SEPARABLE CONJUGATE SPACES

Robert C. James

A Banach space B is reflexive if the natural isometric mapping of B into the second conjugate space $B^{* *}$ covers all of $B^{* *}$. All conjugate spaces of a reflexive separable space B are separable. The nonreflexive space $l^{(1)}$ is separable and its first conjugate space is (m), which is nonseparable. The space $\left(c_{0}\right)$ is separable, its first conjugate space is $l^{(1)}$, and its second conjugate space is (m). An example is known of a nonreflexive Banach space whose conjugate spaces are all separable [4]. This space is pseudo-reflexive in the sense that its natural image in the second conjugate space has a finite-dimensional complement. The structure of such spaces has been studied carefully [2].

The main purpose of this paper is to show that the sequence started by $l^{(1)}$ and $\left(c_{0}\right)$ can be extended to give a sequence $\left\{B_{n}\right\}$ of separable Banach spaces such that, for each n, the nth conjugate space of B_{n} is its first nonseparable conjugate space. The principal tool used is a theorem which states a sufficient condition on a space T for the existence of a space B with

$$
B^{* *}=\pi(B)+T
$$

where $\pi(B)$ is the natural image of B in $B^{* *}$. The following definition and notation will be used.

A basis for a Banach space B is a sequence $\left\{u^{i}\right\}$ such that, for each x of B, there is a unique sequence of numbers $\left\{a_{i}\right\}$ for which $\lim _{n \rightarrow \infty} \| x-$ $\sum_{1}^{n} a_{i} u_{i} \|=0$. A sequence $\left\{u_{i}\right\}$ is a basis for its closed linear span if and only if there is a number $\varepsilon>0$ such that

$$
\left\|\sum_{1}^{n+p} c_{i} x_{i}\right\| \geq \varepsilon\left\|\sum_{1}^{n} c_{i} x_{i}\right\|
$$

for any numbers $\left\{c_{i}\right\}$ and positive integers n and p [1, page 111]. If ε can be +1 , the basis is an orthogonal basis. It will be useful to classify bases as follows:

Type α. If $\left\{a_{i}\right\}$ is a sequence of numbers for which $\sup _{n}\left\|\sum_{1}^{n} a_{i} u_{i}\right\|<$ ∞, then $\sum_{1}^{\infty} a_{i} u_{i}$ converges.

Type β. If f is a linear functional defined on B and $\|f\|_{n}$ is the norm of f on the closed linear span of $\left\{u_{i} \mid i \geq n\right\}$, then $\lim _{n \rightarrow \infty}\|f\|_{n}=0$.

There are Banach spaces which have bases which are neither of type α nor of type β, while a basis is of both types if and only if the space

[^0]is reflexive [3; Theorem 1].
The symbols $C,(m), l^{(1)}$, and $\left(c_{0}\right)$ are used in the usual sense [1; pages 11, 12, 181]. The set of all $r+t$ with $r \in R$ and $t \in T$ is denoted by $R+T$. A space R is said to be embedded in a space S if R is mapped isomorphically and isometrically on a subspace of S; for $x \in R$, the image of x is indicated by $x^{(S)}$. In particular, $x^{(\sigma)}$ is a continuous function defined on $[0,1]$ and the value of $x^{(0)}$ at t is denoted by $x^{(\theta)}(t)$. If $w=\left(w_{1}, w_{2}, \cdots\right)$ is a sequence of numbers, then ${ }^{n} w$ is the sequence obtained by replacing w_{i} by 0 if $i>n$. A block of w is a sequence ${ }_{m}^{n} w$ obtained from w by replacing w_{i} by 0 if $i \leq m$ or $i>n$. Two blocks ${ }_{m_{1}^{1}}^{n} w$ and ${ }_{m_{2}^{2}}^{n} w$ are said to overlap if the intervals ($\left.m_{1}, n_{1}\right]$ and ($\left.m_{2}, n_{2}\right]$ overlap.

Lemma 1. Let T be a Banach space with an orthogonal basis $\left\{u_{i}\right\}$. Then T can be embedded in (m) in such a way that:
(i) if $x=\sum_{1}^{\infty} a_{i} u_{i}$, then the first $2 N$ coordinates of $x^{(m)}$ are zero if and only if $a_{i}=0$ for $i \leq N$;
(ii) if $\left\{a_{i}\right\}$ and $\left\{x_{i}^{m}\right\}$ are related by $x=\sum_{1}^{\infty} a_{i} u_{i}$ and $x^{(m)}=\left(x_{1}^{m}, x_{2}^{m}, \cdots\right)$, then a_{1}, \cdots, a_{N} are each continuous functions of $x_{1}^{m}, \cdots, x_{2 N}^{m}$ and $x_{1}^{m}, \cdots, x_{2 N}^{m}$ are each continuous functions of a_{1}, \cdots, a_{N};
(iii) if $x^{(m)}=\left(x_{1}^{m}, x_{2}^{m}, \cdots\right)$, then $\left\|x^{(m)}\right\|=\lim \sup \left|x_{i}^{m}\right|$.

