
COMPLETE HOLOMORPHS

JOHN HARVEY

1. Introduction, Throughout this paper let G be an additive group,
and denote the group of all automorphisms of G by A(G) and the holo-
morph of G by K(G). Then K(G) = A(G) x G, where (α, a) + (β, b) ==
(α/3, α/3 + b) for all elements (a, a) and (/3, 6) of K(G). We prove that
if G is abelian and x —* 2x is an automorphism of G, then K(G) is com-
plete if and only if G' = 1 x G is a characteristic subgroup of K(G).
From this it follows that if G is abelian, x —> 2x is an automorphism of
G, and -A(G) is abelian, then K{G) is complete.

In § 3 we derive analogous results for ordered abelian groups. Then
we show that any divisible, torsion free, abelian group can be ordered
so that its o-holomorph is o-complete. It is known (see [2]) that the
holomorph of a non-abelian group is not complete. In § 4 we give an
example of a non-abelian o-group with an o-complete o-holomorph. Finally,
we show that the lexicographically ordered direct sum of two o-complete
groups is again o-complete.

2. Complete holomorphs. Recall that a group is complete if it
has a trivial center and all of its automorphisms are inner.

In 1957, W. Peremans [3] investigated under what conditions the
holomorph of an abelian group is complete. He was able to derive a
necessary and sufficient condition for the holomorph to be complete when
x —> 2x is an automorphism of the group. Using this result he was then
able to prove that if x-^2x is an automorphism of the group and if
the group is either directly indecomposable, the direct sum of cyclic
groups, or is divisible, then the holomorph is complete.

We derive a necessary and sufficient condition which is simpler in
statement than that of Peremans. However, before this theorem can
be proved some preliminary lemmas are necessary which have independent
interest. Let B be a subgroup of A(G), and let τ be a mapping from
B into G. Then τ is a crossed homomorphism if for all a and β in B,

(aβ)τ = (aτ)β + βτ .

LEMMA 2.1. Let G be an abelian group. If τ is a crossed homo-
morphism of A(G) into G, then the mapping χ of K(G) into itself
defined by
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(a, a)χ = (a, aτ + α)

is an automorphism of K{G) which induces the identity automorphism
on G'. Conversely, if χ is an automorphism of K{G) and if χ induces
the identity automorphism on G', then there exists a crossed homomor-
phism τ mapping A(G) into G such that for all {a, a) in K{G)

(a, a)χ = (a, aτ + a) .

Proof. The first part of this lemma follows by an easy computation
which we leave to the reader.

Suppose that χ is an element of the automorphism group of K(G)
and that χ induces the identity automorphism on G'. If to a) is an
element of K(G), then

to a)χ = to 0)χ + (1, a)χ
= (aσ, aτ) + (1, a)

= {aσ, aτ + a) ,

where 1(7 = 1 and lτ = 0.
For (a, a) and (β, 6) belonging to K(G) we have

((or, α) + (/9, δ))χ = (aβ, aβ + δ)χ

= ((aβ)σ, {aβ)τ + aβ + b)

and

to <*)χ + (/3, 6)Z = ( « ^ α^" + α) + (£*> ^ + &)

= (α(7^<j, (ατ + α)/3o + βτ + b) .

Therefore,

(aβ)τ + aβ^ (aτ)(βσ) + a(βσ) + βτ .

If a = 1, then for all α in (?, α^ = a(βσ). Hence, for all /8 in A(G),
β = /5σ, and thus, σ = 1. Thus, we have that (aβ)τ = (ατ)/9 + /9r, and
to )̂5C - to ^r + α).

LEMMA 2.2. // G is an abelian group such that x —-• 2x is an auto-
morphism of G, and if χ is an automorphism of K(G) such that
Q'χ — G\ then χ is an inner automorphism of K(G).

