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Introduction* Let A be a semi-simple commutative Banach algebra
with maximal ideal space Δ. Regarding the elements of A as functions
on Δ, we call a subalgebra B of A self-adjoint if corresponding to every
f e B the function / defined on Δ by f(x) = f(x) is also in B; we call
B separating if to every pair of distinct points x0, xλ e Δ there is an
feB such that f(x0) = 0, f{xλ) = 1.

If every separating self-adjoint subalgebra of A is dense in A, we
say that A has the Stone-Weierstrass property.

The Stone-Weierstrass property is related, to some extent at least,
to the ideal structure of A. For instance, it is obvious that if A has
a unit and a closed primary ideal / which is not maximal, then the
algebra generated by / and the constants is not dense in A. More
generally, suppose A is self-adjoint, I is a closed self-adjoint ideal in A
which is not the intersection of the regular maximal ideals containing
it, and A/1 is the direct sum of its radical and a subalgebra Bo. If h
is the canonical homomorphism of A onto A\I, then I + h~\BQ) is a
separating self-adjoint subalgebra of A which is not dense in A, so that
A does not have the S — W property.

Also, it was pointed out by Herz that the Schwartz counterexample
[9] to spectral synthesis in UiR*) yields immediately an example of a
closed, separating, self-adjoint, proper subalgebra of L\RZ). After
Malliavin's solution of the spectral synthesis problem for L\Γ), where
Γ is any locally compact abelian group, it was natural to investigate
the S — W property for these algebras.

In Part I (whose contents were announced in [5]) this is done for
Γ== Z, the additive group of the integers. The general case is settled
in Part II; the solution shows that the relation between the S — W
property and the ideal structure is, after all, not a very close one. Part
III deals with the relation between the self-adjointness of A and the
total disconnectedness of Δ.

For convenience of notation, we shall phrase our results on group
algebras in A(G) rather than in L\Γ). Here G and Γ are dual groups
of each other, and A(G) is the algebra of all Fourier transforms of
functions in L\Γ). The circle group (the dual of Z) will be denoted
by T, so that A(T) is the algebra of all absolutely convergent Fourier
series.

Since every locally compact abelian group is locally isomorphic to a
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compact group, nothing of interest is lost by restricting our attention
to algebras A(G) with G compact.

PART I

LEMMA 1.1. If g and its derivative gτ are in A(T), and if ε > 0,
0 < δ < π, there exists a function φ on T with the following proper-
ties:

( i ) 0 ^ 9 > ^ 1 ;
(ii) φ == 1 in some neighborhood of 0, φ = 0 outside (— δ, δ);
(iii) if h — φg, then \ nh(n) \ < ε (n — 0, ± 1 , ± 2 , •)•
Here h(n) denotes the wth Fourier coefficient of h:

( 1 ) h(n) = — Γ h(x)e~ίnxdx .
2π I-*

Proof. Let u be a continuous odd function on the real line, vanish-

S 2

u(s)ds = — 1,
and put

( 2 ) u(t) = — Γ t6(s)e-ίsίcίs (ί real).
2τr J-°°

Note that
(a) β(0) = 0,
(b) u is continuous,

(c) | | 6 | L < 1 , and
(d) ft(t)->0 as | t |—^ oo.
For r = 1, 2, 3, , put ur(x) = ru(rx). Then ώr(£) = u(t/r), and

the above mentioned properties of ίί show that there exists a sequence
of positive integers r% (which must increase sufficiently rapidly), so that

( 3 ) \ύri(t)+ ••• +urβ)\<l (fc = l , 2 , 3 , . . . treal).

Take τx and Λ so large that rλ > 2/δ and

( 4 )

(The subscripts A indicate that the norms are taken in A(T).) Define

(5 ) v == i- (urχ + + ur) ,

( 6 )

Our construction shows immediately that ψ has properties (i) and (ii)
of the temma. If h = φg, then hf = vg + φg\ Note that |<p(0)| g 2/(ττr1)
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and that

I φ(n) I = I v(n)/n | ^ | v(n) | ^ 1/fc

for n Φ 0, by (3) and (5). Thus

^ WQWA + ( + )\\g\\A < s ,

by (4), and the lemma is proved.

THEOREM 1.2. A(T) does not have the Stone-Weierstrass property.

Proof. We shall construct a totally disconnected perfect set P on
T and a function /, not equivalent to 0, which vanishes outside P, such
that I nf(n) | is bounded.

