SEPARABLE CONJUGATE SPACES

ROBERT C. JAMES

A Banach space B is reflexive if the natural isometric mapping of B into the second conjugate space B^{**} covers all of B^{**} . All conjugate spaces of a reflexive separable space B are separable. The nonreflexive space $l^{(1)}$ is separable and its first conjugate space is (m), which is non-separable. The space (c_0) is separable, its first conjugate space is $l^{(1)}$, and its second conjugate space is (m). An example is known of a nonreflexive Banach space whose conjugate spaces are all separable [4]. This space is pseudo-reflexive in the sense that its natural image in the second conjugate space has a finite-dimensional complement. The structure of such spaces has been studied carefully [2].

The main purpose of this paper is to show that the sequence started by $l^{(1)}$ and (c_0) can be extended to give a sequence $\{B_n\}$ of separable Banach spaces such that, for each n, the *n*th conjugate space of B_n is its first nonseparable conjugate space. The principal tool used is a theorem which states a sufficient condition on a space T for the existence of a space B with

$$B^{**} = \pi(B) \dotplus T$$
 ,

where $\pi(B)$ is the natural image of B in B^{**} . The following definition and notation will be used.

A basis for a Banach space B is a sequence $\{u^i\}$ such that, for each x of B, there is a unique sequence of numbers $\{a_i\}$ for which $\lim_{n\to\infty} ||x - \sum_{i=1}^{n} a_i u_i|| = 0$. A sequence $\{u_i\}$ is a basis for its closed linear span if and only if there is a number $\varepsilon > 0$ such that

 $\left|\left|\sum_{1}^{n+p} c_i x_i\right|\right| \ge \varepsilon \left|\left|\sum_{1}^{n} c_i x_i\right|\right|$

for any numbers $\{c_i\}$ and positive integers *n* and *p* [1, page 111]. If ε can be + 1, the basis is an *orthogonal basis*. It will be useful to classify bases as follows:

Type α . If $\{a_i\}$ is a sequence of numbers for which $\sup_n || \sum_{i=1}^n a_i u_i || < \infty$, then $\sum_{i=1}^\infty a_i u_i$ converges.

Type β . If f is a linear functional defined on B and $||f||_n$ is the norm of f on the closed linear span of $\{u_i \mid i \geq n\}$, then $\lim_{n \to \infty} ||f||_n = 0$.

There are Banach spaces which have bases which are neither of type α nor of type β , while a basis is of both types if and only if the space

Received April 28, 1959.

is reflexive [3; Theorem 1].

The symbols C, (m), $l^{(1)}$, and (c_0) are used in the usual sense [1; pages 11, 12, 181]. The set of all r + t with $r \in R$ and $t \in T$ is denoted by R + T. A space R is said to be *embedded* in a space S if R is mapped isomorphically and isometrically on a subspace of S; for $x \in R$, the image of x is indicated by $x^{(S)}$. In particular, $x^{(\sigma)}$ is a continuous function defined on [0, 1] and the value of $x^{(\sigma)}$ at t is denoted by $x^{(\sigma)}(t)$. If $w = (w_1, w_2, \cdots)$ is a sequence of numbers, then w is the sequence obtained by replacing w_i by 0 if i > n. A block of w is a sequence $m_m^n w$ obtained from w by replacing w_i by 0 if $i \le m$ or i > n. Two blocks $m_m^n w$ and $m_m^n w$ are said to overlap if the intervals $(m_1, n_1]$ and $(m_2, n_2]$ overlap.

