there is a vector

y0 ψ 0 in S which is (^-orthogonal to C. A nonnull (^-transversal of C has this

property. If C possesses no (^-transversal, 13 is the direct sum of C and its Q-

orthogonal complement relative to 13, by virtue of our hypotheses. Consequently,

in this case also there is a vector γ0 ψ1 0 in 0 which is ()~OΓt:hogonal to C. By

virtue of Theorem 6.3 with U = l3, there is a constant h such that Q(y0 , x) ~ hL{x)

on B. Moreover h ψ 0 since otherwise y0 would be a (^-transversal of β. Setting

y — yQ/h, we have L{x) — Q (y, x) on B. Inasmuch as Q(x) is nondegenerate on

10, γ is unique and Q (x) is nonsingular on B, as was to be proved.

The criterion just established can be restated as follows:

THEOREM 12.3. A quadratic form Q (x) is quasi-nonsingular on G, if and only

if it has the following property: Let B be a closed linear subclass of & and denote

by B o the class of Q-transversals of B. Every vector x that is Q-orthogonal to Bo

is expressible in the form x ~ y + z9 where y is in B and z is Q-orthogonal to \o.

The vector γ can be chosen to be orthogonal to \oθ9 and if so chosen is unique.

Let Q (x) be quasi-nonsingular on U , B a closed linear subclass of U, Bo the

class of its (^-transversals, and B t the orthogonal complement of Bo relative to

B. Every vector x in G, is expressible in the form x — y + z, with y in B1 and z

(^-orthogonal to B l e Moreover, if x is (^-orthogonal to Bo , then z is (^-orthogonal

to Bo and hence to B. The criterion in Theorem 12.3 is therefore a necessary

condition for quasi-nonsingularity. It is also sufficient, by Theorem 12.2.

THEOREM 12.4. A nonnegative quadratic form Q{x) on d is quasi-nonsingular

on d if and only if it is positive definite on the class of vectors orthogonal to the

Q-transversals ofd.

As a further result we have:
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THEOREM 12.5. // Q(x) is quasi-nonsingular on the orthogonal complement
(w of a linear subs pace \u of finite dimension, then Q(x) is quas i-nons ingular on U.

For let G be a closed linear subclass of G on which Q(x) is nondegenerate.

We shall show that Q(x) is nonsingular on G . To this end let C be the subclass

of vectors in G orthogonal to β. Then C is a subclass of C. Denote by Co the

class of (^-transversals of C . Since G is nondegenerate and B is of finite di-

mension, it follows readily that Co is of finite dimension. We may suppose that

C o is of dimension zero, since we can replace B by the algebraic closure of B

and C o . Since Q(x) is quasi-nonsingular on C it is nonsingular on C . Conse-

quently G is the direct sum of C and the class B of ()-orthogonals of C in G .

The class B is of finite dimension. Moreover Q(x) is nondegenerate on B since

otherwise Q (x) would be degenerate on G . By virtue of Lemma 6.4, Q(x) is non-

singular on B . The theorem now follows from Lemma 10.2 with G — G .

COROLLARY. Let Lι(x),' *,Lp(x) be linear forms, and let A aβ ~ A β<χ

(α.,/3 = 1, , p) be a set of p{p + 1)/2 real numbers. Then the quadratic form

P(x) =AaβLa(x)Lβ(x) +Q(x)

is quasi-nonsingular on G if and only if Q{x) is quasi-nonsingular on G.

Combining Theorems 12.5, 11.4, 10.1, and 9.2, we obtain:

THEOREM 12.6. A quadratic form J(x) is a Legendre form on Q if and only if

it is quasi-nonsingular and of finite index and nullity on Cl.

This result can be stated in another form:

THEOREM 12.7. A quadratic form J{x) is a Legendre form on G if and only if

it is quasi-nonsingular, wls-continuous and of finite nullity on G.

As we shall see presently the Lagrange multiplier rule is a consequence of the

following:

THEOREM 12.8. Let Q(x) be a quasi-nonsingular quadratic form on G, and

let B be the set of Q-transversals of G. If P{x) is a quadratic form on G and x is a

vector that is P-orthogonal to B, then there is a vector y in G such that the relation

P{x,z) =Q(y,z)

holds for every vector z in G.
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This result follows from Theorem 12.1 with Liz) — Pix, z).

THEOREM J2.9. Let (Jix) be a quasi-nonsingular quadratic form and let Lγ{x)y

• , Lpix) be p linearly independent linear forms on i . IJenote by \o the set of

vectors in ύ satisfying the conditions

(12.1) L.j.(x) = 0 (α= 1, •••, P) ,

and denote by L the Q-orthogonal complement of B. The set of vectors common to

B and U is the class ίj of all Q-transversals of'λ satisfying (12.1). The class o

is the direct sum of h) and a linear class *a of dimension p orthogonal to JS. // ϋ>! is

of finite dimension dt then ^ is of dimension p "f d.

It is sufficient to consider the case where $ consists of the vector x = 0,

since this can be brought about by replacing J. by the orthogonal complement of iv.

Then the nullity n of Q ix) cannot exceed p. Let xγ , , xn be a basis for the

class '1Q of (^-transversals of Q . We can assume that the first m ~ p ~~ n linear

forms Lι(x)9 ' ,Lm(x) vanish on Ct0 . Inasmuch as 0{x) is quasi-nonsingular,

there exist vectors y^9* * ' , ym in U such that

Lβ (x) = Q{yβ, x) (A" = ! ι •' 1 m)

on U . The vectors yl9 , ym are in C, and the vectors yl9 , ym9 xl9 * 9xn

form a linearly independent set in 0 . The dimension of C — P is accordingly at

least p — m + n. It cannot exceed p since J9 is the zero class. This proves the

theorem.

ILLUSTRATION 1. Consider Example II in 34 and let J(x) be the quadratic

form (4.13). Suppose the strengthened condition (4.9) of Legendre holds. Then, as

was seen in the last section, J(x) is a Legendre form and, by Theorem 12.6, is

quasi-nonsingular on U . Let !3 be the class of all arcs

x : XJ (t) (α < t < 6, j = 1, ••• , r)

in (I that vanish at t — a and t ~ b. The /-orthogonal complement U of \Ό is the

class of extremals, that is, the solutions of equations (6.4). Its dimension is 2r.

The class B o of /-transversals of 13 consists of all extremals that vanish at t — a

and t — b. The statement that x — γ + z9 where y is in B and z is in C, is equiva-

lent to the statement that the end-points of x can be joined by an extremal z. Thus,

by virtue of Theorem 12.3, the end-points of an arc x in (1 can be joined by an
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extremal z if and only if x is /-orthogonal to the extremals that vanish at t — a and

t — b. To state this in another way, let Xγ, ' , xs be a basis of 8 0 . According

to the result given in Illustration 2 in §6 there exist absolutely continuous func-

tions ζjrjjj,) such that

(12.2) ξ]0\t) =coi}[t,xa(t), iα(t)J ( α = l , '•', s)

almost everywhere on a < t < b. Then, as is easily seen,

Consequently, the end-points of an arc x in I can be joined by an extremal if and

only if one has

ζja(b)xJ(b) = ξja(a)xJ(a) ( < λ = 1 , •••, s ) .

