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l Introduction. This article was motivated by the desire to obtain
an iterative method for solving a system of equations, linear or not,
into which all equations would enter symmetrically, and which would
be suitable for numerical application, particularly on a high speed digital
computing machine.

The general problem considered is the solution of a system of k
equations {/j(a?)=O} in n unknowns (xlf •••, xn)=x where, as throughout
the paper, all variables and function values are real. Each step of our
method consists in obtaining, from one approximation a; to a solution
of the system, the next approximation by adding to x the vector sum
of corrections parallel to the gradients of the k functions f5(x). The
lengths of the corrections are regulated by individual weights and by
use of a factor ^=£0. The component gradient correction for a single
equation //#)=0 is of the Newton-Raphson type because the correction,
if applied to an initial approximation #(0), gives a point annihilating the
usual linear approximation to fό{x) for x near # (0).

After considering in § 2 the well known formula for a gradient
correction to an approximate solution #(0) of a single equation f(x)=0,
the method of composite gradient corrections for a general system is
described in § 3. In § 4, we apply the method to a system of k linear
equations in n unknowns, and prove that, for an arbitrary approxima-
tion #(0) to a solution of the system, we obtain a sequence {#(m)} which
tends with a geometric rate of convergence to a point x, nearest to
#(0), of the set which satisfies the system in a sense of weighted least
squares. Section 5 treats a fairly general system with an isolated solu-
tion x. The sequence {#(m)} of § 3 is proved to converge to x if the
initial approximation #(0) is sufficiently near x. Section 6 considers the
implicit function x=x(t) defined by a related system of n equations f(x;
r)=0, where τ=(τlf * ,rΛ), and τ=r(ί), 0<[£<Il. It is proved that,
if O=to<Ct1<C* ' <itι=l is a fine enough partition of the ^-interval,
then the sequence {#(m)} of § 3 tends to x(tt) if ίc(0)=^(ίί_.1) This result
yields a small arc method for computing the points x{tt) in sequence.

There is an extensive literature on the solution of linear systems
{fj(χ) = Q} by iterative processes where each iteration involves a correc-
tion related to a specified direction, in particular that of some gradient;

Received October 7, 1955. Presented to the American Mathematical Society, April 30,
1955. This work was sponsored (in part) by the Office of Ordnance Research, U.S. Army.

691



692 WILLIAM L. HART AND THEODORE S. MOTZKIN

see [2, p. 310]. Frequently, the correction involves preliminary minimiza-
tion of a single function g{x)^>0 built up from the fό. A general
method of this type is due to Hestenes and Stein, reference 53 in [2].
For an initial approximation x and assigned direction d, they introduce
a constant α* such that g(x + ad) attains its minimum at a=a*; the
correction to x is βa*d, where β is a constant; d and β are subject to
change at each iteration. This method could be specialized to the
situation in our Theorem 4.1, where the correction to any x is pΔx=
grad [ipg(x)~], with g(x) in (4.12). However, for simplicity in §4, and
efficiency in its application to nonlinear systems in §§ 5 and 6, we have
based § 4 directly on § 3, without using g(x). For nonlinear systems,
our correction to x in general does not have the direction of the
gradient of any single function g(x)τ.

A method of S. Kaczmarz for linear systems, reference 67 of [2],
in common with our procedure, involves the gradients of the fό{x)
separately. However, in contrast to the composite nature of our gradient
corrections, he introduces corrections taken along the gradients of the
fj in sequence, to carry out a single cycle of the iteration. For an
arbitrary initial approximation #(0) to a solution, the Kaczmarz method
may yield a sequence {#(m)} which is not convergent and only stays
bounded [4], whereas the sequence {#(m)} of § 4 always has a unique
limit.

There are intimate contacts between our procedure in the linear
case and a method due to L. F. Richardson, reference 98 in [2], and
later to R. von Mises and Hilda Pollaczek-Geiringer, reference 123 in
[2]. For a system2 xH+b=0, in matrix form, and an initial approxima-
tion, x, to a solution, Richardson specifies the next approximation y=x

— p(xH+b). With a system {f3(x) = ΣxSij4-b3 = 0}, or xA + b = 0, if
ί l

the Richardson method is applied to a related system
(see §4), the approximations {#(m)}, m > 0 , starting with a given #(0),
are those of § 4. Then, also, the condition (4.25) on p in § 4 becomes a
well known condition for convergence of the Richardson method (see
[2, p. 311]).

