
OPERATORS OF MEROMORPHIC TYPE WITH MULTIPLE

POLES OF THE RESOLVENT

JOHN DERR AND ANGUS E. TAYLOR

1* Introduction. Let X be a complex Banach space and let A be a
bounded linear operator on Xsuch that the spectrum o{A) is a denumerable
set of points with λ = 0 as the only point of accumulation. Suppose,
also, that each nonzero point of σ(A) is a pole of the resolvent Rk{A).
Then we shall call A an operator of meromorphic type.

Let λ2, λ2, be an enumeration of the distinct nonzero points of σ{A),
and let En be the residue of Rλ{A) at λΛ. Then El = En, En Φθ,EnΦ /,
and EnEm — 0 if m Φ n. Moreover, En commutes with A. If the order
of the pole at λn is qn, then

(A - \n)'*EΛ = 0 , (A - Xny^En Φ 0 .

When qn > 1, the singular part of the Laurent expansion of Rk{A) in
the neighborhood of λ,, is

(1) SΛ\) — — + y\ ,

where

(2) Fn = (A - λn)En .

In this case

(3) Ffr^ΦO, FΓ = 0.

If qn = 1, we have

Observe that EnFn = FnEn = i^. For the relevant facts about the
coefficients in the Laurent expansion of Rλ(A) in the neighborhood of an
isolated singularity, see Taylor [5]. (Numbers in square brackets refer
to the works cited at the end of the paper.)

Throughout this paper we shall be concerned with series expansions of
operator-valued functions of λ. All convergence questions are examined
from the point of view of the uniform topology in the space of bounded
linear operators on X. (We shall denote this space of operators by [X].)
Thus, if Tn and T are elements of [X], Tn-> T means || Tn - Γ|| -» 0.
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Because Sn(X) is regular when |λ | > |λΛ |, it has an expansion in
powers of 1/λ, convergent when |λ | > |λ n | . If p is a positive integer,
we denote by Pip)(λ) the sum of the terms of degree ^ p in 1/λ in this
expansion of Sn(X). An explicit formula will be given presently.

It turns out that a sequence {pn} can be chosen in such a way that
the series

(5) £ [S-(λ) - Pi'-'(λ)]
n=l

converges when λ is not in o(A), and such that, moreover, the difference

(6) Rλ(A) - Σ

has removable singularities at the points X19 λ2, and coincides in the
resolvent set p(A) with a function given by a series

which converges for every nonzero λ. Here Qo, Ql9 are bounded linear
operators. The sequence {pn} is not unique. It may be chosen along
with the imposition of rather strong conditions on the mode of convergence
of the series (5). In a paper by one of us (Taylor [6]) a study was made
of the situation when all the poles are of the first order and a uniform
convergence condition was imposed on (5). Subsequently, in a paper
delivered at the Jerusalem Symposium on Linear Spaces, in July 1960,
Taylor discussed the situation when an absolute and uniform convergence
condition is placed on the series

(8) Σ.lisw(λ)-Pip»i(λ>||.

Most of the results reported on by Taylor were for the case of simple
poles. The theory for the multiple-pole case was begun by Derr in his
doctoral dissertation [2]. Some contributions to the multiple-pole theory,
especially where the condition of absolute convergence is imposed, were
made by Taylor. In this paper we concentrate on the discussion of the
multiple-pole case.

In Taylor [7] the following theorem was proved. We repeat the
statement here for convenience.

THEOREM 1. If A is of meromorphic type and if the foregoing
notation is established, then there exists a sequence {pn} of positive
integers such that for each 8 > 0, if m is so large that \\k\ < δ when
k ^ m, then the series

φ) Σ ||sw(λ)-Pi*»>(λ)||
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converges uniformly in the part of the plane for which | λ | Ξg δ. Moreover,
there exists a sequence {Qn} of elements of [X] such that the series (7)
converges if X Φ 0, and for each X in p(A) the resolvent of A has the
expansion

(10) Rλ(A) = Σ [Sn(λ) - P M λ ) ] + Σ ^~nQn.
n~\ n — 0

On the basis of this theorem we make the following definitions: A
sequence {pn} of the sort specified in Theorem 1 will be called an absolute
index sequence for A relative to {Xn}. If {pn} is an absolute index sequence
such that pn has the same value p for every n, we shall say that A
admits the absolute index p. We do not need to add the phrase ' 'relative
to {Xn}" in this case, because the terms in the series (9) are nonnegative;
on this account, if the series converges uniformly in the manner described,
it remains thus uniformly convergent after an arbitrary rearrangement
of the order of the terms. If A admits the absolute index p, but no
smaller absolute index, we say that A has minimal absolute index p.
The minimal absolute index depends only on A, not on any particular
order of listing of the poles of Rλ(A).

Now, it may happen that a sequence {pn} of positive integers has
the property that for each δ > 0, if m is chosen so large that | λ j < 8
when k ^ m, then the series

oo

converges uniformly in the part of the plane for which | X | ^ 8. Observe
carefully the difference between (9) and (11). The series (9) is numerical,
whereas (11) is a series whose terms are members of [X], With this
modified condition on the sequence {pΛ}, it will be true that the operator
function F(X) defined by

(12) F(X) = Σ LSn(λ) - P^\X)]

is analytic on ρ(A), regular at λ = oo, and has a pole at each of the
points λi, λ2, , the singular part of the Laurent expansion in the
neighborhood of Xn being Sn(X). Therefore, under these conditions,
Rλ(A) — F(X) will have removable singularities at the points λlf λ2 ,
and will be regular at oo. Accordingly, we shall have a representation
of the form (10), where the series involving the Qn's converges when
λ Φ 0.