It can be shown that the matrix !icfyα(α)j; has rank s since, by virtue of the Legendre

condition, no extremal % / θ has xJ{a) — ξj{a) = 0, where ξj is the right member

of (6.4). Consequently, if we interpret the conditions (12.1) to be the set xJ(a) — 0,

χ1(b) — 0 (j — 1, , r), we see, by Theorem 12.9, that the dimension of the

class C of extremals is p = 2r, a fact which is known from the theory of differ-

ential equations.

ILLUSTRATION 2. If in Illustration 1 we let β be the set of arcs in & which

vanish at

to = α < t i < ••• < tp < tp + i = 6 ,

then the class C of vectors /-orthogonal to β consists of all broken extremals

having corners at most at the points t±, , tp. Let xx, , xs be a basis for

the class B o of all broken extremals in β. Then there exist functions ζio,(t) that

are absolutely continuous on each interval tβ-ι < t < tβ such that (12.2) holds

almost everywhere on a < t < b. It is easily seen that

+ Σ [&α(t/8 - 0) - ξkaitβ + 0)]*A(tβ) •
β=ι

Given an arc x in i t there e x i s t s a broken extremal y with corners at most at ί j ,

' ' ' , tp and having
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ydtβ) =χk(tβ) iβ = o,i, "-, P + i)

if and only if

J ( * α , *) = 0 (α = 1, ••• , s) .

By use of Theorem 12.9 and the remark made at the end of Illustration 1, it is seen

that the dimension of the class C of broken extremals is r(p + 1).

Further illustrations of this type can be found in the papers by Hazard and

Ritcey, referred to in §1.

13 Legendre pairs. Two quadratic forms P(x) and Q(x) will be said to be a

Legendre pair on 0, if (a) they are wZs-continuous on Ct (b) xq = > x0 whenever

xq—>x0, P(xq) —>P(x0), Q(xq)—> Q U o ) I* i s easily seen that P(x), Q(x)

form a Legendre pair if and only if

(13.1) J(x,b) =P(x) +bQ(x)

is a Legendre form for every positive number b. The corresponding bilinear form is

(13.2) J(x, y, b) = P(x, y) + b Q(χ, y) .

THEOREM 13.1. // a Legendre pair P{x), Q(x) has the property that the re-

lations P(x) < 0, Q (x) < 0 hold simultaneously only in case x = 0, then there is a

positive number b such that the quadratic form (13.1) is positive definite on U.

The proof of the case where one of the forms is nonnegative will be left to the

reader. Suppose therefore that neither P(x) nor Q(x) is nonnegative on &. Let &be

the set of points x ψ 0 for which Q(x) < 0. Then by hypothesis /(%, 0) = P(x) > 0

on j& Since Q(x) < 0 at some point in £)9 there is a largest number b" such that

J(x> b") > 0 on λ We may select a sequence \yq\ in j$such that

| y , l = l , jlyq,b" + ^ \ < 0 , Q ( y q ) < 0 , P ( y q ) > 0 ,

the last two holding because yq is in k. In fact this sequence can be chosen to

converge weakly to a vector y. By virtue of w Zs-continuity we have

\y\ < i , J ( y , b " ) < o , Q ( y ) < o .

If y = 0 we have yq —> 0, Q(yq) —> 0, P(yq) —> 0, and hence yq = > 0, contrary

to the relation \yq\ — 1. Consequently y is a nonnull vector in &. In view of our
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choice of b" we have /(y, b") = 0. Since P(γ) > 0 by virtue of our hypotheses, the

relations

(13.3) 6" > 0 , Q(y) < 0, P(y) > 0

must hold. It follows that given a vector x in U the vector y + tx must be in © for

small values of t. Hence, for these values of t we have

0 < J(y + tx,b") = 2tJ(y,χ,b") + t2j(x}b") .

This is possible only in case the first two of the relations

(13.4) J ( y , * . 6 ' ' ) = 0 , J ( χ , 6 " ) > 0 , J(y,b")=0

hold. Thus b" is the largest number such that ]{x9 b") > 0 on d,.

Interchanging the roles of P and ^ we see that there is a least positive number

b' such that ](x, b') > 0 on β . Moreover there is a vector z such that

(13.5) J ( z 9 x , b ' ) = 0, J { z , b ' ) = θ i Q ( z ) > 0 , P ( z ) < 0

for all x in Q, . Since Q (y) < 0 and ( ) U ) > 0, there is a vector % f1 0 of the form

Λ; — αy + cz such that (^U) ~ 0. We have accordingly, by (13.4) and (13.5),

0 <P(X) =j(χ,b") = c 2 J ( z , 6 " ) = c 2 ( 6 " - 6 # ) g ( z ) .

Hence b" > b' . Moreover J(x,b') = J{x,b") = 0 holds only in case P(z) = (?U)

= 0 and hence only in case x = 0. It follows that if 6 is on the interval b1 <b < b"

and x 7^0 we have, with ί = ( i - b')/(b" - 6 ; ),

J ( x , 6 ) = (1 - t)j(x,b') + t J ( x f 6 " ) > 0 .

The form J(x,b) is accordingly a positive Legendre form on G and hence is positive

definite, as was to be proved.

The following lemma will be useful.

LEMMA 13.1. If P{x) and Q(x) are quadratic forms such that P{x) > 0 whenever

x ψ 0 and Q(x) = 0, then either Q(x) or ~~Q(x) is positive on the set of vectors

xφ 0 for which P(x) < 0.

For suppose there exist vectors x and y such that

P{x) < 0, Q(x) < 0, P(y) < 0, Q(y) > 0 .

On the line z — x + ty we have
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P(z) = P ( x ) + 2tp(x,y) + t2P{y) ,

0(z) =Q(χ) +2tQ(x,y) + t2Q(y) .

Since Q {%) Q (γ) < 0 there exist numbers t' < 0 < t" such that θ(z) vanishes at

the corresponding points z' and z" . By virtue of our hypotheses we have P(z')

> 0, P{z") > 0. Since x l ies between z' and z" , the equation P(z) ~ 0 in t has

two roots on t' t" This is impossible if P(γ) — 0. Hence P{y) < 0 and P(z) would

vanish also exterior to t't". This too is impossible. In view of this contradiction

the lemma is establ ished.

THEOREM 13.2. Let J{x) be a Legendre form and let Kix) be a w-continuous

form with the property that J(x) > 0 whenever K(x) — 0 and x f1 0. Then there is a

number b such that J(x) + bK(x) is positive definite on ύ. If K(x) > 0 whenever

J{x) < 0, the number b can be chosen to be positive.

In view of Lemma 12.1, either K{x) or ~K(x) is positive whenever J(x) < 0 and

x φ 0. We can suppose K(x) has this property. Then P(x) = J{x), Q (x) = K(x) have

the properties prescribed in Theorem 13.1, and the theorem follows.

The result described in the last two theorems is a generalization of results

given by several authors: see [ l ] , [9J , [ lό] , and [2θ] .

THEOREM 13.3. Let Q(x) be a nonnegative quasi-nonsingular quadratic form

on Ci, and let P(χ)be a Legendre form on the class S of Q-transversals of&. Then

P(x) and Q{x) form a Legendre pair on U. Moreover there is a positive number b

such that

(13.6) J{x) =P(x) +bQ(x)

is a Legendre form on U having the same index and nullity on U as those of P(x)

on 0.