Proof. Let T be embedded in the space C. Let $\left\{t_{i}\right\}$ be a sequence of numbers in the interval $[0,1]$ for which the sequence $\left\{t_{2 i-1}\right\}, i=$ $1,2, \cdots$, is dense in $[0,1]$ and, for each $i, u_{i}^{(\sigma)}\left(t_{2 i}\right) \neq 0$. If $x=\sum_{1}^{\infty} a_{i} u_{i}$, let $x^{(m)}$ be the sequence $\left(x_{1}^{m}, x_{2}^{m}, \cdots\right)$ for which

$$
x_{2 k-1}^{m}=\sum_{1}^{k} a_{i} u_{i}^{(\sigma)}\left(t_{2 k-1}\right), x_{2 k}^{m}=\sum_{1}^{k} a_{i} u_{i}^{(\sigma)}\left(t_{2 k}\right) .
$$

Then for any $t \in[0,1]$,

$$
\left|\sum_{1}^{k} a_{i} u_{i}^{(\theta)}(t)\right| \leq\left\|\sum_{1}^{k} a_{i} u_{i}^{(\sigma)}\right\|=\left\|\sum_{1}^{k} a_{i} u_{i}\right\| \leq\|x\| .
$$

Hence $\left\|x^{(m)}\right\| \leq\|x\|$. But if $\varepsilon>0$ and N is chosen so that $\left\|x-\sum_{1}^{k} a u_{i}\right\|<\varepsilon$ if $k>N$, then it follows from $\left\{t_{2 k-1}\right\}$ being dense in $[0,1]$ that

$$
\left\|x^{(m)}\right\| \geq \sup _{k>N}\left|\sum_{1}^{k} a_{i} u_{i}^{(\sigma)}\left(t_{2 k-1}\right)\right| \geq\|x\|-\varepsilon
$$

Hence $\|x\|=\left\|x^{(m)}\right\|$ and T and its image in (m) are isometric. But if $x=\sum_{N+1}^{\infty} a_{i} u_{i}$, then $x_{2 k-1}^{m}=x_{2 k}^{m}=0$ if $k \leq N$. If $x_{i}^{m}=0$ for $i \leq 2 N$, then the equations $x_{2 k}^{m}=\sum_{1}^{k} a_{i} u_{i}^{(c)}\left(t_{2 k}\right)=0, k \leq N$, successively imply $0=a_{1}=a_{2}=\cdots=a_{N}$, since $u_{k}^{(\theta)}\left(t_{2 k}\right) \neq 0$. The conclusion (ii) follows from this system of equations and the continuity of $\sum_{1}^{N} a_{i} u_{i}$ in a_{1}, \cdots, a_{N}, while (iii) follows from $\left\{t_{2 k-1}\right\}$ being dense in [0,1].

Lemma 2. Let T be a Banach space with an orthogonal basis $\left\{u_{i}\right\}$ and let T be embedded in (m) as described in Lemma 1. Then the following are equivalent:
(i) the basis $\left\{u_{i}\right\}$ is of type α;
(ii) if $w \in(m)$, then $w=v+t$, with v an element of (m) which has all coordinates zero after the Mth $(M \geq 0)$ and t the image of an element of T, provided there is a sequence of elements $\left\{y_{k}\right\}$ of T for which $\sup \left\|y_{k}\right\|<\infty$ and

$$
\lim _{k \rightarrow \infty} y_{k, i}^{m}=w_{i} \text { for } i>M
$$

where $w=\left(w_{1}, w_{2}, \cdots\right)$ and $y_{k}^{(m)}=\left(y_{k, 1}^{m}, y_{k, 2}^{m}, \cdots\right)$.
Proof. Assume the basis $\left\{u_{i}\right\}$ is of type α and let $w=\left(w_{i}, w_{2}, \cdots\right)$ and $\left\{y_{k}\right\}$ satisfy the hypotheses of (ii). Since $\left\|y_{k}\right\|$ is bounded, there is a subsequence $\left\{z_{k}\right\}$ of $\left\{y_{k}\right\}$ such that

