APPLICATIONS OF THE THEORY OF QUADRATIC FORMS IN
HILBERT SPACE TO THE CALCULUS OF VARIATIONS

\lagNUs R, HESTENES

1. Introduction. (ne of the interesting chapters in the calculus of variations
is the theory of indices. It has two aspects, the theory in the large and the theory
in the small. An important part of the latter is the theory of indices of the second
variation, that is, of integrals that are quadratic in their arguments. Such a theory
includes the Sturm-Liouville theory for self-adjoint differential systems.The theory
of the second variation can be approached from many points of view. It can be
developed by means of the theory of differential equations and the associated
boundary value problems. A description of this method together with references to
the many writers on this subject can be found in the works of Bliss [3; 4] and
eid [14;15]. The first of these papers by Reid is an excellent introduction
to the present paper; in it is found an extensive bibliography on boundary value
problenis together with a description of various methods of studying such problems.
The second variation can also be studied by the use of the theory of broken ex-
tremals, as has been done by Morse [13]. A third method is by means of “natural
isoperimetric conditions”; this was done by Hirkhoff and lestenes [2] and also
by Hazard [7], Karush [10], and Ritcey [17].

The author has been convinced for some time that the theory of the second
variation can be obtained from an appropriate theory of quadratic forms in Hilbert
space. The purpose of the present paper is to show how this can be done. The
theorems in Hilbert space which we shall use can be found in standard references
on Hilbert space [18; 19]. In order to apply these results to the calculus of vari-
ations, it is more convenient te emphasize the quadratic form, itself, instead of
the self-adjoint transformation associated with the quadratic form. For this reason
a portion of the paper is devoted to rephrasing known results concerning transfor-

mations in terms of quadratic forms.
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In order to apply the theory of quadratic forms in Hilbert space to the calculus
of variations, an appropriate generalization of the condition of Legendre is needed.
This condition in the calculus of variations appears in two forms, the weaker and
the stronger form. The generalizations we make are the following: a quadratic form
) (x) satisfies the Legendre condition in its weaker form if it is lower semicon-
tinuous relative to the weak topology, that is, if Q) (x) is expressible in the form
Q(x) = P(x) — K(x), where P(x) is nonnegative and K(x) is continuous relative to
the weak topology. A quadratic form J(x) will be said to satisfy the strengthened
condition of Legendre if it is expressible in the form /(x) = D(x) — K(x), where
D(x) is positive definite and A(x) is continuous relative to the weaker topology.
Essentially this condition is satisfied if and only if weak convergence and con-
vergence of the corresponding values of J(x) imply strong convergence. Forms J(x)
which satisfy this latter condition will be called Legendre forms. Since we may
take [)(x)”* as a norm, the study of Legendre forms is equivalent to the study of
completely continuous linear transformations. The literature on these transforma-
tions is extensive; see [19]. llowever, their connection with the calculus of
variations does not appear to have been treated adequately heretofore.

It will be seen in $11 below that Legendre forms have a finite (negative) index
and finite nullity. These indices are fundamental in the calculus of variations.
The nullity, for example, may be used to describe the number of linearly inde-
pendent solutions of a certain differential or integrodifferential equation satisfying
given boundary conditions. The index can be used to describe the number of oscil-
lations of solutions of these differential equations. This latter result is a conse-
quence of the theory of focal points. In $17 below we develop a theory of focal
points which not only yields the standard theory of focal points in the calculus of
variations but also suggests new interpretations for integrodifferential and integral
equations. Of particular interest is the fact that to each resolution of the identity
there corresponds a theory of focal points. When interpreted in terms of differential
systems the theory of focal points yields the Sturm-Liouville theory.

Legendre forms have another property that is of significance in the calculus of
variations. This property will be called quasi-nonsingularity. If one examines the
literature in the calculus of variations one finds that this property plays a funda-
mental role in proofs. The form in which this property normally appears is de-
scribed in Theorem 12.3. An interesting by-product of the concept of quasi-non-
singularity is a new proof of the Lagrange multiplier rule given in $14 below.

An attempt has been made to give a sufficient number of illustrations so as to

indicate the connections between theorems and their applications in the calculus
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of variations. Only the simplest examples have been used. We have omitted, for
example, most of the applications to isoperimetric problems, to problems of Bolza,
to parametric problems, to the case of discontinuous solutions, and to multiple
integrals. Iixcept in the case of multiple integrals, it is a relatively simple matter
to apply the results here given if one is familiar with the problem considered. In
the case of multiple integrals further study of the theory in the calculus of vari-
ations seems to be necessary to bring the theory to a state of completeness compa-

rable with that for simple integrals.

2. Hypotheses and preliminary remarks. Let (. be a linear space over thefield
of reals. The elements of (, called vectors, will be denoted by x,y, z, * * *. Real
numbers, called scalars, will be denoted by a,b,c, * + +. The sum of two vectors
x and y will be denoted by x + y, and the product of x by a scalar b by bx or xb.
A subclass B of (I that is closed relative to addition and scalar multiplication is
called a linear subclass of (.. By the dimension of B will be meant the number of
linearly independent vectors in 3 in a maximal set of such vectors. We shall have
occasion to distinguish only between finite and infinite dimensional linear sub-
classes of (. A set of vectors x,, ***, x, will be said to generate the linear
subclass B of 0 comprised of all vectors of the form a,x, + **+ + apx,. If the
vectors x,,* * *, x, are linearly independent, they will be said to form a basis for
the subclass 3 which they generate. A linear subclass B of U will be said to be
the direct sum of linear subclasses B,,*+ +, B, if every vector x in B is express-
ible uniquely as a sum x = x; + *++ + x, with x; in B; G =1, +,n) and if
every such sum is in 3.

It will be assumed throughout that we are given a symmetric function (x,y) on
G0 to reals, called the inner product of x and y, having the following properties:
(a) (x,x) > 0, the equality holding only in case x = 0; (b) (x,ay + bz) =alx,y) +
b(x,z); (c) every Cauchy sequence has a limit; that is, given a sequence {xqg

such that

lim lxp '—qu =0,

p:qzm
where |x] = (x,x)", there is a vector x in (0 such that
(2.1) lim lxq — x| =0.
q=e®
The quantity ‘xl = (x, x)” is called the norm or length of x and satisfies the

relations
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] 20, lax| =lal ||, @) <=l [yl |x+yl <lxl + 1yl

The quantity |x — y| denotes the distance from x to y.

Two vectors x and y are orthogonal if (x,y) = 0. A vector x is orthogonal to a
subclass B of G if it is orthogonal to each vector y in B. Two subclasses 13 and
C are said to be orthogonal if every vector x in B is orthogonal to every vector y
in C. The set of all vectors orthogonal to a subclass B will be called the orthogo-
nal complement of 1.

A sequence of vectors ixq§ will be said to converge strongly to a vector x,
written x; = x,, in case (2.1) holds. It will be said to converge weakly to x,,
written x4 —» x4, in case
(2.2) lim (xq,y) = (x0,¥)

q‘—'m
for every vector y in (. It is bounded in case the sequence of its norms §| xq I} is
bounded. The symbol a; — a, will be used to signify that the sequence of scalars
{aq} converges to ay. By a closed subset of (, will be meant one that is closed
relative to strong convergence.

A real-valued function f(x) on ( is said to be continuous if f(xg) —> f(xo)
whenever x; => wx,. It will be said to be w-continuous in case flxg) — f(xo)

whenever x5 — x,. If

whenever Xg —> %o then f(x) is said to be wls-continuous on 0, that is, lower
semicontinuous on (i with respect to weak convergence. The function f(x) will be

said to be additive in case it satisfies the identity

flax +by) = af(x) +bf(y) .

A continuous additive function will be said to be linear and normally will be de-
noted by L (x) with or without subscripts.

We shall make frequent use of the standard properties of weak and strong con-
vergence. In particular, one should recall that a closed linear subclass of G, on
which every weakly convergent sequence is strongly convergent, is of finite di-
mension.

Recall also that if L,(x),* **, Li(x) are k linear forms, the class B of all
vectors x such that Lix) =0 (i = 1, + -, k) is a closed linear subclass of (.
Every linear form L (x) vanishing on B is expressible in the form
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(2.3) L(x) =hiLy(x) + =+ + heLp(x) .

The multipliers hy, * * *, Ay are unique if L(x),* * *, L x(x) are linearly independent.
Given a linear form L (x), there is unique vector y in ( such that L (x) = (y, x).
A function Tx on ( to (i will be called a linear transformation if it is continu-

ous and additive in the sense that
(2.4) T(ax + by) = aTx + bTy

is an identity. For a linear transformation Tx of this type there is a number ¥ such
that

(2.5) |Tx | < M|x]| .

If qu = T'x,, whenever Xg—> Xo) then Tx will be said to be completely continu-
ous on (.

A real-valued function B(x, y) on (0l will be called a bilinear form in case it is
linear in y for each x and linear in x for each y. To each bilinear form B(x, y) there
corresponds a unique pair of linear transformations T and T¥, called adjoints of

each other, such that
(2.6) B(x, y) = (Tx,y) = (x,T"y) .

Observe that |B(x,y)| <M |x| |y| if M is suitably chosen. Moreover if Xgq > %0,
and y, — yo, then Blxg,y,) — Blxo,yo). If Blxgyq) — Blxg,yo) whenever
Xg —> %o and Yqg—Yo then B(x,y) is said to be completely continuous and will
normally be denoted by K(x,y). If K(x,y) = K(y,x), then K(x,y) is completely
continuous if and only if K(x) = K(x, x) is w-continuous on (, as can be seen by

the use of the identity

2K(x,y) =K(x +y) —K(x) —K(y) .

The present paper will be devoted to the study of quadratic forms Q (x)=Q (x,x)
defined by a symmetric bilinear form Q (x,y). For a quadratic form we have the

fundamental identity

Q(ax + by) = a2Q(x) + 2abQ(x,y) + b2Q(y) .

A quadratic form is a continuous function of x but is not in general w-continuous.
A w-continuous quadratic form will normally be denoted by K(x) and the corre-
sponding bilinear form by K (x, y).
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The linear transformation T (x) corresponding to a quadratic form is identical
with its adjoint and is accordingly self-adjoint. The study of quadratic forms is
accordingly equivalent to the study of self-adjoint linear transformations. In the
applications to the calculus of variations to be made below, it appears to be more
convenient to state our results in terms of quadratic forms rather than in terms
of the corresponding linear transformations. The interpretation of these results

in terms of transformations will be left to the reader.

3. Example I. In the development of the theory given below the author kept in
mind certain standard problems in the calculus of variations which will be de-
scribed in the next two sections. In the present section we shall consider a space
( that is of interest in the theory of integral equations with a symmetric kernel as
well as in the calculus of variations.

The space (b with which we shall be concerned is one in which the vector x is
a vector-valued function x (£) = [x(t),* * +, x"(¢)], where ¢t = (¢!,+«+, ¢tP) is a
point in a p-dimensional Euclidean space restricted to lie in a fixed interval
S:ad*< %< (x=1,0°" »,p). Each component %/(¢) is assumed to bea Lebesgue
square integrable function on S. The inner product of two vectors x and y is given

by the formula
(x,y) = [, #7(¢) ¥/ (¢) dt (=1, 1).

Here and elsewhere a repeated index in a term denotes summation with respect to

that index unless otherwise specified or implied. The norm of x is

lx‘ = M xj(t)xj(t)dt]%

The class G together with the inner product (x, y) satisfies the hypotheses made in
the last section. Strong convergence is equivalent to convergence in the mean of
order two, and weak convergence is weak convergence in the class , of Lebesgue

square integrable functions. In fact, x4 —» x, if and only if the integrals

js'x;(t)x;(t)dt (9 =1,2,3, )

are uniformly bounded and



QUADRATIC FORMS IN HILBERT SPACE 531

lim J;

J = J ‘ _— vee
q=® So xq(t)dt ‘/5‘0 xo(t)dt (J 1) ) r)

for every subinterval S, of S.
We proceed to prove three theorems that will be useful in our applications to

the calculus of variations.

THEOREM 3.1. Let Ajk(s,t) (jok = 1,2 +,71) be r? Lebesgue square inte-
grable functions on SS. Then the bilinear form

(3.1) K(x,y) = ‘4 /S'Ajk(s,t)xj(s)yk(t)dsdt

is a completely continuous bilinear form on (.

This result is well known. A simple proof can be made as follows: Observe that

L(z) = j;ISA]k(s,t)zjk(s,t)dsdt

is a linear form on the class G~ of Lebesgue square integrable functions L (s,t)
(jok=1,+++,r) on SS. By the criterion for weak convergence described above it
is seen that the relations xg — x4, y4 — ¥, on ( imply the relation Z2g —>zg 0N
@*, where zjqk (s,t) = x]q (s)yf; () (=0,1,2,* + *). Consequently

L(zq) = K(xq,7q) — L(20) = K(x0, %) »
as was to be proved.

THEOREM 3.2. Let Rjp(¢) = Ryj(6) (j, k=1, ++,r) be r(r + 1)/2 essentially

bounded integrable functions on S, and set
(3.2) Qlx,y) = -/5 H]k(t)x](t)yk(t)dt .

Then the quadratic form Q(x) = Q(x,x) is wls-continuous on C if and only if at
almost all points of S the inequality

(3.3) Bue(t)ala® >0

holds for every set (a) # (0). In fact, Q(x) is wls-continuous on G if and only if
0(x) >0 on Q.

The condition (3.3) is commonly called the weak Legendre condition in the



532 MAGNUS R. HESTENES

calculus of variations.

Suppose now that Q (x) is wils-continuous on (. Recall that for almost all points

to interior to S the relation

(3.4) Lim ng® Jf Rjk (¢) dt = Ry (to)

holds, where Sq is the set of points in S at a distance at most 1/q from ¢4, and mgq

is the positive square root of the measure of S,. Let ¢, be an interior point of S at

1

which this limit exists. Consider a set of numbers al,* * +, a” such that a/a/ = 1.