LEMMA 1. Let T be a Banach space with an orthogonal basis $\{u_i\}$. Then T can be embedded in (m) in such a way that:

(i) if $x = \sum_{i=1}^{\infty} a_i u_i$, then the first 2N coordinates of $x^{(m)}$ are zero if and only if $a_i = 0$ for $i \leq N$;

(ii) if $\{a_i\}$ and $\{x_i^m\}$ are related by $x = \sum_{i=1}^{n} a_i u_i$ and $x^{(m)} = (x_1^m, x_2^m, \cdots)$, then a_1, \dots, a_N are each continuous functions of x_1^m, \dots, x_{2N}^m and x_1^m, \dots, x_{2N}^m are each continuous functions of a_1, \dots, a_N ;

(iii) if $x^{(m)} = (x_1^m, x_2^m, \cdots)$, then $||x^{(m)}|| = \limsup |x_i^m|$.

Proof. Let T be embedded in the space C. Let $\{t_i\}$ be a sequence of numbers in the interval [0, 1] for which the sequence $\{t_{2i-1}\}, i = 1, 2, \cdots$, is dense in [0, 1] and, for each $i, u_i^{(0)}(t_{2i}) \neq 0$. If $x = \sum_{i=1}^{\infty} a_i u_i$, let $x^{(m)}$ be the sequence (x_1^m, x_2^m, \cdots) for which

$$x_{2k-1}^m = \sum\limits_{1}^k a_i u_i^{(C)}(t_{2k-1}), \, x_{2k}^m = \sum\limits_{1}^k a_i u_i^{(O)}(t_{2k}) \; .$$

Then for any $t \in [0, 1]$,

$$\left|\sum_{1}^{k} a_{i} u_{i}^{(\mathcal{O})}(t)\right| \leq \left\|\sum_{1}^{k} a_{i} u_{i}^{(\mathcal{O})}\right\| = \left\|\sum_{1}^{k} a_{i} u_{i}\right\| \leq \left\|x\right\|.$$

Hence $||x^{(m)}|| \le ||x||$. But if $\varepsilon > 0$ and N is chosen so that $||x - \sum_{i=1}^{k} a u_i|| < \varepsilon$ if k > N, then it follows from $\{t_{2k-1}\}$ being dense in [0, 1] that

$$||x^{\scriptscriptstyle(m)}|| \geq \sup_{\scriptscriptstyle k > \scriptscriptstyle N} \left|\sum\limits_{\scriptscriptstyle 1}^{\scriptscriptstyle k} a_{\scriptscriptstyle i} u^{\scriptscriptstyle(\mathcal{O})}_{\scriptscriptstyle i}(t_{\scriptscriptstyle 2k-1})\right| \geq \left|\left|x\right|\right| - arepsilon$$
 .

Hence $||x|| = ||x^{(m)}||$ and T and its image in (m) are isometric. But if $x = \sum_{N+1}^{\infty} a_i u_i$, then $x_{2k-1}^m = x_{2k}^m = 0$ if $k \le N$. If $x_i^m = 0$ for $i \le 2N$, then the equations $x_{2k}^m = \sum_{1}^{k} a_i u_i^{(\mathcal{O})}(t_{2k}) = 0$, $k \le N$, successively imply $0 = a_1 = a_2 = \cdots = a_N$, since $u_k^{(\mathcal{O})}(t_{2k}) \ne 0$. The conclusion (ii) follows from this system of equations and the continuity of $\sum_{1}^{N} a_i u_i$ in a_1, \cdots, a_N , while (iii) follows from $\{t_{2k-1}\}$ being dense in [0, 1].

LEMMA 2. Let T be a Banach space with an orthogonal basis $\{u_i\}$ and let T be embedded in (m) as described in Lemma 1. Then the following are equivalent:

(i) the basis $\{u_i\}$ is of type α ;

(ii) if $w \in (m)$, then w = v + t, with v an element of (m) which has all coordinates zero after the Mth $(M \ge 0)$ and t the image of an element of T, provided there is a sequence of elements $\{y_k\}$ of T for which $\sup ||y_k|| < \infty$ and

$$\lim_{k \to \infty} y_{k,i}^m = w_i \text{ for } i > M$$
 ,

where $w = (w_1, w_2, \cdots)$ and $y_k^{(m)} = (y_{k,1}^m, y_{k,2}^m, \cdots)$.