1 For fj(x) = φj(rj(x)), where rj(x) is the distance of x from a given linear subspace

Λj of arbitrary dimension, and ψj an arbitrary differentiate function of one variable, we

have with ΔX=ΣVJΔJX as in (3.3) and (3.2) for ξ-χt J#=grad ΣvMΛ^J2), where dΨj(rj2)l

d(rj2)=-(pj(rj)/(2rjd(pjldrj). On the other hand for example, for fχ = xh / 2 = % 2 + 2 ^ 3

2 , Δx

does not have the direction of a gradient, which would (for ?z=3) imply D=0, where D is

the determinant \Δx, dΔx, jdx\. Indeed we have D= Σ VJVfcDjJc, Djk = \Δjxt dΔkx, /dx\ =
j,k

1 grad fj, grad/ f c, grad wk-
2\. Now for our j \ and f2, D2i=0 whereas D i 2 = - 3 2

2 Capital script or italic letters will represent matrices. The transpose of A will be
denoted by Af. We shall treat x as a one-rowed matrix.
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The Kaczmarz method for the solution of linear systems has led to
the development of a corresponding sequential projection method for
nonlinear systems, introduced by Tompkins [6]. The distinction between
the method of Kaczmarz and that of § 4 implies a similar difference
between the method of Tompkins and that of § 5.

In a paper by Chernoff and Crockett [1], an isolated maximum of
a function f(x) is determined, essentially, by solving the system {dfjdxι

= 0} by an iterative method involving the gradient of f(x), in some
metric. With their main hypothesis [1, p. 34], our Theorem 5.1 also
provides a sequence tending to x.

Extensions of the present paper are planned to inequalities and to
equations in the complex field.

2* A fundamental gradient formula. Let f(xl9

 β , xn)=f(x) be a
given function, and let ̂ ( 0 ) be any assigned point in the neighborhood
of which f(x) is continuously differentiate. Visualize x(0) as an ap-
proximation to a solution of f(x) = 0. Then let Δx(0} = (Δxc

1°
:>,

be a vector correction for xm parallel to the gradient of f(x) at
with the following definition:

(2.1) ^ > =

where ft(x)^Δ?U and w\x)^ Σ f\(x),
OXi i=i

and we assume that w(x)^0 on the range for x.
Let x^=x^ + Δx^\ and define

(2.2) f(χ)=f(χ{^) + Σ (xt-xfψiix^).

Then it can be verified that f(x{Ό)=0. That is, xω annihilates the
usual linear approximation to f(x) for points x near £ ( 0 ). In particular,
if f(x) is linear, then /(# ( 1 )) = 0, and xω is the orthogonal projection of
# ( 0 ) onto the hyperplane f(χ) = 0.

NOTE 2.1. Suppose that f(x) is a polynomial of degree k in x19 ,
xn, and let A be the surface f(x) = 0 in α:-space. The linear polar for
A corresponding to a point # ( 0 ) can be defined as the hyperplane

(2.3) kf(x«»)+ Σ Λ ( » ( D ) ) ( ^ - ^ 0 ) ) = 0 .

With Δx^ given by (2.1), let x^ = x(^ + kΔx(0\ Then it can be verified
that # = α ( 2 ) satisfies (2.3). Hence, x(Ό is one kth of the way from # ( 0 )
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to the polar hyperplane for #(0), along the normal from # (0) to this

hyperplane.
It is important to recognize that the vector Δx, obtained from

(2.1), is unaltered if f(x) is changed to cf{x), where c is any nonzero
constant. Also, with Δx visualized as a geometric entity described in
terms of the gradient of f(x), Δx is seen to be unaltered by an ortho-
gonal transformation of the coordinates xu , xn.

Formula (2.1) is fundamental in essentially all methods employing
the notion of a gradient correction in extremizing a function f(x), or
in solving systems of equations.

3 Description of the composite gradient method* Consider a
system, written in vector form,

(3.1) f(x)=0 ,

where /(#) = [/i(#),/2(#), •••>/*(#)] * s continuously differentiate in some
open convex region Ω in w-space. Let ftJ(x)=dfj(x)ldxt. Let x be an
assigned approximation to a solution of (3.1). Then, from (2.1), with
# ( 0 ) replaced by x in the residual f(xm), and with the part relating to
the gradient taken at a point ξ in Ω not necessarily the same as x, we
write

(3.2) ^ —/^)/u(f)M6) ,

n

where it is assumed that w)(x) = ^fl3{x)φQ in Ω. In (3.2), ξ is in-
i = l

troduced to permit possible simplification in applications of the method
to general systems of type (3.1). Let (τjlf •••,%) be an arbitrary set
of positive " weights/' and define Δx as the weighted sum of the vectors

(3.3) ^

For a given approximation x to a solution of (3.1), the next approxima-
tion y is defined thus, where pφO is a constant whose permissible
values will be discussed later :

(3.4) y=x + pΔx .

Then (3.4) becomes the basis for a recursion formula in setting up
successive approximations to a solution of (3.1), as follows.