Proof. Since G'χ = G', there exists an inner automorphism 8 of
K(G) such that χ = 8 on Gr. Let χx = χδ"1. Then χx induces the identity
automorphism on (?', and if we can show that χx is an inner automor-
phism of K(G), then we will also have shown that χ is an inner auto-
morphism of K(G). Hence, we will consider χι instead of χ.
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By Lemma 2.1 we know that (a, a)χx = (a, aτ + a) where τ is a
crossed homomorphism mapping A(G) into G. Let 2 be the automorphism
α2 = 2α, where α is in G. Since τ is a crossed homomorphism and
c& — 2a for all a in A(G), we have

2(aτ) + 2τ = (a2)τ = (2α:)r = (2r)α + ατ .

Hence,

aτ = (2τ)α - 2τ .

Then, for all (a, a) in iΓ(G),

(1, 2τ) + (α, α) - (1, 2τ) - (or, (2τ)a + a) + (1, -2r)

= (a, (2τ)a -~2τ + α)

= (α, α:τ + α)

LEMMA 2.3. Suppose that G is an abelίan group and that D is a
non-trivial subgroup of A(G). Then the natural splitting extension H
of G by D has a non-trivial center if and only if there exists a non-
zero element a of G such that aa — a for all elements a of D.

Proof. We have that H = DxG where (a, a) + (β, b) = (aβ, aβ + b)
for all (a, a) and (β, b) in H.

Suppose there exists a nonzero element a of G such that aa — a for
all a in D. Then (1, a) is an element of the center of H, and (1, a) Φ
(1, 0).

Now suppose that (β, b) is an element of the center of H such that
(β, b) Φ (1, 0). Then, for all (a, a) in H,

(a, a) + (β, b) = (β, b) + (or, a) .

Thus, for all a in D and all a in G, aβ = βa, and aβ + b = ba + a.
If a — 1, then, for all α in G, α/9 = α. Thus, β = 1. Hence, b — ba
for all α: in D, and since /? = 1, b must be nonzero for otherwise 08, 6) =
(1, 0).

THEOREM 2.1. // G is an abelian group in which x —• 2x is an
automorphism, then K{G) is complete if and only if Gr is characteristic
in K(G).

Proof. It follows from Lemma 2.3 that the center of K(G) is
trivial since x-+2x leaves no point of G fixed. If K(G) is complete,
then every automorphism of K(G) is inner, and thus, since G' is normal
in K{G), Gf is characteristic.
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Next suppose that χ is an automorphism of K{G) and that G' is
characteristic in K(G). Then G'χ = G', and hence, by Lemma 2.2, χ is
an inner automorphism of K(G). Thus, K(G) is complete.

If G is finite, then the theorem gives the known result that the
holomorph K(G) of an abelian group of odd order is complete if and
only if Gr is characteristic in K{G). In this case the mapping x —> 2x
is clearly an automorphism of G.

COROLLARY 2.1. If G is an abelian group in which x—>2x is an
automorphism and if A(G) is abelian, then K{G) is complete.

Proof. It is well known that the commutator subgroup of a group
is always a characteristic subgroup; hence, if we can show that Gf is
the commutator subgroup of K(G), then by theorem 2.1, K(G) will be
complete.

Since K(G)IGr is isomorphic to A(G) and A(G) is abelian, G' contains
the commutator subgroup. Also, for any (1, a) in K(G) and any b in G,

- ( 1 , a) - (2, b) + (1, a) + (2, b) = (1, α) .

Thus, every element of G' is a commutator.

3 o-complete o*holotnorphs The ideas of completeness and the
holomorph can be carried over into the theory of (linearly) ordered groups.
An o-group is o-complete if its center is trivial and all of its o-automor-
phisms are inner. Suppose that G is an o-group and that the group
A0(G) of all o-automorphisms of G can be ordered. We define the
o-holomorph of G to be the subgroup K0(G) = A0(G) x G of K{G). Let
{a, a) be positive if a is positive or if a = 1 and a is positive in G.
Then it is easy to verify that K0(G) is an o-group with respect to this
definition and that Gf is a normal convex subgroup of K0(G).

It is known that an o-group is o-complete if and only if it is a direct
summand in any o-group which contains it as a normal convex subgroup.
The proof is a slight variation of the classical proof for non-ordered
complete groups.