Proof. Assume the basis $\{u_i\}$ is of type α and let $w = (w_i, w_2, \cdots)$ and $\{y_k\}$ satisfy the hypotheses of (ii). Since $||y_k||$ is bounded, there is a subsequence $\{z_k\}$ of $\{y_k\}$ such that

$$\lim_{k\to\infty} z^m_{k,i} = v_i$$

exists for $i \leq M$. Let $v = (w_1 - v_1, \dots, w_M - v_M, 0, 0, \dots)$. Also let $z_k = \sum_{i=1}^{\infty} a_i^k u_i$ for each k. It now follows from (ii) of Lemma 1 that $\lim_{k\to\infty} a_i^k = a_i$ exists for each i. Since the basis is orthogonal, $||\sum_{i=1}^{n} a_i u_i|| \leq \sup_{i=1}^{\infty} \sup_{i=1}^{\infty} ||z_k||$. Since $\{u_i\}$ is a basis of type α , it then follows that $\sum_{i=1}^{\infty} a_i u_i$ is convergent. Also, w - v = t is the (m)-image of $\sum_{i=1}^{\infty} a_i u_i$. This follows from the fact that the numbers $a_i, i \leq N$, continuously determine the first 2N coordinates of the (m)-image of $\sum_{i=1}^{\infty} a_i u_i$, while $z_k = \sum_{i=1}^{\infty} a_i^k u_i$, $\lim_{k\to\infty} a_i^k = a_i$, and $\lim_{k\to\infty} x_{k,i}^m$ exists and is the *i*th coordinate of w - v.

Now assume (ii) and let $||\sum_{i=1}^{n} a_{i}u_{i}||$ be a bounded function of n. Let $w = (w_{1}, w_{2}, \cdots)$ be the element of (m) whose first 2N coordinates are determined by a_{1}, \cdots, a_{N} . Take M = 0 and y_{k} to be the (m)-image of $\sum_{i=1}^{k} a_{i}u_{i}$. It then follows from (ii) that w is the (m)-image of some element of T, which can only be $\sum_{i=1}^{\infty} a_{i}u_{i}$.

THEOREM 1. Let T be a Banach space which has an orthogonal basis of type α . Then there is a Banach space B which has a basis of type β and for which

$$B^{**} = \pi(B) \dotplus T_1,$$

where $\pi(B)$ is the natural image of B in B^{**} , T and T_1 are isometric, and $||r+t|| \ge ||t||$ if $r \in \pi(B)$ and $t \in T_1$.

Proof. Let T_1 be the embedding of T in (m) as described in Lemma 1. The norm of (m) will be denoted by || ||. For elements w of (m) which have only a finite number of nonzero coordinates, let

(1) $\theta(w) = \inf ||t||$ for w a block of t, where t is either a member

of T_1 or has only one nonzero coordinate (note that $\theta(w)$ is defined only for elements w which are blocks of at least one $t \in T_1$ or which have only one nonzero coordinate);

(2) $h(w) = \{\inf \sum [\theta(b_i)]^2\}^{1/2}$, where $w = \sum b_i$, each b_i is a block of w, and no two blocks overlap.

(3) $|||x||| = \inf \sum h(w_j)$ for $x = \sum w_j$.

In the above, all sums have a finite number of terms. The triangular inequality for ||| ||| is a direct consequence of (3). Also, $|||x||| \ge$ ||x||, since $\theta(w) \ge ||w||$ and $h(w) \ge ||w||$. Let *B* be the completion of the space of sequences with a finite number of nonzero coordinates, using the norm ||| |||. The sequence of elements $\{u_i\}$ for which u_i has all coordinates 0 except the *i*th, which is 1, is an orthogonal basis for *B*. This means that $|||\sum_{1}^{n+p}a_iu_i||| \ge |||\sum_{1}^{n}a_iu_i|||$, which follows by noting that, if $\sum_{1}^{n+p}a_iu_i = \sum w_j$, then $\sum_{1}^{n}a_iu_i = \sum^{n}w_j$ and $h(^{n}w_j) \le h(w_j)$ for each *j*, where $^{n}w_j$ is obtained from w_j by replacing each coordinate after the *n*th by 0.