Once this is done, we let B[P] be the algebra of all twice con-
tinuously differentiable functions g on T such that g\x) = 0 for every
x e P. Since P is totally disconnected, B[P] is a separating (and evi-
dently self-adjoint) subalgebra of A(T). The bounded sequence {nf(n)}
defines a non-zero bounded linear functional U on L\Z), hence on A(T),
and ί7 annihilates £[P]: for g e B[P], the Fourier series of g' converges
uniformly, and we have

(7 ) Ug - Σ ff(-ttWfa) = -^- Γ /W0*0^ = 0 .
2Γ J

Hence B[P] is not dense in A(T), and the theorem follows.
Now to the construction of / and P. Put /0 = 1, and suppose that

fι is constructed, so that

( 8 ) I nfan) 1 ^ 1 - 2 " * (n = 0, ± 1, ±2, . .) .

Let Ii be the largest interval on which ft is identically 1, let x% be the
midpoint of Iif and choose ψt (by Lemma 1.1) such that

( i ) O ^ ^ g l ;
(ii) φ. = 1 in a neighborhood of α?t, ^ = 0 outside (a?€ — δ4, xt + δέ),

where δ, = 2rι~λ\
(iii) if hi = / ^ i , then | t*4(w) | < 2"*-1 for n = 0, ± 1 , ±2, .
Define /<+1 = / f(l - ^ ) . Then

I nfi+1(n) I ̂  I nhn) \ + \ nK%(n) | < 1 - 2" ί" 1 ,

so that our induction hypothesis (8) is satisfied with i + 1 in place of i.
The sequence {/J converges monotonically to a function/. Applying

the Lebesgue convergence theorem to the computation of f(n), (8) shows
that \nf(n)\ ^ | 1 . Our choice of the points xt shows that / = 0 on a
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dense open set V. Let P be the complement of V. Finally, observe
that / = 1 at those points at which every ψ% is 0, and this happens on
the complement of a set whose measure does not exceed 2 ΣίΓ δt < 2π.
Hence / = 1 on a set of positive measure. This completes the proof.

1.3. It was essential in our preceding construction to have P of

positive measure. For suppose m{P) — 0 and B[P] is defined as in the

proof of Theorem 1.2. If {cn} is any bounded sequence such that

Σ-o.crf(-n) = 0 for every g e B[P], and if f(x)~^o(cjn)einx, a

computation analogous to (7) shows that \ y^' = 0 for every g e B[P],

It follows that / must vanish outside P, and since m(P) — 0, cn = 0

for n Φ 0. Then c0 much also be 0, and we conclude that B[P] is dense

in A(T).

1.4. However, measure theoretic conditions on P are not enough.
To show this, we shall now construct a totally disconnected perfect set
P of positive measure, such that B[P] is dense in A(T). Our con-
struction will also show that for every function g e A(T) there exist
differentiate gn such that \\g — gn\\—>0 and g'n—>0 a.e.

Put nk — 2fc+1, iVfc = nλn2 nk9 let k = 1, 2, 3, ,

. _ / 2τr(j - 1)

and let Jfc be the union of those LkJ which have j = 1 (mod % ) . The
desired set P is the intersection of the complements of the /fc.

Since m(/fc) = 2πlnk, we see that m(P) ^ TΓ.
Let ^fc be the characteristic function of Iky and define

gk(t)dt .
o

Then fk(2π) = 2π, hence e ί/fc e A(T), and since fk is constant on each
interval of the complement of /fc, e4/* belongs to the closure B of B[P].

Next, fk(x) — x — hkiNjc-fl), where hk(0) = hk(2π) = 0, hk is linear
on [0, 2πlnk] and on [2πjnk9 2π]9 hh has period 2π, and

i (2π\ 2π 2π

Then ||Λ(a?) - a? || = || K(Nk-xx) || = || M Computation of the Fourier
coefficients of hκ (see 1.5 below) shows that || hk \\ —> 0 as k—* oo. It
follows that

|| = || 1 — e

i{f*{x)-χ) || -» 0

on k —> oo, so that 5 contains the function eίx
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Similarly, e~ix e B, hence B = A(T), and B[P] is dense in A{T).

1.5. Suppose 0 < a < 1/2, 6 > 0. Let h be linear on [0, a] and on
[α, 27r], such that h(0) = h(2π) = 0, and h(a) = 6. Then

2 2ττ — α rc^o % α

Hence ||Λ|| (the norm being taken in A{T)) is bounded by Cb log I/a,
where C is an absolute constant.