$$
\lim _{k \rightarrow \infty} z_{k, i}^{m}=v_{i}
$$

exists for $i \leq M$. Let $v=\left(w_{1}-v_{1}, \cdots, w_{M}-v_{M}, 0,0, \cdots\right)$. Also let $z_{k}=\sum_{1}^{\infty} a_{i}^{k} u_{i}$ for each k. It now follows from (ii) of Lemma 1 that $\lim _{k \rightarrow \infty} a_{i}^{k}=a_{i}$ exists for each i. Since the basis is orthogonal, $\left\|\sum_{1}^{n} a_{i} u_{i}\right\| \leq$ $\sup \left\|z_{k}\right\|$. Since $\left\{u_{i}\right\}$ is a basis of type α, it then follows that $\sum_{1}^{\infty} a_{i} u_{i}$ is convergent. Also, $w-v=t$ is the (m)-image of $\sum_{1}^{\infty} a_{i} u_{i}$. This follows from the fact that the numbers $a_{i}, i \leq N$, continuously determine the first $2 N$ coordinates of the (m)-image of $\sum_{1}^{\infty} a_{i} u_{i}$, while $z_{k}=\sum_{1}^{\infty} a_{i}^{k} u_{i}$, $\lim _{k \rightarrow \infty} a_{i}^{k}=a_{i}$, and $\lim _{k \rightarrow \infty} z_{k, i}^{m}$ exists and is the i th coordinate of $w-v$.

Now assume (ii) and let $\left\|\sum_{1}^{n} a_{i} u_{i}\right\|$ be a bounded function of n. Let $w=\left(w_{1}, w_{2}, \cdots\right)$ be the element of (m) whose first $2 N$ coordinates are determined by a_{1}, \cdots, a_{N}. Take $M=0$ and y_{k} to be the (m)-image of $\sum_{1}^{k} a_{i} u_{i}$. It then follows from (ii) that w is the (m)-image of some element of T, which can only be $\sum_{1}^{\infty} a_{i} u_{i}$.

Theorem 1. Let T be a Banach space which has an orthogonal basis of type α. Then there is a Banach space B which has a basis of type β and for which

$$
B^{* *}=\pi(B)+T_{1}
$$

where $\pi(B)$ is the natural image of B in $B^{* *}, T$ and T_{1} are isometric, and $\|r+t\| \geq\|t\|$ if $r \in \pi(B)$ and $t \in T_{1}$.

Proof. Let T_{1} be the embedding of T in (m) as described in Lemma 1. The norm of (m) will be denoted by \|\|. For elements w of (m) which have only a finite number of nonzero coordinates, let
(1) $\quad \theta(w)=\inf \|t\|$ for w a block of t, where t is either a member
of T_{1} or has only one nonzero coordinate (note that $\theta(w)$ is defined only for elements w which are blocks of at least one $t \in T_{1}$ or which have only one nonzero coordinate);
(2) $h(w)=\left\{\inf \sum\left[\theta\left(b_{i}\right)\right]^{2}\right\}^{1 / 2}$, where $w=\sum b_{i}$, each b_{i} is a block of w, and no two blocks overlap.
(3) $\mid\|x\|=\inf \sum h\left(w_{j}\right)$ for $x=\sum w_{j}$.

In the above, all sums have a finite number of terms. The triangular inequality for $|||||\mid$ is a direct consequence of (3). Also, $||| x|| \mid \geq$ $\|x\|$, since $\theta(w) \geq\|w\|$ and $h(w) \geq\|w\|$. Let B be the completion of the space of sequences with a finite number of nonzero coordinates, using the norm ||| |||. The sequence of elements $\left\{u_{i}\right\}$ for which u_{i} has all coordinates 0 except the i th, which is 1 , is an orthogonal basis for B. This means that $\left|\left|\left|\sum_{1}^{n+p} a_{i} u_{i}\right|\right|\right| \geq\left|\left|\left|\sum_{1}^{n} a_{i} u_{i} \|\right|\right.\right.$, which follows by noting that, if $\sum_{1}^{n+p} a_{i} u_{i}=\sum w_{j}$, then $\sum_{1}^{n} a_{i} u_{i}=\sum{ }^{n} w_{j}$ and $h\left({ }^{n} w_{j}\right) \leq h\left(w_{j}\right)$ for each j, where ${ }^{n} w_{j}$ is obtained from w_{j} by replacing each coordinate after the nth by 0 .