The basis $\{u_i\}$ is of type β . For suppose there is a linear functional f for which $\lim_{n\to\infty} |||f|||_n = K \neq 0$ and choose N so that $|||f|||_N \leq 7/6K$. Then there are two elements $x = \sum_{n=1}^{n} a_i u_i$, $y = \sum_{n=1}^{n} a_i u_i$, for which $N < n_1 \le n_2 < n_3 \le n_4$, |||x||| = |||y||| = 1, f(x) > 7/8K and f(y) > 7/8K. Then

$$rac{7}{4} \, K < f(x) + f(y) \leq \left(rac{7}{6} \, K
ight) ||| \, x + y \, ||| \, ext{ and } \, ||| \, x + y \, ||| > rac{3}{2} \, .$$

Since θ and h are both monotone decreasing as a block has coordinates at the ends replaced by zeros, there exists $\{x_j\}$ and $\{y_j\}$ such that $x = \sum x_j, y = \sum y_j, \sum h(x_j) < ||| x ||| + \varepsilon$, and $\sum h(y_j) < ||| y ||| + \varepsilon$, where each x_j has zero coordinates outside the index interval $[n_1, n_2]$ and each y_j has zero coordinates outside the index interval $[n_3, n_4]$. Now replace the sets $\{x_j\}$ and $\{y_j\}$ by $\{\bar{x}_j\}$ and $\{\bar{y}_j\}$ defined as follows: if $h(x_p)$ is the smallest of all the numbers $h(x_j)$ and $h(y_j)$, then let $\bar{x}_1 = x_p$ and $\bar{y}_1 = [h(x_p)/h(y_r)]y_r$ (for some r) and replace y_r by $[1 - h(x_p)/h(y_r)]y_r$. The analogous process is used if h takes on its minimum at one of the y_j 's. This process creates two new elements and eliminates one old one at each step, until all of the x_j 's or all of the y_j 's are eliminated. If only x_j 's remain, say x_{p_j} 's, then $\sum h(x_{p_j}) < \varepsilon$, and similarly $\sum h(y_{p_j}) < \varepsilon$ if only y_j 's remain. Also

$$\sum h(ar{x}_{\scriptscriptstyle j}) - arepsilon = \sum h(ar{y}_{\scriptscriptstyle j}) - arepsilon < ||| \, x \, ||| = ||| \, y \, ||| = 1$$

and $h(\bar{x}_j) = h(\bar{y}_j)$ for each j. For each j, there are nonoverlapping blocks $\{\bar{x}_{ji}\}$ and $\{\bar{y}_{ji}\}$ such that

$$h(\bar{x}_{j}) = h(\bar{y}_{j}) = \{\sum_{i} [\theta(\bar{x}_{ji})]^2\}^{1/2} = \{\sum_{i} [\theta(\bar{y}_{ji})]^2\}^{1/2}.$$

Then

566

$$h(ar{x}_{j} + ar{y}_{j}) \leq \{\sum_{i} [heta ar{x}_{ji})]^2 + \sum_{i} [heta (ar{y}_{ji})]^2\}^{1/2} = \sqrt{2} h(ar{x}_{j}) \;.$$

Hence

$$|||x+y||| \leq \sum h(ar{x_j}+ar{y}_j) + arepsilon \leq \sqrt{2} \, \sum h(ar{x_j}) + arepsilon \leq \sqrt{2} \, + arepsilon$$
 .

Since |||x + y||| > 3/2, this is contradictory if $\sqrt{2} + \varepsilon < 3/2$. It has therefore been shown that $\{u_i\}$ is a basis of type β .