A sequence {pn} for which we have uniform convergence as specified
in connection with the series (11) will be called a uniform index sequence
for A relative to {λj. If pn = p for every n, we call p a uniform
index for A relative to {Xn}. We can also define a minimal uniform
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index for A relative to {λj, provided there exists at least one such
uniform index. It is to be emphasized that the notion of a uniform
index for A must be defined in relation to a specified way of enumerating
the poles of i?λ(A). This is because there is no guarantee that uniform
convergence of the series (11) is preserved when the order of the term
is rearranged. In fact, an example is known (Berkson [1]) in which A
has the uniform index 1 relative to a certain enumeration {λj, but the
series (11) can be rearranged in such a way as to be divergent at all
points of ρ(A).

In Theorem 10 (§ 5) we give a necessary and sufficient condition for
A to have minimal uniform index p relative to {λj. The case p — 1 is
handled in Theorem 5 (§3). The condition is stated entirely in terms
of λw, En, and Fn. A corresponding necessary and sufficient condition for
A to have minimal absolute index p is given in Theorem 13 (§6).

These results are of decisive importance for the theory of operators
of meromorphic type. With the criteria of Theorems 10 and 13 it is
much easier to test for uniform and absolute indices than would be possible
by direct reliance on the definitions. The construction of examples is
enormously facilitated.

Another important part of the paper is in § 4, where we discuss the
decomposition A = B + C for an operator A of meromorphic type and
minimal uniform index 1 relative to {λ»}. In this decomposition, B is
of the same general character as A, with σ(A) = σ(B), and B is canonical
in a well-defined sense. Moreover, BC = CB = 0 and C is quasinilpotent.
This decomposition is established in Theorem 8, and its uniqueness is
described in Theorem 9.

2. Some preliminary results* In this section we assemble some
results and formulas for later use.

LEMMA 1. Suppose that E, F, e [X] and that

(13) E'^E , EF=FE = F , EΦO .

Suppose that there is a positive integer q such that

(14) F*-1 Φ 0 , F = 0.

Then, if a Φ 0 and B — aE + F, the resolvent of B is

(15) LΆ ^ F F^
X X — a (X — a)2 (x — a)q

(the terms involving F occurring only if q > 1). The spectrum of B
consists of 0 and a if E Φ I and of a alone if E — l%
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Proof. Let C denote the operator in the right member of formula
(15), where λ is fixed, with λ Φ 0, λ Φ a. It is an easy matter to verify
that C(λ - B) = (λ - 3)C = /, whence it follows that λ e ρ(B) and
Rλ(B) = C when λ is thus restricted. We leave the calculations to the
reader. Now, a is an eigenvalue of B. For, if q > 1, choose x so that
y = Fq~ιx Φ 0; this is possible, by (14). Then Ey = y because EF = F;
hence Ify = (aE + F)Fq'ιx = ay, because Fq = 0. If g = 1, choose a? so
that y = Ex Φ 0. We can do this, because E Φ 0. Then, since i*7 = 0
in this case, By = aEy — ay. Hence it is certain that a e σ(B), regardless
of the value of q.

If I — E Φ 0, and if y = a; — ^x ^ 0, we see that B# = 0, because
B = .BE'. Hence 0 e σ(J5) in this case. On the other hand, if E = I, a
direct calculation shows that 0 — 5 has the inverse

j τp τpq-i

- α (~α) 2 ( - α ) g

so that 0ep(B) in this case. This completes the proof of Lemma 1.
It now follows from general spectral theory that the spectral radius

of aE + F is \a\, and that Rλ{B) is given by the series

(16)
k — 0 Λj

when |λ| > |α|. From (15) we then see that

E , .ψ FJ _E ^ (aE
X-a ^hix-ay* λ + έ l

provided that |λ | > | α | .
The foregoing considerations can be applied to obtain a formula for

Pn](λ)j which is, by definition, the sum of the terms of degree ^ p in
1/λ in the expansion of Sn(λ) in powers of 1/λ. By comparing (1) and
(17) we see that

(18) sn(x) - A + Σ ( λ n j g- + ^ ) f c

if | λ | > | λ j . Therefore

(19) P(V(X) - — ,

/Γ P (\ T/Ί _l_ /y7 \fc~i

(20) P (^(λ) = ^!L + Σ l n n }— if V ^ 2 .
λ A-=2 \ f c

The formula (18) could also be obtained from (1) by direct use of binomial
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series. This was done, in the first instance, by Derr in his thesis (Derr
[2]). The present method, using spectral theory, is rather elegant.

Now that we have the formula (18), it is easy to calculate the
formulas for the operator coefficients Qo, Qu occurring in (10). For
this calculation it is sufficient to assume that {pn} is a uniform index
sequence for A relative to {λj. (An absolute index sequence is also a
uniform index sequence of course.) From general spectral theory it is
known that

(Ό if j < 0

- J — <f XjRλ(A)dX =\l if i = 0
2πi J

Uj if j > 0 ,

where the integration is taken counter clockwise over a large circle
enclosing σ(A). From (10), (18), and (20) we find that

(21) Q0 = 0, Q^I,

and

(22) Qj+1 = A* - Σ (KEn + Fny if j ^ 1 .

The series on the right in (22) is understood to mean

(23) Σ enJ(XnEn + FnY ,

where en>j = 1 if pn ^ j and εΛfi = 0 if j < pn.
It is part of the conclusion that the series in (23) is convergent in

[X], As a consequence, we have the following theorem:

THEOREM 2. If A admits the uniform index p, the series

(24) Σ (KEn + Fny

converges when p ^ j .
Concerning an absolute index sequence we have:

THEOREM 3. If {pn} is an absolute index sequence for A, the series

(25) Σ \\εn.,(KEn + Fny\\

converges for each j ^ 1.