Let #(0) be an initial approximation to a solution of (3.1). For
ra>0, define # ( m ) formally by the equation

(3.5) ^ ^ ^ m - D ^ ^
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where

(3.6) Δ^T-^= -fj^m^)fi3(^m-^)lvf0m'^) ,

in which the numbers p^φQ, m!>0, f(m), m ^ O , in Ω either are de-
signated in advance or are determined in sequence. This paper discusses
mainly conditions for the existence and convergence of {#(m)}, first for
linear systems and later for general systems.

NOTE 3.1. An important special case of (3.5) and (3.6) occurs
when all ^ = 1, />(m) is a constant, p, for all m, and £<m>=#(m). Then,

,(ra-l)

4. The linear case* In the system (not necessarily consistent)

n

for t h e unknowns xh, let A=(ahj) and b=(blt •••, bk) and r e w r i t e (4.1)
in m a t r i x form,

(4.2) xA + b=0 .

Assume that Σ ah Φ 0 for all j, and denote the rank of A by r. The

region fl of § 3 is taken as the whole of %-space. In (3.2) and (3.6),
ξ and ξί™-^ become irrelevant.

Now let each equation in (4.1) be normalized; that is, without
n

altering the notation, suppose that Σ α ^ = l , until otherwise specified.

For (4.1), since the equations are normalized, (3.2) becomes

(4.3) AjX^-

With any assigned positive weights (τjlf •••, % ) , let β3=bflψ, oihi==
and S/ = (ah3). Then, from (3.3) and (4.3),

(4.4)

If ^7^0 is assigned, and x is a designated approximation to a solution
of (4.2), the next approximation, y, from (3.4) is y=x + pΔx. Before
considering a sequence (3.5) for (4.2), it is desirable to recognize pro-
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perties of S/Stf" which follow immediately from standard theorems, and
to investigate the set Ψ of points in #-space where Δx=0.

LEMMA 4.1. For a normalized system (4.1), if A is of rank r,
the symmetric matrix S^S>ff is of rank r, is positive semidefinite, and
is positive definite if and only if r=n. The characteristic constants of

" consist of n — r zeros and r positive constants λlf •••, λr with

(4.5) Σ^ = ωf where ̂ Σ Σ ^ Σ V
i = l h = ί jai j = l -

There exists an orthogonal matrix S=(shm) such that Ss>/S^fSf=D, where
D is an n by n diagonal matrix whose main diagonal is (λlf •••, λr,
0, . . . , 0 ) .

The vector Δx of (4.4) is invariant under an orthogonal transforma-
tion of coordinates in #-space. Thus, to obtain the set Ψ where Δx=0,
we first use the transformation x=zS from a -space to 2-space. Then

with A=(άhj)=SA, (4.2) becomes

(4.6) zA4-6=0 .

LEMMA 4.2. // the equations in (4.1) are in normal form, then the
n

equations abbreviated by (4.6) also are in normal form, that is, Σα;5, ;=l
h = l

for all j .
n

Proof, In A'A, the jt\ι element of the main diagonal is ^alj=l.

Also

A'A=(SA)'SA=A'S'SA=AΊA=AΆ ,

where / is the n by n unit matrix. Hence, in A A, the ith element of
n

the main diagonal is 1, or Σ ά £ , = l .

Let bcΛj=άhJτy)12 and S/ = (άhj). Then if z is an assigned approxima-
tion to a solution of (4.6), the corresponding vector Δx of (4.4) is given
as a vector Δz, where

(4.7) Δz=

LEMMA 4.3. s/=SJ*f and Ssό/'^D. Also, &A j=0 if

Proof. 1. Since A=SA,

n n n
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Hence, S/=Ss/ and s£<Y'=Ss/ΓS'S'=D .

2. Since A A=D, where the hih element of the main diagonal is
k

zero if & > r , we have Σ ^ = 0 a n d hence ockj=0 if & > r .

LEMMA 4.4. ?%e solutions z of the n linear equations represented
by Δz=0, forming the set Ψ, have arbitrary zίy i^>r, but uniquely
determined zi9 i<Lr.

Proof. By Lemma 4.3 and (4.7), Δz=0 is equivalent to

(4.8) /

or
Ίc

3 = 1

(4.9)

Hence zt is determined uniquely if i<Lr, and the equations in (4.9)
for iy>r Sire identities 0=0 because άu = 0 for i > r .

Now let the origin in z-space be translated to any point in Ψ, with
the new coordinates labeled (uλ, •••, un)=u. Then (4.6) becomes

(4.10) uA + b=0 ,

where b is a new one-rowed matrix of constant terms. By the method
of § 3, any assigned approximation u to a solution of (4.10) yields a
next approximation v where

(4.11) v=uJrpJu and du= -(uSf + β)s/f ,

with β=(bιr/1

12, , blcηψ). The invariance of the composite gradient

vectors Δx, Δz, Δu under orthogonal transformations implies that Δu=0

if and only if u is a point of the set Ψ of Lemma 4.4. Since u=0 is

in Ψ, u = 0 satisfies Δu = 0; thus β A'= in (4.11) and Δu=0 becomes

110=0, which determines u as follows.

