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Let a linear space L of real-valued functions on a set E and a
semi-norm on L be given. We shall consider when there exists a
countably additive measure on E such that L is Lp with respect to this
measure. We shall prove that certain conditions are sufficient for the
measure to exist; it is obvious that these conditions are necessary. (We
consider only the case where the constant function l e L . )

We need not assume that the elements of L are functions on a set.
If we do not make this assumption, we use a theorem of Kakutani
([3], p. 998) to construct a representation for L as a space of continuous
functions on a compact Hausdorff space. If, however, the elements of
L are given as functions, we leave this preestablished representation
unchanged, even when it is not the one given by Kakutani's theorem.

The case where p = 1 and the elements of L are not given as
functions was treated by Kakutani [2]. The case p = 2 will receive
special attention at the end of the present paper. In this latter case,
one may replace some of the hypotheses of the general case by the
hypothesis that the semi-norm on L arises from a positive semi-definite
bilinear form.

Let L be a Riesz space whose elements are functions on a set E.
That is, let L be a set of real-valued functions on E which contains
with /, g:

( a ) f + g defined by (/ + g)(x) = f(x) + g(x),
( b ) af defined by (af)(x) = a[f(x)]f for each real number a,
(c ) / Λ g defined by (/ Λ g)(x) = min (f(x), g(x)),

and ( d ) / V g defined by (/ V g)(x) = max (f(χ), g(χ)).
We denote / V 0 by /+ and (-/) V 0 by / - . (The case where L is an
abstract Banach lattice will be considered shortly.)

Let p be a fixed real number > 1 . Throughout the paper, p will
always stand for this fixed number. We suppose there is a semi-norm,
which we denote by || ||, defined on L. We further suppose:

(1) L is complete. That is, if fu f2, 6 L are such that \\fn — fm ||
is small for large n, m; then there is a geL such that \\g — fn\\ —+ 0.

(2) For each feL, || | / | || = | | / | | .
(3 ) Iff,g a r e positive, | | / + g \\' > \\f\\* + || g \\>.
( 4 ) If /, g a r e positive and / Λ g = 0, \\f+g\\'<, 11/11"+||fli ||».
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( 5 ) 1 e L and || 11| = 1. (Here 1 denotes the constant function 1.)
We note that if /, geL and 0<f<g, then | | / | | < || flf ||; since

\\f\\p<\\f\\p + \\9-f\\p<\\f+g-f\\p = \\g\\p b y ( 3 ) a b o v e . W e
also note that, for each / e L , | | / + | | < | | / | | ; since | | / + || < | | / + + / - || =
|| I/I II = 11/11 using (2) and the preceding remark.

We now briefly consider abstract Lp spaces. Let L be a Riesz space
(i. e. a vector lattice), whose elements need not be functions. Suppose
there is a norm on L. (If a semi-norm is given instead of a norm, we
use, in place of L, the quotient space of L modulo the elements of norm
0. This quotient space will be a normed Riesz space provided the semi-
norm satisfies (2) and (3) above.) Suppose, for some p > 1, that L has
properties (l)-(4) above. Instead of (5), we suppose that L has a weak
unit, i. e.:

(5') There is a positive e eL such that / Λ e = 0, feL imply/ = 0.
(We suppose L is normalized so that || e || = 1.)
Under these conditions we may call L an abstract Lp space. (In the
case p = 1, an abstract L2 space is thus an abstract (L)-space in the
sense of Kakutani [2].)

We seek to represent abstract Lp spaces as function spaces. We
recall from [1], p. 248, that a norm on a Banach lattice is called uniformly
monotone when, given ε > 0, one can find δ > 0 so small that if / > 0,
<7>0, | | / | | = 1 and | | / + # || - 1 < δ, then | | f lr | |<ε. It follows at
once from (3) that the norm on L is uniformly monotone. Thus, since
L is complete, it is completely reticulated ([1], p. 249); i. e. every
non-empty subset of L bounded from above has a least upper bound.
Hence, by a theorem of Kakutani ([3], p. 998) in the form given by
Stone ([4], p. 85), L is isomorphic as a Riesz space to a space of
continuous functions on a compact Hausdorff space, if we entirely
ignore nowhere dense sets. If we do not ignore these sets, we obtain
a space of functions with a semi-norm, defined by the norm on L, which
satisfies the hypotheses given at the beginning of this section. Thus
we may now return to these hypotheses without loss of generality.

