A NOTE ON A PAPER BY L. C. YOUNG

F. W. GEHRING

1. Introduction. Suppose that f(x) is a real- or complex-valued function
defined for all real x. For 0 < « < 1, we define the ¢-variation of f (x) over
a < x < b as the least upper bound of the sums

{Z‘A]{ll/a}a

taken over all finite subdivisions of a < x < b, (When « = 0, we denote by the
above sum simply the maximum | Af |.) We say that f(x) is in W, if it has
finite ci-variation over the interval 0 < x < 1. L.C. Young has proved the

following result.
THEOREM 1. (See [2, Theorem 4.2).) Suppose that 0 < B <1 and that
f (%), with period 1, satisfies the condition

fl\f{¢(t+h)§—f{¢(t)}\dt§h'3 (h > 0)
0

for every monotone function ¢(t) such that
¢(e+1)=¢(t)+1
for all t. Then f (x) is in W, for each o < B.

Young’s argument does not suggest whether we can assert that f (x) is in
Wg. We present here an elementary proof for Theorem 1 and an example to show

that this result is the best possible one in this direction.
2. Lemma. We require the following:

LEMMA 2. Suppose that aj,az,---,ay and by,by,-+-,by ore two sets of

nonnegative numbers such that a;, > a; > ---> ay and such that

n n
Z: ay < Z by
v=1 v=1
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forn=1, -««,N. Then forp > 1,

n
2ab < 28
V=1

V=1
forn=1,.-.,N.,

Let

n n
= Z ay and Tn = z by.
V=1 V=1

With Abel’s identity and Hélder’s inequality, we have
n n

Z ab = z: ayaﬂ'l

v= v=1

-1 -1 -1 -1 -1
=S1(al"" —ab™ ) o r 4 Sy (aBT ) —aP ") + Sy aP

IN

-1 -1 -1 -1 -1
(af™t —al™ )+ oo+ Ty (aP7 ) —ab™1) 4 TaP

i

Z bvap' ,

(p-1)/p

B [

IN

from which the lemma follows.

3. Proof of Theorem 1. For a subdivision 0 =x¢9 < x; <.+ <xy=1, con-

sider the numbers
V() = f (o) |y |f () = f ) |, ooy [f Can ) = f (xyag) |

and label this set a;,a;,--+,ay so that a; > a; > ---> ay. We say that the
two points & and £’ are associated with a, if they are the two points of the

subdivision for which
=|fCE)=F(EN;

and, fixing n, we consider the union of points associated with a,a,, -+, a,.
Labeling these £, < ¢, <...< fm , we define
n
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v-1 v
¢(t) = ¢, for <t < — (v=1,+-+,m,),
mp mp

and we extend this function so that
$(t+1) = ()41

Now m, <2n and, if 0 < h < 1/m,,
n Mp
ES aw<h S 1) =1(£ )],
v=t v=2

gfllf{¢(t+h)}—f{¢(t)}|dtglz'B.
4]

Letting & approach 1/m,, we have
n
Z ay Sm,:"B 5(2n)1"8
v=1
forn=1,...,N. Finally selecting by, b;, +++, by so that
n
Z: by =(2n)l'ﬁ,
v=1
we have
by =28 and b, < 2VR(n-1)" forn > 1,
and applying l.emma 2 we conclude that

N a N a 00 a
£ ] e[ ool oo

n=1

This completes the proof.

4. Further results. We now show that Theorem 1 is best possible.

THEOREM 3. Suppose that 0 < £ <y < 1. There exists a function f (x),
with period 1, which is not in Wg and whick satisfies the condition
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[./0“ |fi¢(t+h)}—f{¢(t)¥l'/7]y_<_h5 (h >0)
for every monotone function ¢(t) such that

¢(t+1)=¢(s)+1.

Consider two increasing sequences, {x,} and {y, |, such that
xp <y, <xp <eee<xp <y, <apep <oee<xp+ 1

Define the function

B for %p <% <y,

g(x)=l

0 everywhere else inx; <x <x; +1,

and extend g(x) to have period 1.

LEMMA 4. Suppose that 0 < £ <y < 1. The function g(x) defined above

satisfies the condition
Y 2 Y
[/‘|g(x+h)—g<x)|‘/7dx] 5(_y) 18 (h > 0).
(] Y-8

Fix % in the range 0 < & < 1/2, and consider the finite sequence,

£ <l << mE 1,
defined as follows.

A Let & =x; —h.
B. Suppose that fo < fl <eee < -fn_l < fo +1 have been defined.

Let fn = Max { fn_l +2h, y, } if this does not exceed ‘fo + 1. Otherwise let
fn =&+ 1

It is not difficult to show that

¢n
/ lg(x+h)—g(x)|"Ydx _<_2hn"8/7

n-1

forn=1,...,N. Since { - & | >2hforn=1,-.-,N~1, we have Ni < 1 and
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1 N e, N
[Hoerrae s [ 1ag17 0 <o 3 b,
0 n=1 gn-l =
n=1
11 2}/
< ANVBY < BB,
1-B/y y-B

This completes the proof of Lemma 4.

Take any strictly increasing continuous function ¢ (¢) such that
¢(t+1)=¢(e)+1.

If ¢! is the inverse function, and
up = ¢ '(x,) and vn=¢'l(yn),
then uy <wvy <up <:++<up <vy <up+y <-++<uy +1 and

n P foru, <t <v,,

gi¢(t)§=[

0  everywhere else inuy < ¢ < uy +1.

Now g{¢(t)} has period 1 in ¢, and, by Lemma 4,

1 Y 2y \”
[/ Igiqﬁ(t+h)§—g{¢(t)§|‘/7dt] 5( ) P (h >0).
0 Y-8

The Lebesgue limit theorem allows us to conclude this holds for all nondecreas-

ing ¢(t) such that
Bt +1)=¢(e)+1.
To complete the proof of Theorem 3, observe that g(x) is not in W and let
- Y
f(x) =(Z$) (%),

In the proof of Theorem 3, the fact that 8 < y plays an important role. We

have a different situation when 8 = y.

THEOREM 5. Suppose that 0 < B < 1 and that f (x) is measurable and real-
valued with period 1. The B-variation of f (x) over any interval of length 1 does

not exceed 1 if and only if
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B
[/01 lf{¢(t+h)}—f{¢(t)}ll/ﬁdt} < > 0)

for each monotone function ¢ (t) such that ¢(t +1) =¢(¢) + 1.

For the sufficiency, let xo <+.- < xy =x0 + 1 be a subdivision of some
interval of length 1. Define the function

¢(t) =x,,

and extend ¢(t) so that
d(e+1)=0(t)+1;

for 0 <k < 1/N we get

N A 1/5'6 1/‘1 Lo y ( ”ﬁd]ﬁ
T s et <[ [Pinecem-newntal <o,

For the necessity, we see that the S-variation for f{ ¢(¢)} over any interval

of length 1 does not exceed 1, and we can apply the following:

THEOREM 6. (See [1, Theorem 1.3.31.) Suppose that 0 < 8 < 1, that
f(x) is measurable and real-valued with period 1, and that the B-variation
of f (x) over any interval of length 1 does not exceed 1. Then

B
[f1 lf(x+h)—f(x)1‘/ﬂdx] <hP (h >0).
0
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