For each integer g let xé(t) = aj/mq on S, and x;(t) = 0 elsewhere. The sequence
%4 § so defined converges weakly to x, = 0, and we have |x,| = 1,as one readily
q g y 0 q9

verifies. Moreover,

Q(xq) = ajakma2 ‘é‘ Rjk (t)dt.
q
It follows from (3.4) that
lim Q(xq) = Rjk (to) alak .
q=®
Inasmuch as Q (x) is wls-continuous we also have
lim Q(xq) > Q(x0) = 0.
q=®

The relation (3.3) therefore holds at ¢, and hence almost everywhere on S. Con-
versely the condition (3.3) implies that Q(x) > 0 on ( and hence Q(x) is wlis-

continuous on (., as we shall see in Lemma 8.1 below.
THEOREM 3.3. The quadratic form Q(x) defined by (3.2) satisfies the relation
(3.5) Q(x) > h |x|?
on 0, with a positive constant h if and only if the inequality
(3.6) Rjk(t)a]ak > halal
holds almost everywhere on S.

This result is obtained by applying Theorem 3.2 to the quadratic form

Q) = hlxl? = LR (e) = hojp] ol ()2 (t) dt,
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where 5;; =1 and 8;; = 0 (j # k). The condition (3.6) is called the strengthened
condition of Legendre.

Of particular interest is a quadratic form of the type

(3.7) J(x) =K(x) +Q(x) ,

where the bilinear forms Q(x,y) and K(x,y) corresponding to Q(x) and K(x) are
given by (3.2) and (3.1) with A]'k(s, t) = Akj(t, s). In the case r = 1 we have as a

special case the quadratic form

(3.8) J(x) = ja" [x(¢)]? dt — fa”fa” A(s, t)x(s)x(t) ds dt

with the symmetric kernel A(s, ¢) = A(t, s). This quadratic form plays a significant
role in the Hilbert-Schmidt theory of integral equations with a symmetric kernel.

4. Example II. In the present paper we shall be primarily interested in the
case in which (0 is the totality of arcs x in (¢, x!, * * +, xP)-space defined by a set

of p real-valued functions

x x](t) (agtﬁb,jzl,"-,p)

that are absolutely continuous and have square integrable derivatives x/(t) on
a <t < b, The numbers a and b are held fast. As the inner product of x and y we
take

.1 (x,y) =7 (a)y’ (a) + [ & (£)57 () at
The norm |x| = (x, x)% of x is accordingly given by the formula
(4.2) |x|? =%/ (a)%/ (a) + f ) dt.

With the help of the remarks made below it is easily verified that the hypotheses

made in $2 are satisfied.

LeEmMA 4.1. The relation xq => xq holds if and only if xq]{.(a) ——)xj(a) and
xé (t) ——)x](t) in the mean of order two. Similarly xq — xq if and only if x’(a)
— x](a) and xl () — x](t) weakly in the class of Lebesgue square Lntegrable
functLons In either case xé (&) — xé (¢) uniformly on a <t < b.

From this lemma one obtains readily the following:
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THEOREM 4.1. Let Pj;(¢) = Py;(t) (j,k = 1, * *,r) be integrable functions
and Qi (¢) square integrable functions on a <t < b, and let

(4.3) H(x) = Ajkxj (a)xk(a) + 2Bjkxj (a)xk(b) + Cjkxj (b)xk(b) .

Then the quadratic form
(4.4) K(x) =H(x) + ‘Lb (ij xIxk + 2ijxj£k) dt

is a w-continuous quadratic form on (. .
A second type of w-continuous quadratic form is described in the following:
THEOREM 4.2. Let Q(s,t,x,%, v,y ) be defined by the formula
Q=4 (s, t)xlyk + B,k (s, t)(xIyk + yjik) + Gk (s, t).x'jjlk ,

where Aj(s,t) = Ayj(t,s) are integrable functions of s and t, Bj(s,t) = Byj(t, s)
are square integrable functions of s and t, and Cj(s,t) = Cyj(t,s) are essentially

bounded integrable functions of s and t. Then the symmetric bilinear form

(4.5) K(xy) = [0 L1 Qs t,2(s), #(s), y(¢), 3(¢)]dsdt

is completely continuous.

This result follows readily from Lemma 4.1 and Theorem 3.1. In view of Theo-
rem 3.2 we have the following:

THEOREM 4.3. Let Rji(¢) = Rj(e) (j,k = 1,7+, 1) be essentially bounded
integrable functions on a <t < b and let K(x) be a w-continuous quadratic form
on 0. Then the quadratic form

(4.6) J(x) =K(x) + [° Ry (2)37(0)2k(e) ae

is wls-continuous on (. if and only if the inequality
(4.7) Rjp(t)mImk >0 Gok=1, «==, 1)
holds almost everywhere on a < t < b for every set (1) # (0).

Condition (4.7) is known as the Legendre condition.
With the help of Theorem 3.3 and Lemma 8.1 below we obtain:
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THEOREM 4.4. Let D(x) be the quadratic form
(4.8) D(x) = 7 (a)x!(a) + ‘/;b R]k(t)ij(t)ik(t) dt,

where Rjj(t) = Ryj(t) are essentially bounded and integrable on a <t < b. Then
an inequality of the form
D(x) > h |x]?
holds, with a positive constant h < 1, if and only if the inequality
(4.9) Ry (t)ml k> hord 7]
holds almost everywhere on a < t < b for every set (1) # (0).

Condition (4.9) is known as the strengthened condition of Legendre.
In a later section we shall consider extensions of Theorems 4.3 and 4.4 to the
case when our arcs are required to satisfy differential side conditions.

The linear forms on (i with which we shall be concerned are of the type
(4.10)  L(x) = apx®(a) + brx*(b) + ja” [Ap(t)xk(t) +Br(t)xk(t)] dt,

where A,(t),+ ++, A,(¢t) are integrable functions and B,(t). -+, B/(¢) are square

integrable functions on a < ¢ £ b. Concerning such a form we have:

THEOREM 4.5. The linear form (4.10) is expressible uniquely in the form
L(x) = (y, x), where y is the arc in (. determined by the conditions

(4.11) yk(a) = ap + by +j(;b Ap(s)ds,

FR(e) = Bi(t) + L An(s)ds + by

This result is readily verified by substitution.

THEOREM 4.6, The linear form (4.10) is identically zero on the class B of
arcs in O having x/(a) = x7(b) = 0 if and only if there exist constants cj such

that the equations

(4.12) Be(t) = ' Ar(s) ds + ey (k=1 r)
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hold almost everywhere on a <t < b,

This result can be established with the help of Theorem 4.5. It is also an easy
consequence of the fundamental lemma in the calculus of variations [4,pp.10-11].

In our illustrations we shall not consider the most general quadratic form that
can be constructed but shall limit ourselves to the one normally studied in the
calculus of variations. This quadratic form is of the type (4.6) with K(x) defined
by (4.4). It is frequently designated by the symbol

(4.13) J(x) =2q[x(a), x(b)] + fab 2w(t,x,%) dt

where 2q is the right member of (4.3) and
(4.14) 2w= Pk +2Qpxlik + Rl ik,

The corresponding bilinear form is
b .
(4.15) J(%y) = qra()y*(a) + arp(x)y*(6) + [ (wuy* +wpuy*) dt,

where g, (x), qxb(x) are the derivatives of 2q[x(a),x(b)] with respect to xk(a),
\:k(b), respectively. As was remarked in $2, there is a self-adjoint linear transfor-
nation y = Tx such that [(x,z) = (y,z) for all z on (.. This transformation is

lescribed in the following:
THEOREM 4.7. Given an arc x in (, the bilinear form (4.15) is expressible
riquely in the form [ (x, z) = (y, z), where y is the arc in O having

16) y#(a) = qra(x) + ars(x) + £ w5 x(s)7 ()] ds

7R () =wgle,x(6), ()] + f° @i ls,2(s), #(s)]ds + gro(x) .

This result follows from Theorem 4.5 with L(z) = J(x, z).

S. Example III. The example with which we shall be concerned is a special

e of the general multiple integral problem. Let S denote the interval
al <tl <bl (j =1, 1)

1+« t")-space, and denote by ( the class of real-valued functions
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x: x(t) =x(th, -, t7) (t on S)
having the following properties:

(a) The functions x(t) are absolutely continuous in each component t* for
almost all (t1,++ +, th=1, (¥t o ov 47y,

(b) The functions x(t) vanish on the boundary of S. We can suppose x(t) = 0 on
the complement of S.

(c) The derivatives xj(t) with respect to t* land hence also x(¢)] are square

integrable on S.

Two functions are identified if they differ at most on a set of measure zero
on S.

The inner product of two functions x and y in G is taken to be

(,y) = S 2 (t) yp(t) dt.

S

From the results given by Calkin [5], Morrey [11,12], and Hestenes [8], it is
seen that the space G with (x, y) as the inner product defines a Hilbert space.

Let P(2), Qk ), R75(t) = R¥1 (1) (j,k=1,*++, p) be continuous functions of ¢
on S. In fact we can suppose that they are continuous for all values of ¢t. We shall

be interested in the properties of the quadratic form
(5.1) J(x) = f (Px? +2Q% Ak + REE;2y) de .

The following theorems are of interest.

THEOREM 5.1. The quadratic form
(5.2) K(x) = [ (Px* +2Qkx 3*)dt

is w-continuous on (.

A result of this type under weaker hypothesis has been given by the author

[8].

THEOREM 5.2. The quadratic form

(5.3) D(x) = [ k32 de
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is wls-continuous on O if and only if the Legendre condition
(5.4) Rk (t)mim >0
holds on S for all (1) 75(0)

The proof of this result follows from the proof of the necessary condition of
Weierstrass for multiple integral problems [6] together with Theorem 7.1 below.

The condition of Legendre is a well-known consequence of that of Weierstrass.

THEOREM 5.3. The quadratic form D(x) defined by (5.3) satisfies an inequality
of the form

(5.5) D(x) > h|x|? (h >0)
on (. if and only if the strengthened condition of Legendre

(5.6) Rjk(t)'njwk >0

holds on S for every set () # (0).

Inasmuch as the coefficients in (5.6) are continuous in ¢, the inequality (5.6)

is equivalent to an inequality of the form
(5.7) R]k(t)ﬁj’ﬂk ,_>_h7T]7Tj

holding on S, where % is a suitably chosen positive number. In this event we have

(5.8) L (R —hei*) iz de 20,
where §5k =1, §/k =9 (j # k). Consequently (5.5) holds on G. Conversely if
(5.5) holds, the left member of (5.8) is a nonnegative quadratic form and hence is
wls-continuous (see Lemma 8.1 below). It follows from Theorem 5.2 that (5.7) and
hence (5.6) hold as stated.

6. Elementary properties of quadratic forms. The results in this section hold
even if the space ( is not complete. A quadratic form Q (x) will be said to be non-
negative on a subclass B of ( in case the inequality Q(x) > 0 holds on B. If
Q(x) > 0 for every x # 0 in B, then Q(x) will be said to be positive on 8. The
terms “nonpositive” and “negative” are defined similarly by reversing the ine-
qualities.

Two vectors x and y will be said to be Q-orthogonal in case Q (x,y) = 0. If x
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is Q-orthogonal to every vector y in a subclass B of (, then x will be said to be
Q-orthogonal to B. The set of all vectors Q-orthogonal to 13 will be called the
Q-orthogonal complement of B. Two classes B and C are said to be Q-orthogonal
in case each vector in BB is Q-orthogonal to C.

Let B be a linear subclass of (i. Introducing a terminology that is very de-
scriptive in the calculus of variations we shall say that a vector x is a Q-trans-
versal of B if it is in B and is Q-orthogonal to B. Normally, the symbol B, will be

used to denote the set of Q-transversals of 3.

LEMMA 6.1. The set of Q-transversals of a linear subclass B of G forms a
linear subclass By of B. It is closed if B is closed. Moreover, Q(x) = 0 on B,.

This result follows readily from the definition of Q-transversals.

LEMMA 6.2. If Q(x) is nonnegative on a linear subclass B of G, then a vector
x in B is a Q-transversal of B if and only if Q (x) = 0.

For if x is in 13 and Q(x) = 0, then given a vector y in 3 one has

Q(x + ty) = 2tQ(x,y) + t?Q(y) 20

identically in ¢. This is possible only in case @ (x,y) = 0, that is, only in case x
is a Q-transversal of 3. The converse follows from Lemma 6.1.

As a further result we have:

LEmMA 6.3. Let C be the set of all the vectors x in O satisfying a set of m

equations
(6.1) LO(.(x) =0 (o(:]_’..., m)

defined by linear forms Lo(x). If y is Q-orthogonal to C, then there is a set of

multipliers hy,* * *y by such that we have
(6.2) Qy,x) + holo(x) =0

for all x in Q. If L{(x),***, L, (x) are linearly independent on G, these multi-

pliers are unique.
This result follows from equation (2.3) for L (x) = — Q (y, x).

LEMMA 6.4. Let B be a linear subclass of G of finite dimension and let C be
its Q-orthogonal complement. Let G, 1By, C, be the sets of Q-transversals of U,
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B, C respectively. Then:

(a) A vector z is in Cg if and only if it is the sum z = x + y of a vector x in
Qo and y in B,.

(b) If a linear form L(x) vanishes on B, there is a unique vector y in B or-
thogonal to B, such that L(x) = Q(y, x) on B.

(c) To every vector x in (. Q-orthogonal to B, there corresponds a unique
vector y in B orthogonal to By such that z =x — y is in C.

(d) Let B be a linear subclass of G such that every vector common to B, and
B* is Q-orthogonal to B, If the dimension of B* exceeds that of B, then there is
a vector x # 0 in B* that is Q-orthogonal to B and is not in B.