Proof. We fix j and suppose δ > 0, ε > 0. Choose N so large that
|λfc-| < δ if k ^ N and also so large that
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(26) ΣJIS M-ί™

if N ^ r < s and | λ | ^ δ. Since | λ j < δ, Sn(λ) - PiPΛ)(λ) can be calculated
from (18) and (20):

na /^ TΠ i 777 \fc

With integration in the counterclockwise sense over the circle on which
I λ I = δ we have

enJ(XnEn + Fnγ = - L <f λ'[Sn(λ)
2πιJ2πι

Putting λ — 8eiθ and using (26), we see that

Σ || 6n>i(λn£;n + l^n)
jll ^ ^ Γ i t II Sn(λ) - P M λ ) | | | ̂  < ε .

w = r 2TΓ JO In^r J

This proves Theorem 3.

COROLLARY. // A admits the absolute index p, the series

(27) Σ>\\(KEn + Fny\\
n-1

converges if j ^ p.

3 Generalization of a theorem of Berkson In this section we
show how to construct an operator which has minimal uniform index 1.
The argument is modelled after the proof of a theorem due to E. R. Berkson
(see § 1 of Berkson [1]). Our theorem allows for multiple poles of the
resolvent, whereas in Berkson's work there are simple poles only. We
also discuss conditions for the operator to have minimal absolute index 1.

THEOREM 4. Let {μn} be a sequence of complex numbers with μn Φ 0
and μn —• 0. (We do not assume that μm ψ μn if m φ n.) Let {Pn} and
{Rn} be sequences of elements in [X] satisfying the conditions

(28) Pn Φ 0, PnPm - 0 if mΦn,Pl = Pn ,

(29) PnRn - RnPn = Rn , PnRm = RmP* = 0 if 7n Φ n ,

(30) RmRn = 0 if m Φ n .

Finally, let {rv} be a sequence of positive integers, and suppose that

(31) i C = 0, Rl"-ΎΦQ.
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Now suppose that

(32) S = Σ (μnPn + Rn) ,

it leing supposed that the series converges in [X]. Then cr{B) consists
of 0 and the distinct points among μ19 μ2, . The resolvent of B is
given by

(33)

i/ rw = 1

(34) Γ.(λ) =
λ -

// δ > 0 ami i / m is suc/£ ί/iaί |//w| < δ when n^im, the series

(35)

converges uniformly when |λ | ^ δ. (This implies, in particular, that
Rx.(B) has a pole at μny so that B is of meromorphic type.)

Proof. We write

Bn = ±(μkPk + Rk) .

If λ is fixed, different from 0, μlf •••, μΛ, we define

Λ() + tΓr*(λ)
λ Λ=l L λ

The first step is to prove that σ(Bn) is the set {0, μu •• , μn} and that
Rn(\) is the resolvent of Bn. Direct calculations [which we omit—they
are based on (28)—(30)] show that

Rn(X) (λ - Bn) = (λ - Bn)Rn{\) = I

if λ is different from 0, μu , μn. Much as in the proof of Lemma 1
in § 2 we prove that μs is an eigenvalue of Bn if 1 ^ i ^ n. To see
that 0 is also an eigenvalue, let

P=I-(P1+ ... +pu),

and observe that PPn+x = Pn+i =£ 0, whence P Φ 0. Choose y = Px so



OPERATORS OF MEROMORPHIC TYPE 93

that y Φ 0, and observe that Bny = 0, This concludes the first step in
the proof.

As the second step we apply a theorem of Newburgh [4]; since
BBn — BJB and Bn -> B, Newburgh's theorem enables us to conclude
that σ(Bn) converges to σ(B) in ths sense that the Hausdorff distance
between the sets σ(B) and σ(Bn) approaches zero. In the present case
this means that

<*{B) = U σ ( B n ) = {0, μ u μ 2 , • • • } .

At the third step we obtain the formula (33) for the resolvent of B.
When λ e p(B) we have

- B) = Λ.(λ)(λ - BΛ) - RΛ(X)(B - B.)

= 7-Λ.(λ) Σ C"*P* + Λ*),
A ^τt + 1

and a short calculation, using (28)—(30), yields

) Σ (ttΛ + *)

If we multiply by i?λ(J5) and transpose, we obtain

(36) Rλ(B) - Rn(X) = -I Rλ{B) Σ ( i " Λ + Λ*) -
X lr = n + l

We now pass to the limit as n -> oo. Because of the assumed convergence
of the series (32), we obtain the validity of (33) when λ e p(B).

The last step is the one concerning uniform convergence. Now,
||λ-\Z?λ(2?)|| is bounded on any subset of p(B) in which the distance of λ
from σ(B) has a positive lower bound. Consequently, we see from (36)
that the convergence of Rh(X) to Rκ(B) is uniform on any such subset
of p(B). This being established, suppose δ > 0, and let m be such that
\μn\ < δ if n ^ m. Consider the operator

Σ (μnPn + Rn) .

We can apply the results proved thus far to it. Its spectrum is the set
{0, μm9 μm+if •}, and its resolvent is the series

(37) -f + Σlux)- Al.
X n=mL X J

Hence, when |λ | Ξ> δ, the distance of X from the spectrum is positive,
and so the series (37) converges uniformly when | λ | ^ δ. This completes
the proof of Theorem 4, (To justify the parenthetical remark at the
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end of the statement of the theorem it suffices to look at formulas (34)
and observe that, for fixed n, the number of indices k such that μk = μn

is finite, because of the fact that μk->0.)
If we add to the assumptions in Theorem 4 the assumption that

μn Φ μm if nΦm, it is evident from the conclusions of the theorem
that the residue of Rλ{B) at μn is Pn. It then follows from the definition
in § 1 that B is of minimal uniform index 1 relative to {μn}.