Since $\{u_i\}$ is an orthogonal basis of type β for B, it follows that B^{**} consists of all sequences $F = (F_1, F_2, \cdots)$ for which

$$||| F ||| = \lim_{n \to \infty} ||| (F_1, \dots, F_n, 0, 0, \dots) |||$$

exists [4; page 174]. Note first that if $t = (t_1, \dots) \in T_1$, then

$$|||(t_1, \dots, t_n, 0, 0, \dots)||| = ||(t_1, \dots, t_n, 0, 0, \dots)||$$

and $\lim_{n\to\infty} ||| (t_1, \dots, t_n, 0, 0, \dots) ||| = ||| t ||| = || t ||.$ Thus $T_1 \subset B^{**}$. Also, the natural mapping of B into B^{**} is merely the mapping of a sequence in B onto the identical sequence in B^{**} . It then follows that $||| r + t ||| \ge ||| t |||$ if $r \in \pi(B)$ and $t \in T_1$, since r can be approximated by a sequence with a finite number of nonzero coordinates but (Lemma 1) $|| t || = \lim \sup |t_i|$.

Now suppose that $F = (F_1, F_2, \dots)$ is a sequence for which $\lim_{n\to\infty} |||^n F |||$ exists; i.e., $F \in B^{**}$. It will be shown that there is an element v of $\pi(B) + T_1$ for which $|||F - v||| \le 15/16 |||F|||$. Successive application of this would then establish that $F \in \pi(B) + T_1$. For each n, there are ${}^n w_j$ and blocks $b_{j,i}^n$, which are either blocks of elements of T_1 or have only one nonzero coordinate, such that

$$||| {}^{n}F ||| = \sum_{j} h({}^{n}w_{j}), {}^{n}F = \sum_{j} {}^{n}w_{j}, \text{ and } h({}^{n}w_{j}) = \{\sum_{i} [\theta(b_{j,i})]^{2}\}^{1/2}$$

where each ${}^{n}w_{j}$ and each $b_{j,i}^{n}$ have all coordinates zero after the *n*th. This follows by a limit argument, using the facts (1) that there are only a finite number K_{n} of ways of choosing division points for nonoverlapping blocks from the integers 1, 2, \cdots , *n* and (2) that it follows from Lemma 1 and the orthogonality of the basis for *T* that $\theta(b_{j,i}^{2N})$, for a block $b_{j,i}^{2N}$ which has zero coordinates beyond the 2Nth coordinate, can be evaluated by using only members of the span of the first *N* basis elements of *T*.

If m < n and ${}^{m}w_{j}^{n}$ is obtained from ${}^{n}w_{j}$ by replacing coordinates after the *m*th by zeros, then

$$||| \, {}^{\scriptscriptstyle m}F \, ||| \leq \sum_{j} h({}^{\scriptscriptstyle m}w_{j}^{\scriptscriptstyle n}) \leq ||| \, {}^{\scriptscriptstyle n}F \, ||| \leq ||| \, F \, ||| \, .$$

If ${}^{m}w_{j_{1}}^{n}$ and ${}^{m}w_{j_{2}}^{n}$ are of the "same type" in the sense that they are divided into blocks by using the same division points, then it follows by using these same division points for ${}^{m}w_{j_{1}}^{n} + {}^{m}w_{j_{2}}^{n}$ that

$$h({}^{m}w_{j_{1}}^{n} + {}^{m}w_{j_{2}}^{n}) \leq h({}^{m}w_{j_{1}}^{n}) + h({}^{m}w_{j_{2}}^{n})$$