1.6. In our proof of Theorem 1.2 we could have chosen the inter-
vals on which φ% = 1 so that the resulting set P satisfies a certain
arithmetic condition which assures that P is a set of spectral synthesis.
The condition we have in mind is due Herz [3; Theorem 6.5]: there
should be an increasing sequence of integers nh such that a point 2πj[nk

either lies in P or its distance from P is at least 2πjnΊc.
. If P is so constructed, let I be the ideal in A(T) of all functions

vanishing on P. Since P is a set of spectral synthesis, I lies in the
closure B of B[P], B/Iis a proper subalgebra of A(T)/I, and the latter
algebra is semi-simple. Also, A(T) has no closed primary ideals. We
conclude:

A(T)\I is a semi-simple Banach algebra, without closed primary
ideals, which is not spanned by its set of idempotents, although its
maximal ideal space, P, is totally disconnected.

PART II

THEOREM 2.1. If A is a semi-simple commutative Banach algebra
which is spanned by its set of idempotents, then A has the Stone-
Weierstrass property.

Proof. Let B be the closure of a separating self-adjoint subalgebra
Bo of A. (Note that we do not assume that B is self-ad joint; see 3.3.)
Let Δ{A) and Δ{B) be the maximal ideal spaces of A and B. Since B
is separating, Δ{A) c Δ(B).

For any f e B, the norm of / is the same whether we consider /
as an element of A or of B. Hence the two spectral norms of / (in A
and in B) are the same, so that

(9) sup |/0*0l= sup|/(aO|(/eJS).
eΔ(B) QΔU)

In other words, the Silov boundary S of B [6; p. 80] lies in Δ(A).
The equation \ef\ — eEef shows that (9) holds with the real or im-

aginary part of / in place of | / | . Since BQ is self-ad joint on Δ(A), this
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maximum modulus property shows that Bo is also self-adjoint as an
algebra of functions on Δ(B). Since Bo is dense in B, Bo separates
points on Δ(B), and the Stone-Weierstrass theorem implies that every
continuous function on Δ{B) can be uniformly approximated by elements
of Bo. Thus S = Δ(B), and we conclude: Δ(B) = Δ(A).

Since A is spanned by its idempotents, Δ(A) is totally disconnected.
Silov's theorem on idempotents [10] thus applies to B and shows that
B contains every idempotent of A. Hence B = A, and the theorem is
proved.

THEOREM 2.2. Let G be a compact abelίan group. Then A(G) has
the Stone-Weierstrass property if and only if G is totally disconnected.

Proof. One half of the theorem is an immediate corollary of
Theorem 2.1.

To prove the other half, suppose G is not totally disconnected. Its
dual group Γ then contains an infinite cyclic group A which can be
mapped isomorphically onto Z. Regarding Z as a subgroup of Rd (the
additive group of the real numbers, with the discrete topology), the
divisibility of Rd [4] implies that our isomorphism of A onto Z can be
extended to a homomorphism of Γ into Rd. The duality theory for
compact and discrete abelian groups now shows that G contains a com-
pact subgroup K whose dual group K is a subgroup of Rd, and that
therefore K is a homomorphic image of the Bohr compactification of R.
It follows that K contains a dense one-parameter subgroup / .

We now use Theorem 1.2 to prove that A(K) does not have the
S — W property.

Note that a continuous function f on K belongs to A{K) if and
only if its restriction to J is of the form

(10) f(φ(t)) = Σ # w (« real),

Σ I a(s) I < °° here φ is a fixed continuous isomorphism of R onto
J. Conversely, every function of the form (10) has a continuous exten-
sion to K.

A lemma of Wiener [11; p. 80] implies that the functions f{φ) of
the form (10) are locally the same as the members of A(T). Let a =
[—π + ε, π — ε], for some fixed ε > 0. Choose Pea, as in the proof
of Theorem 1.2, so that B[P] is not dense in A(T), and let Bx be the
algebra of all / e A(K) such that f(φ(t)) coincides with a function in
B[P] on a. Then Bλ is a separating self-adjoint subalgebra of A{K)
which is not dense in A(K), and A{K) does not have the S — W prop-
erty.

Finally, we take all / e A(G) whose restriction to K lies in Blf and
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we obtain a separating self-adjoint subalgebra of A(G) which is not
•dense in A(G).

