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Let X be a Lebesgue measurable subset of the real line and let
L be the set of all real valued measurable functions on X, two functions
being identified if they are equal almost everywhere. S. Banach and
M. M. Day have provided the following real topological vector spaces
which have no nonzero continuous linear functionals (see [1] and [3]).

EXAMPLE OF BANACH. Let V consist of all functions f in L

for which \\f\ (1 + I/I)"1 < °o and define the distance between two

functions f and g in V to be \\f — g | (1 + \f— g I)"1. Then this

distance function is a metric on V, and under the metric topology
V is a real topological vector space on which there is no nonzero
continuous linear functional.

EXAMPLE OF DAY. Let p be a real number for which 0 < p < 1

and let V consist of all functions f in L for which 1|/|* < °°.

Define the distance between two functions f and g in V to be

\\f — 9\p Then this distance function is a metric on V, and under

the metric topology V is a real topological vector space on which

there is no nonzero continuous linear functional.

On the other hand if p ^ 1 in Day's problem then M|/ | P V / 2 ) is a
norm on V which gives rise to the well known Banach space LP(X, m),
and of course a Banach space has nonzero continuous linear functionals
by the Hahn-Banach Theorem. Observe that the Banach space LP(X, m)
and the examples of Banach and Day have this in common; each is a
real topological vector space, V, for which there is a nondecreasing
function <j> mapping the nonnegative real axis into itself such that a
complete neighborhood system of θ in V (where θ denotes the zero

function) is given by sets of the form \fe V; U( |/ | ) < s\. The purpose

of the present paper is to provide a theorem on abstract measure
spaces which unifies all these results and reveals other topological
vector spaces on which there exists no nonzero continuous linear
functional.

Let (X, m) be a measure space as defined by Halmos in [5, p. 73]
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and let L be the set of all measurable functions on X, two functions
being identified if they are equal almost everywhere. By a simple
function on X we mean a linear combination of characteristic functions
of subsets of X having finite measure. By an atom we mean a sub-
set U of finite positive measure such that given any measurable sub-
set E of U, either m{E) = 0 or m{E) = m(U). The atoms Ux and U2

are identified if m(Ux Δ U2) = 0; equivalently, the atoms Ux and U2

are regarded as the same if m(Ui Π U2) = m(t/ί) or m(E7ί Π U2) = m(U2).
If 17 is an atom note that m(EΠ U) = m(ϊ7) or m(E n ίf) = 0 for
any measurable set ϋ7. If feL, then / is constant almost every where
on Z7; we denote this constant f(U). If E is a measurable set for
which mί^ n Z7) = 0 for every atom U, we say that E is nonatomic.
In particular, if there are no atoms in X we say that (X, m) is a
nonatomic measure space.

THEOREM. Let V be a vector subspace of L under the usual
operations of scalar multiplication and addition of vectors which
contains all the simple functions on X. Let V be endowed with a
Hausdorff topology for which V is a topological vector space such
that there exists a nondecreasing function φ mapping the nonnegative
real axis into itself so that a complete neighborhood system of θ in
V is given by sets of the form {fe V; φ(\f\) < ε}. Then

(i) if lim inf n~τφ(n) > 0, then given any two linearly independent
functions f and g in V there is a continuous linear functional T
on V for which TfΦO and Tg = 0.

(ii) if lim inf n'xφ(n) = 0 and {U*} is the (possibly vacuous) family
of all atoms in X, then given any continuous linear functional T on
Vwe have Tf = Iaf(U«)T(X,U«) for all fe V; in particular, if (X, m)
is nonatomic there are no nonzero continuous linear functionals on V.

Since lim inf n~xφ(n) ̂  0, statements (i) and (ii) exhaust all possi-
bilities. Before developing a proof we note that the Banach space
LP(X, m) and the examples of Banach and Day are all special cases
of our Theorem. In Banach's example φ(x) = x(l + x)'1 (we can show
that φ is nondecreasing by differentiating φ) and plainly case (ii)
applies. In the Banach space LP(X, m) and in Day's example φ(x) =
xp; in the former problem case (i) applies and in the latter, case (ii)
applies. (Completeness is employed in the proof of Day's example in
[3]; however completeness will not enter into the argument presented
here.)

Proof. We can assume without loss of generality that Vφ(0),
i.e., there is a function / in Ffor which/ Φ θ. We claim that there
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is a measurable set E for which 0 < m(E) < oo. To prove this observe

that there is an integer n so large that U(| ft"1/!) < l Since F is

Hausdorff U(| w 1 / ! ) > 0 and there must be a real number c > 0 for

which 0 < mX(φ(\ n*1/]) ^ c) < oo.