For each n > m, let ${}^{m}\hat{w}_{j}^{n}$ be the sum of all ${}^{m}w_{j_{i}}^{n}$ of the "same type" as ${}^{m}\hat{w}_{j}^{n}$. A limit argument gives a sequence of integers $\{n_{i}\}$ such that $\lim_{m}{}^{m}\hat{w}_{j}^{n_{i}} = {}^{m}\overline{w}_{j}$ exists for each "type". If m < n, then there exist $\overline{b}_{j,i}^{n}$ such that

$$egin{aligned} &|||\,^{m}F\,||| \leq \sum_{j}h(^{m}\overline{w}_{j}) \leq \sum_{k}h(^{n}\overline{w}_{k}) \leq |||\,F\,||| \ ,\ &h(^{m}\overline{w}_{j}) = \{\sum_{i}[heta(\overline{b}^{m}_{j,i})]^{2}\}^{1/2},\,^{m}F = \sum^{m}\overline{w}_{j} \ , \end{aligned}$$

and ${}^{m}\overline{w}_{j}$ is equal to the sum of all ${}^{m}\overline{w}_{j}^{n}$ which are of the same type as ${}^{m}\overline{w}_{j}$ and are obtained from ${}^{n}\overline{w}_{j}$ by replacing all coordinates after the *m*th by zeros. The points used to divide ${}^{m}\overline{w}_{j}$ into the blocks $\overline{b}_{j,i}^{m}$ will be called the *division points* of ${}^{m}\overline{w}_{j}$.

Choose M so that $||| {}^{m}F||| > 15/16 |||F|||$. Note that if ${}^{m}\overline{w}_{j}$ is of a particular type and n > m, then ${}^{m}\overline{w}_{j}$ is the sum of one or more elements obtained from the ${}^{n}\overline{w}_{k}$'s by replacing coordinates after the mth by zeros. For $n > m \ge M$, let ${}^{n}t$ be the sum of all ${}^{n}\overline{w}_{k}$'s which have no division points between M and n and let ${}^{m}t{}^{n}$ be obtained from ${}^{n}t$ by replacing coordinates after the mth by zeros. Let $\{n_{i}\}$ be chosen so that

$$\lim_{i\to\infty} {}^m t^{ni} = {}^m \bar{t}$$

exists for each $m \ge M$. Let \overline{t} be defined so as to have the same first m coordinates as ${}^{m}\overline{t}$. Then any finite block of \overline{t} whose first M coordinates are zero is also approximately a block of an element of T_1 and these elements of T_1 are of bounded norm. It then follows from Lemma 2 that there is an element v_0 , with a finite number of nonzero coordinates, such that $v_0 + \overline{t} \in T_1$. Thus

$$\overline{t} \in \pi(B) \dotplus T_1$$
.

First assume that $||| \overline{t} ||| > 1/8 ||| F |||$ and choose N so that

$$|||\,{}^n \overline{t}\,|||>1/8\,|||\,F\,|||\,\,\,{
m if}\,\,\,n>N\,.$$

For n > N, choose p > n so that

$$|||\,{}^n \overline{t} - {}^n t^{\,p}\,||| < rac{1}{32}\,|||\,F\,|||\,\,.$$

Since $||| {}^{n}F ||| \leq \sum_{j} h({}^{n}\overline{w}_{j})$, discarding all ${}^{n}\overline{w}_{j}^{p}$ without division points between M and p gives

$$egin{aligned} &||| \, {}^{n}F - {}^{n}t^{p} \, ||| &\leq \sum h({}^{n}\overline{w}_{j}) - \, ||| \, {}^{n}t^{p} \, ||| \ &\leq ||| \, F \, ||| - \, ||| \, {}^{n}t^{p} \, ||| \; . \end{aligned}$$

Hence $||| {}^{n}F - {}^{n}\overline{t} ||| < ||| F ||| - ||| {}^{n}\overline{t} ||| + 1/16 ||| F ||| < 15/16 ||| F |||.$ Since *n* was an arbitrary integer with n > N, it follows that

$$||| F - \overline{t} ||| \le rac{15}{16} ||| F |||$$
 .

Now assume that $|||\bar{t}||| \le 1/8 |||F|||$. Then $|||n\bar{t}||| \le 1/8 |||F|||$ for all n. Choose q so that

$$||| \, {}^{_{M}} \overline{t} - {}^{_{M}} t^{q} \, ||| < rac{1}{16} \, ||| \, F \, ||| \, \, .$$

For each ${}^{q}\bar{w}_{j}$ which has a division point between M and q, let u_{j}^{q} be obtained from ${}^{q}\bar{w}_{j}$ by replacing all coordinates after the last such division point by zeros. Let

$$u=\sum_{j}u_{j}^{q}$$
 .