The basis $\left\{u_{i}\right\}$ is of type β. For suppose there is a linear functional f for which $\lim _{n \rightarrow \infty} \mid\|f\|_{n}=K \neq 0$ and choose N so that $\left\|\|f\|_{N} \leq 7 / 6 K\right.$. Then there are two elements $x=\sum_{n_{1}^{2}}^{n_{2}} a_{i} u_{i}, y=\sum_{n_{3}^{4}}^{n} a_{i} u_{i}$, for which $N<$ $n_{1} \leq n_{2}<n_{3} \leq n_{4}, \mid\|x\|\|=\| y\| \|=1, f(x)>7 / 8 K$ and $f(y)>7 / 8 K$. Then

$$
\frac{7}{4} K<f(x)+f(y) \leq\left(\frac{7}{6} K\right)\|\mid x+y\| \| \text { and }\|x+y\|>\frac{3}{2}
$$

Since θ and h are both monotone decreasing as a block has coordinates at the ends replaced by zeros, there exists $\left\{x_{j}\right\}$ and $\left\{y_{j}\right\}$ such that $x=\sum x_{j}, y=\sum y_{j}, \sum h\left(x_{j}\right)<\| \| x \|+\varepsilon$, and $\sum h\left(y_{j}\right)<\|y\| \| \varepsilon$, where each x_{j} has zero coordinates outside the index interval [n_{1}, n_{2}] and each y_{j} has zero coordinates outside the index interval $\left[n_{3}, n_{4}\right]$. Now replace the sets $\left\{x_{j}\right\}$ and $\left\{y_{j}\right\}$ by $\left\{\bar{x}_{j}\right\}$ and $\left\{\bar{y}_{j}\right\}$ defined as follows: if $h\left(x_{p}\right)$ is the smallest of all the numbers $h\left(x_{j}\right)$ and $h\left(y_{j}\right)$, then let $\bar{x}_{1}=x_{p}$ and $\bar{y}_{1}=\left[h\left(x_{p}\right) / h\left(y_{r}\right)\right] y_{r}$ (for some r) and replace y_{r} by $\left[1-h\left(x_{p}\right) / h\left(y_{r}\right)\right] y_{r}$. The analogous process is used if h takes on its minimum at one of the y_{j} 's. This process creates two new elements and eliminates one old one at each step, until all of the x_{j} 's or all of the y_{j} 's are eliminated. If only x_{j} 's remain, say $x_{p_{j}}$'s, then $\sum h\left(x_{p_{j}}\right)<\varepsilon$, and similarly $\sum h\left(y_{p_{j}}\right)<\varepsilon$ if only y_{j} 's remain. Also

$$
\sum h\left(\bar{x}_{j}\right)-\varepsilon=\sum h\left(\bar{y}_{j}\right)-\varepsilon<\|x\|=\|y\|=1
$$

and $h\left(\bar{x}_{j}\right)=h\left(\bar{y}_{j}\right)$ for each j. For each j, there are nonoverlapping blocks $\left\{\bar{x}_{j i}\right\}$ and $\left\{\bar{y}_{j i}\right\}$ such that

$$
h\left(\bar{x}_{j}\right)=h\left(\bar{y}_{j}\right)=\left\{\sum_{i}\left[\theta\left(\bar{x}_{i t}\right)\right]^{2}\right\}^{1 / 2}=\left\{\sum_{i}\left[\theta\left(\bar{y}_{j i}\right)\right]^{2}\right\}^{1 / 2} .
$$

Then

$$
\left.h\left(\bar{x}_{j}+\bar{y}_{j}\right) \leq\left\{\sum_{i}\left[\theta \bar{x}_{j i}\right)\right]^{2}+\sum_{i}\left[\theta\left(\bar{y}_{j i}\right)\right]^{2}\right\}^{1 / 2}=\sqrt{2} h\left(\bar{x}_{j}\right) .
$$

Hence

$$
\|x+y\| \leq \sum h\left(\bar{x}_{j}+\bar{y}_{j}\right)+\varepsilon \leq \sqrt{2} \sum h\left(\bar{x}_{j}\right)+\varepsilon \leq \sqrt{2}+\varepsilon .
$$

Since $\|\|x+y\|>3 / 2$, this is contradictory if $\sqrt{2}+\varepsilon<3 / 2$. It has therefore been shown that $\left\{u_{i}\right\}$ is a basis of type β.