In order to prove Statement (b), select vectors y,,* * *, ¥, to be a maximal set
of linearly independent vectors in B orthogonal to B,. A vector x in B is in B, if
and only if Q(yx,x)=0 (. = 1,***, m). Hence if L(x) =0 on B, there exists a

unique set of multipliers by such that for each x in B we have

L(x) = bOLQ(youx) = Q(y»x) ’

where y = yy by, as was to be proved. Statement (c) follows from (b) by taking
L(x) = Q (x, %) and selecting y as described in(b). For in this case Q(x —y,x) =0
for all % in 1B.

In order to prove Statement (d), let B, be the set of vectors in B, belonging to
B*. Select a maximal set of linearly independent vectors y;,* * ¢, yp, in 1B orthogo-
nal to B,. Since the dimension of B* exceeds that of B we can select linearly
. . *
independent vectors xy,* * ¢, x4 in 13 orthogonal to B,. Choose ay,* * *, am+1,

not all zero, such that

Q(ylg,xa) ay = 0 (a=1,+, m+1; B=1,+,m).

The vector x = xyaq has the property described in (d).

In order to prove Statement (a), let C* be the Q-orthogonal complement of B,.
By (c) the vectors x in C* are of the form x = y + z withy in B and z in C. It
follows that the class C, is the class of Q-transversals of C* as well as of C.
Moreover B,, G, are subsets of C,. The orthogonal complement § of C* has no
element x, with x # 0, Q-orthogonal to B,. By (d) the dimension of [ therefore
does not exceed that of By. If x,* * +, x, forms a basis for ) we can find vectors

Y1s° °°y ¥r in Bo such that

lQ("oc»J'B)l?éO (C{r/B=1:°":r)~
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Consider a vector z in Cy. Choose constants b such that

Q(xa,)’ﬁ) bg = Q(xou l) .

The vector x = z = yg by is in Cys is (Q-orthogonal to x,,* * *, x, and to C, and
hence also to (. It follows that x is in 0y and yg bg is in Bo. This proves State-

ment (a) and thus completes the proof of the lemma.

ILLUSTRATION 1. Turning to Example I in §3 with / (x) defined by (3.8), we

see that a vector x is a J-transversal of (0 if and only if the equation
. _ b
(6.3) x(t) = Ja‘ A(t, s)x(s) ds

holds almost everywhere ona <t < b.

ILLUSTRATION 2. Turning to Example II in $4 with J (x) defined by (4.13),
we see, by Theorem 4.6, that an arc x in ( is J-orthogonal to the class B of arcs

that vanish at ¢ = a and ¢ = b if and only if there exist constants cj such that
¢
(6.4) wik = ja‘ ka dt + Ch (k = 1’ CERIN p)

almost everywhere on a <t < b, These equations are the Euler equations in inte-
gral form; their solutions are called extremals. When the strengthened conditiont of
Legendre (4.9) holds, it follows from the theory of differential equations that the
extremals form a linear subclass of (i of dimensions 2p. Given an extremal x we

denote the right member of (6.4) by &, (¢), thus:
(6.5) £i(t) = [Fopdt +ck.

This notation will be found useful in further applications.

ILLUSTRATION 3. In Example II of S4 let B denote the class of arcs x in (

satisfying a set of m linear equations
(6.6) Ly (x) = agpx®(a) + borxk(b) =0 (=1, +++, m).

Let J (x) be given by (4.13). An arc x in 13 is a J-transversal of B if and only if it
satisfies (6.4) with constants cj and in addition it satisfies the transversality

conditions,
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(6.7) —¢&k(a) + qra thyagr =0,
fk(b) +gqrp T hobor =0,

where £ (t) is given by equation (6.5), and g44, qxb are the partial derivatives of
q [x(a), x(b)] with respect to x*(a), x(b). For by virtue of Lemma 6.3 there exist

constants hy such that the equation

J(x,y) +halo(y) = 0

holds for all y in (. In view of the result in Illustration 2, equations (6.4) hold

almost everywhere on a < ¢t < b. Consequently we have

b .
J(x,y) = qray®(a) +qrpy*(6) + [7 {eway® +awp 54 dt

= [qka = €k (a) Iy*(a) + [qus + &k (6)Iy*(b) ,
where £, (¢) is given by (6.5). Using the last two equations one obtains (6.7). The
multipliers Ay are unique whenever the matrix ”an bak“ has rank m.

The result just described suggested the terminology “/-transversal of B” for

an arc in 3 that is J-orthogonal to 3.

ILLUSTRATION 4. In Example II of 84 denote by B the set of arcs in ( van-

ishing at ¢ = a and ¢t = b which also satisfy the isoperimetric conditions
Lale) = [* Mo (065(0) +5ap (01 de =0 (a=1, e, w),

in which Ay is integrable and By (¢) is square integrable on a < ¢ < b. By the
use of Theorems 6.3 and 4.6 it is seen that an arc x is J-orthogonal to B if and

only if there exist constants cj and multipliers Ay such that the equations
, t
(6.8) Q)’ck = ‘/a' ka dt + cp

hold almost everywhere on a <t < b, where

The multipliers Ay are unique if the linear forms L,(x),* **, L, (x) are linearly
independent on (1, that is, if there is no set of multipliers py and constants dj,

such that the equations
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t
PuBok = ja‘ PoAukdt +d

)

hold almost everywhere on a <t < b. This is the so-called “normal case” in the

calculus of variations.

ILLUSTRATION 5. Turning to kxample III in §5, we observe that a function x
of class C" in ( is a J-transversal of (., where J(x) is given by (5.1), if and only
if we have

a ~R o
B—tf (Bjkik + (x) =Qkxk + Px .

This result follows from the fundamental lemma for multiple integral problems in

the calculus of variations.

7. A fundamental property of quadratic forms. A significant portion of the

results to be found below is based on the following:

THEOREM 7.1. Given a quadratic form ()(x) on Q, the class ( is expressible
in a unique manner as the direct sum of three linear subclasses G- @0, Gy having
the following properties: (a) The classes G-, (g, U4+ are mutually orthogonal and

Q-orthogonal; (b) Q (x) is negative on (-, zero on (g, and positive on Us.

The class (, is the class of Q-transversals of (1.

In order to prove this result recall that there is a self-adjoint linear transfor-
mation T such that Q(x) = (Tx,x). As has been shown by Nagy (19, p.23] and
others, the transformation T is expressible uniquely as the sum 7 = " = T~ of

two self-adjoint linear transformations T'* and T~ such that the relations
(7.1) P(x) = (T*x,x) >0, N(x)=(T"x,x) >0,

(7.2) (I™x,T%y) =0

hold for all x and y in G . Observe that

(7.3) Ax) =P(x) =Mx), Qxy) =Plx,y) =N(x,5).

Let P be the set of P-transversals of (0, that is, the set of all vectors x such that
T*x = 0. Denote the orthogonal complement of P by (4. Similarly let (i- be the
orthogonal complement of the class Il of N-transversals of (. In view of (7.2) we
have 7*77x =0 and 7 T*x = 0 for all x in (1. Consequently T7x is in P and T'x
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is in 1. It follows that if x is in (4 we have
N(x) = (TTx,x) =0, Q(x) =P(x) >0
unless x = 0. Similarly
P(x) =0, Q(x)==N(x)<0

for all x 7é 0 on (—. Since N(x) = 0 on (4 and N(x)> 0 on G it follows from Lemma
6.2 that (4 is a subclass of Il and is accordingly orthogonal to (-. Moreover if
% is in (4 and y is in G-, then T7x = 0 and T+y = 0. Consequently

Qx,y) = (x,T"y) — T x,y) =0.

The classes (4 and (_ are therefore (J-orthogonal. Let @0 be the class of vectors
common to ° and N. If x is in (g, then T*x = T™x = 0 and hence Tx = 0; that is,
x is a Q-transversal of (. The class (, is therefore Q-orthogonal to (4 and (-,

© is the direct sum of (o and

as well as being orthogonal to these classes. Since
G-, and G is the direct sum of G4+ and P, it follows that ( is the direct sum of
U+, Gg, and G-, as was to be proved.

The result just established can be restated as follows:

THEOREM 7.2. 4 quadratic form Q(x) on O is expressible uniquely as the
difference

Q(x) =P(x) = N(x)

of two quadratic forms P(x) and N(x) with the property that (a) P(x) = 0 on the
orthogonal complement of the N-transversals of (; (b) N(x) = 0 on the orthogonal
complement of the P-transversals of (3 (c) P(x) = N(x) = 0 on the class of Q-

transversals of (..

8. Wls-continuous quadratic forms. The quadratic forms in which we shall be
interested are wls-continuous. Combining the results given in the present section
with those given in Theorems 3.2, 4.3, and 5.2, we see that, in the applications
referred to above, a quadratic form is wls-continuous if and only if it satisfies the
condition of Legendre in its weaker form.

As a first result we have:

LEMMA 8.1, If Q(x) is nonnegative on a closed linear subclass B of G, then

Q(x) is wls-continuous on B.
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In view of the identity

Qlxg) = Qlxo) = 29(xy = x0,%0) +Q(xq —x0),

we see that whenever Xg —> %o on %, then () (xq — xg, Xo) — 0 and

lim inf [Q(xq) = (x0)] = lim inf Q(xq —x9) >0
g=®o

y=m
inasmuch as () (x) > 0 on B.
LeEMMA 8.2. If Q(x) is nonpositive and wls-continuous on a closed linear sub-
class B of O then () (x) is w-continuous on B.

For in this case () (x) and —()(x) are wls-continuous on 3 by virtue of [.emma
8.1. Hence Q (x) is w-continuous on 3.

Combining this result with Theorem 7.1 we obtain:

TueoreEM 8.1. A4 quadratic form Q(x) is wls-continuous on O if and only if
it is w-continuous on the class G- related to Q) (x), as described in Theorem 7.1.

. R . .« . . . . .
In particular, if U- is of finite dimension then () (x) is wls-continuous.
As a consequence we have:

THEOREM 8.2. A quadratic form ()(x) is wls-continuous on U if and only if

it is expressible as the difference
(8.1) Q(x) =P(x) —K(x)

of a nonnegative form P(x) and a w-continuous form K(x). In fact, K(x) can be
restricted to be nonnegative and to vanish on the class orthogonal to the P-trans-

versals of (..

If Q(x) is wis-continuous on (, then the quadratic form —N (x) described in
Theorem 7.2 is nonpositive and wls-continuous on (. and hence w-continuous on
G, by Lemma 8.2. Consequently Q(x) is expressible in the form (8.1). The converse

is immediate.

COROLLARY. If Q(x) is wls-continuous on O and Q*(x) > Q(x) on G, then

Q*(x) is wls-continuous on (.

For if P(x) and K(x) are related to Q) (x) as described in Theorem 8.2, then

P™(x) = Q" (x) + K(x) 2 Q(x) +K(x) =P(x) 20
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* . .
on (. Hence Q (x) is wls-continuous on (.

THEOREM 8.3. If Q(x) is nonnegative on the orthogonal (or Q-orthogonal)
complement of a linear subclass C of O of finite dimension, then Q(x) is wls-
continuous on (.

For in this case the dimension of the class ( _ described in Theorem 7.1 cannot

exceed that of C and hence must be finite. Consequently, Q (x) is wls-continuous

on G, by Theorem 8.1.

9. Quadratic forms of finite index and nullity. Given a quadratic form Q(x),
the dimensions of the classes (- and ( related to () (x) as described in Theorem
7.1 will be called, respectively, the index i and the nullity n of Q(x) on (.. In the
present section we shall be concerned with the case where i is finite and the case
where ; + n is finite. In these cases Q(x) is wls-continuous on (.. Consequently
in the examples given in §93, 4, and 5, the condition of Legendre must hold in its
weaker form whenever the quadratic form under consideration is of finite index.

The above definition of index and nullity is valid when ( is replaced by a
closed linear subclass 1. It fails to hold when 13 is not closed since the decompo-
sition described in Theorem 7.1 is based upon the completeness of our space. We
shall accordingly define the nullity of Q(x) on a linear subclass B of G to be the
dimension of the class of Q-transversals of B and the index of Q(x) on B to be
the dimension of a maximal linear subclass of B on which Q(x) is negative. The

definition of index is unambiguous in view of the following:

LEMMA 9.1. Let B be a linear subclass of (. and let B be the class of its
Q-transversals. Suppose there exists a maximal linear subclass C of B of finite
dimension on which Q(x) is negative. Then Q(x) > 0 on the class 0 of vectors x
in B that are Q-orthogonal to C, the inequality holding only in case x is in Bo.
If C* is a maximal linear subclass of B on which Q(x) < 0 and such that C*has no

. * .,
vector x # 0 in common with B, then the dimension of C" is equal to that of C.

The first conclusion in the lemma follows from our choice of C as a maximal
linear subclass of B on which Q (x) is negative. In order to prove the second con-
clusion suppose that the dimension of C* exceeds that of C. Then by Lemma 6.4
(with G = B) it is seen that there is a vector x # 0 in C that is Q-orthogonal to
C and hence in §. Clearly Q(x) = 0. Hence x must be in B, by virtue of the first
conclusion. The dimension of C” therefore does not exceed that of C. If the di-

mension of C were greater than that of C*, then by Lemma 6.4 we could choose a
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vector x # 0 in C, that is Q-orthogonal to C* and not in C*. The vectors of the
form bx + y, where b is any real number and y is in C*, would generate a class
having the properties ascribed to C*. Hence C*could not be maximal. The lemma
is therefore established.

The following theorem is valid even if (0 is not assumed to be complete.

THEOREM 9.1. The index i of Q(x) on U, if finite, is given by one of the
following quantities : (a) the dimension of a maximal linear subclass B of G on
which Q (x) is negative; (b) the dimension of a maximal linear subclass C of U on
which Q(x) < 0 and which contains no nonnull Q-transversal of U ; (c) the least
integer k such that Q (x) > 0 on the Q-orthogonal complement of a linear subclass
C of G of dimension k; (d) the least integer k such that Q(x) > 0 on the orthogonal
complement of a linear subclass 0 of G of dimension k; (e) the least integer k
such that there exist k linear forms L (x),***, L} (x) such that Q(x) > 0 when-
ever Lo(x) =0 (a=1,**+, k).