Choose n > q. Then ${}^{n}F = \sum_{i=1}^{n} \overline{w}_{i}$ and

$$egin{aligned} &|||\,{}^{\scriptscriptstyle M}F\,||| \leq \sum h({}^{\scriptscriptstyle M}\overline{w}{}^{n}_{j}) \leq \sum h(u{}^{q}_{j}) + |||\,{}^{\scriptscriptstyle M}t^{q}\,||| \ &< \sum h(u{}^{q}_{j}) + rac{3}{16}\,|||\,F\,||| \;. \end{aligned}$$

Since $||| {}^{u}F ||| > 15/16 ||| F |||$, we have $\sum h(u_{j}^{n}) > 3/4 ||| F |||$. Now consider F - u. Since $||| {}^{n}F ||| \le \sum h({}^{n}\overline{w}_{j})$, where $h({}^{n}\overline{w}_{j}) = \{\sum_{i} [\theta(b_{j,i}^{n})]^{2}\}^{1/2}$, we have

where ${}^{n}\tilde{w}_{j}$ is obtained from ${}^{n}\overline{w}_{j}$ by replacing all coordinates before the last division point between M and q by zeros (if there is no such point, then ${}^{n}\tilde{w}_{j} = {}^{n}\overline{w}_{j}$). The following trivial facts will be used: If A and B are nonnegative and

if
$$\sqrt{3}A < B$$
, then $\sqrt{A^2 + B^2} > 2A$;
if $\sqrt{3}A \ge B$, then $B < \sqrt{A^2 + B^2} - \frac{1}{4}A$

Each ${}^{n}\overline{w}_{j}$ which has a division point between M and q makes a contribution to some u_{j}^{q} . For such an ${}^{n}\overline{w}_{j}$, let

$$h({}^n \overline{w}_j) = [\sum_r (A_r)^2 + \sum_s (B_s)^2]^{1/2}$$

where the A_r 's and B_r 's are, respectively, the values of $\theta(\overline{b}_{j,i}^n)$ for $\overline{b}_{j,i}^n$ a block of some u_j^q and $\overline{b}_{j,i}^n$ not a block of any u_j^q . Then

$$h(u_{j}^{q}) \leq \sum{[\sum_{r}{(A_{r})^{2}]^{1/2}}}$$
 ,

where the sum is over all ${}^{n}\overline{w}_{j}$ which make a contribution to u_{j}^{q} . Let $\sum_{r} (A_{r})^{2}$ be of class (1) or of class (2) according as

$$\sqrt{3} \, \left[\sum (A_r)^2\right]^{1/2} < \left[\sum (B_s)^2\right]^{1/2} \, \, ext{or} \, \, \sqrt{3} \, \left[\sum (A_r)^2\right]^{1/2} \geq \left[\sum (B_s)^2\right]^{1/2} \, .$$

Since $\sum h(u_j^n) > 3/4 |||F|||$, the sum of all terms of class (1) is not larger than 1/2 |||F||| (otherwise we would have $\sum h({}^n\overline{w}_j) > |||F|||$) and the sum of all terms of class (2) is greater than 1/4 |||F|||. But for a term of class (2),

$$[\sum (B_s)^2]^{1/2} < h({}^n \overline{w}_j) - rac{1}{4} [\sum (A_r)^2]^{1/2}$$

Adding these inequalities for each ${}^{n}\overline{w}_{j}$ and discarding each $\sum (A_{r})^{2}$ which is of class (1) gives

$$\sum h({}^{n}\tilde{w}_{j}) < \sum h({}^{n}\overline{w}_{j}) - rac{1}{16} |||F|||$$
 and $|||{}^{n}(F-u)||| < rac{15}{16} |||F|||$