To show that P(x) and Q(x) form a Legendre pair, suppose Xq—> x09 P(xq)

— > P ( x 0 ) , Q(xq) —> Q(x0). Select vectors yq , y0 in 13 and zq, z0 in the orthogonal

complement C of 8 such that xq — yq + zq, xQ — y0 + zQ. Then yq —> yQ ,

zq—> z0. Moreover Q(xq) = Q{zq)—>Q(x0) = Q(z0). Since Q(x) is positive

definite on C , by Theorem 12O4, it follows that zq => z0. We have accordingly

P(yq > zq) —> Piy0 , ^o). Pbq) —> ^ U o ) B u t t h i s i ^ P l i e s that P(yq) —> P(y0) and

hence that yq ==>y0 , since P{x)\s a Legendre form on B Consequently, xq

 :=> xQ>

as was to be proved.
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In order to prove the last statement in the theorem, let i be the index and n the

nullity of P{x) on 13. Choose a linear subclass -S of 8 of dimension i + n such that

P(x) is positive for all vectors x f- 0 in \Ό orthogonal to 19. Then the hypotheses of

Theorem 13.1 hold on the orthogonal complement U of <β. There is accordingly a

positive constant b such that the quadratic form ]{x) defined by (13.6) is positive

definite on Ct . Consequently, J{x) is a Legendre form on U , the sum of whose

index and nullity is at most i + n. Since J(x) — P(x) on 13, its index and nullity

must be given by i and n respectively.

14. The Lagrange multiplier rule It is of interest to pause for a moment to

show that the Lagrange multiplier rule can be obtained by an application of the

concept of quasi-nonsingularity. To this end we consider the class G of arcs de-

scribed in §4. Let 8 be the class of all arcs x in (1 satisfying a set of differential

equations

(14.1) Φ σ ( t , x , x ) = M σ k ( t ) x k { t ) + H σ k ( t ) i k ( t ) = 0 ( σ - = l , - . . , r < p )

almost everywhere on a < t < b. We shall assume that the coefficients nio-ji{t) and

Nσk(t) a r e continuous on a < t < b and that the matrix |j/VCT & W || (or — 1, , r;

k — 1, , p) has rank r on this interval. As is well known, there exist functions

(14.2) φr(t,x,x)=Mτk(t)xk +Nτk(t)ik ( τ = r + 1, ••-, p )

with continuous coefficients such that the matrix ||/Vy^(ί)|| (/, k — 1, ' , p) has

rank p on a < t < b. Then the relations

Nij{t)Nιk(t)ττJπk >0 ( i , j , k = 1 , •••, p )

hold for every set (77) φ (0). The quadratic form D(x) = U(x, x), where

D(x,y) =xk(a)yk(a) + jf6 φk[t, x(t), x(t)] Φk[t,y(t), y(t)] dt ,

is accordingly (see §11) a nonnegative Legendre form. Moreover D(x) — 0 if and

only if x (a) = 0 and φ^ [t9 x(t)9 x(t)] — 0, that is, if and only if x — 0. The form

D(x) is accordingly a positive definite form on CL. With the help of D(x) we can

prove the following:

THEOREM 14.1. Let Q(x) be the quadratic form

(14.3) Q(*) =Iα(*)Lα(*) + fa

bφσ(t,x,i)φσ(ttxti)clt,
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where Cλ — 1, , m cr = 1, , r; α/zJ L^^),* , Lm(%) are linear forms.

Then the quadratic form. Q {x) is a nonnegative quasi-nonsingular form on CL

In view of the corollary to Theorem 12.5, it is sufficient to consider the case

m = 0. Then the class of arcs on which Q (x) = 0 is the class β of arcs on which

φσ ~ 0. It follows that if x is in β then

D{x,y) =xk(a)yk(a) + £ φτ{t, x,x) φτ{t,y,y) dt ( T = r + 1, ••-, p ) .

Since an arc x in \o is completely determined when the values % (α) and φr(t) —

φr[t, x(t), x(t)] are given, it follows that an arc y is D-orthogonal to 13 if and

only if yk(a) = 0 and φτ[t, y(t), y (t)] = 0 (r = r + 1, , p). On the class C

of Z)-orthogonals of 13 we have accordingly D(y) — Q (y). The form ^ (y) is accord-

ingly positive definite on C. In view of Theorem 12.4, with D(x, y) as the inner

product, the quadratic form Q(x) is quasi-nonsingular on Q,, as was to be proved.

Consider now the case

ί i Λ Λ\ T f \ ^ ( \ -X- /-> (I 1 - i - f /• ̂  i - f * i / - 7 /"
α

where ω α is linear in x and % , the coefficients being continuous functions of t.

We are now in position to prove the following:

T H E O R E M 14.2. L A G R A N G E M U L T I P L I E R R U L E . Let CL be the class of

arcs in U satisfying the conditions

( 1 4 . 5 ) L u ( * ) = 0 , Φ σ ( * , * , * ) = 0 ( θ t = 1 , ••• , m; c r = 1 , ••• , r ) ,

where Lα α ^ Φσ α r e given by (14.4) αrcc/ (14.1), respectively. Let J{x) be the

quadratic form (4.13). Then a vector x in & is J-orthogonal to u if and only if

there exist constants c^ and a function

Ω = ω + μ α ω α + λσ(t) φσ ,

where μa are constants and λ.σ(t) are square integrable functions, such that (a)

the Euler-La grange equations

(14.6) Ω. f c - f%U>xkdt + cfc
x CL

hold almost everywhere on a < t < b (b) the functions ξk(t) defined by the right
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member of (14.6) satisfy the transversalίty conditions

(14.7) -£k(a) + M α % ^ +qka(*) = 0,

ξk(b) + μabak + 9kb(x) = 0,

where qka* qkb have the significance described in Illustration 2 of §6.

In order to prove this fact recall that the quadratic form Q(x) defined by (14.3)

is quasi-nonsingular on CL Moreover, Q(x) = 0 if and only if x is in (1 . Thus, (X

is the class of (Mransversals of CL If a vector x is /-orthogonal to 0, , then the

linear form L(z) = J(x,z) is zero on the set of (^-transversals of CL There is ac-

cordingly a vector y in G, such that

(14.8) J(x, z) + Q{y, z) = 0

for all 2 in CL. If we se t

μa = La{y), λσ(t) = Φσ-U.yU), y(*)L

equation (14.8) takes the form

l<lka(x)

where Ω is defined as described in the theorem. Using Theorem 4.5, we obtain

(14.6) and (14.7). Retracing our steps, we see that the converse also is true.

In view of the following theorem the criterion that ]{x) be a Legendre form on

d is equivalent to the strengthened condition of Legendre-Clebsch for problems

of Lagrange and Bolza.

THEOREM 14.3. Let ]{x) and (1 be defined as in Theorem 14.2. Then the

quadratic form J(x) is a Legendre form on U if and only if there is a number h > 0

such that at almost all points t on a < t < b the inequality

(14.9) Rjk(t)πjπk > hπkπk

holds for every solution (TΓ) φ (0) of

(14.10) Nak(t)πk =0 ( α = l , ••-, r ) .