The criteria given in (a) and (b) are equivalent by LLemma 9.1. Moreover a class
C having the property described in (b) also has the property given in (c). The con-
verse is also true. For if there existed a vector z with () (z) > 0 in the class C
described in (c), the set C* of all vectors x in C that are (Q-orthogonal to z would
have the following property: A vector x that is (-orthogonal to C*is expressible

in the form x =y + bz, where y is Q-orthogonal to z. Consequently

Qx) = Q(y) +0%Q(z) 20,

contrary to our choice of C, The criteria in (b) and (c) are therefore equivalent. It
is easily seen that the criteria given in (d) and (e) are equivalent to that given in
(c). The class ) = (- described in Theorem 7.1 has the properties described in
(¢) and (d).

COROLLARY. If Q(x) is nonnegative on the orthogonal (or Q-orthogonal)
complement of a linear subclass C of U of finite dimension k, then Q(x) is of index
i <k

We have also the following further result.

THEOREM 9.2. The sum m = i + n of the index i and the nullity n of Q(x) on
Q, if finite, is given by each of the following quantities: (a) the dimension of a
maximal linear subclass B of ( on which Q (x) < 0; (b) the least integer k such

that Q(x) is positive on the orthogona| complement of a linear subclass B of G of
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dimension k; (c) the least integer k such that there exist k linear forms L, (x),

« ¢+, Li(x) such that Q(x) > 0 whenever x # 0and Lo (x) =0 (& =1,+**, k).

This result is readily established with the help of Theorem 9.1. The direct sum
13 of the classes J- and Q,O described in Theorem 7.1 has the properties described
in Theorem 9.2.

CorOLLARY. If Q(x) is positive on the orthogonal complement of a linear
subspace C of ( of finite dimension k, the sum of the index and nullity of Q(x) on

( does not exceed k.
The following result is immediate.

THEOREM 9.3. If G" is a linear subclass of G, and i, i* are the indices and
ny n* the nullities of Q(x) on G, @*, respectively, then

9.1) i*<i, *+n*<i+d<i+n,

where d is the dimension of the class 0 of vectors that are simultaneously Q-

transversals of ( and a*,
An analogous result is the following:

THEOREM 9.4. Suppose Q*(x) > Q(x) on G. If i, i* are the indices and n, n*
are the nullities of Q(x), Q*(x) on G, then (9.1) holds, where d is the dimension

*
of the class U of the vectors x that are simultaneously Q-transversals and Q -

transversals of G. If Q*(x) > Q(x) for all x # 0 on G, then
(9.2) i* +n*< 1.

A somewhat more complete set of inequalities than those given in Theorem 9.3
nk .
can be obtained when (" is the orthogonal complement of a linear subclass of (

of finite dimension. The result is described in the following:

THEOREM 9.5. Let L,(x),***, Li(x) be k linearly independent linear forms
on G and let G" be the set of all vectors x such that

Lo(x) =0 (=1, *++, k).

Then the numbers i, i*, n, n*, d described in Theorem 9.3 satisfy, besides (9.1),

the further relation

(9.3) i4+n<i*+d+k.
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10. Nonsingular and positive definite quadratic forms. A quadratic form Q (x)
will be said to be nonsingular on a linear subclass B of G if given a linear form

L(x) there is a unique vector y in 3 such that the relation

(10.1) L(x) = Q(y, x)

holds for all x in B. It will be said to be positive definite on 13 if there is a posi-

tive number 4 such that the inequality
(10.2) Q(x) > h |x|?

holds on B. Normally, a quadratic form that is positive definite on (i will be de-
noted by D(x) and the corresponding bilinear form by D(x, y).

LEmMA 10.1. If Q(x) is nonsingular on a linear subclass B of (., then B is
closed and G is the direct sum of B and its Q-orthogonal complement C.

For given a vector x, in (, there is a unique vector y, in 13 such that Q(xq, y)
= (yo, y) for all y in B. Consequently zy = x, = y, is in C, and ( is the direct
sum of B and C.

To show that i3 is closed, consider a sequence {ng of vectors in 13 converging
to a vector xo in (. Choose y, in B and z, in C such that xo = y4 + z5. Choose
7 in B such that (xq = yo, y) = O (5, y) for all ¥ in B. Since ygq is in 1B we have

\xo _y0|2 = lim (xo — Yo, Yg _}'0) = lim Q(y» Yq —'yo)
q:m q:CO
= ]-}m Q(;y yq _xO) =0:
q=©

Hence x4 =y, , as was to be proved.

Criteria for positive definiteness are given in the following:

THEOREM 10.1. If a positive quadratic form D(x) has one of the following
properties on G it has them all :

(a) D(x) is positive definite.

(b) x4 => 0 whenever D(xg) — 0.

(c) x4 => xy whenever xg —» x4 and D(xg) — Dlx,).

(d) I1f {D(xq)f is bounded, then {xqg converges weakly in subsequence.

(e) If {D(xq, y)} is bounded for each y in G, then {xqg converges weakly in
subsequence.

(f) D(x) is nonsingular on (.

(8) If B is a closed linear subspace of G, then G is the direct sum of B and

its D-orthogonal complement.
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Clearly (a) implies (b). Moreover (b) implies (c) by virtue of the identity
D(xy) —D(xo) = 2D(xq = x0, x0) +D(xq = x0) .

If (c) failed to imply (a) we could select vectors x4, xo such that qul =1, Dlxg)
<1/g, x4 — x, and hence such that
0= 1lim D(xq> >D(x,) =0.
q=0)

Consequently, x, = 0, so that x, => 0 by (c), contrary to the relations qu | =1.

If (a) holds and {D(xq)z is bounded, then quli is bounded. Consequently
(a) implies (d). If (d) failed to imply (a) we could select vectors Xgs %o such that
1=D(xq) < (1/9q) |xq |2 and such that Xq—> xo, which is impossible.

In order to show that (a) or (d) implies (f), observe that the function f(x) = D(x)
— 2L(x), where L(x) is linear, is wls-continuous, and has a bounded minimizing
sequence and hence attains its minimum at a vector y. Setting g (¢) = f(y + tx), we

have
g'(0) =2D(y,x) —2L(x) =0

for all vectors x in G. Moreover, y is unique since ) is positive. Hence (f) holds.

If (f) holds, then (z,x) is expressible in the form (z,x) = D(y,x), and conversely.
A sequence §[)(y,xq)§ is therefore bounded for all y in ( if and only if {(z,xq)z is
bounded for every z in (i and hence if and only if qu |3 is bounded. Consequently
(e) follows from (f). Since ID(x,y) '2 < D(x) D(y), property (e) implies (d) and
hence (a).

Using Lemma 10.1, we see that (g) follows from (f) and (a). Conversely (g)
implies (f). For given a linear form L(x) = (xq, x) with xo # 0, let 3 be the class
of vectors having L(x) = 0. Select y, in 3, and z, in the D-orthogonal complement
C of B, so that xo = y, + zo. Clearly z, # 0. Since D(z4, x) = 0 whenever L(x)=
0, there is a constant £ such that D(z,, x) = kL(x). Consequently, L(x) = D(z,x),
where z = (1/k) zq .

LEMMA 10.2. Let B and C be Q-orthogonal subclasses of (. whose direct sum

is G. Then Q(x) is nonsingular on G if and only if Q(x) is nonsingular on B and
on C.

For consider a linear form L(x). If Q (x) is nonsingular on (, there is a unique
vector x in ( such that L(x) = Q (x4, x) on (. Select y, in B and z, in C such
that x; = yy + z5. Then L(y) = Qlyy + 29, ¥) = Q(yg 5 ¥) for all ¥ in 3. Similarly
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L(z) = Q(z4, z) on C. It is easily seen that these representations are unique.
Conversely if () (x) is nonsingular on B and C, we may choose y, in B and z, in C
such that L(y) = Q(yy, y) on B and L(z) = Q(z,, z) on C. Since ( is the direct
sum of the /)-orthogonal classes B and C we have L(x) = Qo *+ 25, x) on G.

Again this representation is unique, and the lemma is proved.

THEOREM 10.2. If )(x) is nonsingular on every closed linear subclass of U,

then either () (x) or —0)(x) is positive definite on J.

Suppose there is a vector x, # 0 having () (x,) = 0. Then the {)-orthogonal
complement 3 of x is closed and contains x,. If y is in 8, we have O (y + x4, x)
= (Q(y,x) for every x in B. Consequently Q) (x) cannot be nonsingular on 13, con-
trary to our assumption. It follows that either Q) (x) or —((x) is positive and non-
singular on ( and hence positive definite on (1, as was to be proved.

In a similar manner we may prove:

TueoreW 10.3. If for every closed linear subclass 3 of U, the class (O is
the direct sum of B and its (-orthogonal complement, then either () (x) or —() (x)

is positive definite on (.

Kxamples of positive definite forms are described in Theorems 3.3, 4.4, and

5.3,

11. Legendre forms. A quadratic form /(x) will be called a Legendre form in
case (a) it is wls-continuous on U and (b) xXg = X whenever Xg — %o and
J(xg) — J(x). A Legendre form normally will be denoted by /(x) and the corre-
sponding bilinear form by /(x,y). It will be seen that, in the applications to the
calculus of variations, [.egendre forms are those that satisfy the strengthened
condition of l.egendre.

In view of (¢) in Theorem 10.1 we have:
ToeoreM 11.1. 4 positive Legendre form is positive definite.
As a further result we have:

TueoreM 11.2. A linear subspace B of ( on which a Legendre form J(x) is

nonpositive is of finite dimension.

For in this case /(x) is w-continuous on 3, by Lemma 8.2. Consequently,
whenever the relation X g —> %g holds on 3 we also have ](xq) — J(x,) and hence
also x4 =>xg, by property (b) of /(x). It follows that weak and strong convergence
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are equivalent on B. This is possible only if 3 is of finite dimension, as was to
be proved.
In view of this result the classes (, and (- related to a Legendre form J/(x),

as described in Theorem 7.1, are of finite dimension. Hence we have:
THEOREM 11.3. A Legendre form is of finite index and nullity.
Combining Theorems 11.3 and 11.1 we obtain:

THEOREM 11.4. A quadratic form J(x) is a Legendre form on G if and only if
there is a linear subset B of U of finite dimension such that J(x) is positive defi-
nite on the orthogonal complement of B. If J(x)is a Legendre form on the orthogonal
complement of a linear subclass B of G of finite dimension, then J(x) is a Legendre

form on G.
The following result is immediate.

THEOREM 11.5. The sum J(x) + K(x) of a Legendre form J(x) and a w-continu-

ous quadratic form K(x) is again a Legendre form.
Using this fact we can prove:

THEOREM 11.6. 4 quadratic form J(x) is a Legendre form on U, if and only if

it is expressible as the difference
(11.1) J(x) = D(x) — K(x)

of a positive definite form D(x) and a w-continuous form K(x). In fact K(x) can be

restricted to be nonnegative on (.

If J(x) is of the form (11.1) it is a I.egendre form, by virtue of Theorem 11.5.
In order to prove the converse, let x,* * *, x, be a basis for the /-orthogonals of
G. Select P(x), N(x) related to J(x), as described in Theorem 7.2. Then J(x) =
P(x) — N(x), and

D(x) = P(x) +N(x) + (xa, x) (20, x)

is positive on (. As was seen in proof of Theorem 8.2, the form N(x) is w-continu-

ous on (0 and hence so is the form
K(x) =D(x) = J(x) = 2N(x) + (xo, x)(xq, x) .

Since D(x) differs from J(x) by a w-continuous form, D(x) is a Legendre form on G.
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Since D(x) is positive, it is positive definite, by Theorem 11.1, and Theorem 11.6
is thus proved.

CorOLLARY 1. If J(x) is a Legendre form, then there is a nonnegative w-
continuous form K(x) such that J(x) > 0 for all x 7é 0in having K(x) = 0.

COROLLARY 2. If J(x) is a Legendre form on (. and J*(x) is a quadratic form
such that J*(x) > J(x) in G, then J*(x) is a Legendre form on (.

For if D(x), K(x) are related to /(x) as described in the theorem, then
D*(x) =J%(x) +K(x) >J(x) +K(x) =D(x) .

Consequently, D*(x) is positive definite on (0, and /*(x) is a Legendre form, as
was to be proved.
The condition (b) in the definition of Legendre forms characterizes Legendre

forms, apart from sign, as is seen from the following:

TueorEM 11.7. If a quadratic form (X(x) has the property that xq = xq when-
ever xqg —> xq and () (xg) — ) (x,), then either J(x) or =(Q (x) is a Legendre form
on G.

It is sufficient to show that either () (x) or —() (x) is wls-continuous on (. If
this were not so we could select sequences {yqz, {zqg converging weakly to
vectors y,, 2z, such that Q(yq), Q(yq s zq), Q(zq) converge respectively to numbers
A, B, C, such that

(11.2) A <Qyo), €>Qz0) .
The equation
(11.3) [4 = Q(y0)]a? + 2a[B = Qyo, 20)] +C = Qz0) =0

would accordingly have two distinct real roots a, and a,. Then we would have
Xgo = Ao Yq T 25 — Xoo = ag Yo T 2o (C(—‘-l,Z).
Moreover, since
Qlrga) = Qygad + 2aa lyg, z4) +0(zg)
we would have, by (11.3),

lim Q(xqa) =Aad +2a0b +C=0Q(x00) .

q:(‘o
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According to our hypothesis, x4 = x¢. Since a; # a, this is possible only in
case y; = y, and z; => z;. But this would imply that 4 = Q(y,), C = @ (zy),
contrary to (11.2). This proves the theorem.