Since $\left\{u_{i}\right\}$ is an orthogonal basis of type β for B, it follows that $B^{* *}$ consists of all sequences $F=\left(F_{1}, F_{2}, \cdots\right)$ for which

$$
|||F|||=\lim _{n \rightarrow \infty}| |\left|\left(F_{1}, \cdots, F_{n}, 0,0, \cdots\right)\right|| |
$$

exists [4; page 174]. Note first that if $t=\left(t_{1}, \cdots\right) \in T_{1}$, then

$$
\left\|\left\|\left(t_{1}, \cdots, t_{n}, 0,0, \cdots\right)\right\|\right\|=\left\|\left(t_{1}, \cdots, t_{n}, 0,0, \cdots\right)\right\|
$$

and $\lim _{n \rightarrow \infty}\left|\left\|\left(t_{1}, \cdots, t_{n}, 0,0, \cdots\right)|\|=\|| t \mid\right\|=\|t\|\right.$. Thus $T_{1} \subset B^{* *}$. Also, the natural mapping of B into $B^{* *}$ is merely the mapping of a sequence in B onto the identical sequence in $B^{* *}$. It then follows that $|||r+t|| \geq$ $|||t|||$ if $r \in \pi(B)$ and $t \in T_{1}$, since r can be approximated by a sequence with a finite number of nonzero coordinates but (Lemma 1) $\|t\|=$ $\lim \sup \left|t_{i}\right|$.

Now suppose that $F=\left(F_{1}, F_{2}, \cdots\right)$ is a sequence for which $\lim _{n \rightarrow \infty}| |\left|n{ }^{n} F\right| \|$ exists; i.e., $F \in B^{* *}$. It will be shown that there is an element v of $\pi(B)+T_{1}$ for which $\||F-v|\| \leq 15 / 16| ||F|| |$. Successive application of this would then establish that $F \in \pi(B)+T_{1}$. For each n, there are ${ }^{n} w_{j}$ and blocks $b_{j, i}^{n}$, which are either blocks of elements of T_{1} or have only one nonzero coordinate, such that

$$
\left\|\left\|{ }^{n} F\right\|=\sum_{j} h\left({ }^{n} w_{j}\right),{ }^{n} F=\sum_{j}{ }^{n} w_{j}, \text { and } h\left({ }^{n} w_{j}\right)=\left\{\sum_{i}\left[\theta\left(b_{j, i}^{n}\right)\right]^{2}\right\}^{1 / 2},\right.
$$

where each ${ }^{n} w_{j}$ and each $b_{j, i}^{n}$ have all coordinates zero after the n th. This follows by a limit argument, using the facts (1) that there are only a finite number K_{n} of ways of choosing division points for nonoverlapping blocks from the integers $1,2, \cdots, n$ and (2) that it follows from Lemma 1 and the orthogonality of the basis for T that $\theta\left(b_{j, i}^{2 N}\right)$, for a block $b_{j, i}^{2 N}$ which has zero coordinates beyond the $2 N$ th coordinate, can be evaluated by using only members of the span of the first N basis elements of T.

If $m<n$ and ${ }^{m} w_{j}^{n}$ is obtained from ${ }^{n} w_{j}$ by replacing coordinates after the m th by zeros, then

$$
\left\|\left\|^{m} F\right\| \leq \sum_{j} h\left({ }^{m} w_{j}^{n}\right) \leq\right\|\left\|^{n} F\right\| \leq\|F\|
$$

If ${ }^{m} w_{j_{1}}^{n}$ and ${ }^{m} w_{j_{2}}^{n}$ are of the "same type" in the sense that they are divided into blocks by using the same division points, then it follows by using these same division points for ${ }^{m} w_{j_{1}}^{n}+{ }^{m} w_{j_{2}}^{n}$ that

$$
h\left({ }^{m} w_{j_{1}}^{n}+{ }^{m} w_{j_{2}}^{n}\right) \leq h\left({ }^{m} w_{j_{1}}^{n}\right)+h\left({ }^{m} w_{j_{2}}^{n}\right) .
$$