We now define a collection N of functions, which we call null func-
tions, by feN if there are flf /2, eL such that:

( a ) fn>\f\ for a l ln
and(b) H / J I - 0 .
Clearly if / e JVnL, | | / | | = 0. It is also clear that N is a lattice ideal
in the set of all functions on E; i. e. N is a linear subspace of this
set with the property that | / | < \g\ and ge N imply feN.

We define L'z)L by fe U if there are geL, he N such that / = g+h.
Clearly L' is a linear space. Suppose / = gx + hλ — g2 + h2 with gi e L,
h%e N (i = 1, 2). Then h, - h2 = g2 - g1 e LnN. Thus || g% - gλ \\ = 0.
Hence || g2 \\ = || gx + g2 ~ gx \\ < || gx \\ + || g2 - gx \\ = || gλ ||. Similarly
|| 0! || < || g2 \\. Hence || gx \\ = || g21|. It follows that we may define a
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semi-norm on U by defining || g + h || to be || g ||, where ge L and he N.
We next show that U is a lattice; i. e. that fλAf2eL' whenever

f19 f2 6 ZΛ Let f1 = g1 + hlf f2 = g2 + h2 with gt eL,hte N. Then gxAg2 e L.
We have f,Af2 = (& + hx) A (g2 + h2) < (gx + hi) A (g2 + hi) <g±Ag2 +
hi + hi. Thus fλAf2 - g1Ag2 < hi + hi. Similarly f,Af2 - g1 A g2 > -
hϊ — h2. Since N is a lattice ideal, fxAf2 — gλ A g2 e N. Hence fλAf2 e L'.

It is easy to check that 1/ satisfies all the hypotheses imposed above
on L. In addition, L' has the following property:

If fif Λ, eL' are positive, fn ] f pointwise and \\fn || < a for all
w, then / e L ' and | | / — /«| |->0. To see this we note that {||/n||} is
an increasing sequence of real numbers bounded from above by a; hence
it is a Cauchy sequence. Thus {||/w||p} is also a Cauchy sequence.
Whenever n > m we have | | fn - fm \Y < | | fn - fm + fm \\* - \\ fm \\p =

\\fn\\p - \\fm\\p by (3) above. Thus there is an / ' e U such that
11/' - fn II -> 0 by (1) above. Since fn<f for all n, f -fn>Γ ~f for
all n. Since f'-fneΠ, f -fn = gn + K with gneL, hne ΛΓ. By the
definiton of ΛΓ, we can find, for each n, a g'ne L such that ^^ > hn and
| | ^ | | < 1 M . Let / ; = ί/,, + Λ. Then f'n>gn + hn =f> -fn>f> -f.
Also | | / ; || < || gn \\ + \\g'n\\ < \\f - fn \\ + 1/^-0. By the definition of N,
f'-feN. Thus/eL' . Also | | / - fn \\ < \\f - / ' | | + 11/' ~ / J | - 0.

At this point, we replace L by L'; i. e. we write L for U.

LEMMA. Let feLbe positive. Let g be the characteristic function
of the set on which f differs from 0. Then ge L.

Proof. Clearly nfAl]g pointwise. Since || nfAl \\ < || 11|= 1 for
all n, geL by what has just been proved.

LEMMA. Let feLbe positive. Then there are positive flf f2, 6 L

such that fn\f pointwise, \\f — /„ II —>0, and each fn assumes only

finitely many values.

Proof. For each positive integer n, let fn be defined by: fn(x) =
2'n[2n(f A n)(x)] for all x e E. (By [a] we mean the largest integer
<a.) For each xe E, fn{x) = 2~n[2nf(x)] for large n; thus clearly
f(x). Hence fn—>f pointwise. We note

> i[

for each xeE. Hence fn\f pointwise. If we show fneL for all n,

we shall know | | / — / „ ||—»0 and the lemma will be proved.
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Let n be fixed. Let g19 g2, be functions on E defined by:

gt(x) = 1 if x is such that 2n(fΛn)(x) > i

g%(x) = 0 if x is such that 2n(fΛn)(x) < i .

We note that /„(»)= 2-n ΣΓ-i ft(»)- Since 2 B ( / Λ φ ) < 2 \ gt(x)=0
for all α; when i > 2nn. Thus /n(α) = 2~n Σί ΐ f lΦO Clearly each 1-g,
is the characteristic function of the set on which (2n(fΛn) — i)~ differs
from 0. Since (2n(fΛri) — i)-eL, l — gteL by the previous lemma;
hence g% e L. We note fn = 2~n ΣΪΛ9t which shows fne L and completes
the proof.