For by the use of Theorem 12.3 with P(x) = J(x), and Q{x) given by (14.3), the
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quadratic form J(x) is a Legendre form on & if and only if there is a constant

λ > 0 such that I(x) = J(x) + λQ{x) is a Legendre form on Q . In view of Illustra-

tion 1 of §11, the form I(x) is a Legendre form on (i if and only if at almost all

points of a < t < b the inequality

k > hrrkττk

holds for every set π 7^(0) for a suitably chosen positive number h. By virtue of

Theorem 13.3 for the finite dimensional case, this condition is equivalent to con-

dition (14.9) subject to the restriction (14.10), as was to be proved.

The above remarks together with Theorem 13,3 yield the following consequent

result.

COROLLARY. // J(x) is a Legendre form on U of index i and nullity n, then

there is a Legendre form I(x) on U of index i and nullity n that coincides with ]{x)
n*

on U .

15 Quasi-Legendre forms. As was previously seen in §11, the quadratic forms

that arise in the study of nonparametric problems satisfy the strengthened con-

dition of Legendre if and only if they are Legendre forms. This is not true for the

quadratic forms J(x) that arise in the study of parametric problems. The difficulty

lies in the fact that in this case the class Qo of /-transversals of U is of infinite

dimension, which is impossible for Legendre forms. It can be shown (but we shall

not do so here) that in this case J(x) will be a Legendre form on the orthogonal

complement of fl0 if the strengthened condition of Legendre holds. Such forms

belong to a class that we shall call quasi-Legendre forms. The definition we shall

adopt is the following one:

A quadratic form (J(x) will be called a quasi-Legendre form on U in case it is

w Zs-continuous and quasi-nonsingular.

In view of Theorem 12.7 we have:

THEOREM 15.1. A quadratic form Q{x) is a quasi-Legendre form on U if and

only if it is a Legendre form on the orthogonal complement of the Q-transversals of

d. Moreover, Q(x) is a quasi-Legendre form if and only if it is quasi-nonsingular

and of finite index on U.

As an application of quasi-nonsingularity to the theory of indices we have the

following:

THEOREM 15.2. Let Q{x) be a quasi-Legendre form on U and denote by Uo the
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set of Q-transversals of d. Let dx be a closed linear subspace of d and denote by

U2 the Q-orthogonal complement of dx. Finally, let C be the maximal linear class

of vectors common to dx and d29 having no nonnull vector in common with d0.

Then the index i of Q (x) on d is given by the formula

(15.1) i = i ι + i2 + c ,

where il9 i2 are the indices of Q(x) on dX9 d2 respectively9 and c is the dimension

of C. // Q{x) is of finite nullity n on d9 and nx, n2 are the nullities of Q(x) on

dι and d2, then

(15.2) n2 ~ n + c = nx + p ,

where p is the dimension of a maximal class P of Q-transversals of d having no

x T 0 in common with iλx.

In order to prove this result, let B x and B 2 be maximal linear subclasses of

dx and d2 on which Q{x) is negative.Their dimensions are ix and i29 respectively.

Let 13 be the direct sum of the classes 8 t , B 2 , a n c ^ C. Its dimension is k = ix +

i2 + c. Clearly Q (x) < 0 on β. Moreover, no vector x ψ 0 in B is in Q o . Consider

a vector x that is (^-orthogonal to B. The vector x is ^-orthogonal to C and hence

to the class of (^-transversals of d^ . By Theorem 12.3, there are vectors xι in

dx and x2 in d2 such that x — xx + x2 . Inasmuch as x and ^ t are ^-orthogonal to

6 2 , so also is x2 . Hence Q(x2) > 0, the equality holding only in case x2 is a

(^-transversal of d2 , by Lemma 9.1. Similarly, we have Q(xt) > 0, the equality

holding only in case χι is a ( 2 - t r a n s v e r s a l of GΊ a n ( l hence also of d2 . It follows

that Q(x) = Q{xi) + Q(x2) > 09 the equality holding if and only if x is a (?-tτans-

versal of d2 . From this result we see that B is a maximal class on which Q(x) < 0

and which does not contain a (^-transversal of d. The dimension of B is accord-

ingly equal to the index i of Q(x) on d , by Theorem 9.1. The last statement in the

theorem follows from the definition of C.

The result obtained in Theorem 15.2 can be restated in the manner described

in the following:

THEOREM 15.3. Let Q{x) be a quasi-Legendre form on d and denote by dx a

closed linear subspace of d. Let i9 ix be the indices of Q{x) on d9 dl9 respec-

tively. The difference i — iχ is equal to the dimension of a maximal linear sub-

class J9 of d such that (a) Jδ is Q-orthogonal to dx (b) Q(x) < 0 on β (c) J9

contains no nonnull Q-transversal of d. If n9 nx are the nullities of Q(x) on U,
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U i, αrc.c? m — ί -^- n9 niγ ~ iγ ~i~ r^ , then m ~ mx ~^~ e9 where e is the dimension of a

maximal linear subclass 8 of d such that (a) the subclass 8 is Q-orthogonal to

(ίγl (b) the subclass c has no element x ψ 0 in common with dx'9 (c) we have

Q (x) < 0 on 8 .

This result follows from the proof of Theorem 15.2.

The theorems just established have many applications in the calculus of vari-

tions. We shall describe only a few of these. These results also hold when the

class d is replaced by the class U described in Theorem 14.2. Similar results

hold for multiple integral problems.

In the following illustrations, d is the class described in §4, and J(x) is a

Legendre form on d .

ILLUSTRATION. 1. Let β 1 be the subclass of all arcs in d having x{a) —

x(b) — 0. The class 8 of arcs /-orthogonal to dx is the class of extremal arcs.

Let U be a linear subclass of d containing dx . Applying Theorem 15.2 with d

playing the role of d , we see that the index i* of J(x) on d is given by the sum

i* = ii + i2 + c ,

where it is the index dt , i2 is the dimension of a maximal class of extremals in

U on which J(x) is negative, and c is the dimension of the class of extremals

belonging to dx and d2

Before proceeding to the next illustration we find it convenient to establish a

lemma.

LEMMA 15.1. There is a constant δ > 0 such that ]{x) > 0 for every arc x ψ 0

in d vanishing somewhere on every subinterval of a< t < b of length δ.

For if this were not the case there would exist a set of vectors XQ,XQ satisfying

the conditions

J(xq) < 0, | * q | = 1, Xq > Xo ,

such that Xq vanishes somewhere on every subinterval of a < t < b of length \/q.

The vector x0 is obviously the zero vector. Since ]{x) is whs -continuous, we have

J(xq) —* J(XQ) ~ 0, and hence also the relations xq =Ξ> x0 = 0, contrary to the

choice of the x^ as unit vectors.