LEMMA 4.5. In the u-system of coordinates, we have Δu— —uD, and
Ψ is the set of all points u for which uL = 0 if i<Lr and ui is arbitrary
if i > r .

In connection with Ψ', consider the function3

(4.12) 9(x)-ΣVj(t^ahjΛ-bX=\\xA -hβf.
j = l \Λ=1 /

3 We shall use ||α?|| for the length of a vector x, \\x\\ = (Σ^ι ̂ ) i
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For any point x, g{x) is the sum of weighted squares of the residuals
in (4.1), with the square for the jth. equation given the weight η5.

LEMMA 4.6. The quadratic function g(x) has an absolute minimum,
which is attained if and only if x is in Ψ.

Proof. The range for the function g(x) is the same as the range
for the corresponding function g{ιι), formed for (4.10), where

or

since βJ%f'=0. We see that g(u) attains its absolute minimum, \\βf, if
and only if ui = ύ for i<Lr, which describes the points in Ψ and proves
the lemma.

On account of Lemma 4.6, Ψ may be described as the set of solu-
tions in a sense of weighted-least-squares, for the normalized system

n

corresponding to a system (4.1) where (ahj) is of rank r and Σ ^ Λ J T ^ O

for all j .
We note that Δx of (4.4) is — -grad#(x); Au= —

Δ Δ

THEOREM 4.1. In a system (4.1), normalized or not, where

for all j , let r be the rank of (ahj). Choose pφO and positive numbers
k

(Vi, , rJk) with ω=ΣuVj Let

i

J ^ = = ( α Λ j ) , with (λl9 •••, λr) the positive

characteristic constants of

(4.14) μi==l-pλi; σβ

For any point ^(0) in n-space, let # ( m ) be defined by (3.5) when m^>0,
with /oCm^=p for all m ^ O . Let x be the point nearest # ( 0 ) in the set
Ψ of all points x where \\xS^-\-β\\ attains its absolute minimum. Then
a necessary and sufficient condition that {#(m)} should converge for all
points #co) is that ap<^l. Moreover, if σp<Cl, then
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(A. ~\£\\ /yι(Όi) v ϊy* ΠΎIΓ} !! n*(m^ o \\<C sτm \\ ΎW) 'T ll

In order that σ p < l ,

(4.16) it is necessary that 0<Cρ<^2rjω;

(4.17) it is sufficient that 0<Cp^2jω ( 0 O < 2 / α > if r=ΐ).

The minimum value of σp occurs, and hence the best guaranteed geometric
rate of convergence is obtained in (4.15), for a single value p=p0, where

(4.18) 2/ω<pQ<2(r-l)lω if r > 2 ,

and

(4.19) po=rlω if r<^2.

Proof. 1. The equations in (4.1) first may be normalized, and then
may be altered to (4.10) in an associated ^-system of coordinates, where
xm becomes &(ϋ). Application of (3.5) to (4.10), with um as the initial
point, yields a sequence {u{m^} where u(m^=u(m~i:> + pAu(m~Ό, m > 0 . The
invariance property of the composite gradient corrections under ortho-
gonal transformations justifies the statement that, in sequence, Au{m~1^
is the same vector as Ax(m~Ό, and hence ^ ( m ) is the same point as # ( m ) .
The matrix Sf of (4.13) may be identified with s>f in (4.4).

2. From Lemma 4.5, Au(m~Ό=—u(m'i:>D and

(4.^0) U ===u \* — P )i Q^ ^ ==z'U (./ — pLJj \7Yb j^> Ό) *

In t h e diagonal m a t r i x (I—pD)m, t h e main diagonal is {μf, •• ,μ™,
1, •.., 1), and (4.20) gives

(4.21) u^^uϊPμT if i^r; uim^=u^ if i > r .

Hence, if ^ P < 1 , w ( m )->(0, •••, 0, lέfli, •••, u^) a s m - ^ ω , In view of

Lemma 4.5, this limit point is seen to be the point ύ of Ψ nearest to

w(0). Moreover, from (4.21).

r

When (4.22) is transformed back to the ̂ -coordinates, the result justi-
fies (4.15).