ILLUSTRATION 1. Turning to Example II in §4, we see by virtue of Theorems
4.1 and 4.4 that the integral J(x) defined by (4.6) is a Legendre form on (i if and
only if the strengthened condition of Legendre (4.9) holds. In fact by virtue of
Theorem 11.4 the quadratic form J(x) is a Legendre form on a linear subclass 13

of ares in G satisfying a set of conditions of the form

La(x) = aq, xJ(a) +bajxj(b) + ja'b {Aja(t)xj +B]‘a(t)£]Edt =0

(q_: l, cee, m)

if and only if the strengthened condition of Legendre (4.9) holds. If the arcs are
required to satisfy a system of differential equations, the criterion (4.9) must be

modified, as will be seen in $14 below.

ILLUSTRATION 2. Turning to Example III in 85 we see by Theorems 5.1 and
5.3 that the integral /(x) defined by (5.1) is a Legendre form if and only if the
strengthened condition (5.6) of Legendre holds on S.

These illustrations serve to justify the nomenclature “Legendre form.”

12. Quasi-nonsingular quadratic forms. A quadratic form Q(x) will be said to
be nondegenerate on a linear subclass B of (i if there exists no nonnull (Q-trans-
versal of B. It will be said to be quasi-nonsingular on U if it is nonsingular on
each closed linear subclass on which it is nondegenerate. If Q(x) is quasi-non-
singular on ( it is quasi-nonsingular on every closed linear subset of (.

The condition of quasi-nonsingularity can be restated as described in the

following:

THEOREM 12.1. 4 quadratic form Q(x) is quasi-nonsingular on G if and only
if given a closed linear subclass B of U and a linear form L(x) that vanishes
identically on the class By of Q-transversals of B there is a vector y in B such

that the equation

L(x) = Q(y, %)

holds for every vector x in B. The vector y can be chosen to be orthogonal to By,

and if so chosen is unique.
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A second criterion for quasi-nonsingularity is given in the following:

THEOREM 12.2. A quadratic form ()(x) is quasi-nonsingular on U if and only
if, given a closed linear subclass B of G on which (Q(x) is nondegenerate, U is

the direct sum of B and its Q-orthogonal complement.

The necessity of this criterion follows from Theorem 10.1. In order to prove its
sufficiency, let 13 be a closed linear subclass of ( on which Q(x) is nondegener-
ate, and consider a linear form L(x) that does not vanish identically on 3. Denote
by  the subset of B on which I(x) = 0. We shall show first that there is a vector
Yo 7£ 0 in B which is ()-orthogonal to C. A nonnull Q-transversal of C has this
property. If C possesses no Q-transversal, 3 is the direct sum of C and its Q-
orthogonal complement relative to 13, by virtue of our hypotheses. Consequently,
in this case also there is a vector y, # 0 in B which is (-orthogonal to C. By
virtue of Theorem 6.3 with (. = 3, there is a constant k such that ()(y, , x) = hL(x)
on B. Moreover 4 # 0 since otherwise yo would be a (-transversal of 3. Setting
y = ¥o/h, we have L(x) = ()(y, x) on 3. Inasmuch as Q(x) is nondegenerate on
B, y is unique and { (x) is nonsingular on 3, as was to be proved.

The criterion just established can be restated as follows:

THEOREM 12.3. 4 quadratic form Q (x) is quasi-nonsingular on G if and only
if it has the following property: Let B be a closed linear subclass of (. and denote
by B, the class of Q-transversals of B. Every vector x that is Q-orthogonal to B,
is expressible in the form x =y + z, where y is in B and z is Q-orthogonal to B.

The vector y can be chosen to be orthogonal to By, and if so chosen is unique.
b g 0 q

Let ) (x) be quasi-nonsingular on 0., B a closed linear subclass of 4, Bo the
class of its (-transversals, and 1B, the orthogonal complement of B, relative to
B. Every vector x in (i is expressible in the form x = y + z, with y in B, and z
)-orthogonal to B;. Moreover, if x is Q-orthogonal to By, then z is (-orthogonal
to Bo and hence to B. The criterion in Theorem 12.3 is therefore a necessary

condition for quasi-nonsingularity. It is also sufficient, by Theorem 12.2.

THEOREM 12.4. A nonnegative quadratic form ()(x) on G is quasi-nonsingular
on O if and only if it is positive definite on the class of vectors orthogonal to the

Q-transversals of (.

As a further result we have:
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THEOREM 12.5. If Q(x) is quasi-nonsingular on the orthogonal complement

o . . . . . . . z
C of a linear subspace B of finite dimension, then () (x) is quasi-nonsingular on ‘1.

For let CL* be a closed linear subclass of (i on which () (x) is nondegenerate.
We shall show that (J (x) is nonsingular on (", To this end let C" be the subclass
of vectors in 0" orthogonal to B. Then C* is a subclass of C. Denote by C: the
class of {)-transversals of C*. Since G" is nondegenerate and B is of finite di-
mension, it follows readily that C: is of finite dimension. We may suppose that
Cz is of dimension zero, since we can replace B by the algebraic closure of B
and C:. Since () (x) is quasi-nonsingular on C it is nonsingular on C*. Conse-

* * * * *
quently G is the direct sum of C" and the class B of Q-orthogonals of C" in (1 .
The class B* is of finite dimension. Moreover () (x) is nondegenerate on B* since
otherwise () (x) would be degenerate on g~ By virtue of Lemma 6.4, Q) (x) is non-

singular on 3. The theorem now follows from Lemma 10.2 with G = G

COROLLARY. Let L(x),** ',Lp(x) be linear forms, and let Ag/g = A g
(w,8=1,++,p) beasetof p(p+1)/2 real numbers. Then the quadratic form

P(x) = Aaplo(x) Lp(x) +Q(x)
is quasi-nonsingular on ( if and only if Q (x) is quasi-nonsingular on G.
Combining Theorems 12.5, 11.4, 10.1, and 9.2, we obtain:

THEOREM 12.6. A quadratic form ](x) is a Legendre form on (. if and only if

it is quasi-nonsingular and of finite index and nullity on (.
This result can be stated in another form:

THEOREM 12.7. 4 quadratic form J(x) is a Legendre form on G if and only if

it is quasi-nonsingular, wls-continuous and of finite nullity on C.

As we shall see presently the Lagrange multiplier rule is a consequence of the

following:

THEOREM 12.8. Let Q(x) be a quasi-nonsingular quadratic form on (., and
let B be the set of Q-transversals of G. If P(x) is a quadratic form on G and x is a
vector that is P-orthogonal to 13, then there is a vector y in O such that the relation

P(x,z) = Qy, 2)

holds for every vector z in (.
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This result follows from Theorem 12.1 with L(z) = Plx, z).

THeOREM 12.9, Let {i(x) be u quasi-nonsingular quadratic form and let L(x),
© o+, Lplx) be p linearly independent linear forms on % Denote by B the set of

vectors in A satisfying the conditions
(12.1) Ly (x) =0 (a=1, =+, p),

and denote by C the (J-orthogonal complement of &. The set of vectors common to
3 and T is the class O of all O-transversals of I satisfying (12.1). The class
is the direct sum of ' and a linear class © of dimension p orthogonal to 8. If I is

of finite dimension d, then C is of dimension p + d.

[t is sufficient to consider the case where & consists of the vector x = 0,
since this can be brought about by replacing . by the orthogonal complement of .
Then the nullity n of () (x) cannot exceed p. Let x;,* **, x, be a basis for the
class Uy of ()-transversals of (1. We can assume that the first m = p — n linear
forms Ly(x),* **, Ln(x) vanish on Ug. Inasmuch as ¢}(x) is quasi-nonsingular,

there exist vectors y;,* * *, y,, in U such that
L,B(X)ZQ(.Y/BY x) (/L’j:l’...’ m)

on J. The vectors y,* * *, v, are in C, and the vectors y,,* * *,¥m, X1,* * *,%,
form a linearly independent set in . The dimension of C = P is accordingly at
least p = m + n. It cannot exceed p since I is the zero class. This proves the
theorem.

ILLusTRATION 1. Consider Example II in %4 and let J(x) be the quadratic
form (4.13). Suppose the strengthened condition (4.9) of I.egendre holds. Then, as
was seen in the last section, f(x) is a Legendre form and, by Theorem 12.6, is

quasi-nonsingular on U . Let B be the class of all arcs
X1 xj(t) (aStSb,J’:ly...’r)

in 0 that vanish at ¢t = ¢ and ¢t = b. The J-orthogonal complement C of B is the
class of extremals, that is, the solutions of equations (6.4). Its dimension is 2r.
The class B, of J-transversals of B consists of all extremals that vanish at t = a
and t = b, The statement that x = y + z, where y is in B and z is in C, is equiva-
lent to the statement that the end-points of x can be joined by an extremal z. Thus,

by virtue of Theorem 12.3, the end-points of an arc x in (i can be joined by an
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extremal z if and only if x is J-orthogonal to the extremals that vanish at ¢t = a and
¢t = b. To state this in another way, let x,,* **+, x5 be a basis of 3,. According
to the result given in Illustration 2 in $6 there exist absolutely continuous func-

tions & (¢) such that

(12.2) 5yalt) =g, L6, xa (t), %o (t)] (a=1, ==+, s)

almost everywhere on a < ¢t < b. Then, as is easily seen,

J(xo, x) = ::]a(b)x'](b) _gja(a>xj(a) .

Consequently, the end-points of an arc x in 1 can be joined by an extremal if and

only if one has

Sa(b)x(b) = & a(a)x? (a) (=1, ==+, s).

[t can be shown that the matrix !fgjl(a)iﬂ has rank s since, by virtue of the l.egendre
condition, no extremal x # 0 has x/(a) = &jla) = 0, where £; is the right member
of (6.4). Consequently, if we interpret the conditions (12.1) to be the set x/(a) = 0,
(b)) =0 (j =1,*++,r), we see, by Theorem 12.9, that the dimension of the
class C of extremals is p = 2r, a fact which is known from the theory of differ-

ential equations.

[LLUSTRATION 2. If in Illustration 1 we let 3 be the set of arcs in ( which

vanish at
to =a <ty < eee < tp <tp+1=b,

then the class C of vectors J-orthogonal to 13 consists of all broken extremals
having corners at most at the points ¢y, , tp. Let xy,**, x5 be a basis for
the class B, of all broken extremals in B. Then there exist functions &;4(¢) that
are absolutely continuous on each interval tg-; < ¢t < tg such that (12.2) holds

almost everywhere on a <t < b. It is easily seen that
J (%o x) = Era(b)xk(a) — fka(a)xk(a)
v
+ ¥ [Sealts —0) = Sealts +0)]xk(tgs) .
B=1

Given an arc x in U there exists a broken extremal y with corners at most at ¢;,

¢+, tp and having
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ye(tg) = x(tp) (6=0,1, =+, p+1)
if and only if
J(xa,x)=0 (Oi:]., ttty S)'

By use of Theorem 12.9 and the remark made at the end of Illustration 1, it is seen
that the dimension of the class C of broken extremals is r(p + 1).

Further illustrations of this type can be found in the papers by Hazard and
Ritcey, referred to in $1.

13. Legendre pairs. Two quadratic forms P(x) and Q(x) will be said to be a
Legendre pair on G if (a) they are wls-continuous on G; (b) %gq => x, whenever
xg —>x0, Plxg) — Plxy), Qxg) — Q(xy). It is easily seen that Plx), Q(x)
form a Legendre pair if and only if

(13.1) J(x,b) =P(x) +bQ(x)
is a Legendre form for every positive number 5. The corresponding bilinear form is
(13.2) J(x,y,6) =P(x,y) +6Q(xy) .

THEOREM 13.1. If a Legendre pair P(x), Q(x) has the property that the re-
lations P(x) <0, Q(x) <0 kold simultaneously only in case x = 0, then there is a
positive number b such that the quadratic form (13.1) is positive definite on .

The proof of the case where one of the forms is nonnegative will be left to the
reader. Suppose therefore that neither P(x) nor () (x) is nonnegative on (. Let dbe
the set of points x # 0 for which Q (x) < 0. Then by hypothesis J(x, 0) = P(x) > 0
on d. Since Q(x) < 0 at some point in B, there is a largest number b” such that
J(x,5") > 0 on A. We may select a sequence {yq} in such that

n 1
lyq|=1: J(yq:b +;).<_01 Q(yq).<_0; P(yq)>0:

the last two holding because ¥Yq is in d. In fact this sequence can be chosen to

converge weakly to a vector y. By virtue of wls-continuity we have

ly] <1, J@,b") <0, Qy) <o.

If y =0 we have y, — 0, Q(y;) — 0, P(y;) — 0, and hence y, = 0, contrary
to the relation |yq| = 1. Consequently y is a nonnull vector in d. In view of our
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choice of 6" we have [(y, 5") = 0. Since P(y) > 0 by virtue of our hypotheses, the

relations
(13.3) b" >0, Qy) <0, P(y) >0

must hold. It follows that given a vector x in J the vector y + tx must be in 2 for

small values of t. Hence, for these values of ¢t we have

0<J(y +tx,6") =2tJ(y,x,b") + t2J(x,b") .
This is possible only in case the first two of the relations
(13.4) J(y,%,6") =0, J(xb") >0, J(y,b")=0

hold. Thus b” is the largest number such that /(x,5”) > 0 on .
Interchanging the roles of P and {) we see that there is a least positive number

b’ such that J/(x,b5') > 0 on (i . Moreover there is a vector z such that
(13.5) J(z,%,6') =0, J(z,b') =0, Qz) >0, P(z) <0

for all x in (. Since Q(y) < 0 and ((z) > 0, there is a vector x # 0 of the form
x = ay + cz such that Q(x) = 0. We have accordingly, by (13.4) and (13.5),

0 <P(x) =J(x,b") = c2J(z,b") =c?(b" —b")Q(z) .