ILLUSTRATION 2. 'Let tγ < < tr be points on a < t < b which divide
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α < ί < έ into subintervals of length < S, where S has the property described in

Lemma 15.1. Let &ι be the class of arcs in G, which vanish at t0 = a, tl9 ,
ιr > *r + i ~ °' Then J(x) is positive definite on (1, by Lemma 16.1. The class of arcs

C that are /-orthogonal to Uj is the class of broken extremals with corners at

^l* * # * 9 tr Let d be a closed linear subclass of & containing Ct̂  , and let (12 be

the class of broken extremals in 0, . Applying Theorem 15.2 with Q replaced by

U , we see that the index i* of /(%) on G, is equal to the index i2 of J(x) on the

class U2 of broken extremals in U . This illustration identifies the concept of

index given here with that given by Morse [13]

ILLUSTRATION 3. Let fl be the class of all arcs in G, that vanish at t — b,

and denote by dx the class of arcs in & that vanish on an interval t0 < t < b,

where t0 > a. Let fl2 be the class of arcs in Q, that are /-orthogonal to dι . If ]{x)

is of the form (4.13), then an arc x in fl is in G2 if and only if the segment deter-

mined by a < t < t0 is a solution of the Euler equations satisfying the transver-

sality condition at t — a. It follows that in this case an arc x ψ 0 belonging to \λx

and &2 exists if and only if there is an extremal satisfying the transversality con-

dition at t — a and vanishing at t — ί 0. The number of linearly independent ex-

tremals of this type, no linear combination of which is identically zero on t0 <

t < b9 is equal to the number c described in Theorem 16.2. As we shall presently

see, c is the order of t0 as a focal point of our problem. By virtue of Lemma 16.1

we have c — 0 and i t = 0 when 10 < a + S.

16. Focal points. The theory of focal points and conjugate points in the calcu-

lus of variations can be extended so as to be applicable to a quasi-Legendre form

J(x) on a Hubert space CL. Connections between the results here developed and

those found in the calculus of variations will be given in the next section.

In the present section it will be assumed that we have given a one-parameter

family of closed linear subclasses CL(λ) (λ' < λ. < X!) of & such that (a) fl(λ;) is

the zero class and Cί(λ") = β; (b) CUλ^ϊs a subclass o/Q(λ 2 ) whenever \ 1 < λ 2 ;

(c ) if λ' < λ 0 < λ" then the class Q,(λ0) is the intersection of all classes Q,(λ)

with λ0 < λ < X' .

Normally the classes in which we shall be interested have the additional prop-

erty that (d) if λ' < λ 0 < λ", then Cί(λ0) is identical with the closure d ( λ 0 - 0)

of the union of the classes CL(λ) with λ' < λ < λ 0 . However, this property does

not hold in a number of important applications and so we shall not make this further

restriction here.
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One should observe in passing that the classes U(λ) defined above correspond

to a resolution of the identity. In other words, corresponding to each resolution of

the identity there is a theory of focal points.

L E M M A 16.1. // λ' < λ < λ", then the left-hand limit i{λ — 0) is equal to the

index of J{x) on the class d(k ~~ 0) described above. In particular if U(λ. — 0)

= & (λ), then i (λ - 0) = i (λ).

Consider a value λ 0 on λ' < λ < λ", and let h be the index of J(x) on Q.(λo~- 0).

Clearly i(k) < h if λ < λ 0 . We shall show that there is a value kι < k0 such that

i(λ-i) — h0 . This is obvious if h = 0. Suppose therefore that h > 0, and l e t x t ,

• ,%/j be a basis of a maximal linear subclass 6 of Q(λ 0 — 0) on which J{x)< 0.

For each integer p < h select a sequence \xpΓ\ in the union of the classes Q(λ)

(λ' < λ < λ 0 ) converging strongly to xp. We have accordingly

lim j(xpr,xqr)apaq = j(xp,xq)apaq < 0 (p, q = 1, , h)

for every set α^ , afr not all zero. Consequently there is an integer r such that

j(xpr,Xqr)apaq < 0

unless the a's are all zero. Choose λx < λ 0 such that xιr, , xhr a r e in

In view of Theorem 9.1 we have i{\\) > h and hence iQ\.^) — A, as was to be

proved.

LEMMA 16.2. Let B(λ) (λ! < λ < X') be a maximal linear subspace of'fl(λ)

swc/i that (a) 13 (λ) is J-orthogonal to G, (λ t) if λx < λ; (b) J(x) < 0 on 13 (λ); (c) πo

Λ; f1 0 in 13 (λ.) is J-orthogonal to ϋ»(λ.) Then we have

ι(λ) = ΐ ( λ - θ ) + b(k),

where b{λ) is the dimension of 13 (λ). If &{k - 0) = d(λ) (λ; < λ < ^ ), then

b(k) = 0 ( λ ' < λ <λ").

This result follows Lemma 16.1 and Theorem 15.3 since 13 (λ) is /-orthogonal

to the class 0, (λ ~ 0).

L E M M A 16.3. On the interval λ' < λ < λ", the right-hand limit i{k + 0) is

given by the formula

ι{λ + 0) = ι(λ) + c(λ),
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where c(λ.)is the dimension of a maximal linear subclass C(λ) of the J-transversals

of u(λ) with the property that no x φ 0 in C (λ) is J-orthogonal to a class CUλj)

with λ j > λ . In particular, we have i(λ! + 0) = 0.

It is easily seen that two classes having the properties of C(λ) are of the

same dimension. Moreover, by Theorem 9.1, we have i(k) + c(λ.) < ^(λj) if λ. <λ . j .

There is accordingly at most a finite number of points at which c(λ) ψ 0. lience,

given value λ 0 on λ' < λ. < X' , we may select λ.j_ so that c (λ) — 0 on λ 0 < λ

< Xι . Let J9 (λ 0 ) be the class of /-transversals of λ 0 that are also /-transversals

of some Cί(λ) with λ > λ 0 . By virtue of our choice of λ l f the vectors in J9(λ0)

are /-transversals of Ci(λ) (λ 0 < λ < Xx) We can suppose that C ( λ 0 ) is orthogo-

nal to i9(λ 0 ). Let 13 be a maximal linear subclass of G(λ 0 ) on which J(x) is nega-

tive. Its dimension is i(\0). Let P(λ.) (λ 0 < /V < λ ^ be the class of vectors in

(i(λ) that are /-orthogonal to 8 and orthogonal to C ( λ 0 ) and i9(λ 0). There is a

value λ 2 on λ 0 < λ < Xt such that J{x) is positive on P (λ). If this were not so

one could find for every integer r a vector in P (λ 0 + 1/r) such that |Λ;Γ | = 1,

J(xr) < 0. The sequence [xr] can be chosen so as to converge weakly to the vector

x0 . It is clear from property (c) of the family &(λ) that x0 is in G(λ 0 ) and hence

in P ( λ 0 ) . Consequently J{x0) > 0, the equality holding only in case x0 = 0. Inas-

much as J(x) is w Zs-continuous, we have

0 > lim sup j(xr) > lim inf j(xr) > j(x0) > 0.
r=oo r=oo

It follows that J{x0) = 0, and hence that x0 = 0. We have accordingly xr —> 0,

J(xr) —> 0. Since J(x) is a Legendre form on P ( λ x ) , this result holds only in case

xr

 ==:> 0, contrary to the relation \xr — 1. This proves Lemma 16.3.

COROLLARY. // there is no vector x ψ 0, which is -simultaneously a J-trans-

versal of d(\χ) and of u ( λ 2 ) for distinct values \γ and λ.2 on λ! < λ. < X!, then

ι(λ + 0) = i(λ) +n(k) (λ1 < λ < λ " ) ,

where n(λ) is the nullity of J(x) on G(λ).