THEOREM 3.1. Let G be an abelian o-group for which AJG) can
be ordered. If τ is a crossed homomorphism of A0(G) into G, then the
mapping χ from K0(G) into K0(G) defined by

(a, a)χ = (a, aτ + a)

is an order preserving automorphism of KQ(G) which induces the identi-
ty automorphism on Gf. Conversely, if χ is an order preserving auto-
morphism of K0(G) and if χ induces the identity automorphism on G',
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then there exists a crossed homomorphίsm τ mapping AQ(G) into G such
that for all (a, a) in K0(G),

(a, a)χ = (a, aτ + a) .

The proof is identical with the proof of Lemma 2.1. One only need
verify that the mapping {a, a)χ = (a, aτ + α) preserves order (when (a, a)
is in K0(G) and τ is a crossed homomorphism). But if 1 < a, then (a, a)
and (a, aτ + a) are positive, and if a — 1 and 0 < α, then (a, aτ + a) —
(1, a) is positive.

COROLLARY 3.1. Suppose that G is an abelian o-group in which
x —> 2x is an automorphism and for which A0(G) can be ordered. If
X is an order preserving automorphism of K0(G) such that G'χ = G',
then χ is an inner automorphism of K0(G).

This corollary follows at once from the proof of Lemma 2.2 and the
fact that an inner automorphism of an o-group is an o-automorphism.

If G is an o-group, then a subgroup C of G is said to be o-charac-
teristic if Cδ = C for all δ in A0(G).

THEOREM 3.2. Suppose that G is an abelian o-group in which
x —> 2x is an automorphism and for which A0(G) can be ordered. Then
K0(G) is o-complete if and only if G! is o-characteristic in K0(G).

The proof of this theorem is analogous to the proof of Theorem 2.1.
Suppose that G is an o-group and that C and C" are two convex

subgroups of G. Then C covers C if C contains C" and there is no
convex subgroup of G between C and C". Let Γ be the set of all
ordered pairs (G", Gα) of convex subgroups such that G* covers Gα.
Define (G", Ga) > (Gβ, Gβ) if GΛ contains Gβ. This orders Γ. We can
regard Γ as an ordered set a, β, γ, . The order type of Γ is the
rank of G. The set Γ will be called the rank set of G. The groups
G^/Ga for a in Γ are the components of G.

COROLLARY 3.2. If G is an abelian o-group in which x —• 2x is an
automorphism and for which AQ(G) can be ordered, and if G has well-
ordered rank, than K0(G) is o-complete.

Before we prove this corollary, we shall prove a lemma concerning
well-ordered subsets of an ordered set.

LEMMA 3.1. // L is an ordered set, if W is a well-ordered convex
subset of L, and if f is a one-to-one, order preserving mapping of L
onto itself such that f(8) = δ where 8 is the least element of W, then
f(a) = a for all a in W.
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Proof. Suppose a is any element of W such that a Ψ δ. Then
[δ, a] is a well-ordered subset of L. Suppose f{a) Φ a. Then either
f{a) < a or f'^cc) < α:. Without loss of generality we may assume that
f(a) < a. Then / is a one-to-one mapping of [δ, a] into itself. Hence,
oc ̂  f{oc) which is a contradiction to our assumption. Thus, f(ά) = α for
all α in W.

Proof of Corollary 2.2. The rank set of K0(G) is an ordered set.
Since G has well-ordered rank, the rank set of K0(G) contains a well-
ordered convex subset—the rank set of G. Now any order preserving
automorphism of K0(G) induces a one-to-one, order preserving mapping
of the rank set of K0(G) onto itself. By Lemma 3.1 this order preserv-
ing mapping is the identity on the rank set of G. But this means that
Gf is o-characteristic, and therefore by Theorem 3.2, we see that K0(G)
is o-complete.

It is well known that a torsion free abelian group can be ordered,
and as mentioned before, Peremans has shown that the holomorph of a
divisible abelian group is complete. It does not seem likely that for
every ordering of a divisible, torsion free, abelian group it will be possi-
ble to order the resulting group of order preserving automorphisms.
However, Conrad [1] has proved the following useful result:

If G is an o-group of well-ordered rank each of whose components
is isomorphic to the additive group of rational numbers, then A0(G) can
be ordered.

This result together with Corollary 3.2 gives us the following theorem.