Since n was an arbitrary integer with n > q, it follows that

$$|||\,F-u\,||| \leq rac{15}{16}\,|||\,F\,|||\;.$$

The importance of the assumption in Theorem 1 that T_1 have a basis of type α is made clear by the fact that the theorem breaks down if T_1 has a subspace isomorphic with (c_0) . In fact, in this case there can not be a separable space B with

$$B^{**} = \pi(B) \dotplus T_1$$

and T_1 separable, whether or not B and T_1 have bases. This follows from the fact that if a conjugate space R^* contains a subspace isomorphic with (c_0) , then R^* contains a subspace isomorphic with (m) and is not separable. To establish this fact, suppose that $\{F_n\}$ are continuous linear functionals defined on some Banach space B and that the closed linear span of $\{F_n\}$ is isomorphic with (c_0) , the correspondence being

$$\sum_{1}^{\infty} a_i F_i \leftrightarrow (a_1, a_2, \cdots)$$
.

For any bounded sequence $w = (w_1, w_2, \dots)$, define F_w by

$$F_w(f) = \lim_{n o \infty} \Bigl(\sum\limits_1^n w_i F_i \Bigr)(f)$$
 ,

for each f of B. This limit exists, since if it did not there would exist

 $\varepsilon > 0$ and $G_1 = \sum_{i=1}^{n_1} w_i F_i$, $G_2 = \sum_{i=2}^{n_3} w_i F_i$, \cdots , with $1 \le n_1 < n_2 \le n_3 < n_4 \le \cdots$, such that $G_i(f) > \varepsilon$. Then correct choice of signs would give

$$\sum_{i=1}^{n} \pm G_i(f) > n\varepsilon$$
 ,

which contradicts the boundedness of $||\sum_{i=1}^{n} \pm G_{i}||$. Clearly the correspondence with (c_{0}) is thus extended to a bicontinuous correspondence with (m).

THEOREM 2. For any positive integer n, there is a Banach space B_n such that the nth conjugate space of B_n is the first nonseparable conjugate space of B_n .

Proof. Let $B_1 = l^{(1)}$ and $B_2 = (c_0)$. Then B_1 has a basis of type α and B_2 has a basis of type β . In the following, the notation R + S is used only if $||r + s|| \ge ||s||$ whenever $r \in R$ and $s \in S$. It follows from Theorem 1 that there is a separable Banach space B_3 with a basis of type β for which

$$B_3^{**} = B_3 \dotplus l^{(1)} = B_3 \dotplus B_2^*$$

Then B_3^{***} is nonseparable and B_3^* has a basis of type α [3, Theorem 3]. Now suppose that, for $k \leq n$, B_k has been found for which

$$B_k^{**} = B_k \dotplus B_{k-1}^*$$

if $k \geq 3$, B_k has a basis of type β if $k \geq 2$, and the kth conjugate space of B_k is the first nonseparable conjugate space of B_k . Then B_a^* has a basis of type α and it follows from Theorem 1 that there exists a separable space B_{n+1} which has a basis of type β and for which

$$B_{n+1}^{**} = B_{n+1} + B_n^*$$
.

Then $B_{n+1}^{***} = B_{n+1}^* + B_n + B_{n-1}^*$. The (n-2)nd conjugate space of B_{n-1}^* is the first nonseparable conjugate space of B_{n-1}^* , while the (n-2)nd conjugate space of B_n is separable. Hence the (n+1)st conjugate space of B_{n+1} is the first nonseparable conjugate space of B_{n+1} .

References

- 1. S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
- 2. P. Civin and B. Yood, *Quasi-reflexive spaces*, Proc. Amer. Math. Soc., 8 (1957), 906-911.
- 3. R. C. James, Bases and reflexivity of Banach spaces, Annals of Math., 52 (1950), 518-527.

4. ____, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A., **37** (1951), 174–177.

HARVEY MUDD COLLEGE