At this point we can state a theorem giving an alternative criterion
for an operator A of meromorphic type to be of minimal uniform index 1
relative to a given enumeration of its poles.

THEOREM 5. Let A be an operator of meromorphic type, and let
the meanings of Xn, En, Fn be as in. § 1. Then a necessary and sufficient
condition that A have minimal uniform index 1 relative to {λj is that
the series Σn=i(λJS7» + Fn) converge in [X],

Proof. The necessity of the condition is stated in Theorem 2. The
sufficiency of the condition follows from Theorem 4, by taking μn = Xn,
Pn — En,Rn — Fn,rn — qn in Theorem 4. Then, the assertion about the
series (35) shows that the conditions for A to admit the uniform index 1
are satisfied.

We now consider the effect of strengthening the hypotheses of
Theorem 4.

THEOREM 6. To the assumptions of Theorem 4 we add the hypothesis
that the series

(38) Σ \\μnPn + Rn\\
n-Λ

is convergent. Then we can conclude that, if 8 > 0 and if m is chosen
so that I μk | when k Ξ> m, the series

(39) Σ 11 τn(x) - ̂ r

converges uniformly when |λ | ^ δ. Hence, in this case, if μn Φ μm when
n Φ m, the operator B defined by (32) has the minimal absolute index 1.

Proof. From Lemma 1 we see that, when λ is different from 0

and μn,

[X - (μnPn + Λ.)]-1 = i - + [τn(X) - A ] .

This leads to the identity . . . . . .
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TΛ(X) - A 1 { 1 + Γτ, ι (λ) _ A l l (μΛPH + R);)

Thus

P,,(40) τ,χχ) - A \\\μJ

Now, as a consequence of the proven facts about the uniform convergence
of the series (35), we can assert that the factor

Tn(X)~ P<
λ

is bounded uniformly with respect to n and λ if | λ | ^ δ and n is
sufficiently large. The asserted uniform convergence of (39) now follows
from (40) and the assumed convergence of (38).

Just as we got Theorem 5 from Theorem 4 and Theorem 2, so we
get the following theorem from Theorem 6 and the corollary of Theorem 3.

THEOREM 7. With A, xn, En9 Fn as in § 1, A has minimal absolute
index 1 if and only if the series Σ»=i W^nEn + Fn\\ converges.

With the assumptions of Theorem 6 it is not hard to see that B has
minimal absolute index 1, even if the points μu μ2, are not all distinct.
Since μn -+ 0, there is only a finite set of n's for which μn — μx. We
let λx = μl9 Eλ — the sum of the P n ' s for which μn — Xl9 F1 = the sum of
the corresponding Rn's. Then let λ2 be the first μn different from λ;,
and continue in the obvious way. It turns out that the pole at X1 is of
order ql9 where qλ is the largest of the rw 's corresponding to μn's with
μn = xl9 Likewise for the pole at λ2, and so on. Because of the con-
vergence of (38) we see that

7~) V""1 /Λ TΓT I 777 \

-O — 2 J vΛw '̂w "Γ ^ n)

with

Theorem 6 now applies, with λΛ, En, Fn9 qn in place of μn9 Pn9 Rn, rn. (We
leave to the reader the verification that the required conditions on En

and Fn9 corresponding to (28)—(31), are satisfied.)

4Φ Operators of minimal uniform index l We return now to the
notations of §§1 and 2. Suppose that A is of meromorphic type, with
minimal uniform index 1 relative to {λj. By (10), (19), (21) and (22) we
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see that

(41) Rλ(A) = i- + Σ \Sn{\) - ^ 1
X w=i L X J

+ Σ - ^ U J - Σ (λ^. + F%y].

Let us define an operator B by the formula

(42) B =
n = l

We know from Theorem 4 that σ(B) = σ(A)f that

(43) Rλ(B) = -f + Σ Γ (̂λ) - A
λ n = l L λ

and that B is also an operator of meromorphic type with minimal uniform
index 1 relative {Xn}. We also see, from Theorem 7, that if A has
minimal absolute index 1, the same is true of B.

When B is related to A by (42) under the circumstances here
described, and when it turns out that B = A, we shall say that A is
canonical relative to {λj. The reader is reminded that En is the residue
of Rλ{A) at Xn and that Fn = (A- K)En.

Since FnEn = Fn, it is clear from (42) that (B - Xn)En = Fn. From
(43) we see that the residue of Rλ(B) at Xn is En. Hence the B given
by (42) is canonical relative to {Xn}, even if A is not. We may refer
to B as the canonical φart of A relative to {Xn}. This naturally prompts
us to investigate the nature of the operator A — f>, which we denote by C.

THEOREM 8. If A has minimal uniform index 1 relative to {λj,
and if B is the canonical jcart of A relative to {λj, the operator
C = A — B is quasinilpotent [σ(Q = (0)J, and BC = CB = 0.

Proof. From

Then (because AB

AB

λ,

=

=

,#» +

B = :

BA)

•-Σ.A

Fn

\ J

— AEn we

LE7, and Bl

B> =

see

Σ^

that

-AE.

whence BC = C-B = AB — J32 = 0. It now follows easily by induction that
An = Bn + C\ It also follows from (42) by induction that

B>= Σ (λ ^ + ^ ) j » i = 1, 2, .
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On referring back to (41) and (43) we now see that

(44) Rλ(A) = Bk(B) + Σ - ^ .