THEOREM 3.3. Any divisible, torsion free, abelian group can be
ordered so that

(1) A0(G) can be ordered and
(2) KQ(G) is o-complete.

Proof. A divisible, torsion free, abelian group G is a rational vector
space. Hence we can choose a basis A for G and well-order A. If g
is any nonzero element of G, then g — rλaλ + r2a2 + + rnan where
the rt are nonzero rational numbers and the a{ are elements of the basis
A. Without loss of generality we may assume that ax < a2 < < an

in the well-ordering of A. We will say that g in G is positive if 0 < rn.
Then G is an o-group with well-ordered rank each of whose components
is o-isomorphic to the rational numbers. Thus, by the result of Conrad
stated above, A0(G) can be ordered, and by Corollary 3.2, K0(G) is o-com-
plete.

REMARK. It is well known that any torsion free abelian group is
contained in a unique (to within an isomorphism) minimal divisible group
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which is also torsion free and abelian. Thus, any torsion free abelian
group is contained is an o-complete group.

4* Examples of o-comρlete groups* This section will consist of
several examples of o-complete groups and a theorem which concerns
direct sums of o-complete groups.

A small amount of notation needs to be introduced at this time. If
G and H are groups, then Horn (G, H) will denote the set of all homo-
morphisms mapping G into H. Throughout the examples R will denote
the additive group of real numbers with their natural order, R will de-
note the additive group of rational numbers with their (unique) natural
order, Rf will denote the multiplicative group of positive real numbers,
and Rr will denote the multiplicative group of positive rational numbers.

EXAMPLE I. The o-automorphism group of R is (isomorphic to) R'.
Give Rf its natural order. Then K0(R) is o-complete by Corollary 3.2.
It should be noted that K0(R) is (isomorphic to) the multiplicative group
of 2 x 2 matrices of the form

a 0

b 1

where a is in R! and b is in R. Such a matrix is posivive if 1 < a or
1 = a and 0 < b. Also note that K0(R) is of rank two.

EXAMPLE II. Let M be the additive group of all rationale of the
form m/2n where m and n are integers, and let M have its natural order.
Let N be the cyclic subgroup of Rf generated by 2. Notice that neither
M nor any of its proper subgroups are divisible; hence Horn (12, M) = 0.

Let G = R © M where (alf α2) in G is positive if aλ > 0 or aλ = 0
and a2 > 0. Then G is an abelian o-group of rank 2. Then since
Horn {Rf M) = 0, if φ is an element of A0(G) then ψ = (p19 p2) where p,
is in R' and p2 is in JV, and conversely, if φ = (p19 p2) where pλ is in Rr

and p2 is in N, then φ is in A0(G), i.e., A0(G) = R'® N. Now 12' is a
free abelian group of countable rank, and so is R'<g> N. Thus, Rr is
isomorphic to jβ'(g) JNΓ. Define an element of Rf ® N to be positive if
its image in R' is positive, where Rf is given its natural order. Then
12' 0 N is an abelian o-group of rank one, and so by Corollary 3.2 K0(G)
is o-complete and of rank three.

EXAMPLE III. Let G = R($R where (αx, α3) in G is positive if
0 < aλ or 0 = ax and 0 < α2. Then it is easy to show that A0(G) is iso-
morphic to the group of 2 x 2 matrices of the form
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a c

0 b

where a and b are elements of R' and c is in R. Such a matrix is
positive if 1 < a or 1 = a and 1 <b or 1 = a = 6 and 0 < c. Then,
A0(G) is an o-group of rank three. By Corollary 3.2, KQ(G) is o-complete,
and we observe that K0(G) is of rank five.

The above three examples show that there are o-complete groups of
rank two, three, and five. Using the next theorem we can show that
there are o-complete groups for every finite rank greater than one.

Throughout the following discussion, let D and N be o-groups. To
avoid confusion let the identity element of D be denoted by θ and that
of N by 0. Whenever G = D φ N we will always order G as follows:
{a, a) in G is positive if θ < a or θ — a and 0 < α.