This completes the proof.

2.3. Suppose G is a totally disconnected infinite compact abelian
•group, E is a compact subset of G which is not of spectral synthesis
{such sets exist [7]), I is the ideal in A(G) consisting of all / which
Ύanish on E, and Io is the closure of the ideal consisting of all / which
Tanish on a neighborhood of E.

Define B ~ A(G)II0. If the idempotents in B spanned a proper
closed subalgebra Bf of B, the inverse image of B' under the canonical
homomorphism of A(G) onto B would be a proper, closed, separating,
self-adjoint subalgebra of A(G), in contradiction to Theorem 2.2. The
radical of B is ///0, which by a theorem of Helson [2], is infinite dimen-
sional. We conclude:

B is a commutative Banach algebra which is spanned by its
idempotents and whose radical R is infinite dimensional.

We shall show, furthermore, that B has no subalgebra C, algebrai-
cally isomorphic to B/R, such that B is the direct sum C + R.

Thus the Wedderburn principal theorem does not hold for B.
Feldman has constructed an algebra, spanned by its idempotents,

with one dimensional radical R, which is not the direct sum of 12 and
any closed subalgebra; however, his algebra is the direct sum of R and
a non-closed subalgebra [1; Theorem 6.1].

Suppose C is a subalgebra of B, and B = C + R. Let h be the
natural isomorphism of the semi-simple Banach algebra B/R onto C(i.e.,
into B). Let e', e" be the characteristic functions of disjoint compact
sets E\ E" whose union is E, and define B' = e'B, C" = e'C, R' = e'R.
A result of Bade and Curtis [1; Theorems 3.7, 3.9], combined with the
fact that A(G) has no primary ideals, shows that Ef can be chosen so
that

(a) the restriction of h to e' (BjR) = B'jR' is continuous,
(β) Bf is not semi-simple.
Since h"1 is continuous (by the definition of the quotient norm), (a)

implies that C" = h(B'/Rf) is a closed subalgebra of Bf. Since
(a) C contains all idempotents of B\
(b) these idempotents span B' (by the same reasoning that applied

to B), and
(c) C is closed, we conclude that C" = B', so that B' is semi-

simple, in contradiction to (β).
The preceding argument yields a more general result:

THEOREM 2.4. Suppose A is a regular commutative Banach algebra
without primary ideals, and suppose E is a compact subset of the
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maximal ideal space of A. If B — A/IQ(E) is spanned by its idem-
potents and if B is not semi-simple, then the Wedderburn theorem
does not hold for B.

Bade and Curtis, in an as yet unpublished paper "The Wedderburn
decomposition of commutative Banach algebras", have constructed other
examples of commutative Banach algebras in which the radical cannot
be split off algebraically.

PART III

3.1. The standard examples of non-self-ad joint Banach algebras
involve analytic functions of one or more complex variables, and their
maximal ideal spaces are at least two-dimensional. Before turning to>
the construction of examples with totally disconnected maximal ideal,
space, we insert two remarks.

(a) / / A is semi-simple and self-adjoint, then there is a constant
M such that \\f\\ ^ ikf | | / | | for every f e A.

Indeed, considering A as a Banach space over the real field, the
map /—• / i s linear; the closed graph theorem applies (since A is semi-
simple) and shows that this map is continuous.

(b) / / a semi-simple Banach algebra A has a dense self-adjoint
subalgebra B, and if the map f—>f is bounded on B, then A is self-
ad joint.

This is obvious. (It was tacitly used in 2.3, in the assertion that
B' is self-ad joint.) We mention (b) mainly because of the two examples
which follow. In 3.2 we construct an algebra which is not self-adjoint,
although the map /—>/ is bounded on a separating subalgebra; the
algebra constructed in 3.3 contains a dense self-adjoint subalgebra al-
though it is not itself self-ad joint. In both examples, the maximal ideal
spaces are totally disconnected.

3.2. Let {zn} be a sequence of complex numbers, with 0 < | zn | < 1,.
such that zn—>0 as w—>oo, and such that the sequence {zj\zn\} iŝ
dense on the unit circle.

