A RESULT CONCERNING INTEGRAL BINARY QUADRATIC FORMS

William Edward Christilles

This paper contains an extension of an earlier work by Dickson ([1], p. 95), in which the following theorem was proven:

Theorem 1. (Dickson's Theorem). If a number is represented properly by a form $[a, b, c]$ of discriminant $D=4 a c-b^{2}$, then any divisor of that number is represented by some form of the same discriminant D.

Definition. ([1], p. 68). A positive form $[a, b, c]$ is called reduced if $-a<b \leqq a, c \geqq a$, with $b \geqq 0$ if $c=a$.

As a consequence of the above definition it follows that $4 a^{2} \leqq 4 a c=$ $D+b^{2} \leqq D+a^{2}, 3 a^{2} \leqq D$, and finally $a \leqq \sqrt{(1 / 3) D}$

Theorem 2. Let M be properly represented by the integral positve definite quadratic form $a \alpha^{2}+b \alpha \gamma+c \gamma^{2}$ of discriminant $D=4 a c-b^{2}$. If $M \leqq 3 D / 16$ and $(D, M)=1$, then in every factorization of M one of the factors is a_{i}, one of the minimal values of a primitive quadratic form of discriminant D. In other words, $M=M_{1} M_{2}$ where M_{1} is a unit or a prime and M_{2} is the product of no more than two α_{i}.

Proof. According to the remark following the definition $a_{i} \leqq \sqrt{D / 3}$, where equality for a primitive reduced form is possible only if $a_{i}=$ $b_{i}=c_{i}=1$ and hence $D=3$ so that the inequality $0<M \leqq 3 D / 16$ cannot be satisfied. Thus $a_{i}<\sqrt{D / 3}$.

Now assume $M=r_{1} r_{2}$. Then according to Theorm 1 it follows that

$$
r_{1}=a_{i} \alpha_{i}^{2}+b_{i} \alpha_{i} \gamma_{i}+c_{i} \gamma_{i}^{2}, \quad r_{2}=a_{j} \alpha_{j}^{2}+b_{j} \alpha_{j} \gamma_{j}+c_{j} \gamma_{j}^{2}
$$

where the two quadratic forms are primitive reduced forms of discriminant D. Hence

$$
\begin{aligned}
\left(4 a_{i} r_{1}\right)\left(4 \alpha_{j} r_{2}\right) & =\left[\left(2 a_{i} \alpha_{i}+b_{i} \gamma_{i}\right)^{2}+D \gamma_{i}^{2}\right]\left[\left(2 \alpha_{j} \alpha_{j}+b_{j} \gamma_{j}\right)^{2}+D \gamma_{j}^{2}\right] \\
& =\left(\beta_{i}^{2}+D \gamma_{i}^{2}\right)\left(\beta_{j}^{2}+D \gamma_{j}^{2}\right)=16 a_{i} a_{j} M \\
& <16(D / 3) M \leqq(16 D / 3)(3 D / 16)=D^{2}
\end{aligned}
$$

where $\beta_{i}=\left(2 a_{i} \alpha_{i}+b_{i} \dot{\gamma}_{i}\right)$ and $\beta_{j}=\left(2 a_{j} \alpha_{j}+b_{j} \gamma_{j}\right)$. This implies that $\gamma_{i} \gamma_{j}=0$, say $\gamma_{i}=0$, and therefore $r_{1}=a_{i}$.

To prove the final statement of the theorem, assume $M \neq a_{i}$ and

[^0]let r_{2} be a minimal factor of M so that $r_{2} \neq a_{j}$. If M_{1} is any prime factor of r_{2}, then $M=M_{1} M_{2}$ where $M_{2}=\left(M / r_{2}\right)\left(r_{2} / M_{1}\right)=a_{i} a_{j}$.

Reference

1. L. E. Dickson, Introduction to the Theory of Numbers, Dover Publications, Inc., New York, 1929.

St. Mary's University, San Antonio, Texas

[^0]: Received November 21, 1963. The author is indebted to the referee for the suggested revision of both the statement and the proof of Theorem 2.