The series here is convergent if λ Φ 0. This implies that C is quasinil-
potent, i.e. that σ(C) consists of 0 alone, or that | |Cw | | 1 / w-» 0. This
completes the proof.

The foregoing considerations raise the question as to whether the
decompsition A = B + C is unique, in the following sense. Is it conceivable
that we could write A = Bλ + CΊ, where d is quasinilpotent, JE^d =
Cj^i = 0, and Bx is an operator of meromorphic type which is of minimal
uniform index 1 and canonical, relative to some enumeration of the poles
of i?λ(ΰi), but such that Bλ is not the canonical part of A relative to
an enumeration of the poles of Rλ(A)Ί The answer to this question is
negative, as we now show.

THEOREM 9. Let J5X be of meromorphic type, of minimal uniform
index 1 and canonical relative to an enumeration {μn} of the distinct
poles of i?λ(J?!). Let Pn be the residue of Rλ{B^ at μn9 and let Rn =
(Bx — μn)Pn. Let Cx be a quasinilpotent operator such that B& =
CxBλ = 0. Let Ax = Bx + Cλ. Then A1 is of meromorphic type with
σ(A1) = o{B^)) Ax has minimal uniform index 1 relative to {μn}, and Bx

is the canonical part of Aγ relative to {μn}.

Proof. From B& = C Ά = 0 we deduce that AXBX = B\ = BXAX.
From general spectral theory we know that μn is an eigenvalue of Bu

so there exists xn for which Bλxn = μnxn Φ 0. Then AxBλxn = B\xn =
Bi(μn%n) = ftnBxXns s o that μ» is also an eigenvalue of Ax. Since the
spectrum is closed, it follows that σ(BL) c σ(A^). Next, we show that
ρ(Bλ) c ρ(Aλ) and that

(45) Rk(Ai) = C*

if λ 6 piBJ. It will then follow that σ{Aλ) = σ
To begin with, if | λ | > \\BΛ\\ we know that

It is then an easy calculation to show that

(46) (λ - A,) [i?λ(A) + Σ
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if | λ | > ||J?i||. Because p{B^) is a connected set, and the left member
of (46) is an analytic function on ρ(B^), it follows that (46) is valid for
each λ in ρ{B^). The same argument applies with the order of the
factors reversed. Hence we conclude that p{B^) c p(A^) and that (45) holds.

From the form of (45) and the assumption on Bλ it follows that μn

is a pole of M^Ai), the residue there being the same as the residue of
Jβχ(-Bi), namely Pn. In fact, we can also see that when we calculate
the Laurent series for each of R^A^ and R^BJ in powers of λ — μn,
we get the same terms for both in the case of negative powers of λ — μn.
In particular, the coefficient of (λ — μn)~2 in one case is {Ax — μn)Pn,
and in the other case it is (Bλ — μn)Pn = Rn. Therefore Rn — (A± — μn)Pn.
It is now clear that ~A1 is of minimal uniform index 1 relative to {μn}
and that Bλ is the canonical part of Aλ.

5 Operators of minimal uniform index p. Returning once more
to the notation of § 1, let us assume that A is of meromorphic type and
that it has minimal uniform index p relative to {λn}. We are now
interested in the case when p > 1. By (10), (21) and (22) we see that

(47) Rλ(A) = -f + ^ + * * + ^& + Σ ίS.(λ) - P

This formula takes an especially simple form if

(48) A* = Σ (KEn + FnY ,
n — l

because

XnEn + Fn = AEn, (XnEn + Fny = A1En ,

so that

whence it follows that

Aj = Σ AJEn if j ^ p ,

and so (47) becomes, in this special case,

(49) Rλ(A) = Y + -^ + + - ^ - + Σ [S (λ) - P(/'(X)\ .

When A is of minimal uniform index p relative to {Xn}, and when
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(48) holds, we say that A is canonical of order p relative to {Xn}. In
§7 we discuss an unsolved problem involving the concept of a canonical
operator of order p, for the case in which A itself is not canonical.

We now present a generalization of Theorem 5.

THEOREM 10. Let A be of.meromofphτc type, and let Xn, Enf Fn be
as in § 1. Suppose that p is a positive integer, and suppose that the
series ΣΓ=i (XnEn + Fn)

p is convergent -in [X], Then A admits the
uniform index p relative to {λj. Hence (see Theorem 2), in order that
A have minimal uniform index p ~ relative to \Xn}t it'is neceseary
and sufficient that X~=i (XnEn + Fn)

p converge in [X] and that
Σin=ΛKEn + Fnγ-χ not converge in [X].

Proof. Our argument is valid if p ^ 1. Hence this theorem includes
Theorem 5; the proof is different from that of Theorem 5, however,
even when p = 1. The argument . hinges on two identities. Let
Hn - XnEn + Fn. Then

(50) Sn(X) - P<*>(λ) = χ-*

if λ Φ 0 and λ Φ Xn. The other identity is

(51) R.iHJHζ = Rλ(A)Hζ

it is valid if Xeρ(A). To prove (50) we may assume |λ | > |λ n | . When
(50) has been proved under this condition the general assertion about
the validity of (50) follows by the principle of analytic continuation,
because the expressions on each side of the equality in (50) are analytic
in λ except at 0 and λn. (We see by Lemma 1 in § 2 that σ(Hn) = {0, λ j .)
Now, from (18) and (20) we see that

Sn{\) - P«(λ) = Σ -Ifr if |λ| > |λ.