We claim that $(0) = 0 and limy_0+ φ(y) = 0. To see this observe

that θ is in every neighborhood of itself; consequently 0 = \ψ{θ) and

0(0) = 0. Let E be a measurable set for which 0 < m(E) < oo. Be-

cause 7 is a topological vector space n~ιχE converges in V to θ as

n —> co and

L χ ^ ) = m(E)φ(n~1) —> 0 as w —> oo .

Since 0 is nondecreasing we have Iim1/_>o+ 0(2/) = 0.

We claim that y ^ 0 and #(#) = 0 imply y = 0. For if # > 0 then

(because V is Hausdorff) m{E)φ(y) = U(2/χB) > 0 and ^(#) > 0 where

£7 is a set for which 0 < m{E) < oo.
We claim that given any ε > 0 there is a δ > 0 such that y ^ 0

and 0(2/) < <? imply y < ε. If this were not true there would be a
sequence of numbers yn^ ε for which lim^oo 0(s/w) = 0; but then
0(ε) = 0 which is impossible.

Let V be the vector subspace of V composed of all the simple
functions. We claim that V is dense in V. To prove this let / be
an arbitrary function in V. There is an integer n such that

\φ{\n-λf\) < 1. On any set of the form X{Kλ ^ | / | ^ K2 > 0) / can

be uniformly approximated by functions in Vf and it follows from

the Dominated Convergence Theorem that n~λf and / are in the closure

of V in V (recall that limy_0+ φ(v) = 0).
To prove (i) suppose that lim inf n~xφ(n) > 0 and let /, g be linearly

independent functions in V. Hence there is a number c > 0 for which
fχE and gχE are linearly independent where E — X{\f\ ^ c) U X(\ g \ ̂  c);
otherwise there would exist scalars α, 6 for which a2 + δ2 > 0 and
&/%£? + 60X0 = 0 almost everywhere for all c > 0, and hence af +
bg = 0 almost everywhere on X which is impossible. Note that 0 <
m(E) < 00.

We have lim inf,,_«, y~τφ{y) — lim inf n^φin) because φ is nondecreas-

ing. Then there are positive numbers δ and K such that if y > K,

then y~λφ{y) ^ δ and δ~λφ{y) ^ 7/. There is an integer w so large that

[ < 1. For n'1 \f(x) \ > K it follows that

and consequently fχE is in Lλ(E, m) where E is the set given in the
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preceding paragraph. Likewise hχE is in LX{E, m) for any h in V.
But L^E, m) is a Banach space and by the Hahn-Banach Theorem

there is a continuous linear functional S on L^E, m) for which
S(fχE) Φ 0 and S(gχE) = 0. Define the linear functional Ton F a s
follows; Th = S(/%j for all A in V.

To complete the proof of (i) it suffices to show that T is con-
tinuous on V. Now V is evidently first countable. We need only
show that if {hn} is a sequence of functions in V converging to θ in
V, then {hnχE} converges to θ in LX{E, m). Let {hn} be such a sequence;,
then lim l̂ fl hn\) = 0 and 0(1 ̂ J ) converges to 0 in measure on X.
But given any ε > 0 there is a δ > 0 such that y ^ 0 and 0(#) < δ
imply y < ε. Hence {hn} converges to θ in measure on X. But by
an argument above

if I hn(x) I > iΓ for certain fixed numbers δ and K; it follows that

lim^oo \ I hnχE \ = 0 and (i) is proved.
JE

To prove (ii) suppose lim inf n~^(n) = 0 and let T be a continuous
linear functional on V. We claim that if E is a nonatomic measur-
able set for which 0<m(E)<az, then TχE = 0. To prove this
suppose TχB =£ 0 and select any integer n > 0. It is well known that
the set {m(S)\ Sc E} is the closed interval [0, m(#)] (see [4, pp. 308-9]
for a proof that this set is dense in the interval, and the rest of the
argument is routine). By induction there exists mutually disjoint
subsets E19 Ei9 , En of E for which m(Ei) = n~xm(E) for all i. Then

ίEt
£ Σ I TχEi I

and plainly there exists an index j for which | TχEj \ ̂  n~~ι \ TχE \...
Hence

Φ(nχa.) = ( Φ(n) = φ(n)m(Ej) =

but on the other hand

I T(nχEj) \ = n\TχE.\^n n'1 \ Tχ E\ = \ TχE \ > 0 .

Because lim inf n~xΦ{n) = 0 it follows that in every neighborhood of θ°
in V there is a function / for which | Tf \ ̂  | TχE | contrary to the
hypothesis that T is continuous.