3. If tfP>l, we have | / ^ | > 1 , for some i=h. Then, if um is
selected so that *40) φ 0, (4.21) shows that {u^°} will not converge. If
0>=1, we have ^ = 1 — ^ = 1 or —1 for some i. We cannot have μi=l
since pλtφ0. If / ^ = — 1 for i=h and um is chosen so that u^φO,
then ^im) is alternately ±u^y and {̂ (m)} does not converge. Thus
{̂ (m)} does not converge for all um if σβ^tl .
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4. To establish (4.16)-(4.19), first recall that Σ h = ω and //« = 1
i = i

— pλlt If jθ<^0, then / ^ > 1 for all i; hence, a necessary condition for

σp <C 1 is that jθ >> 0, which is assumed hereafter. Let

t) τ"=max Λo

σ = m i n / ^ ; &'••

Then <7p=max(|<7'|, \σ"\). The following representations on number
scales summarize certain facts for the case rφ\.

(4.23) - !

0 Y λt r"

(4.24) I

- 1 a' 0 μi o" 1

A necessary and sufficient condition for ^ P < 1 is that — 1<V, or

(4.25) _ i < i _ p r " f or

Since 2 ^ = ω and ^ > 0 we have r ' ^ ω / r , and (4.25) yields (4.16).

If r > l , then r"<Cω and ρ<Jl\ω is sufficient to imply (4.25), which
establishes (4.17) if r > l . If r = l then 7 " = ω, and the sufficient
condition (4.25) becomes (4.17), as stated for r=l. Now suppose first
that γ'φγ", which implies r > l . Then inspection of (4.24) leads to
the conclusion that σβ attains its minimum when ar=— a", or

(4.26) io=2/(r/+r//)

If r=2, then y' + y"=ω and (4.26) yields (4.19) for r = 2 . If r > 2 , we
get

(4.27) ω > Y 4- r'7 ^ - ~-^ + rr > --- .
r —1 r — 1

From (4.26) and (4.27), (4.18) is obtained. If r'=γ", then σβ=\l-pωjr\9

whose minimum is 0, attained at p=rlω, which agrees with (4.18) if
r > 2 and with (4.19) if r < ! 2 . Hence, all cases of (4.16)-(4.19) have
been justified, which concludes the proof of Theorem 4.1.

COROLLARY 4.1. The geometric rate of convergence indicated in
(4.15) is the fastest rate of convergence holding for the method in general.

Proof. Consider a system (4.1) where 6̂  = 0 and n=k=r=2, so
that x=Q is the unique solution. Let p = ^ 1 = % = l . Let x(0) be any
point 7^0; then Theorem 4.1 states that x(m) of (4.15), or u{m) or (4.20),
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converges to 0. In this case,

λ1-¥li=2 and μi + μ2=2-(λ1+λ2) = 0 .

Hence we may let μ1=μ^>0 and μ2=—μ, with σβ=μ<il. Then (4.21)
gives u[m^=u^μm and uc

2

m>=u$o(-μ)m. With u=0 in (4.22),

||κ (m)-ώ||2=^2m | |w (0)-M||2, or | |% ( m )-w||=<||% ( ί°-ft| |.

Thus the equality sign applies in (4.15) and the corollary is proved.

NOTE 4.1. Consider altering the method of Theorem 4.1 by introduc-
ing io

(m) as in (3.5), with 0 O C w ° < 2 r / ω . Let all pertinent notation
from Theorem 4.1 be used, with (4.14) replaced by

(4.28) μlm^ = l-p^λι; <7(

i g r

Then, if # < 1 , it is found that (4.15) holds with σp replaced by a.
Also, in order that σ<l, it is sufficient that 0 < i o

( m ) ^ 2 / ω if r > l
and i o

( m ) ^ i o < 2 / ω if r=l .

The following result will be used later.

COROLLARY 4.2, In a system (4.1), with the equations in the normal
form, suppose that A is of rank n and that (4.1) has a solution x, neces-
sarily unique. Let x be an assigned approximation to x with y as the next
approximation, where Δx is given by (4.4) and y=x + pΔx. Then

Ax=-(x-χ)sSSfr; y-x=(x-x)Bp where Bp=I-pS/J>/r]

(4.29) \\y-xf=(x-x)Bl(x-xy^σl\\x-xf .

Proof, In this case, (4.2) can be written (x — x)A=Q, and (4.4)
gives Δx=-(x-x)s/S/'\ y-x=(x-x)Bβ. Then from (4.15) with m=l,
xω=y, and x(-0) = xf we obtain (4.29).

5 Solution of a general system. Consider the system (3.1), or

(5.1) fj(x)=0 (j=i9...9k).

Assume that x is a solution of (5.1) and that, for all i and j, fi5(x) is
continuous and w)(x)φQ in some open convex neighborhood Ω of x=x.
All points x will be restricted to Ω. At x=x, the surface fj(x)=0 has

n

a tangent plane ^ahj(xfl — x/l) = 0f where ah1=fhJ(x). Assume that the

matrix A=(ahJ) has rank n, which implies that Jc^n, and that the
tangent planes to the surfaces fj(x)=0 at x=x have the unique inter-
section x=x. Then the method of § 3 will be applied to obtain x as
the limit of a sequence {#(m)}, defined in (3.5).
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Let ci3(x)=fi3(x)lw)(x); C(x) = (ci1(x)); F(x) = (fίj(x)). Let a? be an as-
signed approximation to a solution of (5.1), and let ξ be any point in
Ω. Then (3.2) and (3.3) give

k

With p^>0 and η3 > 0, the next approximation y to a solution of (5.1)

For given A and weights ^ , let σp have the same meaning as in
Theorem 4.1.