We now define a measure μ on the set E. Let A be a subset of
E. If fAf the characteristic function of A, is in L, we call A measurable
and put μ(A) = | |/^ | |p. The verification that μ is a countably additive
measure is trivial, making use of conditions (3) and (4) of our hypothesis,
except for the following: Let A19 A2y •••c.E' be pairwise disjoint and
measurable. Let fn be the characteristic function of Aλ U U 4
(n = 1, 2, •••). Then fn\f pointwise, where / is the characteristic
function of Uw=i An. By what has been shown above, feL and | |/—/J|—>0.

Thus / i ( Λ ) + ••• + μ(An) = \\fn\\*-+\\f\\* = μ(\jϊ_1An).

Next we consider the space Lp defined by μ. The functions in L
which assume only finitely many values are precisely the measurable
functions which assume only finitely many values. Clearly the given
semi-norm on L coincides with the Lp norm for such functions. It fol-
lows, by considering pointwise limits of increasing sequences of such
functions, that the functions in Lp are precisely those in L and that
the norms agree. Remembering that we modified the original L by
introducing null functions, we have the following theorem:

THEOREM. Let L be a Riesz space of functions on a set E. Sup-
pose there is a semi-norm on L which satisfies conditions (l)-(5) above.
Then there is a countably additive measure μ on E such that L is es-
sentially Lp with respect to μ; i. e. such that:

( a ) For every feL, \\f\\*=^\f\*dμ.

and ( b ) If f > 0 and \fpdμ< oo, then there is a g e L such that

f(x) = g(χ) for almost all x e E.

In the case p — 2, we can modify the hypotheses above. We sup-
pose that H is a Riesz space of functions. We also suppose that there
is a positive semi-definite bilinear form defined on H and that H is
complete in the semi-norm determined by this form. We also assume
that 11/11 < || 0 || whenever /, geH and 0 < / < g. Next suppose that
| | / + || < Il/H for all feH. Finally we suppose l e i J a n d || 11| = 1. We
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prove the following lemmas to show that H satisfies, with p = 2, the
hypotheses given at the beginning of the paper.

LEMMA. // /, ge H are positive, then (/, g) > 0.

Proof. We note / + ag > f > 0 for all a > 0. Thus \\f + ag\\ >

| | / 1 | . Hence we have 0 < \\f+ag\\>- | | / | | 2 = 2α(/, g) + a*\\g\\\ I t

follows t h a t 2(/, g) > - a \\ g | |2 for all a > 0. Hence (/, #) > 0.

LEMMA. If f, ge H are positive and f A g = 0, ί/κm (/, g) — 0.

Proof. We note / Λ (α^) = 0 for all α > 0. Hence (/ — ag)+ = /.

| | / | | | | ( / ^ ) | r | | / ^ | | | | / | | ( / ^ ) + ||/||
Hence α || (/1|2 > 2(/, g) for all α > 0. Thus (/, (/) < 0. By the previous
lemma, (/, g) > 0. Therefore (/, g) = 0.

LEMMA. | | / | | = || | / | || for all fe H.

Proof. We have | | / | | 2 - | | / + - / - ||2 = | | / + 1 | 2 - 2(/ + , / - ) + \\f~ ||2 -
| | / + + / - II2 - 4 ( / + , / - ) - II I/I ||2 - 4 C Γ , / - ) . But (/ + , / - ) - 0 by the
previous lemma.

LEMMA. | | / + g ||2 > 11/IΓ + 11 g 112 whenever /, # e i 7 a r e positive.

Proof. | | / + < / | | 2 - | | / | | 2 + 2 ( / , </) + || ff ||
2 > | | / | | 2 + || ̂  ||2 s i n c e

(/, g) > 0.

LEMMA. If f, ge H are positive and f A g = 0, £Λew | | / + g ||2 =

Proof. We have | | / + g | |2 = | | / 1 | 2 + 2(/, (/) + || ^ ||2 = \\f | |2 + || g \\\

Thus we have verified t h a t H satisfies the hypotheses for L with

p = 2. On this basis we prove:

THEOREM. Lei H be as described above. Then there is a count-
ably additive measure μ on E such that H is essentially L2 with respect
to μ; i. e. such that:

( a ) For every /, g e H, (/, g) = j /# dμ .

and ( b) 7/ / > 0 and \ / 2 dμ < oo, £/z,ew ί/z,ere is a g e H such that

f(x) = g(x) for almost all xeE.

Proof, In addition to what has been proved above, it is enough to
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note that the inner product may be expressed in terms of the norm in
the usual way.
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