From the Neumann series for Rλ(Hn) we see that

TTp oo TTj oo TTk

\-pΊ? (H \Ffn — zzJL V r L n — V r L n

Thus (50) is proved.
In proving (51), because of the principle of analytic continuation,

we may restrict ourselves to values of λ so large that 11A — Xn \ \ <-1X •— λπ |.
With this restriction, noting that λ — A — (λ — Xn) — (A — Xn), we can
write

(52) | β ^ f £ I

PROPERTY OF
DNIV. OF ALAC Λ L'B
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Now from Fn = (A - Xn)En, Hn = XnEn + F%9 and El = En, we deduce
that HnFn = (A - Xn)Hn. It then follows readily that H'F* = (A - λw)*ff;
for all positive integers p and k. Since ί7* = 0 if k ^ <yn, it follows
from (52) that

ίn—i TTΌ τπk

On the other hand, we know from (15) that

+ Es + +
λ - λ . (λ - λB)2 (λ - λκ)«»

because iϊ£ #„ = Hζ, we see from this and (53) that (51) holds.
We now turn to the proof of Theorem 10. We have to show that

the convergence of the series Σ~=i#£ implies that the series

converges uniformly when |λ | ^ δ, provided merely that δ > 0 and that
m is chosen in such a way that | Xk \ < S when k ^ m. When δ and m
are specified, there may perhaps be a finite set of λ/s for which | λ j Ξ> δ.
We can diminish 8 slightly, if necessary, so as to have | \ \ > δ for all
these X'j& and still have |λ fc| < 8 if k ^ m. If we give the proof with
this modified δ, that is certainly sufficient. Choose a positive number a
so small that, if | λ< | > 8, the closed circular disk of radius a and center
Xi lies entirely outside the circle on which |λ | = 8, and so that any two
such disks do not touch or overlap. Let E(8, a) be the set of λ's such
that | λ | ^ δ and |λ — Xt\ = a if |λί | > 8. There is some constant M
such that ||λ-pjRλ(A)|| ^ Mif λ e E(8, a). Now, suppose that ε > 0. By
hypothesis we can choose an integer N so large that

M <ε

if N S 3 ^ k. By (50) and (51) we can write

provided that Xep(A). Therefore certainly

(54) | Σ . [ w ( )

if N £j ^k, provided that λ e E(8, a). In fact, however, (54) holds
whenever |λ | ^ δ; that is, it holds even if | λ | ^ δ, | λ i | > 8 , and
I λ — x{ I < a. For, the function
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is holomorphic in X when | λ — λ< | g α, and its norm is less than ε when
I x — x. I =r a; therefore the norm is also less than ε when | X — λ< | < a,
by the maximum modulus theorem, which is valid for analytic functions
with values in a complex Banach space (see Taylor [5], Theorem 4. 42-A,
or Hille-Phillips [3], p. 100). This completes the proof of Theorem 10.

In the next theorem we present information about the operator A*
under the assumption that A has minimal uniform index p.

THEOREM 11. Suppose that A is of meromorphic type and of
minimal uniform index p relative to {λj, with p > 1. (We adopt the
notation of § 1 as regards Xn, Eny Fn.) Define operators L, M by the
formulas

(55) L = ±(KEn + Fn)>, M=A'-L.

Let

(57) Gn = (KK + Fnf - XζEn ,

E.
.if qn = \

(57) V,(\) =

-λζ (λ - x;)2 (λ - \;)«»

Then L is an operator of meromorphic type with σ(L) consisting of
λ?» λξ, aud 0. The resolvent of L is

(58) RK{L) = -f + £ Γ V.(λ) - ^ - 1 .

/f δ > 0 a^d i/ m is ŝ c/i ίΛaί |λj | < 8 when n^ m, ^Aê  ίΛe series

converges uniformly when |λ | ^ δ. Γλe operator M is quasinilpotent,
and LM = ML = 0. Finally, if all the points λ?, λf, are distinct,
A10 has minimal uniform index 1 relative to {Xζ}, and L is the canonical
part of Ap relative to {XI}.

Proof. By expanding (XnEn + Fn)
p, we see from (56) that Gn can

be expressed in the form Gn ~ FnJn — JnFn, where Jn e [X]. It is then
easy to see that EnGn = GnEn = Gn and GQ

n

n = 0. We shall show that
Gq

n

n~ι Φ0i£qn>l. In fact, from (56) we can write Gn = pXv

n~
l Fn + F2

nKn,
where Kn e [X] and FnKn = KnFn. Thus GYΎ = 0 would imply

FTι[pXl-11 + FnKnγ*-i = 0 .
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Since FT = 0 and pK'1 Φ 0, this would imply Fq

n

n~ι = 0, contrary to fact.
We can now apply Theorem 4, taking μn = λj, P n == En, Rn = Gn, rw =-g».

From (55) and (56) we see that

£ = Σ W #• + Gn)

therefore we obtain at once our assertions about σ(L) and Rλ(L). The
convergence behavior of the series (58) insures that Rλ(L) has a pole at λ;.

Now consider the operator M defined in (55). From (2) we see that
AEn = XnEn + Fn, so we can write

" L = Σ A*En ,

from which it follows that LAP = APL = L2. Then Lilί = L(AP - L) = 0,
and likewise ML = 0. It follows that Anp = Ln + Mn, n = 1, 2, . To
prove that M is quasinilpotent we shall show that the series

converges if λ Φ 0. Now, from (55) it follows readily that

Lj = Σ (XnEn + Fn)
1p if j ^ 1 .