LEMMA 5.1. Suppose that o?<^a <C1. Then, for every β such that
a <^ θ <^ 1, there exists a υ^>0 such that the neighborhood Φό : (jja: —x| <^ <5)
is in β and, if x is in Φδ, ξ is in φδ, and y=x + pΔx, then

(5.3) Wy — xW^ΘWx — xW .

Proof. 1. For convenience, without change of notation, suppose
that both sides of fj(x) = 0 have been multiplied by a proper constant
so that w%x)=l, for all j . Then C(x)=F(x)=A.

2. By the mean value theorem, since f(x)=0,

11 11

(^ 4Λ f (r\— V ί τ - τ k 4- V (Ύ — v \<n (Ύ\
h=Ί h = \

where ph3(x)=ifhj{τj)'-fh,j(%) and τ3 is suitably located on the line seg-
ment from x to x. Let

Note that γh3{x)=0Lh3; ph3(x)-+0 and ^(α;) ~> 0 if x->x. From (5.2)
and (5.4), we find

Δx=-(x-x){S/ +P(x)(S/ 4- V(ξ)Y .

3. Since ?y — x=(x — x) + pdx, we have

(5.5) y-x=(x-x)Bp + (x-x)Q(x, ξ) ,

where B9=I—pS/SS" and

(5.6) Q(^, f )=- i t> j

By (5.5),

(5.7) ||2/-a?||2=(a;-a?)
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where

U(x, ξ)=B?Q\x, ξ) + Q(x, ξ)Bp + Q(x, ξ)Q'(x, ξ) ,

and we let U(x, ξ) = (uί:)(x, ξ)). By use of the Cauchy inequality twice1

Σ u'tJ(x,ξ)\ .

Then (4.29) and (5.7) yield

(5.8) | 2 , _ £ f ^ | a . _ £ p σ j + Σ ^ ( ^

4. In (5.8), ^.o (#, f) is a polynomial in the elements phj(x) and
^Λj(ί)> with each term of the polynomial of degree 1 at least in the
elements. Hence u.u(x, £)—•() as x->x and ξ->x. Now suppose that
tf/»^tf<Cl> and choose 0 so that < ? < 0 < 1 . From (5.8), if δ is chosen
so that the neighborhood Φδ: (\\x — x\\<CS) is in Ω, and if δ also is suf-
ficiently small, then \y — xf ^Lθ'lx — xf if x is in Φ8 and <? is in Φ8, which
proves the lemma.

THEOREM 5.1. Assume that (5.1) has the solution x=x, that F(x)
is of rank n, and w)(x) φθ in Ω. Then, if the pivι) are properly cho-
sen, with 0<^ io

( m ) <^2njωy there exists a 0 > O , with θ <^1, and a corres-
ponding δ^>0 so that, if # c o ) and the f(TO) are arbitrary points in Φδ:
(Wx — xW^δ), and # ( m ) is given by (3.5), then x^-^x as m->cΌ, in such
a manner that

It is sufficient to use a constant p^m^ = p where p<L2jω if n^>l and p <C
2/ω if n=l. Moreover5, x is the unique solution of (5.1) in Φδ.

Proof. 1. Let σ^ = σβ for p=p^m\ Let the p™ be chosen so that
sup<7 ( m ) =tf<l. In particular, by (4.17), the preceding condition is
all m

satisfied if all p^==2jω if rc>l and if p^=p<C2jω if n=l. Now
choose 0 so that ^ < 0 < 1 , and let d > 0 be determined by Lemma
5.1. Select # ( ϋ ) and the sequence £ ( m ) arbitrarily in Φδ. Then, from
Lemma 5.1,

; etc.

It follows that all x(m^ of (3.5) are in Φs and satisfy (5.9). Hence

χOn) _^ fc a g m _^ ^ t

4 As follows:

[ n iι -i2 n n n n n

Σ «/(Σun2J)UΣ^Σ(Σuuz j f^ Σ ψ Σ vξ .
i - l j = ί J ΐ = l i i = l j = l i = l i,j = ί ίJ

5 For a different condition assuring uniqueness, see [5].
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2. Suppose that a point zφx exists in Φ8 where f(z)=0. If we
choose x(^=z in (3.5), then x(Ό = z and (5.9) gives \\z-x\\<LΘ\\z-x\\<i
\\z — x\\, which is a contradiction. Hence x is the only solution of (5.1)
in Φδ.