For each $n>m$, let ${ }^{m} \hat{w}_{j}^{n}$ be the sum of all ${ }^{m} w_{i_{i}}^{n}$ of the "same type" as ${ }^{m} \hat{w}_{j}^{n}$. A limit argument gives a sequence of integers $\left\{n_{i}\right\}$ such that $\lim ^{m} \hat{w}_{j}^{n_{i}}={ }^{m} \bar{w}_{j}$ exists for each "type". If $m<n$, then there exist $\bar{b}_{j, i}^{n}$ such that

$$
\begin{aligned}
\left\|\left\|{ }^{m} F\right\|\right. & \leq \sum_{j} h\left({ }^{m} \bar{w}_{j}\right) \leq \sum_{k} h\left({ }^{n} \bar{w}_{k}\right) \leq\| \| F \| \\
h\left({ }^{m} \bar{w}_{j}\right) & =\left\{\sum_{i}\left[\theta\left(\bar{b}_{j, i}^{m}\right)\right]^{2}\right\}^{1 / 2},{ }^{m} F=\sum^{m} \bar{w}_{j}
\end{aligned}
$$

and ${ }^{m} \bar{w}_{j}$ is equal to the sum of all ${ }^{m} \bar{w}_{j}^{n}$ which are of the same type as ${ }^{m} \bar{w}_{j}$ and are obtained from ${ }^{n} \bar{w}_{j}$ by replacing all coordinates after the m th by zeros. The points used to divide ${ }^{m} \bar{w}_{j}$ into the blocks $\bar{b}_{j, i}^{m}$ will be called the division points of ${ }^{m} \bar{w}_{j}$.

Choose M so that $\left|\left|{ }^{m} F\right|\right||>15 / 16|||F|| \mid$. Note that if ${ }^{m} \bar{w}_{j}$ is of a particular type and $n>m$, then ${ }^{m} \bar{w}_{j}$ is the sum of one or more elements obtained from the ${ }^{n} \bar{w}_{k}$'s by replacing coordinates after the m th by zeros. For $n>m \geq M$, let ${ }^{n} t$ be the sum of all ${ }^{n} \bar{w}_{k}$'s which have no division points between M and n and let ${ }^{m} t^{n}$ be obtained from ${ }^{n} t$ by replacing coordinates after the m th by zeros. Let $\left\{n_{i}\right\}$ be chosen so that

$$
\lim _{i \rightarrow \infty}{ }^{m} t^{n i}={ }^{m} \bar{t}
$$

exists for each $m \geq M$. Let \bar{t} be defined so as to have the same first m coordinates as ${ }^{m} \bar{t}$. Then any finite block of \bar{t} whose first M coordinates are zero is also approximately a block of an element of T_{1} and these elements of T_{1} are of bounded norm. It then follows from Lemma 2 that there is an element v_{0}, with a finite number of nonzero coordinates, such that $v_{0}+\bar{t} \in T_{1}$. Thus

$$
\bar{t} \in \pi(B)+T_{1}
$$

First assume that $|||\bar{t}|||>1 / 8| ||F|| |$ and choose N so that

$$
\left|\left\|\left.\right|^{n} \bar{t}| ||>1 / 8|\right\| F \|| | \text { if } n>N\right.
$$

For $n>N$, choose $p>n$ so that

$$
\left|\left|\left|\bar{t}-{ }^{n} t^{p}\right|\right|<\frac{1}{32}\right|||F| \||
$$

Since $\left\|{ }^{n} F\right\| \leq \sum_{j} h\left({ }^{n} \bar{w}_{j}\right)$, discarding all ${ }^{n} \bar{w}_{j}^{p}$ without division points between M and p gives

$$
\begin{aligned}
\left|\left\|{ }^{n} F-{ }^{n} t^{p}\right\|\right| & \leq \sum h\left({ }^{n} \bar{w}_{j}\right)-\left\|{ }^{n} t^{p}\right\| \| \\
& \leq\left\|\left|\|\mid\|-\left\|{ }^{n} t^{p}\right\| \|\right.\right.
\end{aligned}
$$

Hence $\left|\left|\left|{ }^{n} F-{ }^{n} \bar{t}\right|\right|\right|<|||F|||-\left|\left|\left|{ }^{n} \bar{t}\right|\right|\right|+1 / 16| ||F|| |<15 / 16| ||F|| |$. Since n was an arbitrary integer with $n>N$, it follows that

$$
|\|F-\bar{t}\|| \leq \frac{15}{16}|\|F|\||
$$

Now assume that $||\bar{t}\||\leq 1 / 8|\| F| \|$. Then $|\left|{ }^{n} \bar{t}\||\leq 1 / 8 \|||| |\right.$ for all n. Choose q so that

$$
\left|\left|{ }^{M} \bar{t}-{ }^{s} t^{q} \|\left|<\frac{1}{16}\right|\right|\right| F||\mid
$$