LEMMA 4.1. Suppose that G = D 0 N and that the center of N is
trivial. If N' = θ x N is ^-characteristic in G, then A0(G) is isomorphic
to A,{D) <g) AQ(N).

Proof. If φ is in AQ(G) and if (a, a) and (β, b) are in G, then

(a, a)φ = (a, 0)φ + (θ, a)φ - (g(a), h(a)) + (θ, P(a))

), h(a) + P{a))

where P is in AQ(N) and h(θ) = 0.

((or, α) + 08, &))0 - (a + £, α + b)φ

= (g{a + β), h(a + β) + P(a + b))

(a, a)φ + OS, b)φ = ((g(a), h{a) + P(a)) + (flrO3), Λ03) + P(b))

= (g(a) + g(β), h(a) + P(a) + h(β) + P(b)) .

Hence, g(a + β) = g(a) + g(β), and it follows by an easy argument that
g is an element of A0(D). Also,

h(a + β) + P(a) = h(a) + P(a) + h(β) .

If a — θ, then for all a in N and β in D,

h(β) + P(a) = P(a) + h(β) .

Therefore, h(β) is in the center of N (which is trivial) for all β in D,
and hence, {a, a)φ — (g(a), P{a)). It follows that the mapping of φ upon
(g, P) is an isomorphism of AQ(G) onto AQ(D) (g) AQ(N).

THEOREM 4.1. Suppose that G = J5© N. Then G is o-complete if
and only if D and N are o-complete and Nr is o-characteristic in G.
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Proof. Let us denote the center of a group G by Z(G).

First suppose that G is o-complete. Then since 0 = Z(G) = Z(D)Q)Z(N),
D and N have trivial centers. Consider S in A0(N) and (a, a) in G.
Define the mapping φ of G into itself by

(α, α)φ = (a, aS) .

Clearly, φ is in A0(G), and since G is o-complete there exists (β, δ) in G
such that

(a, aS) = (α, α)φ = - ( £ , 6) + (α, α) + (/3, δ)

= (-/3 + α + /3, - 6 + a + b) .

Thus, α δ — — b + a + b, and hence, iV is o-complete. By a similar argu-
ment D is o-complete. Since G is o-complete and Nr is a normal convex
subgroup of G, it is clear that N' is o-characteristic in G.

Finally, suppose that D and N are o-complete and that N' is o-charac-
teristic in G. If φ is in A0(G), then by Lemma 4.1, we have that φ is
equivalent to (g, P), where g is in Λ(-D) and P is in A0(ΛΓ). Since D
and JV are both o-complete there exists β in D and δ in ΛΓ such that
for all a in N, P(a) = — δ + α + δ, and for all <2 in D, g(a) — —β +
a + β. Therefore, for all (a, a) in G.

(α, α )φ = (-β + a + β, -b + α + δ)

Thus, φ is an inner automorphism. Since Z{D) and Z(N) are both
trivial it is clear that Z(G) must be trivial, and hence, G is o-complete.

The second half of Theorem 4.1 may be used to construct further
examples of o-complete groups. Using the examples given in the first
portion of this section we see that we can easily construct o-complete
groups for any finite rank greater than one.

Suppose that G is an o-group such that A0(G) can be ordered and
K0(G) is o-complete. Then A0(K0(G)) is isomorphic to K0(G), and hence,
inherits an order. Since K0(G) is o-complete and since every o-complete
group is a direct summand of any o-group which contains it as a normal
convex subgroup, we have that K0(KQ(G)) = T 0 K0(G) where T is o-iso-
morphic to A0(K0(G)). Therefore, KQ(K0(G)) is o-complete if and only if
K0(G) is o-characteristic (by Theorem 4.1). In particular, if KQ(G) has
well-ordered rank, then K0(K0(G)) is o-complete. Thus, the second o-holo-
morphs of any one of the examples are o-complete.

Added in Proof. It has been pointed out to the author by Profes-
sor W. Peremans that Theorem 2.1 of this paper has previously appeared
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as "Satz*" on page 101 of W. Specht, Gruppentheorίe (Springer, 1956).
However the proof given by Specht is different from the one given
here, and the proof given by Specht is not applicable for o-groups (c.f.
Theorem 3.2)
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