A point λ at which i(\) is discontinuous will be called a focal point of J(x)

relative to d ( λ ) (λ; < λ < λ'7), and the difference f(λ) = i (λ + 0) - i(λ - 0) will

be called the order of λ as a focal point. We set i{K' + 0) = i{X') and i(λ' - 0)

= i (λ ; ) . Clearly /(λ ; ) = 0, by Lemma 16.3.

Combining the results described in the last three lemmas we obtain:
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THEOREM 16.1. The order f(k) of k as a focal point of J(x) relative to u ( λ )

(λί < λ. < λ") is given by the formula

/(λ) = b ( λ ) + c ( λ ) ,

where b(k) is defined in Lemma 16.2 w iίλ fe(λ.' ) = 0, α/ic? c(/V) is defined in Lemma

16.3 with c{X') = 0. If'e Aαve / ( λ ' ) = 0. // V < λ < X', ίfeerc /(λ) is the dimension

of a maximal linear subclass 3 (λ) o/ Cί(λ) such that (a) 3 ( λ ) is J-orthogonal to

^ ( ^ l ) if kx < k, (b) J(χ) < 0 on 3 (λ), (c) no x f1 0 in 3 (λ) /s J-orthogonal to a

class & (λ 2) w iίA λ 2 > λ if λ < λ" αrcJ w iίA λ 2 = λ" if k = X!.

The last statement can be proved directly with the help of Lemma 16.3.

C O R OLLARY. // G(λ - 0) = (l(λ) (λ' < λ < X!) and if no vector x ^ 0 is J-

orthogonal to Cliλ^ and ( l (λ 2 ) when kι φ λ 2 , then f(λ! ) = f(X') = 0, and f(k)

is the nullity of J(x) on Q(λ) (λ1 < λ < X!).

Oscillation theorems for differential equations of the second order can be es-

tablished with the help of the following:

THEOREM 16.2. Let Cl be a closed linear subspace of U. Denote by Cl (λ)

(λ-' < λ < λ") the set of all vectors in & belonging to Q(λ). The classes & (λ)

have the properties (a), (b), (c) described at the beginning of this section with U

replaced by Cl . Let k{ < λ 2 < < k m be the focal points of J(x) relative to

d (λ) (λ; < λ < λ"), and let λ* < λ*2 < < λ*;π* be the focal points of J(x)

relative to & (λ) (λ' < λ < λ"), each repeated a number of times equal to its

order. Then the relations

(16.1) kr < λ*r (r = 1, ••• , m*)

hold. If U is the orthogonal complement of a linear subclass S of dimension k,

then in addition

(16.2) λ*r < kr+k

holds provided r + k < m.

The inequality (16.1) follows from the fact that the indices i (λ) and i*(λ) of

J(x) on G(λ) and & (λ) satisfy the relation i (λ) > i*(λ). If Q, is the orthogonal

complement of a linear subclass J9 of dimension k, then i (λ) < i*(λ) + /c, by

Theorem 9.5. Hence (16.2) holds.

Comparison theorems for ordinary differential equations of the second order can
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be obtained with the help of the following:

THEOREM 16.3. Let J*(x) be a second quadratic form on & such that /*(#)

> J(x) on d. Let λί < λ 2 < < λm and λ*x < λ*2 < < λ*m* be respec-

tively the focal points of J(x) and /*(%) relative to Q(λ) (λ' < λ < X'), each

repeated a number of times equal to its order. Then the inequalities

(16.3) λ r < λ*r ( r - 1, ••• , m*)

hold. If J(x) = J*{x) only in case x = 0 and G, (λ - 0) = Ct(λ), then

(16.4) λ.r < λ*r ( r = 1, ••• , m ) .

This result follows from Theorem 9.4.

17 An application of the theory of focal points* Consider now the class 13 of

all arcs

x: XJ(t) ( j = 1 , • " , q, α < t <b)

in the class Q described in §4 vanishing at t = ό and satisfying the equations

ahjχJ(a) = 0 (h = 1, ••• , p < g) ,

which we assume to be linearly independent. Let J(x) be of the form

J(x) =A]kχ){a)xk{a) + jf6 2ω(t,x,'x) dt ,

where Ajk — ̂ /c/> a n d 2ω is of the form (4.15). We assume that the strengthened

condition of Legendre (4.9) holds. Consequently/(%) is a Legendre form on G, as

well as on 13.

Let 13 (λ) (a < λ < b) be the set of all arcs x in 13 having χl (t) = 0 ( λ < t < b).

It is easily verified that this family has the properties described in the last sec-

tion provided we replace Q by 13. Moreover, the relation 13(λ — 0) = 13(λ) (a<

λ<b) holds.

By an argument like that used in the illustrations given in §6 we can prove

the following:

LEMMA 17.1. Let x be an arc in (X and set

(17.1) ξj{t) = f ω χ J [s,x(s),x(s)]ds + Cj .
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Then the arc x is J'-orthogonal to the class 13 (λ) (a < λ < b) if and only if the

constants CJ in (17.1) and constants e^ can be chosen such that

U7.2) ξ](t)=ω.J[t,X(t),'x(t)}

holds almost everywhere on a < t < λ , and such that the transυersalitγ conditions

(17.3) Ajkx
k(a) + ehahj = ξ}(a)

hold at t — a. If xJ {t) = ξj{t) = 0 at one point of a < t < λ , then xJ (t) = 0 on

a <t < λ .

The last statement follows from the theory of differential equations. In view of

this result we have the following:

COROLLARY. NO /-transversal of 13(/V t ) is a J-transversal of !3(λ2) if λ t f1 λ 2 .

An arc x that is /-orthogonal to 13 will be called a focal arc. Such an arc is an

extremal on a < t < b satisfying the transversality condition (17.3). We have the

following:

THEOREM 17.1. A value \ona<\<bisa focal point of J(x) relative to

13 (λ) (a < λ. < b) if and only if there is a focal arc x ψ1 0 that vanishes at t — λ..

The order of λ as a focal point is equal to the number of linearly independent

focal arcs of this type in a maximal set.

This result follows readily from the corollaries to Theorems 16.1 and 17.1.

If 6 is the class of all arcs in 13 having χl (a) — 0, and 13 (X.) is the class of

all arcs in 13 vanishing identically on X. < t < b9 then the focal points of / relative

to 13 (λ) {a < λ < b) are called conjugate points. It is easy to see that if p = 0

then focal points and conjugate points cannot coincide.

In view of Theorem 16.2 we have:

THEOREM 17.2. The k-th focal point of J(x) relative to S(λ) (a < λ < b)

precedes (or coincides with) the k-th conjugate point of J{x)9 if the latter exists.

Moreover the k-th conjugate point must precede (or coincide with) the (k + q ~ p)-th

focal point, if the latter exists.

An analogous theorem can be established with the help of Theorem 16.4. These

results serve to illustrate the fact that one can obtain the standard oscillation

and comparison theorems in the calculus of variations by use of the results given
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in §§15,16 and 9. These theorems are generalizations of Sturm-Liouville theorems

for differential equations.