Hence, what we .wish to prove is that the series

(59) Σ - " " n-

is convergent if λ ^t 0. We know from (47) that the series

oo A" - ± {XnEn + Fnγ
Sp n=l

converges, and from this we can deduce the convergence of the series in (59).
If λ Φ 0, choose a circle of radius ε centered at 0, where 0 < ε, ep < |λ | .
Then, integration around this circle in the counterclokwise sense yields

1 if k =jp,j = 1,2, •••
JL- £ dt = J λ f c + i

ΔTZ% J \K — Z )Z ,

{ 0 if k is not a multiple of

Therefore, if

Pk — Ά — >,
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we have

•M
2m J

λ - t

the last series on the right being convergent. By comparison with (59),
we see that we have finished the proof that M is quasinilpotent.

It is clear from the situation that L is of minimal uniform index 1
and that L is canonical relative to {λζ} when the points λ?, λ£, are
all distinct. The final assertion of Theorem 11 is then a consequence
of Theorem 9.

6. Operators of minimal absolute index p. Suppose that A is of
meromorphic type and of minimal absolute index p. We follow the
notation of § 1. It is then certainly true that A admits the uniform
index p relative to {λj, although p is not necessarily the minimal uniform
index. Let L, M, and Gn be defined by (55) and (56). By the corollary
of Theorem 3 we know that the series

is convergent. From the remarks at the end of § 3 we see that L has
minimal absolute index 1, regardless of whether or not the point λf, λf,
are all distinct. Under our present assumptions the operator M defined
in (55) is quasinilpotent, for the reasoning about this in the proof of
Theorem 11 is all applicable. It is obvious that L is of minimal uniform
index 1 and canonical relative to any enumeration of the distinct poles
of Rk(L). It then follows as in Theorem 9 and its proof that σ(Ap) = σ(L)
and that

(60) Rλ(Ap) = ΛΛW + Σ -^ if λ e σ(A») .

From (60) and the definitions in § 1 we can then see that Ap is of
meromorphic type and minimal absolute index 1. We state all this formally:

THEOREM 12. If A is of meromorphic type and minimal absolute
index p, Ap is of meromorphic type and minimal absolute index 1.

The following theorem is analogous to Theorem 10.

THEOREM 13. Let A be of meromorphic type, and let the notation
of § 1 be adopted. Then A admits the absolute index p if and only if
the series
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(61) Σ. MKEn + Fuy\\

is convergent. Hence, A has minimal absolute index p (a positive
integer) if and only if

Σ \\(XnEn + Fny\\ < cχ> and £ \\(KEn + F J ^ I I - «> .

Proof. In view of the corollary of Theorem 3, we have only to
prove that A admits the absolute index p when the series (61) is con-
vergent.

We begin by calling attention once more to (50) and (51), and to
the notation Hn = XnEn + Fn. We are supposing that

Suppose δ > 0, and let m be such that | Xk | < S if k^m, We assert
the existence of a positive number C that

(62) ||j

if |λ | ^ δ and n Ξ> m. Once this is proved, the fact that

converges uniformly when |λ | ^ δ will follow from (50) and (62), and
our proof will be accomplished. There is only a finite set of k's for
which |λfc| ^ δ. Choose ε > 0 so small that λ e ρ(A) if 0 < |λ - λfc| ^ ε
for these fc's. We know that ||i?λ(A)|| is bounded by some positive
constant Co when λ is at a distance greater than or equal to ε from
σ(A). Consider the situation if 0 < | λ — Xk \ <£ ε and | Xk | ^ δ. We know
there is a function of λ with values in [X], call it fk, such that fk is
analytic when | λ — \k \ ̂  ε and

if 0 < | λ - λ J ^ ε . Now HζEk = Hp

nFk = 0 if nΦk. Therefore, in
view of the definition of Sk(X) in section 1, Rλ(A)Hζ = fk(X)Hζ, and we
s e e f r o m (51) t h a t \\Rκ(Hn)Hp

n\\ = \\fk(X)Hp

n\\ wi l l h a v e a b o u n d Ck\\H*\\
if ] λ — Xk) g ε. If we choose C at least as large as Co and the largest
of the finite set of C'ks, (62) will hold. This ends the proof.

7. An open problem. Suppose that A is of meromorphic type and
of minimal uniform index p relative to {λj, where p > 1. Suppose
further that A is not canonical of order p relative to {Xn} (see § 5). Is
there in this case some uniquely determined operator B which deserves
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to be called the canonical part of A relative to {λj? For the case p•= 1
we know that this question has an affirmative answer. The details are
given in § 4; the required B is given by (42). For the case p > 1, how-
ever, we have been unable to answer the question. We are even unable
to say with certainty what properties should characterize the required B.
We would certainly want B to have the same spectrum as A, and for each
Xn we would want the Laurent expansion of R\(B) in powers of X — λΛ

to consist of Sn(X) plus a series of nonnegative powers of X — Xn. We
would also require that

(63) B> = ±(\ΛEn + FΛ)> .

The requirements thus far stated would be sufficient to imply that

B is of minimal uniform index p and canonical of order p relative to
{λj, with

(64) Rλ(B) = -f + M. + ... + i ^ L + Σ [Sn{X) - Pi»(λ)]

when λ e ρ(B). It is not clear, however that there is at most one B
fulfilling all these conditions. Nor is there, so far as we can see, any
method of proving the existence of a B with these properties.

One possible starting point might be to define

It may be proved that σ(Bn) = {0, Xly , Xn} and that

Rk(Bj + + + ^

But, if p> 1, Bn has no limit in the sense of convergence in \X]. It
is true that

What appears to be needed is some way of assigning a limit B to the
sequence {BJ is some generalized sense, and then proving that this limit
B is the unique operator with the required properties. In particular
cases it may (and does) happen that we can define B by Bx = lim^,* Bnx
for each x. But we have no general theory.