For each ${ }^{a} \bar{w}_{j}$ which has a division point between M and q, let u_{j}^{q} be obtained from ${ }^{a} \bar{w}_{j}$ by replacing all coordinates after the last such division point by zeros. Let

$$
u=\sum_{j} u_{j}^{q} .
$$

Choose $n>q$. Then ${ }^{n} F=\sum^{n} \bar{w}_{j}$ and

$$
\begin{aligned}
\left\|\left\|^{M} F\right\| \mid\right. & \leq \sum h\left({ }^{n} \bar{w}_{j}^{n}\right) \leq \sum h\left(u_{j}^{q}\right)+\| \|^{M} t^{q}\| \| \\
& <\sum h\left(u_{j}^{q}\right)+\frac{3}{16}|\|F \mid\|
\end{aligned}
$$

Since $\left|\left|{ }^{M} F\|| |>15 / 16\|\right|\right| F \mid \|$, we have $\sum h\left(u_{j}^{q}\right)>3 / 4\|| | F \mid\|$. Now consider $F-u$. Since $\left\|\left\|^{n} F\right\| \leq \sum h\left({ }^{n} \bar{w}_{j}\right)\right.$, where $h\left({ }^{n} \bar{w}_{j}\right)=\left\{\sum_{i}\left[\theta\left(b_{j, i}^{n}\right)\right]^{2}\right\}^{1 / 2}$, we have

$$
\begin{gathered}
{ }^{n}(F-u)=\sum^{n} \bar{w}_{j}-\sum u_{j}^{q}=\sum^{n} \tilde{w}_{j}, \\
\left\|^{n}(F-u)\right\| \| \leq h\left({ }^{n} \tilde{w}_{j}\right)
\end{gathered}
$$

where ${ }^{n} \tilde{w}_{j}$ is obtained from ${ }^{n} \bar{w}_{j}$ by replacing all coordinates before the last division point between M and q by zeros (if there is no such point, then ${ }^{n} \tilde{w}_{j}={ }^{n} \bar{w}_{j}$). The following trivial facts will be used: If A and B are nonnegative and

$$
\begin{aligned}
& \text { if } \sqrt{3} A<B \text {, then } \sqrt{A^{2}+B^{2}}>2 A \text {; } \\
& \text { if } \sqrt{3} A \geq B \text {, then } B<\sqrt{A^{2}+B^{2}}-\frac{1}{4} A .
\end{aligned}
$$

Each ${ }^{n} \bar{w}_{j}$ which has a division point between M and q makes a contribution to some u_{j}^{q}. For such an ${ }^{n} \bar{w}_{j}$, let

$$
h\left({ }^{n} \bar{w}_{j}\right)=\left[\sum_{r}\left(A_{r}\right)^{2}+\sum_{s}\left(B_{s}\right)^{2}\right]^{1 / 2}
$$

where the A_{r} 's and B_{r} 's are, respectively, the values of $\theta\left(\bar{b}_{j, i}^{n}\right)$ for $\bar{b}_{j, i}^{n}$ a block of some u_{j}^{q} and $\bar{b}_{j, i}^{n}$ not a block of any u_{j}^{q}. Then

$$
h\left(u_{j}^{q}\right) \leq \sum\left[\sum_{r}\left(A_{r}\right)^{2}\right]^{1 / 2},
$$

where the sum is over all ${ }^{n} \bar{w}_{j}$ which make a contribution to u_{j}^{q}. Let $\sum_{r}\left(A_{r}\right)^{2}$ be of class (1) or of class (2) according as

$$
\sqrt{3}\left[\sum\left(A_{r}\right)^{2}\right]^{1 / 2}<\left[\sum\left(B_{s}\right)^{2}\right]^{1 / 2} \text { or } \sqrt{3}\left[\sum\left(A_{r}\right)^{2}\right]^{1 / 2} \geq\left[\sum\left(B_{s}\right)^{2}\right]^{1 / 2} .
$$

Since $\sum h\left(u_{j}^{q}\right)>3 / 4\|| | \mid\|$, the sum of all terms of class (1) is not larger than $1 / 2| ||F|| |$ (otherwise we would have $\sum h\left({ }^{n} \bar{w}_{j}\right)>|||F|||$) and the sum of all terms of class (2) is greater than $1 / 4| ||F|| |$. But for a term of class (2),

$$
\left[\sum\left(B_{s}\right)^{2}\right]^{1 / 2}<h\left({ }^{n} \bar{w}_{j}\right)-\frac{1}{4}\left[\sum\left(A_{r}\right)^{2}\right]^{1 / 2}
$$