Hence 6" > b'. Moreover J(x,b') = J(x,b") = 0 holds only in case P(x) = ( (x)
= 0 and hence only in case x = (. It follows that if b is on the interval ' <b <b"
and x 7£O we have, witht = (b —5")/(b"—1b"),

J(x,b) = (1= t) J(x,6") + tJ(x,6") >0.

The form J(x,b) is accordingly a positive Legendre form on (i and hence is positive
definite, as was to be proved.

The following lemma will be useful.

LeEMMA 13.1. If P(x) and Q (x) are quadratic forms such that P(x) > 0 whenever
x # 0 and Q(x) = 0, then either Q(x) or —Q (x) is positive on the set of vectors
x # 0 for which P(x) < 0.

For suppose there exist vectors x and y such that

P(x) <0, Q(x)<0, P(y) <0, Qy)>0.

On the line z = x + ty we have
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P(z) =P(x) +2t P(x,y) + t2P(y),
Az) = Qx) +2¢t ¢(x,y) + t2y) .

Since (J(x) ) (y) < O there exist numbers ¢’ < O < t” such that ¢)(z) vanishes at
the corresponding points z' and z”. 3y virtue of our hypotheses we have P(z')
>0, P(z") > 0. Since x lies between z' and z", the equation P(z) = 0 in ¢ has

r,n

two roots on t't”. This is impossible if P(y) = 0. lience P(y) < 0 and /(z) would

vanish also exterior to t't". This too is impossible. In view of this contradiction

the lemma is established.

THreoreM 13.2. Let J(x) be a Legendre form and let K(x) be a w-continuous
form with the property that J(x) > 0 whenever K(x) = 0 and x # 0. Then there is a
number b such that J(x) + bK(x) is positive definite on ‘L. If K(x) > 0 whenever

I(x) <0, the number b can be chosen to be positive.

In view of I.emma 12.1, either AK(x) or —K(x) is positive whenever J(x) < 0 and
x # 0. We can suppose K(x) has this property. Then P(x) = /(x), () (x) = K(x) have
the properties prescribed in Theorem 13.1, and the theorem follows.

The result described in the last two theorems is a generalization of results
given by several authors: see [1], [9], [16], and [20].

THroRrREM 13.3. Let (J(x) be a nonnegative quasi-nonsingular quadratic form
on O, and let P(x )be a Legendre form on the class 3 of ‘)-transversals of (. Then
P(x) and ()(x) form a Legendre pair on (i. }ioreover there is a positive number b
such that

(13.6) J(x) =P(x) +b0Q(x)

is a Legendre form on (. having the same index and nullity on U, as those of P(x)

on 8.

To show that P(x) and /) (x) form a l.egendre pair, suppose Xg—> %o P(xq)
— Plxy), ()(xq) —> ((x4). Select vectors Yg» Yo in B and 2g, 7¢ in the orthogonal
complement C of B such that xg = yg T zgs % = % T zo- Then Yg — Yo
z2q4—> zg. Moreover (‘)(xq) = Q(zq)———) 0 (xy) = Q(z). Since ) (x) is positive
definite on C, by Theorem 12.4, it follows that z2g = zg. We have accordingly
Plyg , 2q) — Plyy , 29), P(zg) = P(z,). But this implies that P(ys) — P(y,) and
hence that y, =>y,, since P(x)is a Legendre form on 13. Consequently, Xg = %o,

as was to be proved.
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In order to prove the last statement in the theorem, let i be the index and n the
nullity of P(x) on B. Choose a linear subclass £ of 3 of dimension i + n such that
P(x) is positive for all vectors x # 0 in i3 orthogonal to §. Then the hypotheses of
Theorem 13.1 hold on the orthogonal complement G" of 0. There is accordingly a
positive constant b such that the quadratic form J(x) defined by (13.6) is positive
definite on G". Consequently, J(x) is a Legendre form on (, the sum of whose
index and nullity is at most i + n. Since J(x) = P(x) on B, its index and nullity

must be given by i and n respectively.

14. The Lagrange multiplier rule. It is of interest to pause for a moment to
show that the Lagrange multiplier rule can be obtained by an application of the
concept of quasi-nonsingularity. To this end we consider the class ( of arcs de-
scribed in $4. Let 3 be the class of all arcs x in ( satisfying a set of differential

equations
(14.1)  do(t,2,%) =Mop(t)xk(t) +Nor(t)ik(t) =0 (=1, «+-, r <p)

almost everywhere on @ < ¢t < b. We shall assume that the coefficients 4/,  (t) and
No 1(¢) are continuous on @ < ¢ < 5 and that the matrix [Ny (8)|| (=1, ,r;

k=1, <+, p) has rank r on this interval. As is well known, there exist functions
(14.2) Sr(t,x, ) = Mg (t)xk + Nop(t)2F (T=r+1, -, p)

with continuous coefficients such that the matrix ”Njk(t)N (j,k=1,*+*,p) has
rank p on a <t < b. Then the relations

Nij (t) Ny (8) W m® >0 (i,j, k=1, +==, p)

hold for every set (7) # (0). The quadratic form D(x) = D(x, x), where

D(x,y) = #(a)yk(a) + [ dult, x(e), #(0)] dult,y(e), 5(1)]at,

is accordingly (see $11) a nonnegative Legendre form. Moreover D(x) = 0 if and
only if x*(a) = 0 and ¢ [z, x(¢), %(t)] = 0, that is, if and only if x = 0. The form
D(x) is accordingly a positive definite form on (i. With the help of D(x) we can
prove the following:

THEOREM 14.1. Let Q (x) be the quadratic form

143 Q) =Lalx)la(x) + [ boltz i) bolt,x,2) dt,
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where w = 1,***,m; 0 = 1,*+,r; and L (x),***, L,(x) are linear forms.

Then the quadratic form () (x) is a nonnegative quasi-nonsingular form on (.

In view of the corollary to Theorem 12.5, it is sufficient to consider the case
m = 0. Then the class of arcs on which ) (x) = 0 is the class 1B of arcs on which
¢o = 0. It follows that if x is in 3 then

D(x,y) = xt(a)y*a) + f°dr(t,%,%) ¢r(t,3,5)dt  (r=r+1, =+, p).

Since an arc x in B is completely determined when the values x*(a) and ¢, (t) =
bt x(t), %(t)] are given, it follows that an arc y is D-orthogonal to B if and
only if yk(a) =0 and ¢,[t, y(t),y®)] =0 (7=r + 1,*++, p). On the class C
of D-orthogonals of B we have accordingly D(y) = Q (y). The form Q(y) is accord-
ingly positive definite on C. In view of Theorem 12.4, with D(x, y) as the inner
product, the quadratic form () (x) is quasi-nonsingular on G, as was to be proved.

Consider now the case
b .
(14.4) Lo(x) = agex®(a) + bk x5(b) + ja wolt, x,x) dt,
where wg is linear in x* and %%, the coefficients being continuous functions of ¢.
We are now in position to prove the following:

£
THEOREM 14.2. LAGRANGE MULTIPLIER RULE. Let O be the class of
arcs in U satisfying the conditions

(14.5)  Lo(x) =0, ¢o(t,x,2) =0 (=1, "+, m;o=1,+",r),

where Lo and ¢ are given by (14.4) and (14.1), respectively. Let [(x) be the
*
quadratic form (4.13). Then a vector x in O is J-orthogonal to G~ if and only if

there exist constants cj, and a function
O=w+pgwe + Ao(t) o ,

where (Lo are constants and N\, (t) are square integrable functions, such that (a)

the Euler-Lagrange equations
t
(14.6) Que = [ Qedt +cp

hold almost everywhere on a < t < b; (b) the functions £(t) defined by the right
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member of (14.6) satisfy the transversality conditions
(14.7) —&kla) + paank T qra(x) =0,
Ek(b) + pobok + qre(x) = 0,

where qq, qrb have the significance described in lllustration 2 of $6.

In order to prove this fact recall that the quadratic form Q(x) defined by (14.3)
is quasi-nonsingular on (.. Moreover, Q(x) = 0 if and only if x is in C{,*. Thus, CL*
is the class of (-transversals of (.. If a vector x is J-orthogonal to @*, then the
linear form L(z) = J(x,z) is zero on the set of (-transversals of (.. There is ac-

cordingly a vector y in ( such that
(14.8) J(x,2) +Q(y,2) =0
for all z in (. If we set
roa=Laly), Nol(t) =olt,y(2), y(1)],
equation (14.8) takes the form

[gra (x) + paaar (x)]2%(a) + [gra(x) + pabok (x)]25(b)
+ ‘/;b[kazk + Qkkék] dt =0,

where () is defined as described in the theorem. Using Theorem 4.5, we obtain
(14.6) and (14.7). Retracing our steps, we see that the converse also is true.

In view of the following theorem the criterion that /(x) be a Legendre form on
G~ is equivalent to the strengthened condition of Legendre-Clebsch for problems

of Lagrange and Bolza.

THEOREM 14.3. Let [(x) and 0° be defined as in Theorem 14.2. Then the
quadratic form J(x) is a Legendre form on a* if and only if there is a number h > 0
such that at almost all points t on a <t < b the inequality

(14.9) Rjk(t)ijk > hokmk
holds for every solution () # (0) of
(14.10) Nk (£)7% =0 (=1, r).

For by the use of Theorem 12.3 with P(x) = J(x), and Q(x) given by (14.3), the
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quadratic form J(x) is a Legendre form on G" if and only if there is a constant
A > 0 such that I(x) = J(x) + NQ (x) is a Legendre form on (.. In view of Illustra-
tion 1 of $11, the form I(x) is a Legendre form on ( if and only if at almost all
points of @ <¢ < b the inequality

Rjkwjﬂk + KNOLjNo(kﬂJWk > hrknk

holds for every set 7 # (0) for a suitably chosen positive number 4. By virtue of
Theorem 13.3 for the finite dimensional case, this condition is equivalent to con-
dition (14.9) subject to the restriction (14.10), as was to be proved.

The above remarks together with Theorem 13.3 yield the following consequent

result.

COROLLARY. If J(x) is a Legendre form on a* of index i and nullity n, then
there is a Legendre form I(x) on a of index i and nullity n that coincides with J(x)
on Q.

15. Quasi-Legendre forms. As was previously seen in $11, the quadratic forms
that arise in the study of nonparametric problems satisfy the strengthened con-
dition of Legendre if and only if they are L.egendre forms. This is not true for the
quadratic forms J(x) that arise in the study of parametric problems. The difficulty
lies in the fact that in this case the class (g of J-transversals of ( is of infinite
dimension, which is impossible for Legendre forms. It can be shown (but we shall
not do so here) that in this case J(x) will be a Legendre form on the orthogonal
complement of (, if the strengthened condition of Legendre holds. Such forms
belong to a class that we shall call quasi-Legendre forms. The definition we shall
adopt is the following one:

A quadratic form () (x) will be called a quasi-Legendre form on ( in case it is
wls-continuous and quasi-nonsingular.

In view of Theorem 12.7 we have:

TueOREM 15.1. A quadratic form Q(x) is a quasi-Legendre form on (. if and
only if it is a Legendre form on the orthogonal complement of the Q-transversals of
Q. Moreover, Q(x) is a quasi-Legendre form if and only if it is quasi-nonsingular

and of finite index on G.

As an application of quasi-nonsingularity to the theory of indices we have the

following:

THEOREM 15.2. Let Q(x) be a quasi-Legendre form on U, and denote by G, the
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set of Q-transversals of (.. Let G, be a closed linear subspace of U and denote by
G, the Q-orthogonal complement of Gy . Finally, let C be the maximal linear class
of vectors common to Gy and G,, having no nonnull vector in common with Cq.

Then the index i of Q(x) on U is given by the formula
(15.1) i=i, +i, +c,

where iy, i, are the indices of Q(x) on (., U, respectively, and c is the dimension
of C. If Q(x) is of finite nullity n on G, and ny, n, are the nullities of Q(x) on
@1 and G‘Z’ then

(15.2) n,=n+c=n, +p,

where p is the dimension of a maximal class P of Q-transversals of G having no

x 7 0 in common with a,.

In order to prove this result, let 3, and B, be maximal linear subclasses of
G, and G, on which Q(x) is negative. Their dimensions are i, and i,, respectively.
Let B be the direct sum of the classes 13, B,, and C. Its dimension is k =i, +
i, T c. Clearly Q (x) <0 on B. Moreover, no vector x # 0 in B is in (4. Consider
a vector «x that is -orthogonal to B. The vector x is Q-orthogonal to C and hence
to the class of Q-transversals of (;. By Theorem 12.3, there are vectors x, in
Gy and x, in O, such that x = x;, + x,. Inasmuch as x and x, are Q-orthogonal to
B,, so also is x, . Hence Q(x;) > 0, the equality holding only in case x, is a
(Q-transversal of (,, by Lemma 9.1. Similarly, we have Q(x;) > 0, the equality
holding only in case x, is a Q-transversal of (i, and hence also of (,. It follows
that Q (x) = Q(x,) + Q(x,) > 0, the equality holding if and only if x is a Q-trans-
versal of (,. From this result we see that 13 is a maximal class on which Q(x) < 0
and which does not contain a (-transversal of (. The dimension of B is accord-
ingly equal to the index i of Q(x) on (1, by Theorem 9.1. The last statement in the
theorem follows from the definition of C.

The result obtained in Theorem 15.2 can be restated in the manner described

in the following:

THEOREM 15.3. Let Q (x) be a quasi-Legendre form on (O, and denote by U, a
closed linear subspace of G.. Let i, iy be the indices of Q(x) on G, Q,, respec-
tively. The difference i — i, is equal to the dimension of a maximal linear sub-
class 0 of G such that (a) 9 is Q-orthogonal to Gy; (b) Q(x) < 00on 0; (c) D

contains no nonnull Q-transversal of G.. If n, ny are the nullities of Q(x) on G,
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Gy,and m =i+ n, my =i, +n,, then m = m, + e, where e is the dimension of a
maximal linear subclass & of G such that (a) the subclass € is Q-orthogonal to
Uy (b) the subclass € has no element x # 0 in common with Gy; (c) we have
Q) <0on €.