COROLLARY 5.1. There exists a best constant p(m)=ρ0 for the method
of Theorem 5.1, in the sense that this choice for ]0(m) allows the smallest
lower bound for θ in (5.9), with

(5.10) 2/ω</o0<2(w-l)/ω if n>2;

(5.11) po=njω if n<L2 .

Proof. With /o(m> = p0 as specified by (4.18) and (4.19) with r=n,
the minimum value for σ is obtained in the proof of Theorem 5.1.
Since <7=inf θ, the corollary is established.

NOTE 5.1. The presence of {p(m)} and {£(m)} in the definition of
the sequence {x(m}} is designed to permit latitude in the computational
use of the method to solve a system (5.1), particularly by means of a
high speed digital computing machine. In any application, the process
would start with an approximation #(0) which is hoped to be close
enough to the unknown solution. Probably it would be sensible to use
£(m) = # ( m ) until j|/(#(m))H becomes small and changes become regular in
all variables, so that there is evidence of future success for the process.
Thereafter £(m) might be changed only periodically, say at intervals of
s iterations, instead of at each step. Also, breakpoints might be intro-
duced in the coding for machine calculation to permit trial of various
values of ^(m), perpaps starting with the safe value |0(O)=2/ω when
n > l . In practice it has been found that convergence to the desired
solution can be accelerated if, periodically, preceding values of xCm} are
taken as a basis for extrapolation, after the process has brought x(m)

close enough to a solution to create smoothly changing increments

6 Small arc computation of an implicit function* Consider the
system

(6.1) g(x; r) = 0 ,

or gό{x; τ)=0, j=l9 , n, where τ=(τu , τk) and (x; r) is a solution.
Assume that all derivatives gij = dgjldxι exist and are continuous in a
closed region Φ: (\\x-x\\<La, | | r - r | |< iδ) , and that the Jacobian J=d(gu

•••> 9n)ld(xl9 •••, xn)Φ® in Φ. Then, the classical theorem on implicit
functions (for example, [3, p. 138]) states that positive numbers ε < α
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and r<Cδ exist such that, if \\τ—τ\\<Cr, there is an unique point x(τ)
with \\x(τ) — x\\<^ε for which g[x(τ); r] = 0. Moreover, x(τ) is a continu-
ous function of τ in the neighborhood \\τ — r || < d. Let an arc A through
r in r-space be defined by τ=τ(t), 0<l£<i l , where r(0)=r, | |r(£)-r|j<
γ, and all τ?(t) are continuous. At each value of t, there is a solution
x(t)=x[τ(t)] for (6.1) with τ=τ(t) in (6.1). Assume that the solution
(x; τ) is known. Then we shall consider the problem of computing x(t)
for a finite number of points on A extending from t=0 to £=1.

Transform (6.1) by substituting τ=τ(t) and dividing both sides of
( n \ 1/2

the ith equation by iΣ.glJxU); τ(t)][ . Then (6.1) becomes

(6.2) f,(x; ί )=0, O'=l, •••, w; O ^ ί ^ l )

which has the unique solution α?=α:(ί) in the neighborhood \\x—ά|| < e .
Let co(a?; ί) =/*,,(«; t)jw%x; ί), where /^~dfΊldx,t. Notice that w3(α;; ί)

= Σ/Ijί^l ί) is bounded from zero in the closed region Φ: (||α?—ar||^α,
i = l

O ^ ί ^ l ) because the Jacobian JφO in Φ. Let

C(α; ί)=(c<,(a?; ί)); ί\x; ί)=(/o(»; *));

where A(ί) is nonsingular because J Φ 0 in (?. Also, each column of
A(ί) is a vector with length 1 because of the normalization in (6.2).
Thus, for each value of t, A(t) satisfies the conditions imposed on A in
§4, with n=k=r and each column of A(t) normalized. For simplicity
choose the weights ^ = 1 , and then let σp(t) have the meaning, for A(t),
of σp for A in Theorem 4.1, where we now have ω=n.

LEMMA 6.1. There exist values of p, in particular p=2\n if n^>l
and any p<^2jn if n=l> such that

max σp(t)=σp < 1 .

Proof. The characteristic constants λt(t) of A(t)A\t) are continuous
and hence σp(t) is continuous. With the particular values specified for
p in the lemma, σp(t) <C 1 for 0<Lt<Ll and hence ^ p < l .

Since \\%(t)-x\\ <C e for 0<Lt<Ll and x(t) is continuous, we obtain
the following result.

LEMMA 6.2. There exists a C > 0 such that, if \\x-x(t)\\ <Cζ for
some t, then \\x — x\\ < e .

