MARKOV PROCESSES WITH STATIONARY MEASURE

S. R. FOoGUEL

In [1] we studied Markov processes with a finite positive stationary
measure. Here the process is assumed to have a positive stationary
measure which might be infinite. Most of the results proved in [1]
remain true also in this case. Some proofs that remain valid in this
case will be replaced here by simpler proofs.

The main problem studied here, and in [1], is the behaviour at oo
of t(x,e AN x,eB) where g is the stationary measure and x, is the
Markov process.

In addition we study the quantities

tx, e A for some n N x,€ B), p(x,€ A infinitely often) N x,€ B) .

For Markov chains the results given here are well known even
without the assumption of the existence of a stationary measure.

DEFINITIONS AND NOTATION. The notation here will be the same as
in [1]. Let (2,2, 1) be a measure space where p =0 but is not
necessarily finite.

Let z,(w) be a sequence of measurable real functions defined on £.

Let the measure g(x;’( )), on the real line, be o finite.

ASSUMPTION 1. The process is stationary:
ASSUMPTION 2. If 1 < j <k let A be a Borel set on the line such
that t(x, € A) < o then:

The conditional probability that x,€ A, given x; and x;, is equal
to the conditional probability that x,€ A given x,.

L, = L9, Y, 1) will be the space of real square integrable function.
Let B, be the subspace of L, generated by functions of the form

I(z;'(A)) where p(x,;'(4)) < o .

By I(0) we denote the characteristic function of o.
Let E, be the self adjoint projection on B,.
It was shown in [1] that Assumption 2 implies

1. EEE, =EE, i<j<k.
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Finally let T(n) be the transformation from B, to B, defined by
Tm)I(x,c A) = I(x, € A) .

It is easily seen that xe B, if and only if 2(w) = f(z.(®)) a.e. and
f(z,(w)) is square integrable.
Thus

T(n) f(zf(w)) = f(2.(®))
and

2. a. [[Twez| = |||

b. T(n)B, = B,

c. (T(n+ k)x, T(m + k)y) = (T(n)x, T(m)y) .
See [1] Lemma 2.4,

1. Bebhaviour at .oo. Following [1] let us define
Co=NB, C..=Tm7CnC
H=C,.
Theorems 3.6 and 3.7 of [1] hold here thus:
If | H then weak }‘1_1’2 Tn)x =0 .

Also by Theorem 3.9 of [1] H is invariant under T(n), and T(n) = T"
is a unitary operator on H.

LemMmA 1. The subspace H is generated by characteristic functions
of a Boolean ring.

Proof. It is enough to show that if xe H then I(x7(4))e H and
if I(o)), I(0,) € H then I(o, N 0,) € H.

If x € H then x € B, so I(x"'(A)) e B,. Also x = T(n)y, where ¥, < C,.

Now

Yu(®) = fu(@f@)) for y,e B, .
Also I(y;(A))e B,, for all m and n. Thus
1) = Ty (0) = ful@.(0))
x7(4) = 2. (f2'(4))
and

I(z71(4)) = T(m)I(x7*(f3'(4))
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where
Iz (f7%(A)) = I(y;*(A)) e B, for all m .
Thus
I(x(A)e H.
Finally if I(o,) € H and I(0,) € H then I(o, N 0,)€ B, for all m. Also
o, =u,(4,) 0,=2(B,)

where
I(z*(A)) e G I(xg'(B)) e C, .
Thus
I(o, N 0) = I(x;'(A, N B,))
where

I(x'(A, N B,)e G, .

In the rest of the paper it is assumed that if I(c)e H then I(o)
contains an atom in H. This is equivalent to assuming that H is
generated by I(o;) where o; are disjoint measurable sets.

Notice that H may be empty.

The above assumption holds if x, has a countable range or if a
“‘Doeblin Condition’’ holds:

There exists a measure 1) on Borel sets on the line and an € > 0
suct that:

1. If m(x7'(A4)) < o then N(A) < oo.
2. If 7(A) < ¢ then T(n)l(x;*(A)) € B, for some n.

This condition is enough for if I(x;'(A)) € H then 7(A) is finite and
by 2 contains only finitely many sets in H.

For every set o, T(n)l(c,) is in H hence is either I(c;) or is disjoint
to I(o)).

Ler 2, be the union of all the o, for which

T(n)I(o;) = I(o;) for some n .
Let 2, be the union of all the sets o, such that
(T(n)I(0), I(o;)) =0 for all n .
In this case
(T(n)I(0;), T(m)I(c;)) =0 if n#m,
by 2.c.
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Let 2, be the complement set of 2, U 2,.
If g is finite then Q, = 0.

THEOREM 1. Let A be a Borel set on the line such that x;'(A) C o,
for some 1.