This result follows from the proof of Theorem 15.2.

The theorems just established have many applications in the calculus of vari-
tions. We shall describe only a few of these. These results also hold when the
class (I is replaced by the class (" described in Theorem 14.2. Similar results
hold for multiple integral problems.

In the following illustrations, 0 is the class described in 94, and J(x) is a
Legendre form on (.

ILLusTrRATION. 1. Let (U, be the subclass of all arcs in (I having x(a)=
x(b) = 0. The class € of arcs J-orthogonal to (i, is the class of extremal arcs.
Let G* be a linear subclass of G containing (., . Applying Theorem 15.2 with a*
playing the role of (i, we see that the index i* of /(x) on G* is given by the sum

z*=i1+i2+c,

where i, is the index (i, i, is the dimension of a maximal class of extremals in
G* on which J(x) is negative, and ¢ is the dimension of the class of extremals
belonging to 0, and J,.

Before proceeding to the next illustration we find it convenient to establish a

lemma.

LeEMMA 15.1. There is a constant & > 0 such that J(x) > 0 for every arc x % 0
in (0 vanishing somewhere on every subinterval of a< ¢t < b of length &.

For if this were not the case there would exista set of vectors x4, %, satisfying

the conditions
J(xq) S 01 lqu = 1: xq — X0 ,

such that x, vanishes somewhere on every subinterval of a < ¢ < b of length 1/q.
The vector x, is obviously the zero vector. Since J(x) is wls-continuous, we have
](xq) —> J(xo) = 0, and hence also the relations x; => x, = 0, contrary to the

choice of the xq as unit vectors.

ILLUSTRATION 2. ‘Let ¢t; <+++ < ¢, be points on a < ¢t < b which divide
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a <t < b into subintervals of length < 8, where & has the property described in
Lemma 15.1. Let (i; be the class of arcs in (0 which vanish at ¢ty =a, t;,* - *,
try tr+y = b. Then J(x) is positive definite on (I, by Lemma 16.1. The class of arcs
€ that are J-orthogonal to (; is the class of broken extremals with corners at
ty,***, tr. Let G" be a closed linear subclass of (i containing (., and let (i, be
the class of broken extremals in G. Applying Theorer 15.2 with ( replaced by
@*, we see that the index i* of J(x) on G is equal to the index i, of J(x) on the
class (i, of broken extremals in G". This illustration identifies the concept of

index given here with that given by Morse [13].

ILLUSTRATION 3. Let (" be the class of all arcs in G that vanish at ¢ = b,
and denote by (; the class of arcs in G" that vanish on an interval to <t <b,
where t, > a. Let (i, be the class of arcs in G" that are J-orthogonal to G . If J(x)
is of the form (4.13), then an arc x in CL* is in @2 if and only if the segment deter-
mined by a < ¢ < ¢, is a solution of the Euler equations satisfying the transver-
sality condition at ¢ = a. It follows that in this case an arc x # 0 belonging to 0,
and (i, exists if and only if there is an extremal satisfying the transversality con-
dition at ¢t = a and vanishing at ¢ = t,. The number of linearly independent ex-
tremals of this type, no linear combination of which is identically zero on ¢, <
t < b, is equal to the number ¢ described in Theorem 16.2. As we shall presently
see, c¢ is the order of ¢y, as a focal point of our problem. By virtue of Lemma 16.1

we have c = 0and iy =0 whenty<a + 8.

16. Focal points. The theory of focal points and conjugate points in the calcu-
lus of variations can be extended so as to be applicable to a quasi-L.egendre form
J(x) on a Hilbert space (. Connections between the results here developed and
those found in the calculus of variations will be given in the next section.

In the present section it will be assumed that we have given a one-parameter
family of closed linear subclasses A (\) (N < X < X') of G such that (a) G(X') is
the zero class and G,(X') = (; (b) G(\,)is a subclass of (G (\,) whenever Ay <Xy;
(&) if N < Ny < X' then the class G (\,) is the intersection of all classes G/ (\)
with Ag < AN

Normally the classes in which we shall be interested have the additional prop-
erty that (d) if N < A, < N, then (,(\,) is identical with the closure (.(\, — 0)
of the union of the classes (i (\) with N < A< XA,. However, this property does
not hold in a number of important applications and so we shall not make this further

restriction here.
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One should observe in passing that the classes ((\) defined above correspond
to a resolution of the identity. In other words, corresponding to each resolution of

the identity there is a theory of focal points.

LEMMA 16.1. If X < A < X', then the left-hand limit i (X — 0) is equal to the
index of J(x) on the class (. (N — 0) described above. In particular if G\ —0)
=0\), then i(x —0) =i (N\).

Consider a value Ay on X' < A< X', and let h be the index of /(x) on @()\0— 0).
Clearly i (A\) < & if A< Ay. We shall show that there is a value A; < A, such that
i(Ay) = hgy. This is obvious if A = 0. Suppose therefore that # >0, and let x;,
«+ +,x}, be a basis of a maximal linear subclass 13 of @()\0 — 0) on which J(x)< 0.
For each integer p < h select a sequence {xp,} in the union of the classes (,(\)

(X' <A < Ay) converging strongly to x,. We have accordingly
2{2 J(xpr,xqr)apaq = J(xp,xq)apaq <0 (p, g=1, ", h)
for every setay,* * *, ap not all zero. Consequently there is an integer r such that
J(xpr,xq,)apaq <0

unless the a’s are all zero. Choose \; < A\, such that x;,,* * *, xp, are in G(\,).
In view of Theorem 9.1 we have i(A;) > A and hence i(A,) = &, as was to be

proved.

LEMMA 16.2. Let BON) (N < X < X') be a maximal linear subspace of (.(\)
such that (a) B (N\) is J-orthogonal to G(\y) if Ay < A; (b) J(x) < 0 on B(N\); (c) no
x # 0 in B(N) is J-orthogonal to G (\). Then we have

i\) =i(x—=0) +b(\),

where b(N\) is the dimension of BOW. If G — 0) = G (N < ANENXY), then
BA) =0 (N <X <N).

This result follows Lemma 16.1 and Theorem 15.3 since B(\) is J-orthogonal
to the class (0 (A — 0).

LEMMA 16.3. On the interval N < A < X', the right-hand limit i(X + 0) is
given by the formula

i+ 0)=10\) +c(N),
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where ¢(\)is the dimension of a maximal linear subclass C(\)of the J-transversals
of G(N) with the property that no x # 0 in C()\) is J-orthogonal to a class (. (\,)
with Ay > N\, In particular, we have i (X' + 0) = 0.

It is easily seen that two classes having the properties of C(\) are of the
same dimension. Moreover, by Theorem 9.1, we have i(A\) + c(A\) < i(h;) if A <A,.
There is accordingly at most a finite number of points at which c(\) # 0. lience,
given value Ay on X' < A < X', we may select A; sothatc(\) =0on Ay<A
< Ay Let D(X,) be the class of J-transversals of A, that are also J-transversals
of some ((\) with X > X\,. By virtue of our choice of A\;, the vectors in D(X\g)
are J-transversals of G (\) (Ag £ A < X)). We can suppose that C(A,) is orthogo-
nal to § (\y). Let B be a maximal linear subclass of G (X\,) on which J(x) is nega-
tive. Its dimension is i(X\g). Let P(A\) (Ag < A < X,) be the class of vectors in
G (\) that are J-orthogonal to B and orthogonal to C()\o) and 0(X,). There is a
value Ay on Ay < A < A\, such that J(x) is positive on  (\). If this were not so
one could find for every integer r a vector in & (Ao * 1/r) such that ]x,] =1,
J(x;) < 0. The sequence {x,}can be chosen so as to converge weakly to the vector
xg. It is clear from property (c) of the family G (\) that x, is in (1(X\,) and hence
in P (Xy). Consequently J(x,) > 0, the equality holding only in case x, = 0. Inas-

much as J(x) is wls-continuous, we have

0 > lim sup J(x,) > lim inf J(x,) > J(xo) > 0.
r =0 r=o

It follows that J(xq) = 0, and hence that x, = 0. We have accordingly x, — 0,
J(x;) — 0. Since J(x) is a Legendre form on ©(X\,), this result holds only in case
x; => 0, contrary to the relation |x;| = 1. This proves Lemma 16.3.

COROLLARY. [f there is no vector x # 0, which is simultaneously a [-trans-
versal of G(\,) and of G.(\,) for distinct values Ny and Ay on N < N < X', then

iv+0)=:i(\) +n()) (N <A <A,

where n(X\) is the nullity of J(x) on G (N).
A point A at which ;(\) is discontinuous will be called a focal point of J(x)
relative to G (\) (N < A < N'), and the difference f(\) =i (A + 0) — i (A — 0) will
be called the order of \ as a focal point. We set i (X" + 0) =i (X') and (N —0)

=i(X). Clearly f(\')= 0, by Lemma 16.3.
Combining the results described in the last three lemmas we obtain:



QUADRATIC FORMS IN HILBERT SPACE 571

THEOREM 16.1. The order f(N\) of \ as a focal point of J(x) relative to G (\)
(N <A< NX)is given by the formula

)=o) +c(N),

where b(\) is defined in Lemma 16.2 with b(X') = 0, and c¢ (\) is defined in Lemma
16.3 with ¢ (X') = 0. We have f(N)= 0. If X < A <X, then f(N\) is the dimension
of a maximal linear subclass 3 (N) of G.(N) such that (a) S (N\) is J-orthogonal to
Gy if Ay < A, () J(x) < 0 on 3(N), () no x # 0 in 3(\) is J-orthogonal to a
class G/(\y) with Ay > N if X < X and with Ny = X' if X = X',

The last statement can be proved directly with the help of [.emma 16.3.

Cororrary. If GIA —0)=G(\) N < X <NX') and if no vector x £0is /-
orthogonal to U.(X\y) and 0. (\,) when N # Ny, then f(N') = f(X') = 0, and f(\)
is the nullity of J(x) on OO N <A< N,

Oscillation theorems for differential equations of the second order can be es-
tablished with the help of the following:

THEOREM 16.2. Let Q* be a closed linear subspace of 0. Denote by @*O\)

(N < A< X') the set of all vectors in a* belonging to 0. (\). The classes 0N
have the properties (a), (b), (c) described at the beginning of this section with U
replaced by G, Let A, < Ny < oo o <\, be the focal points of J(x) relative to
Q) N € XENX),and let Ny <N < oo 0 < Nx be the focal points of J(x)
relative to CL*(/\) (N < N < X', each repeated a number of times equal to its

order. Then the relations
(16.1) A, <N (r=1, ++, n*)

hold. If G* is the orthogonal complement of a linear subclass  of dimension k,

then in addition
(16.2) N < N pap
holds provided r + &k <m.

The inequality (16.1) follows from the fact that the indices i(A) and i*(\) of
J(x) on G (\) and @*O\) satisfy the relation i (\) > i*(A). If @* is the orthogonal
complement of a linear subclass § of dimension %, then i(A\) < i*(N\) + k, by
Theorem 9.5. Hence (16.2) holds.

Comparison theorems for ordinary differential equations of the second order can
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be obtained with the help of the following:

THEOREM 16.3. Let J*(x) be a second quadratic form on O such that J*(x)
>Jx) on (. Let \y <A, < vov < Apand Ny <Ny < oo e <N x berespec-
tively the focal points of J(x) and T*(x) relative to G(A) (N < X < X'), each
repeated a number of times equal to its order. Then the inequalities

(16.3) A SNG (r=1, ", n*)

hold. If J(x) = J*(x) only in case x = 0 and G (A — 0) = G(\), then

(16.4) Ar <Ny (r=1, -, n*).
This result follows from Theorem 9.4.

17. An application of the theory of focal points. Consider now the class B of

all arcs
x: %7 (t) (j=1,, q,a<t <b)
in the class (i described in §4 vanishing at ¢ = b and satisfying the equations
ahjxj(a)=0 (hzl,"’,PSQ),

which we assume to be linearly independent. Let /(x) be of the form
- j k b .
J(x) Ajpx (a)x*(a) + 1; 20(t,x,x) dt,

where A, = A};, and 2w is of the form (4.15). We assume that the strengthened
condition of Legendre (4.9) holds. Consequently /(x) is a Legendre form on G, as
well as on B.

Let B(\) (@ < A < b) be the set of all arcs » in B having x/ () = 0 (A< ¢ < b).
It is easily verified that this family has the properties described in the last sec-
tion provided we replace ( by B. Moreover, the relation B(A — 0) = B()) (@<
A < b) holds.

By an argument like that used in the illustrations given in $6 we can prove

the following:

LEMMA 17.1. Let x be an arc in G and set

(17.1) §](t) = ‘/a‘th, [s,x(s), x(s)]ds + cj .
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Then the arc x is J-orthogonal to the class B(N\) (@ < X\ < b) if and only if the

constants cj in (17.1) and constants ey, can be chosen such that

(17.2) & () = w,, [t,x(t), 2(¢)]

holds almost everywhere on a <t < N\, and such that the transversality conditions
(17.3) A]kxk(a) toenpap; = & (a)

hold at t = a. If x/(¢) = £;(t) = 0 at one point of a <t <\, then %/ (t) =0 on
a<t<A\.

The last statement follows from the theory of differential equations. In view of

this result we have the following:
COROLLARY. No J-transversal of B(\{)is a J-transversal of B\, if Ay # X,

An arc x that is J-orthogonal to B will be called a focal arc. Such an arc is an
extremal on @ < ¢ < b satisfying the transversality condition (17.3). We have the

following:

THEOREM 17.1. 4 value A on a < N < b is a focal point of J(x) relative to
B(N) (@ < N < b) if and only if there is a focal arc x # O that vanishes at t = \ .
The order of A\ as a focal point is equal to the number of linearly independent

focal arcs of this type in a maximal set.