Observe that Tf = 0 for any simple function / with nonatomic
support.

To conclude the proof of (ii) let / be any function in V for which.
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W(l/I) < l There is a sequence of simple functions {hn} such that

lim jfKI/ - A I) = 0. Put E - X - U* UΛ. Now f{UΛ) Φ 0 for at

most countably many Ua; say U19 U2, U3, are these atoms enumerated.

Clearly fχE and hnχB are measurable and \im\φ(\fχE — hnχE |) = 0. Put

0. = Λ Z. + ΣΓ/(ϋi)Zir4. NowΣΓ^[|/(ϋi) |]m(i7 4)^jί5(|/ |)<«). Con-

sequently

= \φ(\fχE - i

and g% converges to / in F. But

Tgn = T(hnχE) t

Because Γ is continuous

Γ/ = ±f(Ut)T(χσt)
1 05

This holds for any function f in V (because we can always consider

n~λf where Wd^"1/!) < 1). The proof of (ii) is complete.

In our Theorem (ii) suggests the possibility of constructing several
topological vector spaces which have no nonzero continuous linear
functional. We present one explicitly by employing the following

INEQUALITY. For any nonnegative numbers x and y

x , y ^ x + y
log (9 + x) log (9 + y) log (9 + x + y)

and equality holds if and only if x = 0 or y — 0.

Proof. Set Φ(x) = x/log (9 + x) and observe that

φ»(χ) = -18 log (9 + x) - x[log (9 + x) - 2]

and Φ"(%) < 0 for all x Ξ> 0 because 9 > e\ We can suppose without
loss of generality that x ^ y > 0. Then Φ\x) is strongly decreasing
and by the Mean Value Theorem

0(# + y) — ̂ (^) < (̂?/) —

and the conclusion follows. Observe also that φ'(x) S 0 and Φ is
strongly increasing for x ΞΞ> 0.

To construct our example let (X, m) be a nonatomic measure space
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and let V be the subset of L composed of all functions / for which
W(l/i)<°° where ψ(y) = y [log (9 + y)]~\ That V is closed under
addition follows from the Inequality. To show that V is closed under
scalar multiplication observe that

|c/ | [log(9 + Ic/I)]-1 5S I/I [log(9 + I/I)]"1

if I c I ^ 1 and

\cf\ [log(9 + Ic/I)]-1 ^ | c | I/I [log(9 + I/I)]"1

if | d > l And in either event

\cf\ [log(9 + Ic/I)]- ^ (1 + Id) I/I [log(9 + I/I)]"1 .

Thus V is a vector subspace of L under the usual operations of
addition and scalar multiplication of vectors. Define a metric p on V

as follows; ρ(f, g) = \φ(\f — g |). That p is a metric follows from our

Inequality and trivial verifications.
We claim that V is a topological vector space under the metric

topology. That (/, g)—>f + g is continuous in /and g simultaneously
follows from the Inequality. To show that (c, /) —> cf is continuous
in c and / simultaneously we observe that

(Kef, co/o)

= jl cf - co/o I [log (9 + I cf - co/01)]"1

\cfo- cjo I [log (9 + I c/0 - co/o I)]"1

5 | c - c 0 | | / 0 | [ l o g ( 9 + I c -

In the preceding paragraph fix c0 and /0 and let c and / vary.
Now if I c — c01 < 1 then

\c - col l/ol [log(9 + \e - co| 1/oDΓ1 ^ | / 0 | [log(9 + l/ol)]"1 .

By the Dominated Convergence Theorem we can make ρ(cf, co/o) as
small as we please by making |c —c o | and p(f,f0) small enough.
Hence V is a topological vector space satisfying (ii) in our Theorem
and there is no nonzero continuous linear functional on V. (By an
argument paralleling the proof that LP(X, m) is complete for p ^ 1
one can also show that V is complete; the details are left to the
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reader.)
The interested reader can also show that the set of functions /

in L for which \log(l + | / | ) < co endowed with the metric />(/, g) =
\log(l + 1/ — #|) is a topological vector space under the metric
topology which has no nonzero continuous linear functional.

REFERENCES

1. S. Banach, Theorie Les Operations Lineares, Chelsea, 1955.
2. S. Cater Note on a theorem of Day, Amer. Math. Monthly 69 (1962), 638-640.
3. M. M. Day. The Spaces L& With 0 < p < 1, Bull. Amer. Math. Soc. 46 (1940), 816-823.
4. N. Dunford and J. T. Schwartz, Linear operators, Part I Interscience, 1958.
5. P. R. Halmos, Measure Theory, van Nostrand, 1950.

UNIVERSITY OF OREGON