Let A be the algebra of all sequences a = {an}, n = 1, 2, 3, , with,
termwise addition and multiplication, for which the limit

L(a) = lim ^~

exists as a finite number; norm A by

I a 11 = sup

Then A is a Banach algebra. Let B be the set of all a e A for which.
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L{a) = 0. Since L(ab) = 0 whenever a e A and b e B, B is a closed
ideal in A. Furthermore, if eΛ e A is the sequence whose Kth term is
1, while all others are 0, it is easily verified that B is the closure of
the set of all finite linear combinations of the ek; in other words, B is
.spanned by the idempotents of A.

Let h be a homomorphism of A onto the complex field. If h(B) = 0,
then [h(a)f = h(a2) = 0 for every a e A (since α2 e B), a contradiction.
Thus h(eΛ) Φ 0 for some k, and h(ek)h(a) = fc(eΛα) = αΛ^(efc), so that λ(α) =
αfc for all α e l

It follows that A is semi-simple, and that its maximal ideal space
is discrete and countable. By 3.1 (b), B is self-ad joint.

Suppose next that a e A and a is real. Then

L(a) = lim —

Since {| zn \ Jzn} is dense on the unit circle, and since an is real, this
€an exist only when it is 0. Hence a e B.

Thus if a e A and a e A, then a + a e B and i(α — a) e B, so that
α e B. We summarize:

i iδ α commutative semi-simple Banach algebra whose maximal
ideal space is discrete and countable; A contains a proper, closed,
separating ideal B which consists precisely of the self-adjoint elements
of A.

The non-self-adjoint algebra A is, in turn, a closed ideal in the
self-adjoint algebra Aλ which consists of all sequences a such that
j |α | |=sup n |α n /s n | < °°.

The last assertion follows from the inclusions A AX c B c A.

3.3. Our next example is a regular semi-simple commutative
Banach algebra A which is not self-adjoint, although it is spanned by
its idempotents.*

Since the algebra of all finite linear combinations of idempotents is
always self-adjoint, we see that A contains a dense self-adjoint sub-
algebra.

Define wn — \ if n ^ 0, wn = 1 + log (n + 1) if n ^ 1, and let Ao

be the algebra of all functions / of the form

fix) = %^inx

for which the norm

is finite.
* Added in proof. Other algebras with this property were found by Coddington (Proc.

Amer. Math. Soc. 8 (1957), 258-261).
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The inequality wn+m ^ wnwm shows that AQ is a Banach algebra and
it is easily verified that its maximal ideal space is unit circle T. Since
AQ contains every / with two continuous derivatives, AQ is regular, i.e.,
given any two disjoint compact sets CQ and Cx on T, there exists / e Aθ!

such that / = 0 on Co, f — 1 on Cx. Wermer has pointed out that al-
gebras like AQ furnish simple examples of non-self-adjoint algebras with
one-dimensional maximal ideal space.

Given a rapidly increasing sequence of positive integers pk (k =
1,2,3, . . . ) , let

L, ψ) α a , s r t ) ,
let Ik be the union of those LJιk with j = 1 (mod pk), and define P to-
be the intersection of the complements of the sets Ik.

Our desired algebra A is the restriction of Ao to P.
We first prove that A is spanned by its idempotents. As in 1.4,.

gk(t)dt .
0

Then e4/* e AOf and fk(x) — x = hk{pkx), where hk(0) = M2ττ) = 0, fcfc is
linear on [0, 2πlpk] and on [2π/pfc, 2π], and

h ( — λ - 27Γ — 2π

k^ Vic ' Pic Vl

We have

II hk{pkx) Ho = Σ I Mn) I wn
nPk

The Fourier series of hk is exhibited in 1.5, with a — 2π\pk, b —
a simple computation now shows that

\\k(pk)\\Q<
PlC

which tends to 0 as k -^ <». As in 1.4, it follows that || eίx - β^*^ ||0-> 0
as k —* co.

Since βi/fc is constant on each arc contiguous to Ik, the restriction
of ei/fc to P is a finite linear combination of idempotents of A. It fol-
lows that the restriction of eix to P is in the span of the idempotents;
the same is true of e~ix, and hence A is spanned by its idempotents.

It remains to be shown that {pk} can be so chosen that A will not
be self-adjoint. We do this inductively.

Let Pfc be the complement of Iλ U U /*, and let Ak be the re-
striction of Ao to Pk. We claim that Ak is not self-adjoint. To prove
this, note that Ak contains the restriction to Pfc of all f(x) = Σ°-~αweίw;c

with Σ-oo I Q<n I < °° If Ak were self-adjoint, it would follow that Ak

consists of all restrictions of functions in A(T) to Pfc, and since Pfc
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contains an arc, this would imply that A{T) and Ao coincide locally.
Being regular, these algebras would therefore have to be the same, a
contradiction.