It should be observed that the results given in §16 also hold for integro-

differential equations and integral equations with a symmetric kernel. For example

if we replace ]{x) by J(x) + K(x), where K(x) = K(x, x) and K(x,y) is given by

(4.5), a focal point theory for integro-differential equations is obtained, if J(x) is

taken of the form (3.8), and Q(λ) (a < λ < b) is the class of all Lebesgue square

integrable functions on a < t < b having x(t) — 0 (λ < t < b), a theory of focal

points for integral equations is obtained.

18 Legendre forms depending upon a parameter. Let Λ be a metric space.

For each element λ in Λ let ]{x9 λ) be a quadratic form on U. We shall assume

that the quadratic form Jix λ.) and the associated bilinear form /(%, y λ.) have the

following property: Given a sequence of vectors \xΓ} in Cl converging weakly to a

vector x0 and a sequence \λr} in Λ converging to an element λ 0 , then

(a) lim J{xτ, y; λ r) = J(xQ, y; λ 0 ) for every vector y in Q

(b) lim=inf J(xr;λr) > J(xo;λo);

(c) if lim J(xr λ r ) = / U o ; λ 0 ) , then xτ = > x0 .
Γ=oo

It is clear that for each fixed element λ in C the form Jix λ) is a Legendre

form on G,. These properties are enjoyed by

J{x; λ) = J(x) - λK(x) ,

where J(x) is a Legendre ίorm,K(x) is a ^-continuous form, and λ is a real number.

As a second example, one should observe that the second variation /(%, λ) of a

function F(λ)Ίn the calculus of variations will have this property in a weak neigh-

borhood of an arc X satisfying the strengthened condition of Legendre.

LEMMA 18.1. Let 13 be a closed subclass of Q> on which J(x; λ 0 ) is positive,

where λ 0 is in Λ. Then there is a neighborhood N of λ 0 and a positive number h

such that the inequality

(18.1) J(x λ) > h\x\2

holds on B for every element λ. in /V.

Suppose the conclusion in the lemma is false. Then there is a sequence of unit
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vectors {xr\ in 6 converging weakly to a vector x0 , and a sequence of elements

λΓ in Λ converging to λ 0 , such that

J(xr-Λr) < 1/r.

Clearly x0 is in 13 since 13 is closed. Moreover

0 > lim sup J(xr; λ r ) > lim inf j(xr; λ r ) > j(x0; λ 0 ) > 0.
r=co r=oo

Hence J(x0; λ 0 ) = 0 and x0 = 0. Consequently

lim J(xr;λr) = J(xo; λ 0 ) = 0.
r=oo

By virtue of our hypotheses regarding J(x; λ), we have xτ

 = => x0 — 0, contrary to

the relation \xr\ — 1. This proves the lemma.

LEMMA 18.2. Let {xr} be a sequence of unit vectors converging weakly to a

vector xQ9 and let |/Vr 5 be a sequence of elements in Λ converging to an element

λ 0 . If for each positive integer r the relation

(18.2) J(xr, y; λ r ) = 0

holds for every y in (X, then this relation holds for r — 0. Moreover \x0 = 1 and

xr => x0.

The first conclusion foliows from property (a) of J(x; λ). By (18.2), we have

J(xr; λ r) = J(x0 λ 0 ) = 0. Consequently xΓ = > x0 , by property (c). Since the

vectors xr are unit vectors, so also is x0 .

THEOREM 18.1. Let i(λ) be the index and n(λ.) be the nullity of J{x; λ) on

U for each element λ. in Λ. Given an element λ.o in Λ, there is a neighborhood N

of λ 0 in which the inequalities

(18.3) ι ( λ 0 ) < ι ( λ ) < i ( λ ) + n ( λ ) < ι ( λ 0 ) + n ( λ 0 )

/ n (λ 0 ) = 0, ίΛe^ Ai (λ) = 0, i (λ) = i (λ 0 ) oτι V̂

Let B be a maximal linear subset of U on which J{x λ 0 ) is negative. Its di-

mension is i(\0). By continuity considerations it is seen that there is a neighbor-

hood /V of λ 0 such that }(x λ) is negative on 13 whenever λ is in N Consequently

i (λ) > i ( λ 0 ) on yV, and the first inequality in (18.3) is established.
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In order to prove the last inequality in (18.3), observe that by virtue of Theorem

9.2, the form J (x λ 0 ) is positive on the orthogonal complement \t> of a linear sub-

class C of dimension k = i{k0) + n(k0). By Lemma 18.1, the neighborhood/V

chosen above can be diminished so that J(x λ) is positive on 8 whenever λ. is in

N. Using Theorem 9.2 again, we see that i(λ.) + n{\) < k9 as was to be proved.

COROLLARY 1. The set of points λ.in Λ at which n(X) ψ- 0 is a closed subset

of Λ.

COROLLARY 2. Given an element λ 0 z'π Λ, there is a neighborhood N of λ 0

orc which the inequality n(X) < n ( λ 0 ) holds.

As an application of Theorem 18.1 to the calculus of variations one obtains

the following result: If an extremal λ 0 satisfying the strengthened condition of

Legendre is nondegenerate and of index i, then neighboring extremals are nonde-

generate and of index i.

THEOREM 18.2. Suppose that A is an open interval of real numbers. If for a

value λ 0 in Λ there is a number β > 0 such that given two values λ t < λ 2 in ^ne

€-neighborhood of λ 0 the relation J(x λ 2 ) < 0 holds whenever x f1 0 and J(x λ t )

< 0, then e can be chosen such that

(18.4) ι ( λ ) = ι ( λ 0 ) , n ( λ ) = 0 ( λ 0 - e < λ < λ 0 ) ,

i ( λ ) = ι ( λ 0 ) + n ( λ 0 ) , π ( λ ) = 0 ( λ 0 < λ < λ 0 + e ) .

Similarly, if for a value λ 0 in Λ there is a number e > 0 such that given two values

λ.ί < \2 in the €-neighborhood of /Vo the relation J{x, λ^) < 0 holds whenever

x ψ- 0 and J(x λ 2 ) ^ 0> ίAê z e cα/z 6e chosen so that

(18.5) ι ( λ ) = ι ( λ 0 ) + π ( λ 0 ) , n ( λ ) = 0 ( λ 0 - e < λ < λ 0 ) ,

ι ( λ ) = ι ( λ 0 ) , n ( λ ) - 0 ( λ 0 < λ < λ 0 + e).

In view of Theorems 9.1 and 9.2, the relation i(λ2) > i ( λ t ) + ^ ( λ j will hold

if J(x, λ 2 ) < 0 whenever x φ 0 and /(%, λ x ) < 0. Combining this result with (18.3),

we find that (18.4) holds provided 6 is sufficiently small. The last statement in

the theorem follows similarly.

COROLLARY 1. // J(x; λ t ) > J{x; λ 2 ) whenever x ψ 0, and λl9 λ2 are in

Λ with λ t < λ 2 , ίAeΛ ίAe relations (18.4) hold for all λ 0 in Λ.
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A value λ will be called a characteristic value if n{k) 7*= U; and n (λ) will be

called its multiplicity. A characteristic value will be counted a number of times

equal to its multiplicity. If λ is a characteristic number, then a vector x f1 0 such

that J(x,y, k) — 0 for all y will be called a characteristic vector corresponding

to k.