If \\x — &||<α, we may expand each f3(x; t) by the mean value



706 WILLIAM L. HART AND THEODORE S. MOTZKIN

theorem, as in (5.4), with respect to the variables xt at x=x(t); since
f[x(t); ί] = 0,

(6.3) f(x; t)=[x-x(t)][A(t) + P(x; t)] ,

where P(x; £)=(p ί>(#; t)). Observe that Pu(x; t) -> 0 as \x — x(t)\-+ 0,

uniformly for 0<Lt <11, because 0 is a closed region.

Let Vij(x; t)=cij{x\ t) — ch\x{t)\ t], and F(#; ί)=(^j(Λi>" 0) Since

w](x; t) is bounded from zero in Φ, c.o(aj; £) is continuous in 0. Hence

vh(x; t) -• 0 as ||sc — #(£)|| -> 0, uniformly for 0 < i £ < I l . Since c o I>(£); £]

α?; ί ) .

LEMMA 6.3. Ze£ £ δe fixed, let ζ be specified by Lemma 6.2, and
let x be an assigned approximation to x(t), with \\x — x(t)\\ <C ζ . Define
a next approximation to x(t) by

y=^x-\-pAx , where Λx=—f(x; t)C'(x; t) ,

and σp<^l. Then, for every θ such that σp<CΘ <C1, there exists a δ,
0 <C δ ̂  ζ, where δ is independent of t, such that

(6.4) \x-x(t)\<δ implies that \y-x(t)\<LΘ\x-x(t)\ .

A proof of Lemma 6.3 would duplicate details in the proof of
Lemma 5.1, with dependence on t introduced, and with x=x(t), ξ=x,
and σ=σβ. Limits as \\x — x\\~->0 in the proof of Lemma 5.1 would be
replaced by limits as \\x — x(t)\\-+0, and these limits exist uniformly for
0<Lt<L.l. Thus (6.4) is derived with δ independent of t.

THEOREM 6.1. Let tQ, tlf •••, tτ be such that 0=t0 < ί x <• - < ^ = 1 .
Let χ(°:>(ti)=χ(ti-.1), i > 0 , choose p so that σp < 1, and define

(6.5) x^\td=χ{m-Hti)-pfl*{m-Hti); y c ' C ^ - 1 ^ ) ; *J

Then, for any θ such that σ p < # < l , there exists a ^ > 0 such that, if

ti — ti-ι <C ΨJ then £ ( m )(^) -> x(^) as m -> oo, /or i = l , , I and

(6.6) ||a(ιn)(ί*)-a?(ίι)|| ̂  θ™ l l ^ , - , ) - ^ , ) ! .

Proof. If θ is such that AP<^^<^1, Lemma 6.3 specifies a £ > 0
for which (6.4) is true. Since x(t) is continuous, there exists a ^^>0
such that N £ " ) - a # ' ) l l < ( S if \tff-t'\<ψ. Then, by Lemma 6.3, if
ίi — ίi-i < ^ for all ΐ > 0, it can be verified, along the lines of the proof
of Theorem 5.1, that all x{v°(t() are well defined and satisfy (6.6), which
proves Theorem 6.1.
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The normalization involved in passing from (6.1) to (6.2) has no
effect on gradient corrections, as met in (6.5). Hence the following
'' small arc method ' ' for computing values of the implicit function x{t)
given by a system (6.1) emerges from Theorem 6.1.

For some r = r , suppose that the solution x=x of (6.1) is known.
Let τ=τ(t), 0 < l £ < I l , be a particular continuous curve through τ=τ =
r(0). Substitute τ=τ(t) in (6.1) to obtain g(x; t) = 0, with the solution
x=x(t). Choose p=2jn if % > 1 , and refer to our composite gradient
method in Theorem 5.1, with p{m') = 2in1 £ ( m ) = # ( m \ and ^τ = l for simplici-
ty here6. Select a partition t0, t19 •••, ̂  of the interval 0 < l £ < l l , with
all ti — tι-1 as small as necessary, where the decision as to size is based
on computing sense, supported experimentally by later details of com-
putation. Then determine x(t{) as the solution of g(x; t1)=0 by our
gradient method, with x(0')(t1)=x(0)=x; determine x(tι), i^>0, by using
%{^(ti)=x{ti--). In the preceding sentence, " determine " is interpreted
as "obtain exactly/' for logical application of Theorem 6.1. However,
in any numerical example, " d e t e r m i n e " would mean "find accurately
to the degree of precision specified by the problem, and necessary for
the remainder of the procedure."

NOTE 6.1. Consider solving a given system of n algebraic equations
in x, with constant coefficients (<xlf •••, ak) = τ. Suppose that the solu-
tion of the system is known when r = r . Then, the small arc method
might be used to obtain the solution x when τ=a, by employing the
line segment Γ = Γ ( £ ) = Γ + (a — τ)t, 0<Lt<ίl, or any suitable continuous
curve joining r = r and τ=a .
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