Adding these inequalities for each ${ }^{n} \bar{w}_{j}$ and discarding each $\sum\left(A_{r}\right)^{2}$ which is of class (1) gives

$$
\sum h\left({ }^{n} \tilde{w}_{j}\right)<\sum h\left({ }^{n} \bar{w}_{j}\right)-\frac{1}{16}| ||F| \| \text { and }\left\|\left.{ }^{n}(F-u)\left|\left\|<\frac{15}{16}\right\|\right| F \right\rvert\,\right\| .
$$

Since n was an arbitrary integer with $n>q$, it follows that

$$
|||F-u||| \leq \frac{15}{16}| ||F|| |
$$

The importance of the assumption in Theorem 1 that T_{1} have a basis of type α is made clear by the fact that the theorem breaks down if T_{1} has a subspace isomorphic with $\left(c_{0}\right)$. In fact, in this case there can not be a separable space B with

$$
B^{* *}=\pi(B)+T_{1}
$$

and T_{1} separable, whether or not B and T_{1} have bases. This follows from the fact that if a conjugate space R^{*} contains a subspace isomorphic with $\left(c_{0}\right)$, then R^{*} contains a subspace isomorphic with (m) and is not separable. To establish this fact, suppose that $\left\{F_{n}\right\}$ are continuous linear functionals defined on some Banach space B and that the closed linear span of $\left\{F_{n}\right\}$ is isomorphic with $\left(c_{0}\right)$, the correspondence being

$$
\sum_{1}^{\infty} a_{i} F_{i} \leftrightarrow\left(a_{1}, a_{2}, \cdots\right)
$$

For any bounded sequence $w=\left(w_{1}, w_{2}, \cdots\right)$, define F_{w} by

$$
F_{w}(f)=\lim _{n \rightarrow \infty}\left(\sum_{1}^{n} w_{i} F_{i}\right)(f),
$$

for each f of B. This limit exists, since if it did not there would exist
$\varepsilon>0$ and $G_{1}=\sum_{1}^{n_{1}} w_{i} F_{i}, G_{2}=\sum_{n_{2}}^{n_{3}} w_{i} F_{i}, \cdots$, with $1 \leq n_{1}<n_{2} \leq n_{3}<n_{4} \leq \cdots$, such that $G_{i}(f)>\varepsilon$. Then correct choice of signs would give

$$
\sum_{1}^{n} \pm G_{i}(f)>n \varepsilon,
$$

which contradicts the boundedness of $\left\|\sum^{n} \pm G_{i}\right\|$. Clearly the correspondence with (c_{0}) is thus extended to a bicontinuous correspondence with (m).

Theorem 2. For any positive integer n, there is a Banach space B_{n} such that the nth conjugate space of B_{n} is the first nonseparable conjugate space of B_{n}.

Proof. Let $B_{1}=l^{(1)}$ and $B_{2}=\left(c_{0}\right)$. Then B_{1} has a basis of type α and B_{2} has a basis of type β. In the following, the notation $R+S$ is used only if $\|r+s\| \geq\|s\|$ whenever $r \in R$ and $s \in S$. It follows from Theorem 1 that there is a separable Banach space B_{3} with a basis of type β for which

$$
B_{3}^{* *}=B_{3}+l^{(1)}=B_{3}+B_{2}^{*}
$$

Then $B_{3}^{* * *}$ is nonseparable and B_{3}^{*} has a basis of type α [3, Theorem 3]. Now suppose that, for $k \leq n, B_{k}$ has been found for which

$$
B_{k}^{k *}=B_{k}+B_{k-1}^{*}
$$

if $k \geq 3, B_{k}$ has a basis of type β if $k \geq 2$, and the k th conjugate space of B_{k} is the first nonseparable conjugate space of B_{k}. Then B_{n}^{*} has a basis of type α and it follows from Theorem 1 that there exists a separable space B_{n+1} which has a basis of type β and for which

$$
B_{n+1}^{* *}=B_{n+1}+B_{n}^{*}
$$

Then $B_{n+1}^{* * *}=B_{n+1}^{*}+B_{n}+B_{n-1}^{*}$. The $(n-2)$ nd conjugate space of B_{n-1}^{*} is the first nonseparable conjugate space of B_{n-1}^{*}, while the ($n-2$)nd conjugate space of B_{n} is separable. Hence the $(n+1)$ st conjugate space of B_{n+1} is the first nonseparable conjugate space of B_{n+1}.

References

1. S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
2. P. Civin and B. Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc., 8 (1957), 906911.
3. R. C. James, Bases and reflexivity of Banach spaces, Annals of Math., 52 (1950), 518-527.
4. -, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A., 37 (1951), 174-177.

[^0]: Reçeived April 28, 1959.