Let c(n, k) be the A^norm of the restriction of einx to Pfc, i.e.,

(11) c(n, k) = inf {||/||0: f(χ) - e«»* on P J

(n = 09 ± 1 , ± 2 , . . . ) .

Since c(nf k) = 1 for w S 0 and ^4fc is not self-adjoint, 3.1 (b) shows that
c(n, k) is unbounded as n —> + co. In particular, there exists w* such
that

(12) c(nk, k)>k.

We now claim that there exists Sk > 0 with the following property:
If 0 ̂  n ̂  k, if V is an open set with m(V) < δk, if g e AQ and

g(x) - ein* on Pk - F, then \\g\\0> c(n, k) - 2~*.
Suppose this is false. Then there exists
( i ) an integer n, 0 g % ̂  %,
(ii) open sets Vr with m(Vr) < 2rr (r = 1, 2, 3, .),
(iii) grr e Ao satisfying gr(x) = βίwx on Pfc — F r , such that
(iv) \\gr\\oίίc(n,k)-2-\
By (iv), the diagonal process yields a sequence {rj such that

converges, say to am, for m = 0, ± 1 , ± 2 , •••. Put

(13)

Then # e Ao, and

(14) \\g\\0£c(n,k)-2-«.

For every / e L(Γ), \ grif—* \ θf as i —> oo. Combined with (ii) and (Hi),

this shows that g(x) = e*w:c a.e. on Pk, and since ^ is continuous, this

equality holds everywhere on Pk. But then (14) contradicts (11), the

definition of c(n, k).
Having determined Sk, we choose Pk+1 so that 2π — m(Pk+1) < (l/2)δfc,

i.e., so that m(Ik+1) < (l/2)8ft, and we furthermore subject the sequence
{PJ to the requirement

m(Ik+1) + m(Ik+2) H < δk .

Then m{Ph — P) < δΛ for every k, and it follows that the A-norm
of the restriction of eίWfcX to P is not less than c(nk, k) — 1, i.e., not
less than k — 1, by (12). Since the restrictions of the trigonometric
polynomials to P are dense in A, 3.1 (b) implies that A is not self-
ad joint. This completes the proof.
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3.4. We conclude with a theorem which shows that under certain
conditions the hypothesis of self-adjointness can be dropped from the
Stone-Weierstrass theorem (a special case of this appeared in [8]):

THEOREM. If A is a semi-simple commutative Banach algebra
which is spanned by its idempotents and whose maximal ideal space
contains no perfect subset, then every separating subalgebra of A is
dense in A.

Proof. Let B be a closed separating subalgebra of A, and denote
the maximal ideal spaces of A and B by Δ(A) and Δ(B).

Fix x0, xx 6 Δ(A), %0 Ψ xλ. There exists f e B such that f(x0) = 0,
f(xλ) = 1. Since Δ{A) has no perfect subsets, f{Δ{A)) U {0} is a compact
countable subset of the complex plane [8].

Suppose there is a point y e Δ(B) such that f(y) Φ 0 and f(y) is
not in f(Δ(A)). Then there is a polynomial P(z) =^anz

n such that

i P(f(v)) I > sup {|/(s) ]: z e f(Δ(A))} ,

and the function P(f), which belongs to B, does not attain its maximum
modulus (relative to Δ{B)) on Δ(A). But the Silov boundary of B is in
A(A), as in the proof of Theorem 2.1, and we have a contradiction.

Thus f(Δ(B)) = f(Δ(A)).
We can therefore find disjoint open sets V, W in the plane, such

that 0 e V, 1 e W, f{Δ{B)) c FU W. Define g = 0 on V, g = 1 on W.
The theorem on analytic functions in Banach algebras [6; p. 78] shows
that g(f) e B. That is to say, B contains the characteristic function
of a compact open set E c Δ(A) such that xx e E but x0 $ E.

Since x0, x± were arbitrary, the sets E so obtained form a basis for
the topology of Δ(A). This implies that B contains the characteristic
function of every compact open set in Δ(A), and so B = A.

This proof, unlike our proof of Theorem 2.1, does not use Silov's
theorem on idempotents. In fact, the preceding proof establishes Silov's
theorem in the special case in which Δ(A) contains no perfect set.
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