8 Examples, In this concluding section we show how to construct
an operator A with minimal uniform index 1 or 2 such that A either
admits no absolute index at all, or admits an arbitrarily prescribed
minimal absolute index (greater than or equal to the minimal uniform
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index, of course).
We also show how to construct an operator A with arbitrarily

preassigned minimal uniform index k.
In both examples we consider operators A acting in the space I1. If

x =• (ξlt | 2 , . . . ) and y = (ηl9 η2, •) are points of I1 with y — Ax, we
take the defining equations to be

oo

Vi z=z 2-1 ^ijζj f * — 1-9 "f * * *

Thus A is represented by an infinite matrix. For operators acting in
ϊ1 the norm is

= sup
j

EXAMPLE 1

For our first example we take the matrix representation of A to
have the form

where the only nonzero matrix entries are in the square blocks
B19 CΊ, J52, C2, B^ ••'••' down the main diagonal. The block B% is to be a
two-by-two block

and the block Cn is to have rn rows and columns, with the only nonzero
elements Γs in the subdiagonal:

0

1

0

•
0 •••

0

0

L 0

We require 0 ^ rn, sup rn = r < co. It rn — Q the block Cn is to be
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nonexistent, and if rn — 1, Cn is to be a block with the single entry 0.
We assume {λj is a sequence of distinct nonzero numbers such that
^n -* 0; {μn} can be any bounded sequence.

It is not difficult to compute Rλ(A). Each point Xn is a pole of the
second order and all other nonzero points are in p(A). The block cor-
responding to Bn in the matrix representing Rλ{A) i?

λ

(λ

1

K

K y

0

1
λ - K

The block corresponding to Cn is

A
X

1
λ2

•

1

0

1

x

" • "

0

0

0

1

X

The matrices representing En and Fn, respectively, have the blocks

1

0

0

1

0

μ.

0

0

in place of Bn, and all other entries are 0.
It is now easy to see that, if I < m,

Σ Fnγ = sup [\Xn\
p +

Consequently, A admits the uniform index 2 relative to {Xn}. It admits
the uniform index 1 if and only if μn —> 0.

We can also see that

\\(XnEn + Fnγ\\ =

Therefore A admits the absolute index p if and only if
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From this discussion we see that we can arrange for A to have
any prescribed minimal absolute index (greater than or equal to the
minimal uniform index relative to {λw}). Or, we can also arrange for A
not to admit any absolute index at all. For instance, if \n = [\og(n + I)]"1,
and μn = n~ι, the minimal uniform index is 1 and there is no absolute
index. If k > 1, \n = n~knic~1)2

9 and μn — 1, the minimal uniform index
is 2 and the minimal absolute index is k.

Let us return to the general case of this example. Suppose we
have the situation where the minimal uniform index is 2. The operator
A is not canonical, but we can express it in the form A — B + C, where
B satisfies (63) and (64) with p = 2, and C is nilpotent (of order r),
with BC = CB = 0. We can define B as the operator whose matrix
representation is like the matrix representation of A except that the
blocks Clf C2, have all been replaced by blocks of zeros. It can also
be seen that

for each x, so that

Bx = Σ (KE« + F,)x

B = Σ (KK + Fn) ,

with convergence in the strong (instead of the uniform) operator topology.

EXAMPLE 2

For this example we again use the matrix representation of A and
a scheme of blocks:

The form of the block An is to be

We assume that {λj is a sequence of distinct nonzero numbers such
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that λn -> 0. For {μn} we take any bounded sequence. This time all
the poles are simple; the block corresponding to An in the matrix
representation of Rλ(A) is

λ

(λ

1
— λ2 n - l

o

1

- λ 2 r e

The matrix representing E2n-i has just one nonzero block; it is in the
position occupied by An9 and it is

where

(65)

The matrix representing E2n is of the same type, but its sole nonzero
block is

0 0

- α . 1

From these facts we can readily see that A admits the absolute
index p if and only if

\an\)<

and

Σ Wn\Pβn

where βn = max (1, |α n | ) . Equivalently, the condition is that each of
the following four series must converge:

(66) Σ ^-J31, Σlλ.J3 ', Σ|λ*.-il'|α.| ,
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In investigating the question of a uniform index for A relative to
{Â }, it is convenient to begin by calculating Ap. The matrix representation
of Ap has the same form as that of A, with the block An replaced by

This block is the same as the sole nonzero block in the matrix represen-
tation of

It is then* easy to see that the matrix representation of

A* - Σ KEk

is derived from the matrix representation of Ap simply by putting blocks
of zeros in place of the first n blocks down the diagonal. From this it
may be proved that A admits the uniform index p relative to {λw} if
and only if

and that this occurs if and only if

(67)

and

(68)

Condition (67) is equivalent to

max {Iλ,.^ \p, +. \XZ-i - λl, 11 aJ, | X2n \
p} -+ 0 ,

and condition (68) is equivalent to

Since, we assumed at the outset that λn-*0, it is now easy to see that
A admits the uniform index p relative to {λJ if and only if

( 6 9 )
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If we take Xn — n~\ it turns out that A admits the uniform index p
relative to {Xn} if and only if μvri2~p -^ 0, and A admits the absolute
index p if and only if

V
»-i nv~Δ

In particular, since {μn} is bounded, A certainly admits the uniform
index 3 and the absolute index 4, but these indices are not necessarily
minimal.

If we take λR = n~llk (with k a positive integer) a simple calculation
with the binomial series shows that each of the expressions

-and-,- I * - ' ' ,

is asymptotically equivalent to

2n-

Consequently, A admits the uniform index p relative to {λj if and only if

With μn — n~m, we can see that A has minimal uniform index k relative
to {λj. These same choices of Xn and μn give A the minimal absolute
index 2k.
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