If o, C 2, and n is the smallest integer such that T(n)l(o;) = I(0;)
then

weak lim T(kn + d)I(2:*(4)) = (o)™ e (AN T(D (o)) .
If o, c Q, then
weak lim T(n)I(x;'(A)) = 0 .

Proof. If T(n)l(o;) = I(o,) define
9(@) = I(x5(A)) — o) @ (A) (o)) .
Now g(w) 1 H hence
T(kn + d)g(w) = T(kn + d)I(x;"(A)) — (o)~ (2" (A) T(d) (o)

and this expression tends weakly to zero when k — o. If x;'(4) C o;
where o, C 2, then the functions 7(n)I(x;'(A4)) are disjoints.

THEOREM 2. If x;'(A) C 2, then

weak lim T(n)I(x;*(A)) = 0 .

Proof. It is enough to note that I(x;(4)) L H, for 2, U 2, contains
all the sets o;.

Let
Un, A4) = I p x, € A)
U(A) = }LiéU(fn, A) .
Thus

(U0, A), I(x;*(B))) = ((x, € A for some n) N x,€ B)
(UA), I(x:(B))) = (x, € A infinitely often) N 2,€ B) .

THEOREM 3. Let A be a Borel set such that x;(A) C o; for some 1.
If 0, C 2, and T(n)l(c,) = I(o;) then

Uim, A) = UA) = g: T(d)I(o;) .
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If 0, Q, then UA) =0
Proof. If T(n)l(o;) = I(c;) then
U(4) = U0, 4) £ 5, T)I(©) .

On the other hand if I(o) = T(d)I(c;) then
(U(4), L0)) = lim (T(en + d)I(i'(4)), 10))
= (o)™ (@, '(A)) o) > 0 .

But U(A) is a characteristic function therefore the above equation implies
that U(A) = T(d)I(c;). Thus

U(A) = zl T(d)I(s)) .

If (T(n)I(0;), I(c;)) = 0 for all n, then U(n, A) is disjoint to
T(m)I(x;(A)) m < n. Thus U(A) is disjoint to T(m)I(xz;'(A)) for all m
and therefore U(A) = 0.

COROLLARY. In the first case studied above

M(x, € A for some n) N x,€ B)
= p(x, € A infinitely often) N x,€ B) .

In the second case

(x, € A infinitely often) N €, € B) =0 .

REMARKS. Let a Markov chain be defined by the matrix (P;))
Pinw=1P;=0if j#£i1+1 —o <1,j<o. Then if gz, =1) =1
2 can be chosen as the union of countably many atoms. In this case
H=L,(2) and 2 = 2,. Let (P;;) be the matrix of a free random walk
(See K.L. Chung Markov Chains p. 23) and again Mz, = 1) =1
—oo < 1< o, In this case for every ¢ and j there is a sufficiently
large n such that (x, =1 N 2, =75) = P > 0. Thus each set z, = ¢
is neither in £, nor in 2, and 2 = Q..

Let P(x, A) be a transition function of a Markov process with the
real numbers as state space. Let £ be a stationary measure that is not
finite. One can construct a measure space 2 and the sequence z,(w) with

(@, e A e B) = S P, A) p(dz) .
z€B

Notice that we use alternatively t4(B) or p(x,c B) to mean the same
thing. This construction is well known.
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Let ¢z, =1) >0 and let the set Ny, {x|P"(x,1) = 0} be empty.
Then if px, e A) >0

(*) suppu(z, =1Nxe4)>0.

Otherwise P™(z,1) =0 xzc A except on a set of measure zero.
We will prove that in this case H = 0 hence 2 = 2,

and
lim ((x, e A NxeB)=0.
If H contained any characteristic function of a set {@|x, € A} (always
H c B)) then this set intersects the set {w|z,(w) = 1} for some n. But
H c B, and this set is an atom in B,. Therefore {®w|x,€ A} contains
the set {w|z,(w) = 1}. There exists an atom in H that contains this set.

This proves that H is generated by atoms. Let H be generated by o;
where o0, D {w|z,(w) = 1}. Now

sup (I(0), T(m)I(0,)) = sup 0: N Ly = 1) .

But o; = {0|z,.(w) c A} for I(c;)e B,. Hence
sup (I(g;), T(m)I(0,) = sup (2, € A; N Tpip = 1)
=gsupx,€4; Nz, =1 >0.
By (%).
Thus for some m I(o,) = T(m)I(o;). Now
sup (0, N 0;) = sup (I(0,), T(m)I(0;)) = sup #(@, =1 N Ty =1) > 0.
They can not be disjoint: for some m,
T(m)I(o,) = I(0,) .

Now
Uo.= U TWIe)

and this is a set of finite measure. But 2 had infinite measure. Since
U 0; C B, there is a set in B, disjoint to U o; which contradicts (*).
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