C O R O L L A R Y 2 . // ]{x λ t ) > J(x, k2) whenever x y^ 0 and kx < λ2> then for

X! < X' the difference i{X') — z* (Ύ ) is equal to the number of characteristic values

on λ' < λ < λ". // ί/iere is a value λ* α£ which i (X*) — 0, ίAerc i(λ) is equal to the

number of characteristic values less than X.

As a further result we have:

THEOREM 18.3. Let J(x) be a Legendre form on U and let K(x) be a w-con-

tinuous quadratic form such that J(x) > 0 whenever x fΛ) and K(x) < 0. //

(18.6) J(x; λ) =J(X) - λ A ( x ) ,

then there is a value k such that J(x', k ) is positive definite on U. If k0 > k ,

the relations (18.4) hold; and if λ 0 < λ*, the relations (18.5) hold. If λ* < λ' < λ';,

then i (λ.") ~ f(λ' ) is equal to the number of characteristic values on λ' < k < X'

αnc/ ι/ λ" < λ' < λ. then i(k') — i(k ) is equal to the number of characteristic

values on X' < k < X . The index i(k) of J(x k) on U is equal to the number of

characteristic values between k and k .

The existence of the number λ follows from Theorem 13.2. From the relation

J(x;λ)=.j(x,λ*) +(λ* -λ)K(x),

we conclude that if λ < λ*, J(χf k) < 0, and x ψ 0, then K(x) < 0. Consequently,

ii kι < k2 < k we have

J(x; λ j = J(%;λ2) + (λ 2 - λi)/ί(x) < 0

whenever x φ 0 and /(%, λ 2) < 0. The relations (18.5) therefore hold when λ 0 < λ .

Similarly (18.4) hold when λ 0 > X*. The remaining statements in the theorem follow

readily.

COROLLA RY 1. If K{x) > 0 on &, then the index i of J(x) on & is equal to the

number of negative characteristic values.

In view of the connection between i (λ) and the number of characteristic values
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we have:

COROLLARY 2. // K{x) is nondegenerate on a linear subclass B of u of di-

mension h, then there are at least h characteristic numbers. If K(x) is nonde gen-

erate on U, then there is a denumberable set of characteristic numbers.

The following result is easily established.

T H E O R E M 18.4. Let J{x, λ) be of the form (18.6). If x' and x" are character-

istic vectors corresponding to distinct characteristic values X! and λ.", then

J{x\x") = £(*', x") = 0.

Corresponding to each characteristic value λ, there are r = rc(λ) linearly inde-

pendent characteristic vectors xγ> , xr corresponding to λ. which can be chosen

so that

(18.7) K(xp) =fe, J(χp) = λfe, J(xp,xq) =K(xp,xq) = 0

(p Φ q,p9 q
 = i . , r ) ,

where k — — 1 or A; — 1 according as λ < λ* or λ > λ*. Every characteristic vector

corresponding to λ j's expressible in the form x — xpap.

In view of this result, the sequence \ \ p } of characteristic values, each re-

peated a number of times equal to its multiplicity, has associated with it a se-

quence of characteristic vectors \xp\ such that

(18.8) j{xp,Xq) =Jpϊ>pq, K{xp,Xq) =kpSpq (j p = λpkp, kp = ±l),

where Spp = 1, 8pq = 0 (p / q). Only a finite number of the / 's are negative. We

can accordingly suppose that

7i < J2 < # # <jp < ••• λ p < λ ς i f j p = j g and p < q.

The following well-known result can be established by the use of the theory of

indices developed in the preceding pages. Its proof will be omitted.

THEOREM 18.5. Let J(x, λ) be of the form (18.6). Let a vector x in Q, be

given9 and set

aq=K{xq,x)/kq ( q = 1 , 2 , 3 , • • • ) •

Then the sequence \yq\ defined by the formula



QUADRATIC FORMS IN HTLBERT SPACE 579

yq = α !%! + ••• + α ^

converges to a vector y m 'J. moreover, J(y) and K(y) are given by the absolutely

convergent series

J(y) = 7 > i + jo** f *•• + i<ιal + β " '

K ( y ) = ^ l a l + ^ 2 a 2 + " + kqaq + # # # J

the vector z — x — γ is a K-transversal of u and

J(x)=j(y) +J(z), K(x)=K(y), K{z) = 0

if K(x) is nondegenerate on lί, then x — y.

19. Further comparison theorems, in the present section we assume that J(x; λ)

is of the form (18.6) and that K(x) is positive on CL Then, in (18.8), we have

]'p ~ ^-p a n c^ ^ i £ ^2 — * * * . As before, /(λ) denotes the index andrc(λ)the

nullity of ]{x$ λ) on U.

LE.MMA 19.1. Given a number λ, the number ( f characteristic values < λ i's

equal to the dimension i(\) + /ι(λ) o/ α maximal linear subclass of U oτz which

J(x; λ) < ϋ. ΓAe number of characteristic values less than λ ι's ί̂ue/z by the di-

mension ί{\) of a maximal linear subclass of U on. which J{x', λ) is negative.

This result follows from Theorem 18.3. Using this result we can prove the

minimax property of characteristic values stated in the following:

THEOREM 19.1. Let C be a linear subclass of U of dimension r, and let λ. 6e

the maximum of the quotient J(x)/K{x) for all x ψ 0 in C. Γ/ιen λ* > λ r , ί/ie r-ίΛ

characteristic value of ](x, X.) on (i. Moreover there is a subclass \^ of iλ of di-

mension r on which Kr is the maximum of J{x)/K(x)

For clearly J{χ, λ*) < 0 on C. By Lemma 19.1, we have r < i(k*) + π(λ*), the

number of characteristic numbers less than or equal to λ. . Hence λΓ < λ. . The

linear subclass C of d generated by the characteristic vectors Xγ9* ' , xr corre-

sponding to λ.j_, , λΓ is such that λΓ — J(xr)/K{xr) is the maximum of J(x)/K(x)

on C. Hence λ = λ r in this case.

THEOREM 19.2. Let υl be a closed linear subclass of U and let \γ < λ.2 <

• < λ* 6e ίAe characteristic values of J(x, λ) on (1 , eαcA repeated a number

of times equal to its multiplicity. The r-th characteristic value λ r of J(x, λ) on
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U , if it exists, is greater than or equal to the r-th characteristic value λ.r of

J(x, λ) on &.

For by the last theorem there is a linear subclass C of Q of dimension r such

that λ* is the maximum of J{x)/K(x) on C. Hence λ* > λ r , again by Theorem 19.1.

THEOREM 19.3. Let /*(%). be a second Legendre form on 'Λ such that J{x) <

] {x) on (λ, and set

J * ( * , λ ) =J*(x) =λK(x).

Denote 6y λ*t < λ*2 < < λ* < the characteristic values of /*(#, λ) on

d, each repeated a number of times equal to its multiplicity. Then λ r < λ* (r = 1,

2,3, ). Moreover if J(x) < J*(x) whenever x f1 0, then kΓ < λ* (r = 1,2,3, ).

Let C be a linear subclass of & of dimension r on which J*(x, λ*) < 0. Then

also J(x, λ*) < 0 on C. Hence λ* > λ Γ , by Theorem 19.1. If /*(*) > J(x) when

x ψ 0, then J{x, λ*) is negative on C. It follows that λΓ < λ* , again byTheorem

19.1.
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