This result follows readily from the corollaries to Theorems 16.1 and 17.1.

If B* is the class of all arcs in B having %l (a) = 0, and B*O\) is the class of
all arcs in B vanishing identically on A < ¢ < b, then the focal points of J relative
to B*(\) (a < A < b) are called conjugate points. It is easy to see that if p =0
then focal points and conjugate points cannot coincide.

In view of Theorem 16.2 we have:

THEOREM 17.2. The k-th focal point of J(x) relative to B\ (@ < X <b)
precedes (or coincides with) the k-th conjugate point of J(x), if the latter exists.
Moreover the k-th conjugate point must precede (or coincide with)the (k + q — p)-th

focal point, if the latter exists.

An analogous theorem can be established with the help of Theorem16.4. These
results serve to illustrate the fact that one can obtain the standard oscillation

and comparison theorems in the calculus of variations by use of the results given
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in$ 315,16 and 9. These theorems are generalizations of Sturm-Liouville theorems
for differential equations.

It should be observed that the results given in $16 also hold for integro-
differential equations and integral equations with a symmetric kernel. For example
if we replace J(x) by /(x) + K(x), where K(x) = K(x,x) and K(x,y) is given by
(4.5), a focal point theory for integro-differential equations is obtained. If J(x) is
taken of the form (3.8), and (.(\) (@ < A < b) is the class of all Lebesgue square
integrable functions on a < ¢ < b having x(¢) = 0 (A < ¢t < b), a theory of focal

points for integral equations is obtained.

18, Legendre forms depending upon a parameter. Let A be a metric space.
For each element A in A let J(x, \) be a quadratic form on (.. We shall assume
that the quadratic form J(x; \) and the associated bilinear form /(x, y;\) have the
following property: Given a sequence of vectors {x,} in (i converging weakly to a

vector x, and a sequence {\,} in A converging to an element A, then
(a) ;1:%10 Try 3 Np) = J(xq, 3 Ng) for every vector y in U ;
(b) lim inf J(xr; Ar) 2 J (05 No);
(c) if ll.l=l'90 J(xr s Np) = J(xg3 Ay), then x, = x4
It is clear that for each fixed element A in C the form J(x;\) is a Legendre
form on (.. These properties are enjoyed by
J(x; ) = J(x) — K (x),

where J(x) is a Legendre form, K(x)is a w-continuous form, and A is a real number.
As a second example, one should observe that the second variation /(x, A) of a
function F(A\)in the calculus of variations will have this property in a weak neigh-

borhood of an arc A satisfying the strengthened condition of Legendre.

LEMMA 18.1. Let B be a closed subclass of U on which J(x; Ny) is positive,
where No is in N. Then there is a neighborhood N of Ny and a positive number h

such that the inequality
(18.1) J(x; A) > h{x]?
holds on B for every element X in N.

Suppose the conclusion in the lemma is false. Then there is a sequence of unit
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vectors {%,} in 1B converging weakly to a vector x4, and a sequence of elements

A;in A converging to Ay, such that
Jxr; Ny) < 1/r.
Clearly x, is in BB since B is closed. Moreover

0 > lim sup J(x;; Ap) > lim inf J(xp; Ay) > J(x0; No) > 0.
r=o r=o

Hence J(x4; Ay) =0 and x, = 0. Consequently

lim J(xr;0,) = J(x0; Xo) = 0.
r=m
By virtue of our hypotheses regarding J/(x; \), we have x, => x4 = 0, contrary to

the relation |x,| = 1. This proves the lemma.

LEMMA 18.2. Let {x;} be a sequence of unit vectors converging weakly to a
vector %, and let {\,} be a sequence of elements in I\ converging to an element

No. If for each positive integer r the relation

(18.2) J(xr, y; Xr) =0
holds for every y in G, then this relation holds for r = 0. Moreover |xo| =1 and
X = Xy

The first conclusion foliows from property (a) of J(x; A\). By (18.2), we have
J(xrs Ap) = J(xg; Ag) = 0. Consequently x, => x,, by property (c). Since the

vectors x, are unit vectors, so also is x,.

THEOREM 18.1. Let i(\) be the index and n(\) be the nullity of J(x; \) on
G for each element N\ in M. Given an element N\, in I\, there is a neighborhood N

of Ao in which the inequalities

(18.3) ihg) < i(N) < i(N) + n(N\) € i(he) + n(X)

hold. If n(Ng) = 0, then n(X) =0, i (A\) =i(Ag) on N.

Let B be a maximal linear subset of (I on which J(x; \) is negative. Its di-
mension is i (\y). By continuity considerations it is seen that there is a neighbor-
hood N of Ay such that J(x; \) is negative on 13 whenever A is in N. Consequently
i(A) > i(Ag) on N, and the first inequality in (18.3) is established.
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In order to prove the last inequality in (18.3), observe that by virtue of Theorem
9.2, the form /(x; A\,) is positive on the orthogonal complement 8 of a linear sub-
class C of dimension & = i(Ag) + n(Ay). By Lemma 18.1, the neighborhood N
chosen above can be diminished so that /(x; A\) is positive on 3 whenever X\ is in

N. Using Theorem 9.2 again, we see that i (A) + n(A\) < %k, as was to be proved.

COROLLARY 1. The set of points Nin I\ at which n(\) # 0 is a closed subset
of M.

COROLLARY 2. Given an element \q in A, there is a neighborhood IV of A,
on which the inequality n(\) < n(X\g) holds.

As an application of Theorem 18.1 to the calculus of variations one obtains
the following result: If an extremal A\, satisfying the strengthened condition of
Legendre is nondegenerate and of index i, then neighboring extremals are nonde-

generate and of index i.

THEOREM 18.2. Suppose that I\ is an open interval of real numbers. If for a
value Ng in A there is a number € > 0 such that given two values Ny < A\, in the
e-neighborhood of A\ the relation J(x; N,) < 0 holds whenever x f 0 and J(x; \y)
< 0, then € can be chosen such that

(18.4) i) = i(ho), n(A) =0 (Ao = € <A< N),
i(N) = i(hy) + n(rg), n(A) =0 (g <A< Ay + €).

Similarly, if for a value N\ in A there isa number € > 0 such that given two values
Ny < N, in the e-neighborhood of N\ the relation J(x, A{) < 0 holds whenever
x# 0 and J(x; N,) <0, then € can be chosen so that

(18.5) i(N) = i(0g) + n(Xg), n(A) =0 (Ao — € <X < )Ag),
i(\)
In view of Theorems 9.1 and 9.2, the relation i(A;) > i(A;) + n(A;) will hold

if J(x, Ny) < 0 whenever x # 0 and /(x, \;) < 0. Combining this result with (18.3),
we find that (18.4) holds provided € is sufficiently small. The last statement in

i(No), n(A\) =0 (No <X < Xy + €).

the theorem follows similarly.

COoROLLARY 1. If J{x; Ay) > J(x; A\y) whenever x # 0, and Ny, N\, are in
N with Ny < X\,, then the relations (18.4) hold for all g in /.
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A value A will be called a characteristic value if n(\) # 0; and n (\) will be
called its multiplicity. \ characteristic value will be counted a number of times
equal to its multiplicity. If A is a characteristic number, then a vector x ,* 0 such

that J(x,y, A} = 0 for all v will be called a characteristic vector corresponding

to A

COoROLLARY 2. If J(x: Ny) > J(x, \,) whenever x # 0 and ANy < N\,, then for
N < X' the difference i(N') —i(N') is equal to the number of characteristic values
on N <N < N, If there is a value X' at which i (X) =0, then i(\) is equal to the

number of characteristic values less than \.
As a further result we have:

THEOREM 18.3. Let J(x) be a Legendre form on U. and let K(x) be a w-con-
tinuous quadratic form such that [(x) > 0 whenever x ,7-4() and K(x) < 0. If

(18.6) J(x; N) = J(x) = Nk(x),

then there is a value N* such that J(x; X) is positive definite on G. If Ny > X',
the relations (18.4) hold; and if N, < )\, the relations (18.5) hold. If X* < N < X',
then i (X') — {(N') is equal to the number of characteristic values on N < A < N';
and if X' < N < XN then i(N') — ((N) is equal to the number of characteristic
values on X' < N < N, The index i(\) of J(x; N\) on U is equal to the number of

characteristic values between N\ and X*.
The existence of the number \* follows from Theorem 13.2. From the relation
I n) = J0 ) + (N = A K(),

we conclude that if A < \*, J(x, A\) < 0, and x # 0, then K(x) < 0. Consequently,
if Ay <A, <X we have

J(x; ny) =J(xh,) + (ha = A K(x) <0

whenever x # 0 and J(x, A,) < 0. The relations (18.5) therefore hold when X\ < N
Similarly (18.4) hold when Ay > X°. The remaining statements in the theorem follow
readily.

COROLLARY 1. If K(x) > 0 on 0, then the index i of ](x) on U is equal to the

number of negative characteristic values.

In view of the connection between i (\) and the number of characteristic values
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we have:

COROLLARY 2. If K(x) is nondegenerate on a linear subclass B of U of di-
mension h, then there are at least h characteristic numbers. If K(x) is nondegen-

erate on (., then there is a denumberable set of characteristic numbers.
The following result is easily established.

THEOREM 18.4. Let J(x, \) be of the form (18.6). If x' and x" are character-

istic vectors corresponding to distinct characteristic values N and X', then
J(x',x") =K(x',x") =0,

Corresponding to each characteristic value N, there are r = n(A) linearly inde-
pendent characteristic vectors x1,* * *, xr corresponding to \ which can be chosen
so that

(18.7) K(xp) =k, J(xp) =Nk, J(xp,xq) =K(xp,xq) =0
(p#qpg=1,r),

where k = —1 or k =1 according as X\ < N* or A > N Every characteristic vector

corresponding to \ is expressible in the form x = xpap.

In view of this result, the sequence §X\,} of characteristic values, each re-

p}
peated a number of times equal to its multiplicity, has associated with it a se-

quence of characteristic vectors Expf such that
(18.8) J(xp,%g) = Jp 8oy, K(xp, q) = kpdpg (jp = Npkp, kp =%1),

where BPP =1, 0,4=0(p # q). Only a finite number of the j’s are negative. We

can accordingly suppose that
]&szS"'S]ﬁS”'} >\p.<.>\q ifjp’:jq and p < gq.

The following well-known result can be established by the use of the theory of
indices developed in the preceding pages. Its proof will be omitted.

THEOREM 18.5. Let J(x, \) be of the form (18.6). Let a vector x in U be

given, and set

ag =K(xg,x)/kq (¢g=1,2,3,"").

Then the sequence {yq} defined by the formula
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(9]
-
O

yq :alxl 4 e + a-jx‘i

converges to a vector y in ‘43 moreover, J(y) and K(y) are given by the absolutely

convergent series
I(y) = jyaf +jaa? £ ooe Fjgaf 4 oeee,
; - 24y 2 2 .
K(y) = kyaj + kpai + +++ + kya] + oo+
the vector z = x — y is a K-transversal of ‘. and
Jx) =J) + (), Kx) =K(y), K(z)=0;
if K(x) is nondegenerate on U, then x = y.

19. Further comparison theorems. In the present section we assunie that J(x; \)
is of the form (18.6) and that A(x) is positive on (i. Then, in (18.8), we have
Jp = Apand Ay < Ay < ¢ v+ As before, i (M) denotes the index and n(\)the
nullity of /(x, A\) on .

LEsyA 19.1. Given a number N\, the number ¢ f characteristic values < \ is
equal to the dimension i(\) + n(\) of a maximal linear subclass of U on which
J(x 3 A) < 0. The number of characteristic values less than A is given by the di-

mension i(N\) of a maximal linear subclass of U on which J(x; N) is negative.

This result follows from Theorem 18.3. Using this result we can prove the

minimax property of characteristic values stated in the following:

TueoreMm 19.1. Let C be a linear subclass of U of dimension r, and let X* be
the maximum of the quotient J(x)/K(x) for all x # 0 in C. Then \* > X\,, the r-th
characteristic value of J(x, \) on (.. Moreover there is a subclass C of G of di-

mension r on which \; is the maximum of J{(x)/K(x).

For clearly J(x, X*) < 0 on C. By Lemma 19.1, we have r < i(X*) + n (X), the
number of characteristic numbers less than or equal to X*. Hence A, < N*. The
linear subclass C of ( generated by the characteristic vectors x,* * *, x, corre-
sponding to Ay, * * *, A, is such that A, = J(x;)/K(x;) is the maximum of J(x)/K(x)
on C. Hence \* = A, in this case.

* e
THEOREM 19.2. Let (U be a closed linear subclass of G and let Xy < X, <
e
«+« < N5 be the characteristic values of J(x, \) on U, each repeated a number

of times equal to its multiplicity. The r-th characteristic value Ny of J(x, \) on
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n* L . . .
U, if it exists, is greater than or equal to the r-th characteristic value \; of

J(x, \) on G.

For by the last theorem there is a linear subclass C of (" of dimension r such
that A} is the maximum of J(x)/K(x) on C. Ilence N¥ > \,, again by Theorem 19.1.

THEOREM 19.3. Let J*(x) be a second Legendre form on U such that J(x) <
T*(x) on O, and set

J*(x, \) = J*(x) = MK(x).

Denote by Ny < Xy < +++ < Nf <+« the characteristic values of J*(x, \) on
G, each repeated a number of times equal to its multiplicity. Then Ny < N5 (r=1,
2,3, * ). Moreover if J(x) < J*(x) whenever x #0, then A< NE(r=1,2,3,0 ¢ *).

Let C be a linear subclass of (i of dimension r on which J*(x, AF) < 0. Then
also J(x, N3) < 0 on C. Hence \* > X\,, by Theorem 19.1. If /*(x) > /(x) when
x ?é 0, then J(x, A\}) is negative on C. It follows that A, < X%, again by Theorem
19.1.
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